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Population biology of sand dollar, Peronella lesueuri, in 

Cockburn Sound, southwest Australia 

Abstract 

Peronella lesueuri, commonly known as the pink sand dollar, is an irregular echinoid 

that can be found in the sandy sediment substrates of Cockburn Sound, southwest 

Australia. The numbers in which they are found indicate that they are likely to be an 

ecologically significant species. This is the first study of the biology and ecology of 

this species.  

A survey of current spatial distribution and abundances of Peronella lesueuri 

populations at a range of sites within Cockburn Sound shows the presence of the 

sand dollars on the shallower, sandy sills that surround the Sound. P. lesueuri was 

notably absent from the deeper central basin of Cockburn Sound, where silt is a 

major component of the sediment. The population densities of P. lesueuri ranged 

from 0.3 to 2.5 individuals m-2 at sites no deeper than ten metres. Mean test 

lengths were larger at sites less than five metres in depth. Sediment grain size 

preference and food availability were likely factors that determined the spatial 

distribution of the sand dollars in Cockburn Sound.  

Detailed monthly sampling for population demographics was conducted at Jervoise 

Bay over a 23-month period in which significant temporal variations in the densities 

of the P. lesueuri were recorded. Two spikes in population densities in December 
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2010 and January 2011 were indicative of clear annual recruitment events. The 

spike in densities caused by recruitment, however, were quick to return to what 

appeared to be the stable population density of 0.13 – 0.3 individuals m-2. 

This study showed that the P. lesueuri reproductive cycle is annual, with peak 

spawning in summer. Gametogenesis was recorded in spring, spawning in summer, 

spent gonads in autumn and gonads recovered during winter. The gametogenic 

cycle of P. lesueuri underwent five distinct morphological stages; Recovery, Growth, 

Mature, Partially Spawned and Spent, similar to those described in other 

echinoderm gametogenic cycles.  

In the recovery stage, nutritive phagocytes filled the lumen of both the testes and 

ovaries. Primary gametocytes (Stage 1 gametes) were present large numbers. 

Growing gonads contained increasing numbers of secondary gametocytes. Mature 

gametes are present in some gonads while nutritive phagocytes decreased in 

volume. In fully mature male gonads, lumens were densely packed with 

spermatozoa. Two variants of the mature stage were observed in the ovaries; one 

was packed full of ova with few oocytes, the other contained oocytes in all stages of 

development. Some female sand dollars produced only one cohort of ova which are 

spawned out once all the ova are released, while others can produce several 

cohorts of ova throughout the spawning period. Partially spawned gonads 

contained large numbers of mature gametes although spaces left by spawned 

gametes were observed. Lumens of spent gonads were mostly empty, although 

unspawned gametes in various stages of degeneration were occasionally present. 

Unspawned gametes eventually broke down and were incorporated into the 
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nutritive phagocytes. The gametogenic stages were highly synchronous between 

sexes. Juveniles attained sexual maturity at between one and a half and two years 

of age. 

Size frequency distributions as well as density variation over a 23-month period 

indicated that Peronella lesueuri recruits annually. Juveniles appeared in the adult 

population around May/June, five to six months after the start of the spawning 

period. Annual recruitment strength was variable and juvenile mortality was high. 

Up to 88% juvenile mortality was measured in the first year alone.  

Pooled length-at-age data derived from the 2009 and 2010 cohorts of recruits was 

combined with length-at-age data for large “adult” sand dollars obtained from 

growth zone counts to construct a scatter plot to fit a growth curve. Growth in P. 

lesueuri is sigmoidal and is best described by the Richards’ Growth Curve.  Juvenile 

P. lesueuri grow quickly, with a maximum growth rate of 60 mm yr-1 at two years of 

age. Intermediate-sized sand dollars were scarcely encountered. The rapid growth 

rate of sand dollars of intermediate size predicted by the Richards’ growth curve 

coupled with high juvenile mortality provides an explanation for the scarcity of sand 

dollars between 50 and 100 mm. The growth rate slowed to close to zero at 

approximately two and a half years of age, and this may be associated with the 

attainment of sexual maturity. Maximum size in the population studied was 182 

mm. The maximum life expectancy is approximately five years. 

This study indicated that P. lesueuri has diurnal and seasonal patterns of activity 

throughout the year, with greater movement rates in summer (mean of 5.3 cm hr-1, 

day; 3.9 cm hr-1, night) than in the winter (mean of 2.7 cm hr-1, day; 2.0 cm hr-1, 
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night). Seasonal changes in temperature and physiological requirements by the 

sand dollar are the most likely reason for the seasonal differences; however 

reasons for diurnal movement variation were unclear. Direction of movement was 

found to be random at both times of the year. Based on the movement rates, and 

at a density estimate of 0.5 sand dollars per m-2, it is estimated that the sand dollars 

can rework the entire area of the sediments in the habitats they occupy in 

approximately 20 days.  

This study provided the first histological description of the gametogenic cycle in 

Peronella lesueuri and established that the reproductive cycle is annual. The growth 

rate and life expectancy of P. lesueuri was also determined. The study of diurnal 

and seasonal patterns of activity in P. lesueuri indicated that it was ecologically 

significant as a sediment bioturbator. While further research is required to fully 

assess the biological and ecological significance of P. lesueuri in Cockburn Sound, 

the densities in which P. lesueuri is found on the shallow sediment bottoms imply 

that they have a potentially important role as an agent in mediating biogeochemical 

processes in the surface sediments.  
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Chapter 1  Introduction and Review of the Literature 

1.1 Introduction 

Sand dollars are commonly observed, abundant macro-organisms in sandy marine 

sedimentary substrates across a range of depths in intertidal and subtidal zones. 

Peronella lesueuri (L. Agassiz, 1841), commonly known as the pink sand dollar is a 

large abundant species in south-western Australia. Prior to this study, little was 

known of its biology and ecology.  

1.1.1 Taxonomy and Distribution of Peronella lesueuri  

Classification of Peronella lesueuri: 

PHYLUM: Echinodermata 

CLASS: Echinoidea 

ORDER: Clypeasteroida 

FAMILY: Laganidae 

GENUS: Peronella 

           SPECIES: lesueuri (L. Agassiz, 1841) 

In his 1938 monograph, Echinoderms from Australia, Clark  (1938) noted the 

distribution of Peronella lesueuri around Australia from southern Queensland, 

northward and westward towards Darwin and Broome, and then along the west 

coast down to Fremantle and Albany. P. lesueuri was also encountered in more 

recent marine surveys in the Dampier Archipelago (Marsh and Morrison 2004) and 
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Kimberley regions (Keesing et al. 2011). P. lesueuri has a wide Indo-Pacific 

distribution (Figure 1.1) and has been recorded in Hong Kong (Agassiz and Clark 

1914; Clark 1921), Southern Japan (Agassiz and Clark 1914; Clark 1921), Singapore 

(Agassiz and Clark 1914) and the Philippines (Agassiz and Clark 1914). Peronella 

lesueuri can be found in coarse to fine sandy sedimentary substrates. In Cockburn 

Sound, it is found on the shallow banks and sills that surround the deep basin, in 

densities of up to six individuals m-2 (Marsh and Devaney 1978; Forehead and 

Thompson 2010). P. lesueuri has not been reported in the fine muddy substrate of 

the deep basin (Marsh and Devaney 1978; Cary et al. 1995; Forehead and 

Thompson 2010). 

  

Figure 1.1 Predicted worldwide distribution of Peronella lesueuri (Aquamaps 2011). 

The distribution is shown by the red dots.  

 

The class Echinoidea includes sea urchins, heart urchins and sand dollars. Sand 

dollars, such as Peronella lesueuri, have a flattened, rigid test formed by 10 rows of 

interlocking plates, covered by a velvet-like layer of spines and podia, which are 
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used for locomotion and feeding (Mooi and Telford 1982; Ellers and Telford 1984; 

Telford et al. 1985). The test consists of five alternate ambulacral and 

interambulacral areas, each made up of two rows of plates. With a distinct pink 

colour, described as old rose by Clark (1938), Peronella lesueuri can grow up to 

lengths of 18 centimetres, although in Cockburn Sound, lengths of 13-15 

centimetres are more common. Sand dollars are bilaterally symmetrical and have 

an anterior-posterior axis which passes through the peristome and periproct on the 

oral surface and through the madreporite, which is centrally located on the aboral 

surface of the test. Four gonopores are located in the genital plate adjacent to  the 

madreporite. Oval in shape, P. lesueuri is slightly elongated along its anterior-

posterior axis.  

Compared to the extensive literature available on regular echinoid population 

ecology, there is far less published scientific literature about irregular echinoids and 

the only published literature to date on the reproductive biology of Peronella 

lesueuri reported that individuals from a lagoon near Misaki in Japan had ripe 

gonads in late June and July (Mortensen 1921). Mortensen (1921) also noted that P. 

lesueuri had yolk-laden ova with diameters of 0.3-0.4 mm, which suggested 

lecithotropic development.  

1.2 Review of the Literature 

Extensive ecological and biological research has been conducted on echinoderms; 

however the majority of the research has not focused on irregular echinoids, which 

includes heart urchins and sand dollars. This review of the literature will therefore 
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include articles on all Echinoidea; however, emphasis will be placed on irregular 

echinoids and sand dollars in particular.  

1.2.1 Sand dollar distribution 

Echinoids have a worldwide distribution which encompasses a bathymetric depth 

range from the intertidal to abyssal zones. They occupy a range of habitats, 

including coral and limestone reefs, benthic sediment and intertidal beaches and 

rock pools. Sand dollars are found in benthic communities and appear to be 

common in soft sediment habitats in shallow tropical to subtropical regions.  They 

have also been encountered in temperate zones and at depth.  Species such as 

Echinarachnius parma and Dendraster excentricus occur in the temperate zones of 

the North American continent (Birkeland and Chia 1971; Stanley and James 1971; 

Cabanac and Himmelman 1996).  At Sable Island, Southeast Canada, E. parma was 

encountered at a maximum depth of 256 metres (Stanley and James 1971), while D. 

excentricus has been encountered at depths of 90 metres (Clark 1948; as cited in 

Birkeland and Chia 1971).  

1.2.1.1 Habitats 

Many sand dollar species are known to occur both in the intertidal shallows as well 

as subtidal zones. Oftentimes distribution across the beach is size related. In Mexico, 

juveniles of the sand dollar Encope grandis were found throughout the intertidal 

zone, whereas larger individuals were more abundant in the lower intertidal zone 

(Ebert and Dexter 1975). At Pallarenda Beach in Queensland, Australia, Arachnoides 

placenta had a similar distribution, with larger individuals found towards the lower 

section of the beach (Haycock 2004). Lane and Lawrence (1980) observed that 
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adults of Mellita quinquiesperforata move into deeper water, while juveniles settle 

in shallow, inshore areas. The presence of juvenile Dendraster excentricus higher up 

on the shore than adults was also observed along the Pacific coast of California and 

Baja California, Mexico (Merrill and Hobson 1970). In these cases, it is possible that 

juvenile sand dollars are less capable of manipulating the finer sediment and the 

coarser sand higher up the beach provides a more stable environment for them 

(Haycock 2004). Conversely, adults of the subtidal sand dollar Echinarachnius 

parma in the Gulf of St Lawrence have a propensity to move upstream into 

shallower waters, with the juveniles occurring at greater depth (Cabanac and 

Himmelman 1996). The authors suggested that larger individuals were better 

adapted for the shallows and less likely to be transported away by water turbulence 

than juveniles.   

There are few observations on the habitat preferences of Peronella lesueuri in the 

literature. However, Mortensen (1921) observed Peronella lesueuri on the sandy 

sediment in a shallow lagoon in Misaki, Japan and within Cockburn Sound, P. 

lesueuri has been observed at a depth of 4-8 metres (Forehead and Thompson 

2010), suggesting that this species occurs subtidally. It is unclear if P. lesueuri can 

survive in the intertidal zone. 

1.2.1.2 Sediment preferences 

Many irregular echinoid species display preferences for a particular substrate. 

Sediment grain size has a significant effect on the burrowing, locomotive and 

feeding behaviours of irregular echinoids (Ghiold 1979; Lane and Lawrence 1982; 

Telford et al. 1987; Schinner 1993; Cabanac and Himmelman 1996). Schizaster 
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canaliferus, a heart urchin common in the North Adriatic Sea, only displayed 

burrowing activity in fine sediments (2-20 µm) with burrowing activity not observed 

in sandy sediments larger than 63 µm (Schinner 1993). Although the sand dollar 

Echinocyamus pusillus can be found in coarse substrate ( >1000 µm) where it 

nestles between pebbles (Telford et al. 1987), the preferred mean/largest grain size 

of most species of sand dollars is usually between 100-200 µm (Ghiold 1979; 

Telford et al. 1987; Telford 1990; Pomory et al. 1995). In sediment size preference 

experiments, sand dollar Mellita quinquiesperforata was unable to burrow in 

sediment that was too large (>1000 µm) or too small (<63 µm) (Ghiold 1979). 

However, Pomory et al. (1995) found that Mellita tenuis had the capability to 

burrow and move in grain sizes larger than their preferred size. Sand dollars 

manipulate sediment while moving as well as feeding; this led Pomory et al. (1995) 

to suggest that the dimensions of the feeding podia of each species of sand dollar 

may play a larger role in determining the preferred sediment grain size than the 

ability to burrow or move. 

Unlike heart urchins, which commonly burrow in fine, silty sediment (Schinner 

1993; Hollertz and Duchene 2001; Lohrer et al. 2005), silt is detrimental to some 

species of sand dollars. In Beaufort, North Carolina, Weihe and Gray (1968) 

observed a drop in abundance of juvenile Mellita quinquiesperforata from the sand 

flats at Bird Shoal when dredging suspended and deposited mud and silt over the 

sand flats. When placed in mechanically sorted fine sediments (63 µm) in the 

laboratory, M. quinquiesperforata began burrowing until the fine sediment coated 
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their tests and caused burrowing to cease; the fine layer of sediment on the test 

obstructs spine movement, eventually causing death (Ghiold 1979).  

In Cockburn Sound, Peronella lesueuri has been observed at depths of 4-8 metres in 

medium and fine sands (Forehead and Thompson 2010), but was notably absent 

from the deeper main basin, where silt dominates the sediment (Marsh and 

Devaney 1978; Cary et al. 1995).  

1.2.1.3 Diet and feeding mechanisms 

Sand dollars are size selective deposit feeders (Ellers and Telford 1984; Telford et al. 

1985; Telford and Mooi 1986; Telford 1990; Hilber and Lawrence 2009). The diet of 

P. lesueuri is not known but sand dollars are known to feed on diatoms from the 

microphytobenthos, foraminifera and other microeukaryotes, as well as lipid and 

bacterial components coating sedimentary particles (Lane and Lawrence 1982; 

Mooi and Telford 1982; Findlay and White 1983; Ellers and Telford 1984; Telford et 

al. 1987).  

In the literature, two mechanisms were suggested for feeding in these sand dollars. 

Both methods assumed that smaller particles were selected from the surrounding 

sediment.  

The sieve hypothesis suggests that particle size selection occurs when aboral spines 

behave like a sieve (Chia 1969; Ghiold 1979). Ciliary currents were used to sweep 

suspended matter (<100 µm), which contains food particles like diatoms, onto the 

test surface and then into food tracts, where they are caught in mucus. The mucus 

strings are then carried by the ambulacral and buccal tube feet into the mouth. This 
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hypothesis assumes that the role played by podia in food selection and transport is 

secondary. Authors who subscribe to this hypothesis believe that Dendraster 

excentricus (Chia 1969), Echinarachnius parma (Mooi and Telford 1982), Lovenia 

elongata (Lawrence and Ferber 1971), Mellita quinquesperforata (Lane and 

Lawrence 1982) and Mellita sexiesperforata (Goodbody 1960) feed in this manner.  

The second hypothesis suggests that feeding podia on the oral surface of the sand 

dollar select particles out of the substrate (Ellers and Telford 1984; Telford et al. 

1985). The particles are then passed along the podia to the food grooves where 

they are collected in mucus cord. Another set of specialised podia then transport 

the mucus cord to the mouth where the modified Aristotle’s Lantern crushes the 

sand grains and diatoms (Ellers and Telford 1984; Telford et al. 1985). Mellita 

quinquiesperforata was observed to feed in this manner by Telford et al. (1985) in 

contradiction to Lane and Lawrence (1982). 

While most sand dollars are found buried or prone on the surface of the sediment, 

some sand dollar species adopt a rare and novel feeding method: suspension 

feeding.  Suspension feeding has been reported in three scutellid sand dollars – 

Dendraster excentricus (Chia 1969; Morin et al. 1985; Francisco and Herzka 2010),  

Dendraster vicainoensis and Encope michelini (Lawrence et al. 2004), and two 

laganid sand dollars – Heliophora orbiculus and Rotula augusti  (Dartevelle 1935 as 

cited in Lawrence et al. 2004) but has, however, only been studied in D. excentricus 

and Encope michelini.   

 When suspension feeding, these sand dollars bury their anterior end in the sand 

and assume a vertical (inclined) posture. This vertical position places the sand 
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dollars in an ideal position to intercept suspended food particles that are swept 

over the sediment beds. In areas of moderate water movement, Dendraster 

excentricus adults are usually positioned vertically (Merrill and Hobson 1970).  At 

low tidal levels, however, D. excentricus changed its position from vertical to being 

prone on the sediment and its feeding method from suspension to deposit feeding 

(Francisco and Herzka 2010). In areas of high water movement, D. excentricus is 

usually buried in the sediment (Merrill and Hobson 1970).  

There is a significant gap in the literature pertaining to the diet and feeding 

mechanisms of Peronella lesueuri. While the feeding mechanism of P. lesueuri is 

unknown, the few documented observations of P. lesueuri in the literature have 

noted them on or buried in the sediment (Mortensen 1921; Forehead and 

Thompson 2010). There is no evidence that P. lesueuri adopts an inclined position 

for suspension feeding.  

1.2.1.4 Aggregation and patchiness 

Echinoderms commonly form dense aggregations (Konnecker and Keegan 1973; 

Garnick 1978; Young et al. 1992; Lauzon-Guay and Scheibling 2007a; Lauzon-Guay 

and Scheibling 2007b; Alvarado 2008; Westerberg et al. 2008). Sea urchins have the 

ability to migrate towards a food source (Ceccherelli et al. 2009) and form feeding 

aggregations despite the randomness of their movements (Hereu 2005; Lauzon-

Guay et al. 2006; Dumont et al. 2007). Strongylocentrotus droebachiensis has a 

tendency to move further in areas where food is scarce, concentrating in areas of 

greater food availability (Lauzon-Guay and Scheibling 2007) and aggregating into a 

feeding front (Abraham 2007). Feeding fronts can be destructive (Lauzon-Guay and 
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Scheibling 2007) with the urchins grazing all the foliose algae from an area, leaving 

a “barrens habitat” (Langdon et al. 2011). 

Along the Pacific coast of North America, the sand dollar Dendraster excentricus has 

been known to occur in large, densely aggregated beds of up 1,200 individuals m-2 

(Merrill and Hobson 1970; Birkeland and Chia 1971; Highsmith 1982; Morin et al. 

1985). This close spacing allows the sand dollars to be in the inclined position to 

feed, with the highest densities occurring in the deepest regions of the beach 

where surge is lower (Morin et al. 1985). Substrate and water movement appeared 

to limit the distribution of sand dollars shoreward (Morin et al. 1985). 

Mellita quinquiesperforata, a sand dollar common to the tropical and subtropical 

Atlantic coast of North and South America, has a propensity to aggregate. Instead 

of forming dense beds like D. excentricus, they tend to form clearly defined clusters 

(Weihe and Gray 1968; Bell and Frey 1969; Lane and Lawrence 1980). While large-

scale aggregations of benthic organisms can be attributed to physical 

environmental factors, patchiness could be attributed to the distribution of 

sediment grain size composition and food availability at a smaller scale (Swigart and 

Lawrence 2008). M. quinquiesperforata have been observed to aggregate around 

depressions in the sand or behind sand bars that act as silt traps (Weihe and Gray 

1968; Lane and Lawrence 1980). Off the Central Florida Gulf Coast, Mellita tenuis 

and Encope michelini were also found in dynamic clusters that changed within two 

to five hours after initial observation (Swigart and Lawrence 2008). Swigart and 

Lawrence (2008) attributed the aggregations to local, short-term changes in food 
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concentration and that the sand dollars disperse when the food concentration is 

decreased .    

Other reasons for echinoid aggregation include breeding and defence from 

predators. As fertilization is external, conspecific aggregations, especially in small 

populations, may increase breeding success (Levitan and Young 1995). The sea 

urchin Echinus esculentus has been shown to be attracted to conspecific gametes 

(Campbell et al. 2001). Aggregations of sea urchin Stylocidaris lineata were only 

observed when individuals had ripe gonads, suggesting that aggregation may 

facilitate spawning synchrony and cause gametes to be retained at high 

concentrations near the adults long enough for fertilization to occur (Young et al. 

1992). 

Aggregations reduce individual predation pressure (Bernstein et al. 1981). The 

presence of crabs increased the aggregation tendency of large Strongylocentrotus 

purpuratus individuals as aggregations served as a better defence than hiding and 

allowed urchins to continue feeding during the day (Bernstein et al. 1981).   

It is unknown if Peronella lesueuri forms aggregations. While several authors have 

observed P. lesueuri in considerable numbers in their studies, there has been no 

mention of aggregations of this species (Mortensen 1921; Marsh and Devaney 

1978; Forehead and Thompson 2010).  

1.2.2 Reproductive Biology 

Echinoid reproduction has been extensively researched both in the field and 

laboratory, and studies have been primarily focused on the effect of environmental 
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factors on reproductive cycles. Echinoids are dioecious and undergo gametogenesis. 

Most species release their gametes into the water column for fertilization, although 

some species have been known to brood (Pearse and McClintock 1990; Schatt and 

Feral 1996). Cyclic reproductive patterns with annual, seasonal, monthly and/or 

lunar periodicities are common. Some species, however, have been found to exhibit 

continuous reproduction, like Echinometra mathaei in Western Australia (Pearse 

and Phillips 1968). It is possible that the standard sampling techniques (e.g. 

monthly) used were not able to detect whether the population had gonads in a 

constantly mature state or if the reproductive cycle exhibited a shorter cyclic 

pattern (e.g. monthly). Centrostephanus coronatus at Santa Catalina Island in 

California was found to have monthly reproductive rhythms closely corresponding 

to lunar cycles (Kennedy and Pearse 1975). Lima et al. (2009) suggested that a 

population of Echinometra lucunter from Muro Alto beach in Brazil showed 

continuous reproduction with seasonal peaks. 

Echinoid reproduction occurs in a cycle through the stages of growth, development, 

maturation of the gonads and spawning of gametes, after which gonad tissues 

recover and accumulate a nutrient store to fuel the following cycle (Chatlynne 

1969; Gonor 1973; Byrne 1990).  

Displaying a wide range of reproductive strategies and periodicities, echinoids time 

their gamete release to coincide with optimal environmental conditions, which 

likely results in higher rates of fertilization and larval survival (Pearse and Cameron 

1991; Walker etal. 2007; Mercier and Hamel 2009). Separate populations of the 

same species have been known to have different cycles, with timing based on local 
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conditions. Reproductive cycles are often seasonal indicating that a wide range of 

external cues and factors, such as photoperiod (Pearse et al. 1986; Bay-Schmith 

1989; Byrne et al. 1998; Alsaffar and Lone 2000), sea temperature (Spirlet et al. 

1998; Brewin et al. 2000), nutrient availability (Starr et al. 1993; Muthiga and 

Jaccarini 2005; Kino and Agatsuma 2007) and lunar periodicity (Kennedy and Pearse 

1975; Iliffe and Pearse 1982) may play a part in their regulation. However, in the 

field it is difficult to isolate a single initiating factor, as most environmental 

conditions change seasonally. Different species of echinoids also seem to respond 

differently to cues and factors at various points in the reproductive cycle. The 

perfect recurrence of the reproductive cycle of Echinocardium cordatum in the 

North Sea over three consecutive years strongly suggests that a decrease followed 

by a gradual increase in seawater temperature initiated gametogenesis (Nunes and 

Jangoux 2004); while in the St Lawrence Estuary in Canada, Strongylocentrotus 

droebachiensis seems to spawn in response to phytoplanktonic food availability 

(Starr et al. 1993).  

There is a significant gap in the literature as little is known about the reproductive 

biology of Peronella lesueuri.  

1.2.2.1 Temperature effects 

Research suggests that a lack in temperature variation can inhibit or initiate 

gametogenesis. Nunes and Jangoux (2004) showed that gametogenesis in 

Echinocardium cordatum commenced after minimum temperatures in the study 

area had been reached, suggesting that the seasonal increase of sea temperature 

were the factor that initiated gametogenesis. However, experiments under 
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laboratory conditions indicated that gametogenesis in Hemicentrotus pulcherrimus 

could only be initiated by a drop in temperature from 25°C to 15°C (Ito et al. 1989; 

Sakairi et al. 1989). When held at a constant temperature of 15°C, Sakairi (1989) 

observed that gametogenesis  in H. pulcherrimus was inhibited. In the waters off 

southern Japan, Agatsuma (2007) also observed gametogenesis of H. pulcherrimus 

being initiated by decreasing sea temperatures.  

Temperature has also been shown to be an inhibitor of gametogenesis. Lares and 

McClintock (1991) found that gametogenesis in Eucidaris tribuloides was 

suppressed when held at 30°C for two months, with no mature male specimens 

observed. In southern California, when sea temperatures exceeded 17°C in the 

summer, no mature individuals of Strongylocentrotus purpuratus were found 

(Cochran and Engelmann 1975). In the laboratory, Cochran and Engelmann (1975) 

also found that S. purpuratus gametogenesis was inhibited at 17°C.  

1.2.2.2 Photoperiod effects 

While Agatsuma (2007) found that photoperiod did not play a role in 

gametogenesis of Hemicentrotus pulcherrimus in Japan,  gametogenesis in other 

echinoids has been frequently correlated with photoperiod. There is still a lack of 

understanding as to how photoperiod acts as a cue for gametogenesis (Walker et al. 

2007). It is likely that the length of photoperiod, like temperature, can play a role in 

facilitating or impeding the gametogenic cycle. 

Holland (1967) suggested that the change in the length of the photoperiod has an 

effect on the gametogenesis of the sea urchin Stylocidaris affinis from the Gulf of 

Naples. Holland (1967) also suggested that photoperiod could play an indirect role 
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on gametogenesis by affecting quality and quantity of food supply. When held at 

photoperiods of 12 hours or less in laboratory conditions,  gametogenesis occurred 

in Strongylocentrotus purpuratus, but when the photoperiod was increased to 16 

hours, gametogenesis was inhibited (Pearse et al. 1986; Bay-Schmith 1989). This 

suggests that as daylight hours get shorter in autumn, there is a critical daylength 

that will trigger the initiation of gametogenesis in S. purpuratus.  

In the northern Gulf of Mexico, gametogenesis and spawning in the sand dollar 

Clypeaster ravenelii was found to be highly synchronised with increasing 

photoperiod, suggesting that it is a reproductive cue (Vernon et al. 1993). 

Laboratory experiments also suggested that lengthening photoperiod is a significant 

cue for Psammechinus miliaris to complete gametogenesis (Kelly 2001).  

1.2.2.3 Effects of other abiotic factors 

Food availability is an annually variable factor, dependant on locale and weather, 

and as such, is unlikely to be directly involved in the initiation and/or inhibition of 

the reproductive cycle (Eckelbarger and Watling 1995). Spirlet et al. (1998) 

observed no change in the gametogenic period in Paracentrotus lividus despite 

starvation, although there was a marked reduction in gamete numbers. Quality and 

quantity of food resources have been shown to have an effect on gonad size, with 

individuals exposed to a more abundant food resource producing larger gonads 

(Gonor 1973; Meidel and Scheibling 1998; Kelly 2000). Nutrient allocation trade-off 

between gonad and somatic growth in times of poor food availability has also been 

observed (Ebert 1968; Gonor 1972; Ebert 1982). 
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Studies showed that spawning in Strongylocentrotus droebachiensis is timed to 

coincide with seasonal phytoplankton blooms (Himmelman 1975; Starr et al. 1990; 

Starr et al. 1993). On the Kenyan coast, Muthiga and Jaccarini (2005) observed that 

spawning in Echinometra mathaei peaks in tandem with phytoplankton abundance. 

This suggests that spawning is timed to ensure optimal food availability for 

planktonic larvae, thereby increasing survival rates. 

The principles of how lunar cycles affect reproductive rhythms of echinoids remain 

unclear. There is, however, some evidence to suggest that some echinoid species 

spawn in synchrony with specific lunar phases (Kennedy and Pearse 1975; Iliffe and 

Pearse 1982; Coppard and Campbell 2005; Muthiga 2005), although any lunar 

spawning has to be a consequence of a synchronised gametogenic cycle. Naylor 

(1999) suggested that lunar cycles of behaviour are a response to the tidal cycles 

that are related to the lunar phase.  

1.2.2.4 Gonad analysis 

Studies on echinoid reproduction typically use the Gonad Index (GI) to identify the 

reproductive stages. The GI is the gonad weight as a fraction of body weight. This 

method, however, assumes that the proportion of gonad to body size is constant 

for all sizes and can be inaccurate when animals of various sizes are used (Gonor 

1972; Ebert et al. 2011); it should therefore only be used on animals of similar size. 

Several variations on the GI have been used. The most commonly used index is the 

ratio of wet gonad weight to wet total body weight (Dotan 1990; Drummond 1995; 

Meidel and Scheibling 1998; Kino and Agatsuma 2007; James and Heath 2008; 

Fabbrocini and D'Adamo 2010; Schuhbauer et al. 2010). Another common index 
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used is the ratio of dry gonad weight to dry total body weight (Byrne 1990; Nunes 

and Jangoux 2004; Tavares and Borzone 2006; Lima et al. 2009).  

There are two other reproduction staging methods, both of which are quantitative 

and can only be used on female gonads. The size frequency method, in which 

oocytes are measured individually, can be time-consuming and tedious. In the stage 

frequency method oocytes are classified by stage and counted, which, while lacking 

in the accuracy of the size frequency method, is quicker, more efficient and gives 

acceptable results (Gonor 1973). Reproductive stages for male gonads can only be 

differentiated qualitatively from histological slides. 

1.2.3 Growth 

1.2.3.1 Life expectancy 

Echinoids possess a wide range of longevities with one estimate for the red sea 

urchin, Strongylocentrotus franciscanus, suggesting that they can live for more than 

100 years (Ebert and Southon 2003). Longevity estimates for sand dollars, however, 

suggest that in general, life expectancies are shorter (Ebert and Dexter 1975). 

Maximum age for Echinarachnius parma was estimated at 15-18 years (Steimle 

1990; Cabanac and Himmelman 1996), while Encope stokesii had a life expectancy 

of less than one year (Dexter 1977). The life expectancy of Peronella lesueuri is 

unknown and will be one of the aspects covered in this study.   

1.2.3.2 Factors affecting growth in echinoids 

Rates of growth in echinoids are dependent on a variety of factors including 

inclement weather, which can result in test damage; food availability and 

consumption; and physical environmental conditions (Ebert 1968; Niesen 1977). 
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Echinoids generally exhibit a sigmoidal growth rate curve, with a rapid initial growth 

rate before a reduction in growth rate. In some species, a decline in growth is 

observed after the maximum size of the individual is reached. Using shifts in modes 

of size distributions, Ebert (1975) found that two sand dollar species, Encope 

grandis and Mellita grantii in the Gulf of California, Mexico, took six and five years 

respectively to attain 95% of their maximum size. Both species are intertidal and 

their populations were found to be limited by environmental factors, such as sand 

movement, storms, and high temperatures at low tides. Similarly, growth bands 

present in the interambulacral plates of Astriclypeus manni Verrill and Clypeaster 

japonicus suggested that initial growth was exponential, with up to 93% of skeletal 

growth occurring within the first four years and growth discontinuing after year five 

or six (Kang et al. 2007). Crapp and Willis (1975) also observed growth slowing in 

sea urchin Paracentrotus lividus after four years and Lane and Lawrence (1980) 

found a declining rate of growth in the sand dollar Mellita quinquiesperforata as it 

increased in age. In British Colombia, Zhang et al. (2008) observed that the growth 

rate of the red sea urchin, Strongylocentrotus franciscanus, remained constant or 

even increased in the first few years, before declining with test diameter or age. 

Negative growth rates in echinoids have been observed in many instances. 

Fluctuations in environmental conditions have been suggested as a factor for 

negative growth in Strongylocentrotus purpuratus of maximum size, as calcite in the 

test is reabsorbed (Ebert 1967). Seasonal negative growth was also observed in 

larger Mellita quinquiesperforata in the fall following a high summer growth rate 

(Lane and Lawrence 1980). This was attributed to a response to an energy deficit in 
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storage tissues after high energy requirements for reproductive activities over 

summer. This highlights the ability of echinoids to control nutrient allocation to 

either gonadal or somatic growth depending on the requirement at the time (Ebert 

1967; Gonor 1972; Ebert 1982). 

Environmental conditions affect growth rates as well as the maximum attainable 

size in echinoids. Dendraster excentricus in two different habitats in Alki Point, 

Seattle exhibited different rates of growth, with a population living in a cobble and 

hard clay substrate showing a greater juvenile growth rate and a slower adult 

growth rate than a population living in deep sands (Birkeland and Chia 1971). Adults 

in the cobble substrate population were also smaller and occurred in much higher 

densities than the deep sand population (Birkeland and Chia 1971).  A combination 

of shelter and abundant food resource make it an optimal environment for juvenile 

growth, but recruitment and retention success leads to overcrowding in the area, 

which then limits maximum adult size. In another study, Dendraster excentricus at 

an exposed site were smaller and had ripe gonads for a shorter period compared to 

a sheltered site (Niesen 1977).  

1.2.3.3 Echinoid growth zones 

Growth bands on the Aristotle’s Lantern (jaw) and the ambulacral and 

interambulacral test plates of the echinoid skeleton are commonly used as a means 

of ascertaining age and charting growth (Birkeland and Chia 1971; Crapp and Willis 

1975; Pearse and Pearse 1975; Ebert 1988; Gage 1991; Gage 1992a; Gage 1992b; 

Tan and Lawrence 2001; Agatsuma and Nakata 2004; Kang et al. 2007; Schuhbauer 

et al. 2010). Birkeland and Chia (1971) used cedar oil to highlight growth rings to 
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estimate age distribution within Dendraster excentricus populations in Seattle, USA, 

whereas Pearse and Pearse (1975) enhanced growth rings by immersing charred 

test plates in xylene to reveal alternating translucent and opaque bands that reflect 

seasonal changes in growth rates. The translucent bands are formed during the 

slower skeletal growth over autumn and winter while the opaque bands are wider 

and are formed during the spring and summer when plate growth is fastest.  

Annual growth bands or rings have been verified in several species. Annual 

periodicity of the growth rings in Loxechinus albus were verified separately by  

Gebauer and Moreno (1995) and Schuhbauer et al. (2010) through marginal 

increment analysis. Tetracycline tagging of Echinus esculentus showed that a single 

growth band forms annually (Gage 1992b).  

Tan and Lawrence (2001) found that the number of growth lines in Mellita tenuis 

were independent of size, suggesting that seasonality of growth and growth rate 

were not dependent on each other. While there appeared to be an annual periodic 

component to the growth bands in Strongylocentrotus purpuratus and Echinometra 

mathaei, Ebert (1988) observed growth lines added by the sea urchins for other 

reasons that were indistinguishable from annual growth lines. Ebert (1988) also 

observed that rapidly growing individuals may show one growth band or more per 

year. However for slower growing or non-growing individuals annual lines may not 

be distinct and so age may be overestimated for the smaller, rapidly-growing 

individuals and underestimated for the larger, slower-growing individuals. 
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1.2.3.4 Recruitment 

Echinoderms commonly exhibit seasonal recruitment patterns (Ebert and Dexter 

1975; Cameron and Rumrill 1982; Hunte and Younglao 1988; Kenner 1992; Ebert et 

al. 1994) although some species, such as Encope stokesii, have year-round 

recruitment with recruitment peaks during favourable seasons (Dexter 1977). 

Seasonal recruitment as a result of seasonal reproductive cycles allows larvae and 

newly settled juveniles the highest chances of survival when environmental 

conditions are favourable (Birkeland and Chia 1971; Cameron and Rumrill 1982). 

Annual recruitment strength can be affected by a myriad of environmental factors. 

Cameron and Rumrill (1982) found that the varying recruitment strength reflected 

by annual size distribution frequencies could be correlated to small-scale variations 

in current conditions in Monterey Bay, California. This prevented larvae from 

reaching sand dollar beds for settlement. 

Juveniles of many echinoid species seem to show a higher propensity to settle near 

adults (Birkeland and Chia 1971; Cameron and Schroeter 1980; Highsmith 1982; 

Hunte and Younglao 1988). Birkeland and Chia (1971) suggested that recruitment of 

juveniles in one population of  Dendraster excentricus at Alki Point, USA, was 

stronger due to the cobble substrate providing the juveniles better protection than 

the shifting sandy sediments which support another nearby population.  Adults of D. 

excentricus and Echinarachnius parma have also been observed to release a 

chemical cue into the sediment, which induces larval settlement and 

metamorphosis (Highsmith 1982; Pearce and Scheibling 1990). Cameron and 

Schroeter (1980), however, observed that juveniles of Strongylocentrotus 
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purpuratus and Strongylocentrotus franciscanus were found in higher densities near 

adults. The presence of adult urchins or substrates associated with adult urchins did 

not enhance settlement. Instead, both juvenile mortality and migration provided 

more influence on the distribution of juvenile urchins. 

1.2.4 Movement and Behaviour 

Echinoids exhibit a wide range of movement patterns in response to a range of 

environmental biotic and abiotic factors. Movement patterns are species or 

population-dependent and may vary in response to seasonal changes, predation 

pressure, food availability and reproduction.  

1.2.4.1 Seasonal and Diel Activity Rhythms 

Echinoids commonly exhibit seasonal and diel activity rhythms that are associated 

with a variety of life functions, such as feeding, reproduction and predator 

avoidance.  

Seasonal activity patterns are commonly observed amongst sub-tropical and 

temperate echinoids and are usually correlated to seasonal cycles in photoperiod, 

temperature and food availability.  Seasonal changes in water temperature play a 

small part in increasing the metabolic rate of marine invertebrates (Brockington and 

Clarke 2001). The main cause of metabolic rate increase was caused by the 

increasing physiological activity associated with feeding, growth and reproduction. 

Seasonal cycles of feeding intensity exhibited by sea cucumbers in Canada were 

related to the availability (Hamel and Mercier 1998) and quality (Singh et al. 1999) 

of food rather than temperature and photoperiod.  
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There is a high occurrence of nocturnal activity observed amongst a variety of sea 

urchin species. Research suggests that nocturnal activity acts as a predator 

avoidance strategy (Freeman 2003; Hereu 2005; Miyamoto and Kohshima 2006; 

Young and Bellwood 2011), especially in reef and seagrass habitats, where fish, the 

major predators of echinoderms, are visual predators and are mostly diurnally 

active.  

1.2.4.2 Directionality 

The position of the anus directly behind the central mouth on the oral surface of 

sand dollar Mellita quinquiesperforata led Weihe and Gray (1968) to conclude that 

polarization is sufficient for the direction of movement to only be forward and the 

anterior end of to always take the lead. The sand dollar Dendraster excentricus has 

a predominantly forward movement, but also has the ability to move in reverse 

(Chia 1969).  

Movement responses of the sand dollar Echinarachnius parma to slope and current 

were tested in the laboratory (Cabanac and Himmelman 1998). Individuals of all 

sizes displayed a preference for upslope movement, but adults and juveniles were 

found to exhibit different responses to current. When placed in a flume, adult sand 

dollars had a preference for upstream movement while similar proportions of 

juveniles chose to move upstream and downstream. This supports the hypothesis 

that adult E. parma migrate to shallower waters to take advantage of the food 

resources as water turbulence is less likely to dislodge and transport them (Cabanac 

and Himmelman 1996). The sand dollar Encope grandis has the ability to sense its 

position on the beach, orient itself and move towards the water (Ebert and Dexter 
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1975). Weihe and Gray (1968), however, noted that the directional choice of sand 

dollar M. quinquiesperforata, after being placed in a particular orientation, was 

random and was not affected by the prevailing winds. Similarly, D. excentricus was 

observed lying randomly, not uniformly oriented to the direction of the current 

(Chia 1969). 

1.2.4.3 Burrowing and Bioturbation  

Echinoids have a global distribution in marine habitats and are found at all depths, 

latitudes and ecosystems. Most echinoids inhabit benthic ecosystems and play key 

ecological roles as bioturbators of sediment (Uthicke 1999; Michio et al. 2003; 

Vopel et al. 2007) and as grazers of seagrass or macroalgae (Alcoverro and Mariani 

2002).  

When bioturbating echinoids dominate a soft-bottomed habitat they have the 

ability to turn over enough sediment to affect infaunal abundances (Dahlgren et al. 

1999), lower levels of organic matter and inhibit eutrophication (Michio et al. 2003). 

Bioturbating echinoids rework the sediment through their burrowing and to a lesser 

extent, feeding activity. When heart urchins burrow, they constantly displace 

sediment, increasing the area available for oxygen exchange between sediment and 

seawater (Vopel et al. 2007). An increase in temperature had a significant effect on 

the bioturbation activity of the spatangoid Brissopsis lyrifera, suggesting that it is 

more active when water temperatures are higher (Hollertz and Duchene 2001). The 

amount of sediment reworked by B. lyrifera due to burrowing was also found to be 

60-150 times higher than the volume ingested (Hollertz and Duchene 2001). In 

Norway, the bioturbation activity of  B. lyrifera was vital in increasing oxygenation 
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of the sediment, increasing the precipitation of phosphate and decreasing the rates 

of denitrification (Widdicombe and Austen 1998). The volume of sediment 

reworked at a site in New Zealand, where heart urchins of the genus Echinocardium 

were abundant, suggests that the surface sediment could be reworked every three 

days (Lohrer et al. 2005). In Antarctic benthic sediments, the bioturbation activity of 

the heart urchin Abatus ingens, which burrows and feeds on surface sediments, 

significantly contributes to the reworking of sediments (Thompson and Riddle 2005). 

In Puget Sound, Washington, Backman (1984) discovered that sand dollars played a 

part in limiting the distribution of seagrass Zostera marina by burrowing under and 

disrupting rhizome matrixes and uprooting plants. Competing for the same 

substrate, clear patches of sediment were quickly colonised by sand dollars, 

excluding the seagrass. Studies on different species of seagrass and sand dollars in 

Japan and Mexico, however, have not been able to show conclusively that 

bioturbation by sand dollars affects distribution of various seagrass species in those 

regions (Valentine et al. 1994; Matsuda et al. 2008). At the southern end of 

Cockburn Sound, Western Australia, P. lesueuri was found on sand flats in and 

around existing and transplanted seagrass meadows.  

Under laboratory conditions the average burrowing time for Mellita 

quinquiesperforata was 7.2 minutes, while in the field the average time taken to 

burrow was 4.05 minutes, although some sand dollars were completely covered 

within two minutes (Weihe and Gray 1968). A quick burrowing time allows for the 

sand dollars to return to the safety of being buried within the sediment, where they 

are not exposed to the strong currents and turbulence in the water column (Weihe 
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and Gray 1968; Merrill and Hobson 1970). Burrowing behaviour in sand dollars that 

reside in the intertidal zone also allows them to shelter from the extreme 

temperature and water level fluctuations as well as from predators (Weihe and 

Gray 1968). In sheltered areas where water movement was less, populations of 

adult Dendraster excentricus were not inclined to burrow and were usually found 

aggregated in inclined positions, feeding by filtering suspended particles from the 

water column (Merrill and Hobson 1970).  

Prior to this study, there were no published studies on movement patterns of 

Peronella lesueuri. As part of this study, a paper describing the seasonal and diel 

movement variations of P. lesueuri was published recently (Yeo et al. 2013). 

1.3 Study Site - Cockburn Sound 

Cockburn Sound is a semi-enclosed embayment, located south of Perth, Western 

Australia, (32°09’S; 115°45’E), in an area with industrial, defense as well as 

recreational uses. With an estimated area of 124 square kilometres, Cockburn 

Sound is approximately 16 kilometres in length and 9 kilometres in width 

(Steedman and Craig 1983) . Semi-enclosed by shallow Parmelia and Success Banks 

to the north and Southern Flats to the south, the central basin is 17-22 metres deep 

and consists of mud and silt, and is edged with shallower (2-10 m) sandy sills and 

beaches (Figure 1.2; Marsh and Devaney 1978). It is in the shallow sandy benthic 

substrates of Cockburn Sound that the sand dollar, Peronella lesueuri, forms a 

dominant part of the fauna.  

Cockburn Sound is bound by the mainland to the east and Garden Island to the 

west. Garden Island, where the Royal Australian Navy has a base, is linked to the 
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mainland by a solid causeway with two openings to the sea (Steedman and Craig 

1983). One opening is 300 metres wide with a depth of 2.8 metres, while the other 

is 600 metres wide and 4.5 metres deep. Cockburn Sound has a mean maximum 

daily tidal range of 0.55 m and wind-driven currents with a mean of 0.05 m s-1. The 

bathymetry of the Sound is such that it acts mainly as a closed system, with the 

water circulation in the Sound predominantly wind-driven. 
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Figure 1.2 Bathymetric map of Cockburn Sound. Jervoise Bay is to the northeast of 

the Sound (Ozcoasts 2009). 

 

Southern Flats 
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Sea surface temperatures in the area range from a low of 16 °C in winter to a high 

of 23 °C in summer (Pearce et al. 1999). In February and March 2011, Western 

Australia experienced a significant marine heat wave with seawater temperatures 

of 2-4°C above the long-term mean (Pearce et al. 2011). In Cockburn Sound, the 

heatwave persisted for eight weeks and seawater temperatures at depths between 

10 and 20 metres were significantly higher than those recorded in the nine years 

previous (Rose et al. 2012).  

 

Figure 1.3 Mean sea surface temperatures in Cockburn Sound from March 2009 

until April 2011 (IMOS 2011). 

Cockburn Sound has a long history of pollution. Heavy industries on the eastern 

shore are heavily regulated and monitored today, but in the 1970s industrial and 

community waste released into Cockburn Sound caused problems associated with 
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heavy metal, hydrocarbon and pathogen contamination (DEP 1996). More recently, 

reduced contaminant inputs,  improved waste treatment practices and relocation 

of some industries have allowed the benthic invertebrate fauna to recover (DEP 

1996). 

Seagrass cover on the shallow, subtidal sandbanks of Cockburn Sound used to be 

extensive, but during the period of major industrial development on the shore in 

the 1950s, extensive loss of seagrass occurred due to the discharge of effluents rich 

in plant nutrients (Cambridge and McComb 1984) as well as shellsand mining (DEP 

1996). Between 1954 and 1978, it was estimated that the area of seagrass 

meadows decreased from 4,200 to 900 ha (Cambridge and McComb 1984). The 

nutrient-enriched waters enhanced the growth of seagrass epiphytes and 

filamentous algae which were the most likely cause of the decline of seagrass 

meadows (Cambridge et al. 1986). In recent years, large-scale seagrass 

rehabilitation has been underway in Cockburn Sound to aid in the recovery of 

seagrass meadows.  

Today, Cockburn Sound also serves a major recreational function, with activities like 

fishing, snorkelling and diving that take place in and around the Sound. Cockburn 

Sound is also home to a blue mussel aquaculture venture.  

1.4 Study Aims 

It is evident from the review of the literature that little is known about Peronella 

lesueuri. A pilot study in 2009 showed the feasibility of Peronella lesueuri for the 

study of its population biology and ecology and its potential role in ecosystem 

function (e.g. bioturbation effects). Individuals are large and relatively easy to spot 
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by divers. Sand dollar density also seemed sufficiently abundant at the main 

Jervoise Bay sampling site to sustain monthly benthic sled sampling over the two-

year proposed study. Although there was scope to study a wide range of aspects of 

P. lesueuri, the lack of knowledge of its basic biology determined the foci for this 

study. 

Thus the aims of this study were to: 1) ascertain the distribution and density; 2) 

describe in detail and establish the seasonality of the reproductive cycle; 3) 

determine the growth and recruitment rates as well as 4) seasonal and diel 

variations in movement rates of Peronella lesueuri in Cockburn Sound.    

Previous surveys had indicated that the sand dollars were found in the sediment of 

the shallower banks and sills that encircled the Sound and were absent from the 

deeper central basin (Marsh and Devaney 1978; Cary et al. 1995; Forehead and 

Thompson 2010). In the comprehensive survey by Marsh and Devaney (1978), exact 

densities were not recorded and at sites where P. lesueuri were present, the 

“density” was only described as “single sighting” or “abundant”. Chapter 2 provides 

an updated distribution and density figures of Peronella lesueuri within Cockburn 

Sound and discusses the factors that are likely to affect its spatial distribution and 

density. 

The gametogenic cycle of Peronella lesueuri is described histologically in Chapter 3. 

The histological changes in gonads of P. lesueuri were tracked over a 25-month 

period to determine the periodicity of the reproductive cycles. Within the 

constraints of a field study, this chapter will discuss the impact of environmental 

factors on gametogenesis and spawning in P. lesueuri. 
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In Chapter 4, juvenile recruitment and growth were determined through size 

frequency distribution, and growth rings on the test plates of large individuals were 

used to determine the life expectancy and growth rate of P. lesueuri. 

Chapter 5 is focused on the seasonal and diel movement rates and patterns of P. 

lesueuri in Cockburn Sound and discusses their ecological importance in the 

bioturbation of the surface sediment in the habitats they occupy. 

Chapter 6 highlights the major findings of this study and discusses their implications. 
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Chapter 2  Distribution of Peronella lesueuri in 

Cockburn Sound 

2.1 Introduction 

Echinoids, which include regular sea urchins as well as irregular urchins and sand 

dollars, have a worldwide distribution and can be found within a large bathymetric 

range, from the intertidal to the abyssal zone. Sand dollars, however, are more 

common in benthic communities of shallower, tropical to subtropical regions. 

Peronella lesueuri, commonly known as the pink sand dollar, is one such species. 

Records of P. lesueuri exist from West India, Bay of Bengal, northern Australia, the 

Philippines, Hong Kong, Singapore and southern Japan (Agassiz and Clark 1914; 

Clark 1921; Clark and Rowe 1971),  indicating that they have a tropical to 

subtropical Indo-Pacific distribution. In 1938, Clark noted in his monograph, 

Echinoderms of Australia, that P. lesueuri had a distribution from southern 

Queensland, north and westward towards Darwin and Broome and then along the 

west coast, down to Fremantle and Albany. P. lesueuri was also encountered in 

more recent marine recent surveys in the Dampier Archipelago (Marsh and Morrison 

2004) and Kimberley (Keesing et al. 2011). P. lesueuri is common in and around 

Cockburn Sound, approximately 25 kilometres south of Fremantle (Marsh and 

Devaney 1978; Forehead and Thompson 2010).  

Sand dollars, as the name suggests, are found in benthic communities, commonly 

occurring buried in soft sediment habitats (Mortensen 1921; Ebert and Dexter 

1975; Steimle 1990; Cabanac and Himmelman 1996; Haycock 2004). Some species, 
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including Arachnoides placenta from Queensland (Haycock 2004) and Encope 

grandis and Mellita grantii in the Gulf of California (Ebert and Dexter 1975), can be 

found in rock pools and wet sands in the intertidal region, while other species, for 

example Dendraster excentricus, can be found from the intertidal to depth of 90 

metres (Merrill and Hobson 1970;  Clark 1948 as cited in Birkeland and Chia 1971). 

Most echinoids appear to have preferences for particular sediment grain sizes as 

this has a significant effect on their burrowing and feeding behaviour. Bell and Frey 

(1969) suggested that the distribution of Mellita quinquiesperforata in Beaufort, 

North Carolina, is closely correlated with sediment grain size and the sand dollars’ 

ability to burrow through it. In laboratory experiments, M. quinquiesperforata was 

observed to burrow most efficiently in medium sand, burrowing slowly and less 

efficiently in mud and unwilling or unable to burrow in coarse sand (Bell and Frey 

1969). In a similar experiment, the clypeasteroid sand dollar Echinocyamus pusillus 

from the west coast of Scotland also did not burrow in very fine or very coarse sand, 

probably due to a relationship between sediment particle size and podia size of the 

sand dollar (Ghiold 1982). In Queensland, adult Arachnoides placenta were most 

abundant in substrates with fine to medium particle size, although their occurrence 

in coarse sand areas on the beach indicates a tolerance to a wide range of particle 

sizes (Aung 1975 as cited in Haycock 2004).  

Some echinoderms are known to form patchy distributions and dense aggregations 

(Birkeland and Chia 1971; Konnecker and Keegan 1973; Ebert and Dexter 1975; 

Swigart and Lawrence 2008; Vargas and Solano 2011). Spatial distributions of sand 

dollar populations can be variable, with several species know to form dense 
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aggregations. The sand dollar Dendraster excentricus has been observed at 

densities up to 629 individuals m-2 at Alki Point, Seattle (Chia 1969) and 1,200 

individuals m-2 at Zuma Beach in California (Morin et al. 1985). Encope grandis and 

Mellita grantii at Playa Hermosa in the northern Gulf of California, Mexico were 

observed at densities of 380 individuals m-2 and 56 individuals m-2 respectively, 

although a year later densities of 0.1 individuals m-2 and 0.8 individuals m-2 

respectively were recorded. 

A survey of the benthic fauna of Cockburn Sound between 1956 and 1960, as well 

as later collections in the ’60s and ’70s indicated that Peronella lesueuri was absent 

from most locations in the deep main basin (~25 metres deep) (Marsh and Devaney 

1978). Later observations of P. lesueuri in Cockburn Sound indicated that they 

occurred at densities of up to 6 individuals m-2 at four and eight metre depths at 

Parmelia Bank (Forehead and Thompson 2010).  

Although there have been instances of Peronella lesueuri being described as 

common and/or abundant in the literature (Mortensen 1921; Marsh and Devaney 

1978), there have been no records of dense aggregations of this sand dollar. In 

Cockburn Sound, P. lesueuri is relatively common and where it occurs it is a 

dominant organism within the benthic community; however its distribution is only 

known from surveys carried out more than 30 years ago (Marsh and Devaney 1978). 

Temporal variation in sand dollar densities can be large (Ebert and Dexter 1975). 

This study was carried out to determine the current spatial distribution and 

abundances of P. lesueuri populations at various sites within Cockburn Sound. 

Temporal variation was also monitored at one site over a period of 23 months to 
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determine if there were any annual variations in density of P. lesueuri populations 

in Cockburn Sound. 
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2.2 Materials and Methods 

2.2.1 Distribution and density around Cockburn Sound 

Benthic sites around Cockburn Sound were sampled on the 11th and 12th January 

2012.  Sixteen study sites within Cockburn Sound were selected based on a range of 

depth and benthic make-up. All the study sites selected had sediment cover. A 

number of sites had patchy seagrass cover as well. Densities of sand dollars were 

recorded at shallow sites by researchers on SCUBA while at deeper sites, an 

underwater drop camera (Splashcam) was used to ascertain the absence or 

presence of sand dollars. The deeper sites surveyed were within the deep basin of 

Cockburn Sound (maximum depth 20 m) and offshore from the shallower sites to 

determine if sand dollar distribution in the same areas of Cockburn Sound was 

different with respect to depth. 
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Figure 2.1 Study sites 1 – 16 in Cockburn Sound, Western Australia. Dots indicate 
approximate locations of sample sites. Blue dots represent the shallower sites 

surveyed by divers, while the red dots represent deep sites surveyed with the 

Splashcam. Names and coordinates for each site are detailed in Table 2.1. 
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Table 2.1 Site names and coordinates for sand dollar distribution study in Cockburn 

Sound, Western Australia. 

Site Number Site Name and Coordinates Depth (m) 

1 
Woodman Point 

32° 08’ 15.2” S, 115° 44’ 41.8” E 
9.0 

2 
Jervoise Bay 

32° 08’ 58.9” S, 115° 45’ 04.8” E 
10.0 

3 
Seagrass beds near D9 wreck 

32° 11’ 39.2” S, 115° 44’ 44.3” E 
4.6 

4a 
James Point A 

32° 13’ 13.5” S, 115° 44’ 56.7” E 
5.5 

4b 
James Point B 

32° 12’ 50.0” S, 115° 45’ 06.8” E 
5.5 

5 
North Rockingham Beach 

32° 15’ 42.4” S, 115° 44’ 20.2” E 
8.5 

6 
Mangles Bay 

32° 16’ 13.8” S, 115° 42’ 45.2” E 
3.0 

7 
Southern Flats 

 
2.9 

8 
Luscombe Bay 

32° 10’ 01.95” S, 115° 40’ 41.11” E 
3.0 - 5.0 

9 
North Cockburn Sound (CS) Basin                                                 

32° 09’ 660” S, 115° 43’ 925” E 
17.9 

10 
CS Basin near D9 wreck 

32° 11’ 110” S, 115° 44. 041” E 
17.7 

11 
CS Basin off James Point 

32° 12’ 686” S, 115° 44’ 228” E 
17.8 

12 
CS Basin off Southern Flats 

32° 14’ 887” S, 115° 43’ 710” E 
20.0 

13 
CS Basin near North Rockingham Beach                             

32° 15. 913” S, 115° 44’ 035” E 
20.0 

14 
CS Basin off Mangles Bay 

32° 15’ 827” S, 115° 42. 732” E 
17.0 

15 
CS Basin off Careening Bay 

32° 13’ 806” S, 115° 42’ 512” E 
18.7 

16 
CS Basin east Garden Island 

32° 12’ 130” S, 115° 41’ 562” E 
18.7 

17 
CS Basin off Luscombe Bay 

32° 10’ 109” S, 115° 41’ 004” E 
14.0 - 18.0 



40 
 

Sampling was carried out at the eight shallow study sites on 11th January 2012. 

These sites were located along the eastern bank, the southern flats and the western 

bank of Cockburn Sound (eastern shore of Garden Island). The range of sites 

provided a snapshot of the various types of benthic habitats that make up the 

shallower banks Cockburn Sound. The depths of the shallow study sites ranged 

from 2.5 – 10 metres. Each site was sampled in a haphazard method. Data were 

recorded from ten haphazard placements of a 1 m2 quadrat around the study site. 

Each quadrat was placed five metres away from the last and the direction in which 

this was done was selected haphazardly by the lead diver. Sand dollars that were 

located within the quadrat were counted. The quadrat counts were then pooled for 

each transect to determine the mean density of sand dollars present. Size 

distribution at each site was sampled by measuring all the sand dollars encountered 

during the dive, including those located outside the sampling quadrats.  

The deep study sites selected were located close to the shallow study sites within 

the deep central basin of Cockburn Sound and ranged in depth from 14 – 20 metres. 

An underwater drop camera (Splashcam) with a GARMIN GPS and black box camera 

GPS overlay system was used to record video footage of the bottom sediment. Live 

feeds from the camera were viewed on a display screen on the boat. The camera 

footage was also recorded for later review. Test tows with the Splashcam at 

Jervoise Bay showed that large sand dollars that were present in the sediment were 

visible in the video footage.  At each deep site, the Splashcam was lowered over the 

side of the boat and cable was released until the camera was clearly filming the 

bottom sediment. The camera was then towed slowly for six minutes and the 
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footage recorded. All video footage was then reviewed a second time on a 

computer to determine if sand dollars were visible in the sediment.  

2.2.2 Sediment data 

Sample sites were chosen close to areas where sediment grain size was readily 

available from previous studies conducted in Cockburn Sound (Lord & Associates 

2001, Oceanica Consulting Pty Ltd 2007, Lourey 2011, Strategen 2012, Oceanica 

Consulting Pty Ltd unpublished). The Wentworth scale was used to classify the 

modal sediment grain size of the study site (Table 2.2).  

Table 2.2 Classification of sediment grain size range to the Wentworth scale and 
sediment type. 

Sediment grain size (µm) Wentworth scale (Φ) Sediment type 

1000 – 2000  0 Very Coarse sand 

500 – 1000  1 Coarse sand 

250 – 500  2 Medium sand 

125 – 250  3 Fine sand 

62.5 – 125  4 Very fine sand 

4 – 62.5  5 - 8 Silt 

< 4 >8 Clay 

 

2.2.3 Density in Jervoise Bay 

As part of the wider study of Peronella lesueuri population biology, Jervoise Bay 

(Site 2) was dredged monthly from March 2009 to April 2011. The epibenthic sled 

used had mouth dimensions of 85 cm by 45 cm, a cutting depth of 5 cm and was 

enclosed by a 1 cm mesh. It is assumed that any sand dollar juveniles smaller than 1 

cm was excluded. However, many individuals smaller than 1 cm were found in the 

dredge contents.  
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All sand dollars collected in the dredge samples were measured and counted. Many 

were broken during the collection process. Length measurements were not 

achievable when sand dollars were too badly broken. As each sand dollar has only 

one modified Aristotle’s Lantern, the numbers of badly broken individuals were 

estimated by the number of Aristotle’s Lanterns present amongst the broken pieces.  

2.2.4 Statistical Analysis  

All statistical analyses were carried out using JMP 9 software (SAS Institute). 

Multivariate correlations were used to determine the effects of depth and sediment 

type on sand dollar density. A one-way ANOVA was used to compare mean lengths 

of sand dollars from different sites and Student’s t-tests were used to determine if 

mean lengths of sand dollars between all the sites were equal.
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2.3 Results 

2.3.1 Overview of sand dollar distribution and density in Cockburn Sound 

Peronella lesueuri was observed at seven of the 17 sample sites. Woodman Point, 

Jervoise Bay, Seagrass beds near D9 wreck, James Point B, Mangles Bay and 

Southern Flats all had sand dollars in varying densities between 0.3 to 2.5 

individuals m-2. The sand dollars were observed at the Luscombe Bay site. However, 

densities there were so low that they were not picked up in the sampling 

techniques used. All seven sites where sand dollars were observed were ≤ 10 

metres in depth. No sand dollars were seen on video footage taken at any of the 

deep basin study sites. Table 2.3 summarises the depth, sediment type and 

presence of sand dollars at all the sites. 

2.3.2 Sediment type and size at the study sites 

The modal sediment type found in the areas around the sample sites are 

summarised in Table 2.3. Depth and sediment size had an inverse correlation (r2 = 

0.75) in Cockburn Sound, with coarser sediments in the shallows and finer 

sediments in the basin. With the exception of the North Rockingham Beach site, silt 

appeared to be the major component of the sediment at all of the deep Cockburn 

Sound (CS) Basin sites (depth > 14 metres)( Oceanica Consulting Pty Ltd 2007). At 

the shallow sites (depth ≤ 10 metres), modal sediment type ranged from coarse to 

very fine sand.   
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Table 2.3 Depth, sediment type and density of sand dollars at sites where sand 

dollars were present. 

Site Name and Number 
Depth 

(m) 

Sand Dollar 

Density 
 (indiv. m-2)

 

Modal 

sediment 

type 

Wentworth 

scale 

(Φ) 
Source 

Woodman Point 
1 

4.0 -9.0 1.4 
Medium 

sand 
2 1 

Jervoise Bay 
2 

10.0 0.3 
Medium 

sand 
2 1 

Seagrass beds near D9 wreck 
3 

4.6 0.3 Fine sand 3 5 

James Point A 
4a 

5.5 0 
Very fine 

sand 
4 2 

James Point B 
4b 

5.5 0.3 
Very fine 

sand 
4 2 

North Rockingham Beach 
5 

8.5 0 Silt 5 - 8 4 

Mangles Bay 
6 

3.0 2.5 
Course 

sand 
1 3 

Southern Flats 
7 

2.9 1.3 
Medium 

sand 
2 1 

Luscombe Bay 
8 

3.0 - 5.0 0    

North Cockburn Sound(CS) 
Basin                                                        

9 
17.9 0 Silt 5 - 8 4 

CS Basin near D9 wreck 
10 

17.7 0 Silt 5 - 8 4 

CS Basin off James Point 
11 

17.8 0 Silt 5 - 8 4 

CS Basin off Southern Flats 
12 

20.0 0 Silt 5 - 8 4 

CS Basin North Rockingham 

Beach                                 
  13 

20.0 0 Silt 5 - 8 4 

CS Basin off Mangles Bay 
14 

17.0 0 Silt 5 - 8 4 

CS Basin off Careening Bay 
15 

18.7 0 Silt 5 - 8 4 

CS Basin east Garden Island 
16 

18.7 0 Silt 5 - 8 4 

CS Basin off Luscombe Bay 
17 

14.0 - 
18.0 

0 Silt 5 - 8 4 

Source: 1. (Lourey et al. 2011) 2. (D.A. Lord & Associates Pty Ltd 2001) 3.(Strategen 2012) 

4.(Oceanica Consulting Pty Ltd 2007)  5. (Oceanica Consulting Pty Ltd, unpublished data) 
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2.3.3 Sand dollar distribution and density relative to depth and sediment 

type  

Peronella lesueuri density was 0.3 individuals m-2 at Jervoise Bay, Seagrass beds 

near D9 wreck and James Point B (Table 2.3). Mangles Bay had the highest sand 

dollar density of 2.5 individuals m-2, and Woodman Point and Southern Flats had 

densities of 1.3 and 1.4 individuals m-2 respectively. T tests showed that the sand 

dollar density at Mangles Bay was significantly higher than at Woodman Point (t = 

2.54, p = 0.03) and Southern Flats (t = 2.39, p = 0.03).  

Both depth and sediment grain size appeared to affect the distribution and density 

of the sand dollars. A multivariate correlation indicated that the sand dollar density 

was inversely correlated with depth (r2 = 0.56) and sediment grain size (r2 = 0.86), 

with no sand dollars found in the basin (depth > 14 metres).  Sand dollars were not 

found at North Rockingham Beach or Luscombe Bay, which, at 8.5 metres deep, 

was well within the depth range in which sand dollars were found in this study. 

 Modal sediment type at the sites where Peronella lesueuri was present ranged 

from fine to coarse sands (62.5 – 1,000 µm) (Table 2.3). At the sites where silt was 

the modal sediment type, no sand dollars were observed. 

 Mean test length varied between sites (Figure 2.1). Jervoise Bay and Mangles Bay 

had the lowest mean lengths of 139.57 ± 4.88 mm (X ± SD) and 139.61 ± 7.87 mm 

respectively. The highest mean length of 150.59 ± 16.22 mm was observed at 

Seagrass near D9 wreck site.  

A one-way ANOVA revealed significant differences in the mean test length of adult 

sand dollars between sites (F(6, 226) = 7.52, p < 0.001). Post hoc comparisons using 
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the Tukey’s HSD test indicated that mean test lengths of sand dollars Seagrass near 

D9 wreck (150.59 ± 16.22 mm) and Southern Flats (148.95 ± 8.57 mm) were 

significantly larger than those at Jervoise Bay, James Point B, Mangles Bay and 

Luscombe Bay. The mean length of sand dollars at Woodman Point (148.52 ± 12.06 

mm) was significantly larger than those at Jervoise Bay.

 

Figure 2.1 Mean test length of sand dollars with standard deviation bars at the 

Cockburn Sound sample sites. 

 

2.3.4 Density in Jervoise Bay 

Over the study period from May 2009 to April 2011, the density of P. lesueuri in 

Jervoise Bay varied from a high of 0.81 individuals m-2 in December 2009 to a low of 

0.08 individuals m-2 in April 2011 (Figure 2.2). The average density for the entire 

period was 0.31 individuals m-2, similar to densities recorded at Jervoise Bay (site 2), 
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the seagrass beds near the D9 (site 3) and just north of the Kwinana Refinery (site 

4b) in January 2012.  

Two large spikes in density were observed in December 2009 and January 2011 

(Figure 2.2). In 2009, sand dollar density started to increase in July, eventually 

peaking at 0.81 individuals m-2 in December. This was followed by a rapid decline in 

numbers to 0.17 individuals m-2 by February 2009. The second small spike in density 

was observed the following year in January 2011. Sand dollar density increased 

from 0.15 individuals m-2 in December 2010 to 0.4 individuals m-2 in January 2011. 

As with the previous spike, density declined sharply to 0.16 individuals m-2 in 

February 2011. Outside of the two density spikes, the density of sand dollars in 

Jervoise Bay hovered between 0.13 and 0.31 individuals m-2. 

 

Figure 2.2 Density of Peronella lesueuri in Jervoise Bay from March 2009 to April 

2011. 
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The spike in density in December 2009 at 0.81 individuals m-2, was twice the density 

spike in January 2011. The increase in density in 2009 began in July and lasted 

through until December, while the density increase in 2010 did not begin until 

December 2010 (although small number of juveniles <8 mm were observed in July) 

and ended in January 2011. 
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2.4 Discussion 

2.4.1 Distribution and densities of Peronella lesueuri around Cockburn 

Sound 

The variable distribution of benthic invertebrates in marine soft sediment 

environments has been long known and studied at several scales (Thrush 1991; 

Morrisey et al. 1992; Iken et al. 2010). At a larger scale, variation in distribution of 

benthic organisms is attributed to physical environmental factors, like water depth 

and movement (Morrisey et al. 1992) and sediment type (Thrush 1991; Pomory et 

al. 1995). At a finer scale, distribution of benthic invertebrates can be influenced by 

a range of biotic and abiotic factors, such as food availability (Swigart and Lawrence 

2008) and localised stochastic events (Hughes 1994; Uthicke et al. 2009). 

Echinoderms, in particular, are well known for their propensity to form patchy 

distributions or high density aggregations (Konnecker and Keegan 1973; Garnick 

1978).  

In Cockburn Sound, Peronella lesueuri is commonly encountered amongst the 

benthic fauna. Of the sites sampled within the Sound, however, Peronella lesueuri 

was not observed on the video footages of the deep study sites at depths of 14 

metres or more. This is consistent with the results of two previous benthic fauna 

surveys conducted in the Sound. A benthic fauna survey carried out in 1978 for the 

Western Australia Department of Conservation and Environment, noted that 

occurrences of P. lesueuri within the central basin were rare (Marsh and Devaney 

1978), while a more recent survey in 1995 did not encounter P. lesueuri at all within 

the deep central basin of the Sound (Cary et al. 1995). A study of marine sediments 
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at Parmelia Bank in Cockburn Sound also stated that P. lesueuri were observed in 

the 4-8 metre depth zone but not at the very shallow 1.5 metre zone or at 14 

metres (Forehead and Thompson 2010).  Along with the results of other studies, 

the present study suggested P. lesueuri occurs subtidally within Cockburn Sound 

and that depth is a factor in determining its spatial distribution within Cockburn 

Sound, with no sand dollars observed at the deeper study sites.  

Sediments within Cockburn Sound, however, differ with depth (Ozcoasts 2009; 

Forehead and Thompson 2010). Forehead and Thompson (2010) found that on 

Parmelia Bank in Cockburn Sound, median sediment grain size decreased with 

depth, with medium sands (grain size ~300 µm) in the shallows, intermediate sand 

(grain size ~180 µm) in the 4-8 metre zones and fine, silty sands (grain size ~150 

µm) at a depth of 14 metres. All the sand dollars encountered during the study 

were observed between 2.9 and 9 metres in depth, where sediment grain sizes 

were intermediate. This suggests that distribution may be due to the sediment 

grain size preference of P. lesueuri rather than actual depth. Sand dollars move and 

feed concurrently by burrowing just under the surface sediments. It has been 

suggested that sand dollar selectivity for sediment grain size is attributed to the size 

of the food-collecting podia of each individual species (Telford et al. 1987) as well as 

the ability of the locomotory and shoe spines to manipulate the sediment (Ghiold 

1979; Mooi and Telford 1982). 

Fine, silty sediment has been shown to hinder movement in Mellita 

quinquiesperforata (Weihe and Gray 1968). Silt that was resuspended by dredging 

caused a population decline  by preventing juvenile settlement (Weihe and Gray 
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1968), as well as by smothering adult sand dollars (Ghiold 1979). Merrill and 

Hobson (1970) observed that seaward margins of Dendraster excentricus 

distribution along the Pacific coast of the United States were associated with a 

gradual decrease in sediment grain size. Locomotory spines on the oral surface and 

shoe spines on the aboral surface of the sand dollar test are responsible for 

movement and burrowing (Mooi and Telford 1982). Locomotory spines propel the 

sand dollar forward into the sand while the shoe spines sort and move the larger 

grains along the aboral surface (Ghiold 1979; Mooi and Telford 1982). Ghiold’s 

study on the spine morphology of sand dollar M. quinquiesperforata found that 

sediments that are too fine to be manipulated by the surface spines and podia 

settled and accumulated at the base of the spines on the aboral surface, eventually 

preventing spine and food movement, which resulted in death of the sand dollar 

(Ghiold 1979).  The same study also found that sand dollars were unable to burrow 

in sediment that was too coarse as the sediment grains were too large to be 

handled by the shoe spines on the aboral surface. The inability of the clypeasteroid 

Echinocyamus pusillus to burrow in very fine or very coarse sediment is likely to be 

due to the relationship between particle weight and podia size (Ghiold 1982). 

Sand dollars feed by using podia with adhesive tips on the oral surface to probe the 

sediment for food particles (Ghiold 1979; Mooi and Telford 1982). The food 

particles are then moved along to food grooves where they are swept towards the 

mouth by currents and podia (Ghiold 1979). The size of the food-collecting podia of 

the sand dollar species determines the sediment grain size selected while feeding 

and therefore the habitat preference of the sand dollar (Telford et al. 1987; Pomory 
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et al. 1995). In the field, the sand dollar Mellita tenuis was found to have the ability 

to distinguish between grain size ranges in a varying mix of proportions in the 

sediment (Pomory et al. 1995).  As such, the habitat preference and thus 

distribution of P. lesueuri within Cockburn Sound is most likely to be due to the 

grain size composition in the sediment that are most suitable for both feeding and 

burrowing.  

There was significant spatial variation in the mean density of Peronella lesueuri 

populations in Cockburn Sound. Although densities of up to 6 individuals m-2 have 

been reported from Parmelia Bank (Forehead and Thompson 2010), the highest 

observed density during the course of this study was 2.5 individuals m-2 at Mangles 

Bay.  The density of sand dollars at the Mangles Bay site was more than 8 times that 

of several other sites sampled. Of the three sites with the highest densities 

recorded during this study, Mangles Bay and Southern Flats were the shallowest at 

around 3 metres in depth. The Woodman Point site had a depth variable from 4 - 9 

metres over a short distance. All three sites had relatively low turbidity, due to the 

quicker settlement of the larger sediment grain size after suspension by water 

movement. Decreased turbidity and higher light penetration causes greater 

productivity of marine sediments (Miles and Sundbäck 2000; Boer et al. 2009) and 

this may explain why there were higher densities of sand dollars at shallower sites.  

While the exact diet of Peronella lesueuri is not known, other species of sand dollars 

have been found to graze on diatoms, foraminiferans, microeukaryotes as well as 

bacterial components coating sediment particles (Mooi and Telford 1982; Findlay 

and White 1983; Ellers and Telford 1984; Telford et al. 1987). Peronella lesueuri is a 
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large sand dollar (~15 cm) and would likely have greater nutritional requirements 

than many of the smaller sand dollar species. Cabanac and Himmelman (1996) 

suggested that in the Gulf of St Lawrence in Canada, larger individuals of the sand 

dollar Echinarachnius parma move to shallower waters to take advantage of a more 

abundant food resource. While there is no evidence of migration in P. lesueuri 

densities of sand dollars at different sites may be an indication of the level of 

productivity of their food components within the sediment. Sediment analysis from 

Parmelia Bank in Cockburn Sound showed that sediments at depths ≤1.5 metres 

were less productive due to disruption of the sediment due to wave activity 

(Forehead and Thompson 2010). Sediments from 4, 8 and 14 metres had higher 

levels of primary productivity, but the uptake of silicon was the highest at 4 metres, 

suggesting that diatom growth was the strongest at this depth (Forehead and 

Thompson 2010). Diatoms are one of the known food components of sand dollars 

and it is therefore consistent with the highest densities of sand dollars recorded at 

depths where it was shallow enough for greater light attenuation for increased 

diatom growth, but deep enough to escape the detrimental effects of sediment 

destabilisation caused by wave action. Together with a coarser sediment size, it 

would appear that the shallower regions of Cockburn Sound (around 3 – 4 metres) 

may be able to support higher densities of sand dollars. 

Generally, sand dollars exhibit a sigmoidal growth, with juveniles growing quickly 

before growth slows or ceases at a specific age (Hines and Kenny 1967; Birkeland 

and Chia 1971; Cabanac and Himmelman 1996; Kang et al. 2007). Environmental 

conditions have been known to affect maximum attainable size of Dendraster 



54 
 

excentricus at Alki Point, USA, with the sand dollar population in the harsher 

environment exhibiting a smaller mean size. Given that the mean test lengths of 

Peronella lesueuri were significantly larger at three of the seven sites they were 

encountered at in Cockburn Sound (Figure 2.1), implied that the conditions at these 

sites allowed the sand dollars to attain a larger size. The seagrass beds near D9 

wreck and Southern Flat sites were shallow (less than five metres in depth). 

Although the depth at the Woodman Point site varied from four to nine metres, 

most of the sampling transect was at a depth of less than five metres. A study of 

sediments by Forehead and Thompson (2010) indicated that on Parmelia Bank in 

Cockburn Sound, the sediments are autotrophic at depths of 1.5 metres and 

heterotrophic at 14 metres. At four metres, there was a greater amount of biomass 

and primary productivity. . The sediments at the shallower study sites were 

therefore likely to be more productive and in conjunction with fine and medium 

sands as the modal sediment types (Table 2.3) provided the most suitable 

conditions for P. lesueuri to attain a larger size. Although the Mangles Bay site, 

which had a depth of three metres and a coarse sediment grain size, had the 

highest sand dollar density (2.5 individuals m-2), mean test length was not 

significantly larger. The reason for this was unclear although it was possible that the 

higher sand dollar density increased the competition for food, or that the grain size 

composition of the sediment was not ideal for feeding.  

Sediment movement and hydrodynamics can play a major role in affecting sand 

dollar population densities (Ebert and Dexter 1975). Storms may destabilise 

sediment and disrupt sand dollar beds, affecting sand dollar densities (Merrill and 
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Hobson 1970). At Alki Point, Seattle, the lower population densities at north Alki 

were attributed to the impact of shifting sands on survival of  juveniles (Birkeland 

and Chia 1971).  The effect of sediment movement in Cockburn Sound on the P. 

lesueuri populations remains unknown. Enclosing the west side of Cockburn Sound, 

Garden Island provides shelter from strong coastal currents and waves, resulting in 

environmental conditions within Cockburn Sound that are relatively stable. 

Cockburn Sound experiences microtides of around half a metre (Pearce et al. 2011) 

and low tidal currents, with the water currents within the Sound being largely wind-

driven (Steedman and Craig 1983). This low movement rate of water makes for 

minimal movement in the subtidal substrates, ideal for maintaining stable sand 

dollar densities. In addition, P. lesueuri at adult size is a larger (test length ~ 15 cm) 

and heavier (~130 g) sand dollar than many of the other species in the literature 

and when burrowed into the sediment, would be less susceptible to hydrodynamic 

disturbance. 

 During the course of this study, aggregations of Peronella lesueuri were not 

observed. Other species of sand dollars, however, are known to form aggregations.  

Aggregated populations of Dendraster excentricus, Mellita quinquiesperforata, 

Arachnoides placenta, Encope grandis and Mellita grantii, amongst others, have all 

been noted in the literature (Weihe and Gray 1968; Merrill and Hobson 1970; 

Birkeland and Chia 1971; Ebert and Dexter 1975; Haycock 2004). Aggregations may 

serve as an advantage for reproduction or protection from unstable sediment 

conditions (Birkeland and Chia 1971), or may reflect small-scale differences in food 

concentration within the sediment (Swigart and Lawrence 2008). The reason why P. 
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lesueuri do not form aggregations is not known; however, the sparse distribution 

within local populations suggests that food resources may be a limiting factor and 

each individual may require a larger grazing area to fulfil nutritional requirements. 

It also suggests that the sediments of Cockburn Sound may not be productive 

enough to support densities as high as those observed in other sand dollar species.  

2.4.2 Temporal distribution of Peronella lesueuri in Jervoise Bay 

Distribution of Peronella lesueuri at Jervoise Bay showed a significant temporal 

variation over the 23-month sampling period. There were two spikes in the 

population densities in December 2010 and January 2011, consistent with the 

appearance of juvenile sand dollars (>8 mm) within the dredge samples (see section 

3.3.1). The spikes in density were indicative of clear annual recruitment events, 

with the increase in densities the result of a pulse of recruits which had settled 

during the recruitment period from July to January (see section 3.3.1). Following 

the spike in densities both in 2010 and 2011, there were rapid declines to the 

relatively low and stable densities of between 0.13 – 0.31 individuals m-2 which 

persisted over the rest of the sampling period. The rapid decline (over one or two 

months) of densities after the two spikes could be interpreted as the high mortality 

of newly recruited juveniles. In Monterey Bay, USA, mortality rates for early 

juveniles of Dendraster excentricus were as high as 88% while Mellita 

quinquiesperforata populations in Tampa Bay, Florida, recorded an even higher rate 

of 95% juvenile mortality in their first year of life (Lane and Lawrence 1980; 

Cameron and Rumrill 1982).  
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Recruitment strengths of echinoderms are highly variable and are important in 

determining the population density of an area. Recruitment is dependent on a 

range of factors, including small-scale current variations (Cameron and Rumrill 

1982), substrate selection (Birkeland and Chia 1971; Cameron and Schroeter 1980), 

and presence of adult individuals (Hunte and Younglao 1988; Pearce and Scheibling 

1990). An increase in water temperature has been shown to cause larval death, 

delayed metamorphosis of competent larvae and smaller juveniles in the 

planktotrophic larvae of the sand dollar Arachnoides placenta and the sea urchin 

Strongylocentrotus purpuratus (Chen and Chen 1992; Díaz-Pérez and Carpizo-

Ituarte 2011). Although the literature suggests that Peronella lesueuri has 

lecithotrophic larvae (Mortensen 1921; Pearse and Cameron 1991), Hoegh-

Guldberg and Pearse (1995) demonstrated that the relationship between 

temperature and the developmental rates of planktotrophic and lecithotrophic 

larvae are potentially similar. According to Reitzel et al. (2004), the duration of 

lecithotrophic larval life is most influenced by seawater temperature alone. Over 

the recruitment period of 2010-2011, the numbers of juveniles encountered were 

much lower than the same period in 2009-2010, which was reflected by a density 

spike in January 2011 that was half that for December 2009 (Fig. 22). Recruitment in 

2009 also appeared to occur over a longer period, with densities of sand dollars 

increasing from the month of July. The increase in sand dollar density in 2010 was 

not noted until December and the spike in density of sand dollars occurred one 

month later than the previous year. From June 2010 to April 2011, the south-

western coast of Western Australia experienced a “marine heat wave” and sea 

surface temperatures in Cockburn Sound were higher than at the same time the 
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previous year, often by more than 2 degrees (Figure 4.6)(Pearce et al. 2011; Rose et 

al. 2012). This increase in water temperature in the water column may have had a 

detrimental effect on larval and juvenile survival as well as delaying juvenile 

metamorphosis, affecting the annual recruitment and thus affecting the temporal 

changes in density.  

Both methods of sampling at Jervoise Bay produced similar results, with the 

quadrat method detecting in January 2012, a density (0.3 individual m-2) 

approximate to the baseline density (0.13 - 0.31 individuals m-2) recorded by the 

dredging method from May 2009 to April 2011. This suggested that the P. lesueuri 

population at Jervoise Bay was relatively stable and unlike some other species, was 

not prone to patchiness, where sand dollars move in patches and a particular area 

may or may not have sand dollars at any one time (Ebert and Dexter 1975; Haycock 

2004). Whether this was different of populations at the other study sites is 

unknown, although it is unlikely. 
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2.5 Conclusion 

Peronella lesueuri populations within Cockburn Sound show a range of spatial and 

temporal variation. Sand dollars were not encountered within the deep central 

basin of the Sound, likely due to preference for coarser sediment than the silt and 

mud found in the basin. The distribution of P. lesueuri appeared to be due to their 

preference for the fine to coarse sands found in the shallower areas on the edges of 

the Sound; densities were higher in areas around 3 metres in depth, possibly due to 

a higher level of available food resources. 

Temporal variation in density was only studied at Jervoise Bay. Increases in density 

were observed over the summer, which can be attributed to recruitment events. 

These increases, however, were only temporary and were quick to return to what 

appeared to be a stable, baseline density. Although this temporal density variation 

was only studied at one site, mean lengths of sand dollars were similar at all the 

sites where populations were found, implying that growth conditions and possibly 

recruitment conditions were similar. 

Further research is therefore required in order to better understand how sediment 

grain size and movement as well as sediment primary productivity affected the 

distribution, density and recruitment variation of P. lesueuri. 

 

 



60 
 

Chapter 3  Reproductive Biology of Peronella lesueuri 

3.1 Introduction 

Echinoid reproduction has been extensively studied and the reproduction cycles of 

many species have been documented through histological examination of gonad 

tissue which generally follows a pattern of morphologically similar stages. These 

comprise of growth, development and maturation of the gametocytes and 

spawning of gametes, after which gonad tissues recover and accumulate a nutrient 

store which fuels the following cycle (Chatlynne 1969; Gonor 1973; Byrne 1990). 

The focus of previous studies on echinoid reproduction has largely been on the 

regular urchins (Pearse and Phillips 1968; Gonor 1972; Gonor 1973; Gonor 1973; 

Byrne 1990; Dotan 1990; Drummond 1995; Byrne et al. 1998; Agatsuma and Nakata 

2004; Lima et al. 2009).   

Documentation of reproduction in irregular urchins, including sand dollars, is rare 

and the reproductive cycles are only known for a handful of sand dollar species, 

namely, Sinaechinocyamus mai (Chen and Chen 1993); Echinarachnius parma 

(Cocanour and Allen 1967); Mellita quinquiesperforata (Lane and Lawrence 1979; 

Tavares and Borzone 2006); Clypeaster ravenelii (Vernon et al. 1993); Dendraster 

excentricus (Niesen 1977) and Arachnoides placenta (Haycock 2004); and all had 

annual cycles. The only published literature to date on the reproductive biology of 

Peronella lesueuri reported that individuals from a lagoon near Misaki in Japan had 

ripe gonads in late June and July (summer) (Mortensen 1921). Mortensen (1921) 
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also noted that P. lesueuri had yolk-laden ova with diameters of 0.3 – 0.4 mm, 

which suggested lecithotrophic development. 

Echinoids commonly exhibit reproductive cycles with annual, seasonal, monthly 

and/or lunar periodicities although some species, like Echinometra mathaei in 

Western Australia, have been found to exhibit continuous reproduction (Pearse and 

Phillips 1968). Seasonal or annual reproductive cycles imply that regulation of 

reproduction is through one or a combination of exogenous cues and factors that 

change with the seasons, like sea temperatures (Spirlet et al. 1998; Brewin et al. 

2000), photoperiod (Bay-Schmith 1989; Byrne et al. 1998; Alsaffar and Lone 2000), 

nutrient availability (Starr et al. 1993; Muthiga and Jaccarini 2005; Kino and 

Agatsuma 2007) and lunar periodicity (Kennedy and Pearse 1975; Iliffe and Pearse 

1982).  There has, however, been no identification of a single factor that can be 

consistently correlated with the reproductive cycles of all echinoids and it is likely 

that the regulating exogenous factor or combination of factors is species-specific 

(Mercier and Hamel 2009b).  

Although there is still a lack of understanding as to how photoperiod acts as a cue 

for gametogenesis (Walker et al. 2007), temperature and photoperiod still are 

regarded as the most likely regulators of gametogenesis and spawning in echinoids 

(Mercier and Hamel 2009b). Temperature is thought to initiate and/or inhibit gonad 

growth (Iliffe and Pearse 1982; Sakairi et al. 1989) and regulate spawning (Ito et al. 

1989; Spirlet et al. 1998; Brewin et al. 2000; Nunes and Jangoux 2004) in a variety 

of species. Photoperiod has also been identified as a possible factor affecting 



62 
 

reproduction in echinoids, regulating gametogenesis (Holland 1967; Bay-Schmith 

1989; Vernon et al. 1993) and spawning (Byrne et al. 1998; Spirlet et al. 1998) 

In order to accurately determine the impacts of individual exogenous factors on 

reproductive cycles, each factor has to be isolated and analysed independently 

(Yamahira 2004). Such studies are complex and are impossible to conduct in the 

field. Within constraints, this field study documents the gametogenic cycle of 

Peronella lesueuri in Cockburn Sound, Western Australia, through histological 

analysis of gonads, determines the periodicity of the reproductive cycle and 

speculates on the impact of environmental factors on gametogenesis and spawning. 
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3.2 Materials and Methods 

3.2.1 Collection 

Near monthly samples of adult Peronella lesueuri were collected for gonad analysis 

from Jervoise Bay in Cockburn Sound from March 2009 to April 2011. The sand 

dollars were collected using an epibenthic sled that was towed behind a vessel. The 

sled had a 5 cm cutting depth and 1 cm mesh (Figure 3.1). The mouth dimensions of 

the sled were 85 cm by 45 cm. The sand dollars were manually separated from the 

other material collected by the sled.  

Figure 3.1 The epibenthic sled and its contents after a 200 metre tow. 

Peronella lesueuri displays no obvious external sexual dimorphism. Based on an 

assumption of a sex ratio of 1:1, the first 30 individuals encountered with a test 

length of ≥120 mm were collected to ensure that the sample contained at least 10 

males and 10 females. There is no literature on the size at maturity of P. lesueuri. 

The approximate size of sand dollars in a preliminary sample was 150mm, therefore, 
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sand dollars of test length ≥120 mm were assumed to have attained sexual maturity. 

The collected sand dollars were then placed on ice in an insulated cool box to 

prevent them from spawning during transport to the laboratory, where they were 

fixed in 10% formaldehyde in seawater for dissection.  

A separate sample of 31 juvenile sand dollars varying in test length from 50 – 123 

mm was also collected for a study to determine size at sexual maturity. Juvenile 

sand dollars were rare therefore the sample was limited in number. 

3.2.2 Histology 

Unlike regular sea urchins, the gonads of Peronella lesueuri do not occur as discrete 

sacs. The gonads are instead distributed throughout the main body cavity and 

surround the central gut. Four gonoducts transport gametes from the gonads to the 

gonopores on the aboral surface when spawning. It was not possible to 

differentiate the four discrete gonads due to the mesh-like distribution of the acini 

however. A preliminary histological analysis of different areas of the gonad in 

several individuals determined the homogeneity of the gametogenic development 

throughout the gonad material.   

Before dissection, all sand dollars were measured for length, weighed and upon 

dissection, sexed. Correlation coefficients and r2 values for test length-weight of 

individuals >120 mm were calculated using JMP (SAS Institute) and Microsoft 

Excel™. A Z-test was performed on the 466 sexed individuals to determine the sex 

ratio within the population. Thirty-one small individuals (50 – 122 mm), assumed to 

be juveniles and early adults, were also measured and weighed before dissection to 

determine if gonads were discernible.  



65 
 

All the collected sand dollars were dissected using a rotary tool with a cutting bit. A 

pentagonal hole was cut on the aboral surface of the test to expose the gonads 

(Figure 3.2).  Sand dollars were then visually sexed by distinguishing their gonad 

material under a stereomicroscope. In mature individuals, the gonads of Peronella 

lesueuri were obvious on dissection and dominated the body cavity. Male gonads 

were an off-white colour and female gonads were pink to dark brown, occasionally 

black. The sexes were easily distinguishable from each other by eye and ova were 

visible under the dissecting microscope. During the spent and recovery stages, 

gonads of both sexes were a tan colour and sexes were difficult to distinguish. In 

order to determine sex, unspent ova were located using a stereomicroscope. A 

subsample of gonad material was extracted from ten males and ten females for 

histological analysis.  

A portion of the gonad tissue was removed with dissecting scissors and forceps and 

placed in 50% ethanol. The gonad tissue samples were then dehydrated through a 

series of graded ethanol solutions and 100% chloroform and embedded in Paraplast 

embedding wax using a Leica TP 1020 automatic tissue processor. The gonad 

tissues were then sectioned into 10 µm thick sections on a Leica RM 2235 

microtome and mounted onto glass slides. It was not possible to section any 

thinner than 10 µm due to the fragile condition of the gonads.  Three slides were 

made from each gonad sample, with the sections more than 100 µm apart. As some 

of the ova in the females were more than 200 µm in diameter, taking the sections 

at more than 100 µm apart reduced the chance of encountering the same oocyte 

twice. Taking three sections from a sample also prevented data from being biased if 
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the distribution of gametocytes within the gonad was not uniform (Gonor 1973). 

The slides were then stained with Harris’ haematoxylin and 1% eosin in 95% ethanol. 

The aim was to obtain 10 individuals of each sex for study. However, during the 

course of the study, several gonad samples were incorrectly identified and sexed 

and the mistakes were only discovered upon examination of the histological slides 

under the compound microscope. These misidentifications were taken into account 

when calculating proportions of gametogenic stages. 

 

Figure 3.2 Dissection lines for Peronella lesueuri 
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3.2.3 Histological analysis 

The slides were viewed using an Olympus BX51 compound microscope (Olympus 

Optical Co. Ltd., Tokyo, Japan) and digital images were taken of each slide. The 

images were taken with an Olympus DP70 camera and software (Olympus Optical 

Co. Ltd., Tokyo, Japan).  

One image at 40x magnification was taken of each slide. Images were taken of 

areas where the gonad material was in good condition and best represented the 

gametogenic stage of the entire sample on the slide. The images were then 

classified into gametogenic stages. Images at higher magnification were also taken 

when points of interest were encountered within the gonad material. 

Male and female gonads were each classed into five gametogenic stages, based on 

similar studies on other echinoderms (Chatlynne 1969; Byrne 1990; Falkner and 

Byrne 2003; MacCord and Ventura 2004). Proportions of the different gametogenic 

stages in each gonad sample were calculated.  

Two methods were employed to study oocyte growth and differentiation through 

the gametogenic cycle. The change in proportion of the three main oocyte stages 

was used to follow the changes in the morphological stages of the gametogenic 

cycle. This method ensured that oocytes at different developmental stages were 

not grouped together when their sizes overlapped (Gonor 1973).   

Oocyte size frequencies were obtained by measuring the first 50 oocytes 

encountered in each sample. To ensure that oocytes diameters were as accurate as 

possible, all Stage 2 and 3 oocytes measured had been sectioned through the 

nucleus and Stage 1 oocytes were only measured if sectioned through the nucleolus.  
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As Peronella lesueuri oocytes are relatively large, in order to have largest possible 

sample to measure from, oocytes were measured from images taken at the lowest 

magnification (40x) on the compound microscope camera. However the low 

magnification of the images used for histological analysis meant that stage 1 

oocytes that were too small to have a visible nucleus or nucleolus were not 

measured. As a result, the mean diameter of the measured stage 1 oocytes was 

biased towards a slightly larger size. The oocyte diameter was calculated as the 

average of the longest and shortest axes of the oocyte measured through the 

nucleus. T-tests were used to determine if there were significant differences in 

oocyte diameters. 

Accurate quantitative measurements were difficult for male gonads; therefore 

samples were only classified into five stages based on their distinct morphological 

features described in section 3.3.3.2. 

3.2.4 Environmental data 

The sea surface temperatures (SSTs) for the Cockburn Sound region were obtained 

from the Integrated Marine Observing System (IMOS).  

The number of bright sunshine hours (BSH) was used as a measure of photoperiod. 

Mean number of bright sunshine hours recorded for the Perth region was obtained 

from the Bureau of Meteorology. The hours of “bright sunshine” is measured from 

midnight to midnight each day. The readings are taken from a Campbell-Stokes 

recorder, which uses a glass lens to focus the sun on a specially designed card. The 

length of the burn scorched by the intensity of the sun’s image is proportional to 

the number of bright sunshine hours for the day.  
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3.2.5 Statistical Analysis  

JMP 9 software (SAS Institute) was used to perform all the statistical analyses used 

in this chapter. Chi-squared tests were used to compare proportions of male and 

females as well as proportions of oocyte stages between months. 

No statistical analysis was used to test the effect of environmental variables on 

oocyte proportions. The stage of oocyte data was categorical and had no variance; 

as the assumption normally distributed continuous variables was not met, the use 

of parametric statistical tests was inappropriate. The correlation of environmental 

variables to oocyte proportions was instead described as trends visible from 

corresponding graphs. 
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3.3 Results 

3.3.1 Basic Biology 

To obtain gonad tissue samples for histological analysis, 466 sand dollars were 

dissected, of which 225 were male and 241 female.  A chi-squared test showed that 

Peronella lesueuri had a sex ratio of 1:1 (χ2=0.55, p=0.46, n=466).  

 Peronella lesueuri also showed no visible sexual dimorphism.  There was no 

significant difference (t=1.24, p=0.21, n=510) between the mean length of adult 

males (143.49 ± 9.15mm) and adult females (142.46 ± 9.50mm). Mean weights of 

adult males (132.76 ± 24.01g) and adult females (133.59 ± 24.38g) also showed no 

significant difference (t=0.38, p=0.70, n=510). 

Only 8% of juvenile sand dollars dissected to determine sexual maturity (50 – 79 

mm size range) had gonad developed enough to be sexed (Table 3.1). Gonads were 

developed and could be sexed in 60% of individuals between 80 and 109 mm.  All 

sand dollars larger than 115 mm had developed sexable gonads and were deemed 

sexually mature. Based on the data on length-at-age (Chapter 4), this indicated that 

Peronella lesueuri attains sexual maturity between 1.5 and two years of age, and all 

individuals above two years of age were sexually mature. 

Table 3.1 Size ranges of juvenile Peronella lesueuri containing sexable gonads. 

Size range (mm) 
N Individuals with sexable gonads 

(%) 

50 - 79 12 8 

80 - 109 10 60 

110 - 123 9 89 
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3.3.2 Oocyte Histology 

Over the course of the study, changes in the sizes and frequencies of 

morphologically classified oocytes were observed. Distinctive appearance features 

and different affinity for stains were used to classify the oocytes encountered in the 

histological analysis based on work performed by Gonor (1973) on 

Strongylocentrotus purpuratus. The changes in appearance and staining 

characteristics seem to correspond to the developmental changes within the oocyte 

during gametogenesis. 

3.3.2.1 Oocyte stages 

Stage 1 oocytes (85.63 ± 27.81 µm) 

The smallest oocytes (Figure 3.3) that could be clearly identified were present along 

the acinal walls, usually located within a layer of nutritive phagocytes. The 

cytoplasm of these oocytes was strongly basophilic, staining a dense dark blue or 

dark purple with hematoxylin and eosin. In most cases, a pink-stained nucleus was 

visible, often with a distinct black nucleolus. These oocytes were rounded in shape, 

although they may elongate or be compressed as they grow or if they are tightly 

packed together. These oocytes were present in ovaries at all stages of 

reproduction.  

Stage 2 oocytes (159.65 ± 29.65 µm) 

As a stage 1 oocyte developed, the nucleus became larger and the amount of 

cytoplasm greatly increased. The cytoplasm of stage 2 oocytes (Figure 3.3) was 

basophilic and stained a bright purple with hematoxylin and eosin.  Oocytes at this 
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stage were variable in shape and possessed a relatively large size range. As stage 2 

oocytes developed they remained along the acinal walls of the ovary. 

Stage 3 oocytes/Ova (210 ± 33.74 µm)  

Stage 3 oocytes (Figure 3.3) had a regular, round shape and consisted of a large 

nucleus and big volume of cytoplasm that was weakly basophilic and stained pink 

with hematoxylin and eosin. Although most of the stage 3 oocytes were found in 

the lumen of the ovary, some were attached to the acinal walls. Ova were classed 

together with the stage 3 oocytes because the last phases of meiosis occurred 

rapidly and ova were often difficult to differentiate from stage 3 oocytes. In the 

following text, the term “stage 3 oocyte” will also be used to include mature ova 

unless specified.  
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Figure 3.3 The three oocyte stages in a growing ovary. S1 = Stage 1 oocyte, S2 = 

Stage 2 oocyte, S3 = Stage 3 oocyte or ova. NP denotes the nutritive phagocytes, a 

nutrient store, that accumulates in gonads during the recovery and growth phases. 

 

Relict oocytes  

 Unspawned/relict ova were broken down and reabsorbed. The cytoplasmic 

material appeared to break up into little globules, which were then integrated into 

the nutrient store of nutritive phagocytes (Figure 3.4) for the next cycle of 

gametogenesis.  Relict ova present in the spent stages of gametogenesis were not 

measured or included in the counts. 
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Figure 3.4 A) Relict oocytes in various stages of lysis while still retaining their shape. 

B) Eventually their cytoplasmic components will be assimilated into the nutrient 

store. 

 

3.3.3 Gametogenic stages in Peronella lesueuri gonads 

Histological analysis of Peronella lesueuri gonads revealed that the gametogenic 

cycle in both sexes could be classified into five morphologically distinct stages: 

Recovery, Growth, Mature, Partially spawned and Spent. 

3.3.3.1 Gametogenic stages in the ovaries 

Stage I: Recovery (Figure 3.5a and 3.5b) 

On dissection, it was difficult to distinguish recovering ovaries from recovering 

testes. However, once subjected to histological processing and mounted on slides, 

ovaries could be differentiated by the presence of stage 1 oocytes. Ovaries in the 

recovery stage were dominated by stage 1 oocytes (S1) although some still had 

unspawned ova and/or stage 2 oocytes in various stages of degeneration. A thick 

layer of nutritive phagocytes (NP) lined the acinal wall, often filling the lumen. 

Nutritive phagocytes were eosinophilic and stained pink. Dark, lipofuschin-like 



75 
 

particles (LF), probably a product of gamete breakdown, were present in some 

recovering ovaries (Figure 3.5b). 

Stage II: Growth (Figure 3.5c) 

Growing ovaries were abundant in stage 1 and stage 2 oocytes as oogenesis took 

place. Stage 1 and 2 oocytes remained surrounded by nutritive phagocytes and 

were attached to the acinal wall. Stage 3 oocytes started to appear and 

accumulated as ovaries moved through the growth stage. The amount of nutritive 

phagocytes decreased as the nutrients fuelled oogenesis.  

Stage III: Mature (Figure 3.5d)  

Stage 3 oocytes and ova were abundant in the lumen of mature ovaries. Some 

mature ovaries contained mainly mature oocytes with few stage 1 oocytes along 

the acinal walls and few or no nutritive phagocytes. Other ovaries contained 

oocytes in all stages of development along with mature oocytes in the lumen 

(Figure 3.5e) and some nutritive phagocytes. The two variants of the mature stage 

suggested that some sand dollars produced only one cohort of ova and are 

spawned out once all the ova are released.  Other sand dollars can produce several 

cohorts of ova, replacing ova as they are spawned. These sand dollars probably 

spawned for longer through the spawning period.  

Stage IV: Partially spawned (Figure 3.5f) 

During the period of spawning, gonads that seemed partially spawned were 

observed. Large numbers of mature oocytes or ova were still present in the lumen 

of the acini, although spaces left by spawned ova were observed. 
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Stage V: Spent (Figure 3.5g) 

Thin layer of nutritive phagocytes and stage 1 oocytes lined the acinal walls. Acinal 

lumens were mostly empty although unspawned ova in various stages of 

degeneration were occasionally present. Dark lipofuschin-like particles were 

sometimes present in the acini from the breakdown of unspawned oocytes. 

Unspawned oocytes eventually underwent lysis and broke down into small globules 

(Figure 3.5h), which were incorporated into the nutritive phagocyte layer (Figure 

3.4B). 
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Figure 3.5 Stages of oogenesis in Peronella lesueuri. a) Stage I: Acinal walls with a 
thick layer of nutritive phagocytes and stage 1 oocytes; b) Stage I: Ovary in recovery 

stage showing lipofuschin-like particles (LF) in the acini; c) Stage II: Oocytes at all 

stages of development are present; d) Stage III: Mature ovary with no nutritive 

phagocytes and few stage I oocytes along acinal wall; e) Stage III: Mature ovary with 
oocytes in various stages of development; f) Stage IV: Spaces left by spawned ova 

are visible in the partially spawned ovary; g) Stage V: Spent ovary with empty 

lumens and thin layer of nutritive phagocytes. Unspawned ova beginning to lyse; h) 
Several ova undergoing lysis while still retaining their shape. 

 

3.3.3.2 Gametogenic stages in the testes 

Stage I: Recovery (Figure 3.6a) 

Testes in the recovery stage were difficult to distinguish from ovaries in a similar 

stage at dissection. Acini of recovering testes were packed with nutritive 

phagocytes, digesting relict spermatozoa that were still present. A thin basophilic 

layer of spermatogonia could be seen lining the acinal walls. 

Stage II: Growth (Figure 3.6b) 

The basophilic layer of spermatogonia along the acinal walls thickened. Acini were 

still filled with nutritive phagocytes. As spermatogenesis progressed, spermatozoa 

started to accumulate in the testis lumen, displacing the nutritive phagocytes from 

the centre.  

Stage III: Mature (Figure 3.6c) 

Spermatozoa were densely packed in the lumen of mature testes. Some testes no 

longer contained nutritive phagocytes, but in testes where they were still present, 

nutritive phagocytes were displaced to the periphery.  
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Stage IV: Partially spawned (Figure 3.6d) 

Due to gamete release, the concentration of spermatozoa decreased and acinal 

spaces loosely-filled with spermatozoa. Large spaces sometimes developed within 

dense masses of spermatozoa as spawning took place. Testes in the partially 

spawned stage sometimes looked similar to growing testes but could be 

distinguished by gaps between spermatozoa masses and the acinal walls. 

Stage V: Spent (Figure 3.6e) 

Spent testes had empty acini, although some still contained masses of relict 

spermatozoa which would eventually be broken down. An eosinophilic layer of 

nutritive phagocytes started to accumulate along the periphery of the acini. 
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Figure 3.6 Stages of spermatogenesis in P. lesueuri. a) Stage I: Nutritive phagocytes 

fill the acini of the recovering testes; b)Stage II: Spermatozoa accumulate in the 

lumen of a growing testes; c) Stage III: Mature testes densely packed with 

spermatozoa; d) Stage IV: Partially spawned testes with gaps between loosely-

packed spermatozoa and acinal wall; e) Stage V: Empty acini of spent testes. 

 

 

a) b) 

c) d) 

e)  
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3.3.4 The Reproductive Cycle 

3.3.4.1 Annual change in gametogenic stages 

The proportions of the gametogenic stages present in the monthly samples were 

used to ascertain the periodicity of Peronella lesueuri reproduction (Figure 3.7). 

Two distinct annual reproductive cycles were observed over the study; May 2009 – 

April 2010 (2009 – 2010 reproductive cycle) and May 2010 – April 2011 (2010 – 

2011 reproductive cycle). Reproductive cycles in males and females appeared 

synchronous with corresponding gametogenic stages throughout. 

Gametogenesis occurred from spring to early summer. During the 2009 – 2010 

reproductive cycle, the growth stage was first observed in female gonads in August. 

The proportion of females with growing gonads in August and September, however, 

was less than 30%. No females with growing gonads were sampled in October, 

however, from November to January, between 90 – 100% of females had actively 

growing gonads. Growth in the male gonads commenced in September and 

between October to December, 60 – 100% of males had growing gonads. In the 

2010 – 2011 reproductive cycle, gametogenesis appeared to commence in October 

2010, when growing gonads were detected in 40% of females and 80% of males. No 

individuals with growing gonads were observed in November, but in December and 

January, gonads in the growth stage were observed in at least 60% of all individuals.  

Mature gonads first occurred in both sexes in the summer: January 2010 and 

December 2010. Fully mature gonads that did not show signs of spawning were 

uncommon however (≤30%).   
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The first occurrence of gonads in the partially spawned stage indicated that 

spawning had commenced. Partially spawned gonads were observed in both sexes 

over a period of approximately 4 – 5 months; however, the spawning was assumed 

to be over when more than 50% of individuals contained spent gonads. Spawning 

took place from January to March during both reproductive cycles. During the 2009 

– 2010 cycle, males appeared to commenced spawning earlier, with 80% of males 

sampled in January containing partially spawned gonads while spawning had yet to 

occur in females. With the exception of the gonad sampled on the 13 March 2009, 

the proportion of partially spawned gonads in males was always equal to or higher 

than in females. 
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Figure 3.7 Monthly changes in the proportions of gametogenic stages in male and 

female Peronella lesueuri over the 26-month sampling period. 

 

More than 50% of individuals of one or both sexes contained spent gonads 

between March – July 2009, April – September 2010 and in April 2011. The recovery 

stage was seen in gonads of both sexes between late autumn and late spring and 

was the dominant stage (≥50% of all individuals) from May – October 2009 and July 

to November 2010.  
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3.3.4.2 Annual change in oocyte proportions 

Over the 26  month sampling period, temporal variation was observed in the 

percentages of the different oocyte stages. Stage 1 oocytes were present in varying 

proportions in every sample and accounted for between 38 – 100% of all oocytes. 

Stage 1 oocytes accounted for over 90% of all oocytes from July to September 2009 

and July to August 2010 (Figure 3.8). This was when most sand dollar gonads were 

undergoing the recovery stage of the reproductive cycle (Figure 3.7) During this 

period, relict stage 2 and stage 3/ova oocytes were broken down and incorporated 

into the nutrient store (Figure 3.4b), while stage 1 oocytes remained 

undifferentiated.   

Figure 3.8 Monthly changes in the proportions of the 3 different oocyte stages 

encountered over the 26 month sampling period.  
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The proportions of stage 1 oocytes decreased by more than 20% in November 2009 

and September 2010. From December to March in both 2010 and 2011, stage 1 

oocytes accounted for less than 50% of all oocytes each month (Figure 3.8). This 

period was when most females were mature and generating ova for spawning 

(Figure 3.7), hence there were higher proportions of the more mature stage 2 and 

stage 3/ova oocytes phases. 

Stage 2 oocytes were also present in every sample and  were at their lowest 

proportions from July to August 2009 and May to August 2010, when they 

accounted for less than 10% of all oocytes (Figure 3.8). The sand dollars had spent 

gonads during this period and because no new ova were required relict stage 2 

oocytes were either held in stasis or were broken down and the contents absorbed 

into the nutrient store. In November 2009 and September 2010, the proportion of 

stage 2 oocytes incresed abruptly, alongside the decrease in stage 1 oocytes. This 

indicated that gametogensis had commenced. In November 2009, stage 2 oocytes 

accounted for 31.6% of all oocytes, up from 10.9% in October. In September 2010, 

stage 2 oocytes made up 20.8%, up from 1.7% in August 2010. These sudden 

increases in the proportions of stage 2 oocytes indicated a rapid onset of oocyte 

growth in the sand dollars. The proportions of stage 2 oocytes then remained 

relatively high (between 20 – 45%) throughout the spawning periods (November 

2009 – March 2010 and September 2010 – April 2011) suggesting that mature ova 

were constantly being generated throughout the spawning period. 

Stage 3 oocytes were not present in every sample; they were absent from July – 

October 2009 and July – August 2010. This was when gonads were mostly spent or 
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recovering (Figure 3.6). In each reproductive cycle, stage 3 oocytes were first 

observed in the same month as the abrupt increase in the proportions of stage 2 

oocytes; November 2009 and September 2010 (Figure 3.7). This suggested that 

once gametogenesis commenced, differentiation between stage 1 and stage 3 

oocytes was rapid. Stage 3 oocytes were observed in from March to May 2009, 

November 2009 to June 2010 and September 2010 to April 2011. Stage 3 oocyte 

made up more than 15% of all oocytes between December 2009 – April 2010 and 

December 2010 – March 2011.  The stage 3 oocytes proportions peaked in January 

2010 (37% of total oocytes) and February 2011 (29.7%). After the peak in spawning, 

proportion of stage 3 oocytes steadily dropped as differentiation of oocytes to ova 

slowed and mature ova were spawned out. The gonads eventually reached the 

spent stage where few or no stage 3 oocytes remained between July and October in 

both years. 

3.3.4.3 Annual change in oocyte diameter 

The change in mean monthly oocyte diameters followed two annual cycles over the 

sampling period. Mean oocyte diameters in each cycle were lowest in winter and 

highest in summer. The timing corresponded with the reproductive cycles observed 

through the analysis of gonad stage as well as the changes in oocyte proportions, 

which showed that gonads were spent and recovering during the winter, actively 

growing in spring and spawning through the summer (Figure 3.7 and 3.8).   

From March 2009, mean oocyte diameters decreased gradually (Figure 3.9) to a low 

of 84.34 ± 33.82 µm in September. Mean oocyte diameters gradually increased 

from September, peaking in January 2010 (X + SD = 160.03 ± 58.51 µm, n=500). A 
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second gradual decline in mean oocyte diameter began in March 2010 and reached 

a low ( X + SD = 70.15 ± 19.91 µm, n=300) in August. Oocyte diameters increased 

again in September 2010 as the second cycle of gametogenesis commenced. Mean 

oocyte diameters of the 2010-2011 reproductive cycle peaked in January 2011        

(X + SD = 144.03 ± 53.22 µm, n=500) followed by a slight monthly decrease until the 

end of the sampling period in April.  

Figure 3.9 Monthly changes in the mean oocyte diameter + SD over the 26 month 

sampling period. 

 

The increasing mean oocyte diameters from winter to summer (August to January) 

indicated the onset of gametogenesis as gonads in the growth and mature stages 

(Figure 3.6); stage 2 and stage 3 oocytes (Figure 3.7) also increased in proportion 

over the same time period. Decreasing mean oocyte diameter in from summer to 

autumn (February – April) reflected the decreasing proportions of stage 2 and 3 
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oocytes (Figure 3.7); as gametogenesis ceased, ova gradually spawned out and 

ovaries became spent (Figure 3.5). Further decreases in the mean oocyte diameter 

throughout winter reflected the high proportions of spent and recovering gonads 

observed during this period (Figure 3.6) and increasing proportions of stage 1 

oocytes (Figure 3.7) as relict stage 2 and 3 oocytes were reabsorbed into the 

nutrient store. 

The overall mean diameters for stage 1, 2 and 3 oocytes were 85.63 ± 27.81 µm, 

159.65 ± 29.65 µm and 210.61 ± 33.74 µm respectively. However, the mean 

diameters for all three oocyte stages fluctuated monthly (Figure 3.10). Mean 

diameters of stage 1 oocytes increased approximately 30% from September 2009 to 

March 2010 and approximately 40% from September 2010 to April 2011, peaking in 

January 2010 (101.87 µm) and January 2011 (98.36 µm). Both were periods of 

active reproduction, when gonads were undergoing gametogenesis and spawning 

(Figure 3.6). Monthly mean diameters for stage 2 oocytes remained relatively 

constant from March 2009 to June 2010. However, decreases in stage 1 and stage 2 

oocyte diameters were observed from June 2010 to August 2010.  
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Figure 3.10 Monthly changes in mean oocyte diameters of stage 1, stage 2 and 

stage 3 oocytes from March 2009 to April 2011.  

 

Stage 3 oocytes were scarce during the recovery stages of the gametogenic cycle 

and no stage 3 oocytes were measured in September and October 2009 and July 

and August 2010 amongst the randomly selected oocytes. Mean stage 3 oocyte 

diameters were the highest in October 2010 (231.45 µm) and April 2011 (229.71 

µm) (Figure 3.10).  

3.3.4.4 Comparisons between years  

Two reproductive cycles were observed over the study period; May 2009 – April 

2010 and May 2010 – April 2011. The seasonal periodicities of the two cycles were 

the same, gametogenesis taking place in spring, spawning occurring in summer and 

gonad recovery throughout winter (Figure 3.7). Overall, the two reproductive cycles 

were not significantly different from each other (F=0.12, p=0.14). Significant 
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differences were, however, observed in the monthly proportions of oocytes and 

oocyte diameters between the two cycles.  

In the 2010 -2011 reproductive cycle, the annual decrease in stage 1 oocytes 

proportions commenced in September 2010, one month earlier than the previous 

year (October 2009) (Figure 3.11).  Proportions of stage 1 oocytes were significantly 

lower in September (χ2=46.70, p<0.001), October (χ2=54.08, p<0.001) and 

November (χ2=11.22, p<0.001) 2010 than in 2009. They were also significantly 

higher in August 2010 (χ2=17.57, p<0.001) January (χ2=11.04, p<0.001) and March 

(χ2=10.21, p=0.001) 2011.  

Figure 3.11 Comparison of the percentages of stage 1 oocytes present in sampled 
ovaries between the 2009 – 2010 and 2010 – 2011 reproductive cycles. 

 

In 2010 – 2011, proportions of stage 2 oocytes were significantly lower in August 

(χ2=16.06, p<0.001), and significantly higher in September (χ2=37.88, p<0.001), 
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October (χ2=51.23, p<0.001), November (χ2=20.33, p<0.001), December (χ2=32.74, 

p<0.001) and April (χ2=10.41, p=0.001) (Figure 3.11).  

Compared with the 2009 – 2010 reproductive cycle,  the 2010 – 2011 cycle 

presented significantly lower stage 3 oocyte proportions in December (χ2=11.25, 

p<0.001), January (χ2=28.88, p<0.001) and April (χ2=6.97, p=0.008) (Figure 3.12).  

In summary, in the 2010 – 2011 reproductive cycle, there were less stage 1 oocytes 

and more stage 2 oocytes present throughout gametogenesis. There were also less 

stage 3 oocytes produced throughout the spawning period.  

 

Figure 3.12 Comparison of the percentages of stage 2 oocytes present in sampled 

ovaries between the 2009 – 2010 and 2010 – 2011 reproductive cycles. 

 

Significant differences in mean oocyte diameters were also observed between most 

corresponding months of the 2009 – 2010 and 2010 – 2011 reproductive cycles. 
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Tukey-Kramer HSD tests (p<0.01) showed that mean diameters were significantly 

lower in July, August, December, January and March and significantly higher in 

September, October November and April of the 2010 – 2011 reproductive cycle 

(Figure 3.12).  

 

Figure 3.13 Comparison of the percentages of stage 3 oocytes present in sampled 
ovaries between the 2009 – 2010 and 2010 – 2011 reproductive cycles. 

 



93 
 

Figure 3.14 Comparison of monthly changes in mean oocyte diameters between the 

2009 – 2010 and 2010 – 2011 reproductive cycles. 

 

These significant differences in mean diameters between the reproductive cycles of 

both years were affected by corresponding differences in oocyte proportions 

observed between years. The lower mean diameters in July and August 2010 

corresponded with lower proportions of the larger stage 2 oocytes and higher 

proportions of smaller stage 1 oocytes (Figures 3.11 and 3.12). Higher mean 

diameters observed in September, October and November corresponded with 

significantly larger proportions of stage 2 oocytes (Figure 3.12).  Mean diameters 

were lower from December to March in the 2010 – 2011 cycle due to a combination 

of lower proportions of stage 2 and stage 3 oocytes (Figure 3.12 and Figure 3.13). 

At the end of the spawning period in April, oocyte diameters in 2011 were 

significantly larger than in 2010 (Tukey-Kramer, p<0.01). This was due to the larger 
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proportion of stage 2 oocytes still present in the ovaries (Figure 3.12) despite 90% 

of them being classed as spent (Figure 3.7).  

Tukey-Kramer HSD tests (p<0.01) showed stage 1 oocyte mean diameters were 

significantly lower in the 2010 – 2011 reproductive cycle in the months of July, 

August, December and March (Figure 3.15). Stage 1 oocyte means were also 

significantly higher in September and April in 2010 – 2011.  

Stage 2 and Stage 3 oocyte diameters showed no significant differences between 

the two reproductive cycles.   

Figure 3.15 Comparison of monthly changes in mean oocyte diameters of stage 1, 
stage 2 and stage 3 oocytes between the 2009 – 2010 and 2010 – 2011 

reproductive cycles.  
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3.3.4.5 Relationship to environmental variables 

Sea surface temperature (SST) and number of bright sunshine hours (BSH) exhibit 

an annual, seasonal cycle in Cockburn Sound. SSTs in the area ranged from a low of 

16°C in the winter to a high of 23°C in the summer (Pearce et al. 1999). Mean SSTs 

recorded in Cockburn Sound during the study period ranged from approximately 17 

– 26°C (Figure 3.16). There appeared to be no significant difference between the 

two seasonal cycles of mean SSTs over the 2009 – 2011 study period (t=0.56, 

p=0.58). However, over the summer of 2010-2011, a “marine heat wave” was  

observed off the south-western coast of Western Australia, in which temperatures 

in Cockburn Sound were approximately 2°C higher than average (Pearce et al. 2011). 

Figure 3.16 Monthly mean sea surface temperatures (SSTs) from Cockburn Sound, 

Western Australia (IMOS 2011). 
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Over the study period, the Perth Metropolitan area received a monthly mean of 

between 6.1 and 12.3 BSH (Figure 3.17). Since the increasing amount of light (and 

associated heat) can cause an increase in SST (Mercier and Hamel 2009), it is not 

surprising to see the cycle of SSTs mirror the cycle of BSH.  BSH peaked in summer 

and reached lows in winter, mirroring the cycle of SSTs. As with SSTs, there was no 

significant difference between the two seasonal cycles of mean BSH during the 

study period (t=0.76, p=0.45). However, in 2010 – 2011, mean BSH started to 

increase earlier than the previous year (July instead of September).  Over the 

summer of 2010 – 2011, mean BSH was also not as high as the previous year due to 

higher amounts of cloud cover. 
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Figure 3.17 Monthly mean bright sunshine hours (BSH) for the Perth Metropolitan 

Area, Western Australia Bureau of Meteorology (BoM 2011).  

 

The Peronella lesueuri reproductive cycle is seasonal; gametogenesis took place 

throughout spring and early summer as SSTs and BSH increased to peak levels. 

Spawning occurred from January to April, when SSTs and BSH were at their peak. 

Gonads were mostly spent and recovering over autumn and winter as SSTs and BSH 

decreased to minimum levels.   

This was reflected in the annual changes in oocyte proportions of the different 

stages. Over the winter months from June to August, stage 1 oocytes made up 

between 80 to 100% of all oocytes in the gonad. The decline of stage 1 oocyte 
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proportions around August and September signalled the initiation of vitellogenesis 

and corresponded to the increase in SSTs and BSHs from winter lows (Figure 3.18). 

As stage 1 oocyte proportions decreased, stage 2 oocyte proportions increased 

(Figure 3.19). Stage 2 oocyte proportions  in both reproductive cycles peaked when 

mean SST  was approximately 21°C (Figure 3.19B) and mean BSH was approximately 

10.5 (Figure 3.19C).   

In October both years, stage 3 oocyte proportions increased rapidly (Figure 3.20).  

Stage 3 oocyte continued to increase with SSTs and BSH, peaking in the period of 

highest mean SSTs and mean BSH between January and March. Stage 3 oocyte 

proportions were the highest around January and February, which was the start of 

the spawning period.  As SSTs and BSHs started to decrease in March, proportions 

of stage 2 and stage 3 oocytes declined as gametogenesis slowed and mature 

gonads were spawned out. Stage 1 oocyte proportions started to increase to more 

than 90% between March and August,  as spent gonads started to recover for the 

beginning of the next gametogenic cycle. 
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Figure 3.18 Comparisons of changes in A) Stage 1 oocyte proportions, B) SSTs and C) 

bright sunshine hours between the 2009-2010 and 2010-2011 reproductive cycles. 



100 
 

 

Figure 3.19 Comparisons of changes in A) Stage 2 oocyte proportions, B) SSTs and C) 

bright sunshine hours between the 2009-2010 and 2010-2011 reproductive cycles. 
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Figure 3.20 Comparisons of changes in A) Stage 3 oocyte proportions, B) SSTs and C) 

bright sunshine hours between the 2009-2010 and 2010-2011 reproductive cycles. 
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3.4 Discussion 

Echinoid reproduction has been extensively studied. Reproductive cycles have been 

described for a large number of regular echinoids; however, reproduction in 

irregular echinoids appears to be less well-studied. Despite being a conspicuous 

component of the benthic community in Cockburn Sound, Western Australia and 

commonly found throughout an Indo-Pacific range, there was no biological or 

reproductive information on the sand dollar Peronella lesueuri. 

The Peronella lesueuri population in Cockburn Sound was found to have a sex ratio 

of 1:1, which is common amongst echinoids (Pearse and Cameron 1991); e.g. 

Mellita quinquiesperforata in Brazil (Tavares and Borzone 2006)  and Dendraster 

excentricus in San Diego, USA (Niesen 1977) were both determined to have sex 

ratios of 1:1.  

External sexual dimorphism is not obvious in most echinoids (Pearse and Cameron 

1991) and Peronella lesueuri was no different; there were no significant differences 

in the mean size and weight for adults of both sexes. In the field, the sand dollars 

would be impossible to sex visually as all individuals were a similar pink-orange 

colour. Upon dissection, the gonads were easy to sex under the dissecting 

microscope. However, during the months immediately post spawning, when gonads 

of both sexes were depleted of their mature gametes, they looked similar and some 

could only be sexed upon histological analysis 

Peronella lesueuri individuals 115 mm and larger in size were deemed to be sexually 

mature as gonad tissue could be easily sexed at this size. 60% of juveniles between 

80 mm and 109 mm were also thought to be sexually mature. Age at size indicated 
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that P. lesueuri attained sexually maturity between 1.5 and 2 years of age. The sand 

dollar Mellita quinquiesperforata in the Gulf of Mexico attained sexual maturity at 

or near 1 year of age (Lane and Lawrence 1979).  

Peronella lesueuri is known to have lecithotrophic larvae with ova 300 – 400 µm in 

diameter (Mortensen 1921). Another species of the Peronella genus, Peronella 

japonica also had large ova (~300 µm) and lecithotrophic larvae (Okazaki and Dan 

1954).  While the mean stage 3 oocyte/ova size in this study was not as large (210 

µm), it was still much larger than the 100 – 152 µm ova size range of other sand 

dollar species with planktotrophic larvae (Chen and Chen 1993).  

Reproductive cycles of several species of sand dollars have been described through 

histological analysis and/or gonad index studies; Sinaechinocyamus mai (Chen and 

Chen 1993), Arachnoides placenta (Haycock 2004), Echinarachnius parma 

(Cocanour and Allen 1967), Mellita quinquiesperforata (Lane and Lawrence 1979); 

Dendraster excentricus (Niesen 1977) and Clypeaster ravenelii (Vernon et al. 1993). 

Gonad index, commonly used in reproductive studies, was not utilised in this study 

primarily because the gonad structure of Peronella lesueuri was not suitable. It was 

not possible to excise accurate amounts of gonad tissue from P. lesueuri due to the 

extensive distribution of gonad tissue within the body cavity. The major assumption 

of gonad index is that animals of different body size have the same ratio of gonad 

to body size (Gonor 1972). This assumption did not hold up in echinoids 

Strongylocentrotus purpuratus (Gonor 1972), Lytechinus variegatus  (Moore et al. 

1963a), Tripneustus esculentus (Moore et al. 1963b)  and sand dollar Mellita 

quinquiesperforata (Lane and Lawrence 1979). Thus gonad index should only be 
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used to compare animals of the same size unless the relationship between the 

gonad size and body size has been established to be the same for individuals of all 

sizes. The sand dollars used in this study varied in size, and difficulty in excising 

precise amounts of gonad tissue meant that it was not possible to obtain an 

accurate gonad index or test for gonad size/body size relationship. Studies have 

also shown that changes in gonad index could be independent of gametogenesis; 

an increase could be due to accumulation of nutritive material without gamete 

production (Lane and Lawrence 1979) while a decrease may be due to utilization of 

the nutrient storage for energy requirements other than gametogenesis (Mercier 

and Hamel 2009). Thus, in this study, the Peronella lesueuri reproductive cycle was 

determined by histological analysis and was further supported by changes in 

proportion of oocyte stages and mean oocyte diameters over time. 

The sequence of change in the gametogenic cells and nutritive phagocytes that 

make up the gametogenic cycle follows a regular pattern in echinoids that is 

remarkably similar between species (Pearse and Cameron 1991). The reproductive 

cycle of Peronella lesueuri presented morphological stages similar to those 

described in other echinoderm reproductive cycles (Chatlynne 1969; Byrne 1990; 

Falkner and Byrne 2003; MacCord and Ventura 2004). The cycle was annual and 

appeared to also be seasonal; vitellogenesis occurred in spring, spawning in 

summer, spent gonads in autumn and recovering gonads throughout the winter.   

Vitellogenesis took place in spring and early summer (September – January), 

evidenced by increasing proportions of gonads in growth stages (Figure 3.6) and 

stage 2 and 3 oocytes in the females (Figure 3.7), as well as increasing mean oocyte 
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diameters (Figure 3.8).  As gametogenesis advanced, the quantity of nutritive 

phagocytes stored within the gonad decreased. This inverse relationship between 

the quantity of nutritive phagocytes and mature gametes is common in echinoids 

(Byrne 1990; Chen and Chen 1993) as the nutritive phagocytes provide the 

nutrients for the energy requirements of gametogenesis (Chatlynne 1969; Pearse 

1969; Lane and Lawrence 1979).   

Gonads that were in the mature stage, completely full of gametes, were not 

commonly observed. This suggested that gonads do not retain mature gametes for 

long. Fully mature gonads were also not commonly observed in the spatangoid 

Echinocardium cordatum in the North Sea; the authors also suggested that mature 

gametes were not stored in the gonad for long (Nunes and Jangoux 2004).  

As a broadcast spawner, a synchronous spawning period for male and female 

Peronella lesueuri  ensured viable gametes of both sexes were available in the 

water column during the same period, increasing fertilization success (Mercier and 

Hamel 2009). Analysis of gonad stages showed that spawning (when 50% or more 

of sand dollar gonad samples were in the partially spawned stage) occurred 

annually from January to April (Figure 3.7). Partially spawned gonads containing 

mature gametes were common all through the spawning period (Figure 3.7), which 

indicated that gametogenesis continued throughout the spawning period, allowing 

for individuals to continuously release gametes (Chatlynne 1969). Some gonads in 

the spent stages were, however, observed early on in the spawning season which 

indicated that spawning was a discrete event in some individuals and mature 

gametes were not continuously generated. Partially spawned males were observed 



106 
 

in greater proportions and for a longer period than partially spawned females 

(Figure 3.7); a similar observation has been made in the sea urchin 

Strongylocentrotus purpuratus (Giese and Kanatani 1987). This “excess” of viable 

male gametes is common and helps to increase fertilization success. With 

population densities of between 0.3 to 2.5 individuals m-2 in Cockburn Sound, and 

no apparent aggregative behaviour for spawning, the ability to continually spawn 

throughout the spawning period as well as availability of “excess” male gametes 

enables P. lesueuri to maximise reproductive success. 

After spawning, nutritive phagocytes started to appear as relict gametes underwent 

phagocytosis. Relict oocytes were observed in various stages of phagocytosis during 

histological examination. The phagocytes increased in number and size until they 

packed the lumen of the gonads. The quantity of nutritive phagocytes observed in 

gonads during the recovery stage suggested that the accumulated nutrient material 

had to come from more than just the breakdown of relict gametes, and likely came 

from outside the gonad and/or active synthesis (Pearse and Cameron 1991). 

Peronella lesueuri moved and fed throughout the winter (Yeo et al. 2013). The 

continued ingestion of food aided the build-up of nutritive phagocytes in the gonad 

throughout the winter. Therefore, the food availability during the recovery period 

may affect gametogenesis the from year to year by limiting the amount of nutrients 

available to gametogenic cells (Chatlynne 1969).  

Annual reproductive cycles with seasonal periodicities are commonly observed in 

echinoids and have been documented in several species of sand dollars. Studies 

commonly used the spawning period to indicate peak reproductive activity. The 
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occurrence of spawning was common in spring and summer, although some species 

have been documented to spawn in autumn and winter (Pearse and Cameron 1991). 

Mellita quinquiesperforata were observed to spawn in spring in the Gulf of Mexico 

(Lane and Lawrence 1979) and throughout spring and summer in Brazil (Tavares 

and Borzone 2006).  Dendraster excentricus populations along the San Diego coast 

in California are most reproductive in spring, while in Bamfield, British Colombia, 

Dendraster populations spawned in summer (Burke and Bouland 1989). Autumn 

spawning was documented in Arachnoides placenta along the northern Queensland 

coast of Australia (Haycock 2004) as well as in Sinaechinocymus mai in Taiwan 

(Chen and Chen 1993). Clypeaster ravenelii was reported to spawn late in winter in 

the Gulf of Mexico (Vernon et al. 1993). The two annual reproductive cycles of 

Peronella lesueuri observed in this study exhibited seasonal periodicity, with 

vitellogenesis taking place in spring, spawning in summer, spent gonads observed in 

autumn and recovering gonads throughout the winter. 

The seasonal periodicity of reproductive cycles in echinoids is controlled by 

seasonally varying exogenous factors and allows maximum fertilization success 

and/or ensures a high offspring survival rate in response to seasonal environmental 

changes (Mercier and Hamel 2009). In order to determine the individual effects of 

seasonally fluctuating factors, these factors have to be isolated and their effects on 

reproductive periodicities analysed independently (Morin et al. 1985). However, 

such studies are complex and cannot be carried out in the field. As such, the 

relationship between reproductive cycles and concurrently varying exogenous 

factors that come from field studies like this one remain speculative (Chia and 

Walker 1991).  
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Numerous studies have indicated that photoperiod and temperature were likely to 

be the exogenous factors that exerted most control over the echinoid reproductive 

cycle (Mercier and Hamel 2009). Oocyte proportions of both reproductive cycles in 

this study showed similar correlations with sea surface temperatures (SST) and 

mean bright sunshine hours (BSH). It was likely that the annual changes in SST 

and/or BSH had effects on the reproductive cycle of Peronella lesueuri, given the 

similar periodicity of proportion changes in all oocyte stages between both 

reproductive cycles.  

Some studies have identified species-specific critical temperatures or photoperiods 

that could initiate or inhibit the various stages of gametogenesis in echinoids. 

Others have suggested that changes in temperature or photoperiod were the 

control. Vernon (1993) suggested that daylength may serve as an exogenous cue for 

the gametogenesis and spawning in sand dollar Clypeaster ravenelii  in the Gulf of 

Mexico. Studies in Japan showed that temperature lows are often associated with 

the initiation of gametogenesis in the sea urchin Hemicentrotus pulcherrimus (Ito et 

al. 1989; Sakairi et al. 1989; Agatsuma and Nakata 2004), while in the North Sea 

gametogenesis in the spatangoid echinoid Echinocardium cordatum was initiated 

after minimum temperatures were reached (Nunes and Jangoux 2004). These 

authors suggested that the increase in temperature that followed was the initiating 

factor. Although it is unclear what the initiating factor for gametogenesis in 

Peronella lesueuri is, stage 1 oocyte proportions began to decline just as SSTs were 

increasing from winter minimums. It is possible that, like E. cordatum, SST increase 

following minimum temperatures is the trigger for gametogenesis in P. lesueuri.  
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In female sand dollars mature oocytes (stage 3 oocyte and ova) did not appear until 

November in both years, despite the presence of stage 2 oocytes in the gonads in 

the three months from onset of gametogenesis in August. This suggested that the 

development of mature oocytes was not just a consequence of gametogenesis, but 

possibly controlled by an external trigger.  In November of both years, SST was 

approximately 21°C and BSH was approximately 10.5. It is possible that one or both 

factors were proximate cues for gonad maturation.   

Other factors that have been found to affect echinoid reproduction include the 

timing, quantity and quality of food resources (Gonor 1973; Meidel and Scheibling 

1998; Kelly 2000), lunar rhythms (Kennedy and Pearse 1975; Iliffe and Pearse 1982; 

Lessios 1991; Coppard and Campbell 2005; Muthiga 2005) and habitat conditions 

(Tavares and Borzone 2006). Further experiments need to be carried out in 

controlled conditions within aquaria in order to identify the factors that affect 

Peronella lesueuri reproduction and determine the role they play.  
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3.5 Conclusion 

Prior to this study, there was no information in the literature on the reproductive 

biology of the sand dollar Peronella lesueuri. This study has provided basic 

information on P. lesueuri reproduction biology, determined the seasonality and 

periodicity of reproduction and provided the first histological description of the 

reproductive cycle of this species.  

Peronella lesueuri is not sexually dimorphic and the population in Cockburn Sound 

has a sex ratio of 1:1. Juveniles attain sexual maturity between 1.5 and 2 years of 

age. Based on their histology, the male and female gonads of P. lesueuri follow a 

sequence of morphologically different stages, similar to those documented in the 

reproductive cycles of other echinoids (Chatlynne 1969; Gonor 1973; Byrne 1990; 

Nunes and Jangoux 2004). Growth, mature, partially spawned, spent and recovery 

stages was observed in both sexes and the stages were highly synchronous 

between sexes. 

Giese and Pearse (1974) concluded that for populations with highly seasonal 

rhythms, it was highly likely that exogenous cues or regulators played a role. In 

Cockburn Sound, Peronella lesueuri has an annual reproductive cycle with strong 

seasonal correlations. Vitellogenesis occurred in spring, spawning took place over 

summer and gonads recovered over winter. As this was a field study, it was not 

possible to fully assess the effects of exogenous factors on the P. lesueuri 

reproductive cycle. Further research needs to be conducted in controlled conditions 

to identify the regulatory factors and to determine their effect on the reproductive 

cycle of P. lesueuri. 
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Chapter 4 Life history and Growth of Peronella lesueuri 

4.1 Introduction 

Research into the growth and longevity of echinoids has revealed that they possess 

a wide range of longevities. Maximum age estimates of between four and 75 years 

have been suggested for a variety of sea urchin species,  with one estimate for the 

red sea urchin, Strongylocentrotus franciscanus, suggesting that they can live for 

more than 100 years (Ebert and Southon 2003). Longevity estimates for sand 

dollars suggest that in general, they are shorter. Several species of sand dollars, 

including Encope grandis and Dendraster excentricus, have been found to acquire 

their maximum sizes at 5-10 years (Ebert and Dexter 1975), which implies that 

possible maximum age was higher. The sand dollar Encope stokesi, however, has an 

estimated short life expectancy of less than one year (Dexter 1977).  

Growth and mortality parameters can substantially affect the dynamics of a 

population. Many species of sea urchins and sand dollars, including Dendraster 

excentricus (Cameron and Rumrill 1982), Mellita quinquiesperforata (Lane and 

Lawrence 1980) Echinarachnius parma (Steimle 1990; Cabanac and Himmelman 

1996) and Arachnoides placenta (Haycock 2004),  recruit in cyclic pulses, following 

on from a seasonal reproductive cycle (Ebert et al. 1993). However the sand dollar 

Encope stokesi was found to recruit year round, although there were periods of 

peak recruitment (Dexter 1977).  

Although most echinoids have annual reproductive cycles, the strength of 

recruitment varies from year to year. In the Gulf of St. Lawrence, Canada, the 

Echinarachnius parma population showed no recruitment between 1991 and 1993 
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(Cabanac and Himmelman 1996) despite having an annual reproductive cycle 

(Cocanour and Allen 1967). Annual recruitment strength can be affected by high 

pre- or post-settlement mortality of larvae and early recruits. Both mortality rates 

could be affected by a wide range of factors including current variations (Cameron 

and Rumrill 1982; Ebert et al. 1994), temperature (Hernández et al. 2010), 

predation (Highsmith 1982) and habitat differences (Tomas et al. 2004). Substrate 

conditioning by adults of the species (Pearce and Scheibling 1990) could affect 

settlement rates as well as post-settlement survival of echinoid larvae (Pearce and 

Scheibling 1990). 

High rates of mortality have been recorded in the newly settled juveniles of several 

echinoid species. In Tampa bay, Florida, a cohort of recruits from a population of 

Mellita quinquiesperforata had a mortality rate of 95% in the first year post 

settlement (Lane and Lawrence 1980), while in Spain, juveniles of the sea urchin 

Paracentrotus lividus had a 90% mortality rate in the same period (López et al. 

1998). 

Growth in echinoids generally follows a sigmoidal growth curve, with the slowing or 

cessation of growth upon attaining their asymptotic size (Birkeland and Chia 1971; 

Steimle 1990; Cabanac and Himmelman 1996; Kang et al. 2007). For a variety of 

sand dollars the growth rate constant (K) was found to be between 0.29 and 0.59 

(Ebert and Dexter 1975).   A suite of environment factors, such a seasonal 

temperature changes and weather events (Ebert 1968), food availability (Ebert 

1968; Pearse and Pearse 1975; Ebert 1988), harsh site conditions (Birkeland and 

Chia 1971; Niesen 1977) and differences in substrate (Birkeland and Chia 1971), can 
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have an effect on seasonal growth.  Seasonal rates of “body growth”, attributed 

mainly to the reproductive cycle, were observed in the sand dollar Mellita 

quinquiesperforata, with the highest growth rate recorded in the summer and 

negative growth observed in some large individuals in the autumn (Lane and 

Lawrence 1980). Ebert (1967) also observed negative growth in large individuals of 

the purple sea urchin Strongylocentrotus purpuratus, which was attributed to the 

reabsorption of calcite from the test in response to environmental fluctuation.  

As many echinoids attain their maximum size quickly, growth in echinoids is difficult 

to measure, especially in large individuals. Alternating light and dark zones, made 

up of calcium carbonate of different stereom microstructure, have long been 

observed in the spines, test plates and jaws of the echinoid skeleton (Pearse and 

Pearse 1975). These zones indicate changes in rates of growth (Pearse and Pearse 

1975). In field conditions, these zones most likely are formed due to seasonal 

changes in echinoid growth rates and thus, have commonly been used as a method 

to estimate age and rates of growth of echinoids (Dix 1972; Crapp and Willis 1975; 

Gage 1991; Lumingas and Guillou 1994; Kang et al. 2007). Many echinoid studies 

have used growth zones as annual markers, with little verification of their annual 

nature (Lumingas and Guillou 1994; Cabanac and Himmelman 1996; Kang et al. 

2007). Tetracycline is a skeletal growth marker and is commonly used to calibrate 

growth bands in the echinoid jaw and test (Taki 1972a; Taki 1972b; Ebert 1988; 

Gage 1992a; Gage 1992b; Zhang et al. 2008; Ellers and Johnson 2009). Using this 

method, Gage (1991; 1992b) concluded that growth bands were formed annually in 

echinoids in the British Isles.  
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Prior to this study, no growth, recruitment and juvenile mortality rates of Peronella 

lesueuri have been published. In this chapter, juvenile recruitment and growth were 

determined through size frequency distribution and in addition, growth rings on the 

test plates of large individuals were used to determine the life expectancy and 

growth rate of P. lesueuri in Cockburn Sound. 
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4.2 Sampling regime and laboratory procedures 

4.2.1 Size frequency  

Peronella lesueuri were sampled monthly from Jervoise Bay in Cockburn Sound for 

size frequency analysis from May 2009 to April 2011. Sampling was carried out by 

towing an epibenthic sled (Figure 4.1) behind a vessel. The mouth dimensions of 

the sled were 85 cm by 45 cm with a 5 cm cutting depth and the sled was 

surrounded with 1 cm mesh. Each tow was 200 m in length and tows were repeated 

until at least 100 sand dollars were collected.  

Figure 4.1 The epibenthic sled and its contents after a 200 m tow. 

Sand dollars were separated from the collected contents and length of all 

individuals was measured to the nearest millimetre. Maximum length was 

measured along the flat, oral surface of the animal, between the margins of the test 

in a line through the peristome (mouth) and periproct (anus). The measurements 

were then used to construct size frequency distributions for each sampling date. 
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Juveniles were considered to have recruited into the population when they were 

present in the dredge samples. Some individuals were badly broken during the 

collection process and length measurements were not possible. These individuals 

were excluded from the size frequency histograms.  

4.2.2 Growth zones 

Growth in echinoids is achieved through individual size increases of the small 

interlocking test plates that make up the complete echinoid test (Pearse and Pearse 

1975).  There are several variations on the age determination method, but upon 

removal of organic material from and charring the test plates, alternating “light” 

and “dark” zones become visible on the test plates (Figure 4.2). These zones are 

caused by the differences in the stereom microstructure varying the light 

transmission and reflection properties. Under reflected light, the denser 

microstructure of the stereom causes the “light” zone to reflect more light, hence 

appearing lighter in shade (Pearse and Pearse 1975). Conversely, the microstructure 

construct of “dark” zones in the test plate is less dense, allowing more light 

transmission through the plate, causing the area to appear darker in shade (Pearse 

and Pearse 1975). The growth bands in temperate zone echinoids are a result of a 

slowing or cessation of somatic growth due to low temperatures and limited food 

availability in the winter. Hence the best interpretation of the alternate growth 

banding is that the “light” zone is formed by the faster rate of plate growth in the 

summer while the “dark” zone corresponds to a slower rate of growth in the winter 

(Pearse and Pearse 1975). For the purposes of this study, one corresponding pair of 

“light” and dark” zones was known as a growth zone. 



117 
 

 

Figure 4.2 Light and dark zones visible on a sand dollar test plate embedded within 

resin. 

 

Peronella lesueuri used in this study were collected from Jervoise Bank in August 

2011 by divers using SCUBA. While this method of collection was biased against 

small individuals, which were not easily visible, sand dollars required for this part of 

the study needed to be of a medium to large size (110 -180 mm).   

Sea urchins and sand dollars add coronal test plates to the interambulacrum 

throughout their life (Pearse and Pearse 1975). As a consequence, test plates may 

be of different ages and only the oral test plates are as old as the animal (Pearse 

and Pearse 1975).  In view of this, the interambulacral test plates that formed the 

peristome were selected to be used in this study because they were large and the 

growth zones were highly visible. A preliminary study showed the following method 
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to be the most effective way of revealing the contrasting “light” and “dark” growth 

zones present in the P. lesueuri test plates. Sand dollar tests were cleared of organic 

material in 50% commercial bleach. The cleaned tests were then rinsed and air-

dried. A section of test adjacent to the peristome was cut from each sand dollar 

using a handheld rotating saw. Each section consisted of 4-8 test plates, allowing 

for comparisons of number of growth zones between plates. The sections were 

charred over a Bunsen flame. When cooled, the sections were embedded in clear 

epoxy resin. Test plates from 116 individuals were prepared for this study and sizes 

ranged from 62 mm to 165 mm. However, not all test plates processed showed 

growth zones distinct enough for analysis and eventually only 81 test plates from 

individuals sized 105 mm to 165 mm were used.  

During counts and photographing, the resin blocks containing the test plates were 

placed on a dark surface. This increased the contrast of the light and dark zones for 

ease of counting. Only test plates which presented clear growth zones were taken 

into account. While it was unclear if the lack of growth zones was due to errors in 

the preparation process, it was interesting to note that three of the individuals with 

no visible growth zones were less than 100 mm. 

4.2.3 Growth zone counts 

The test plates embedded in resin were placed on a black background and the 

visible growth zones were counted for each test plate twice. Each pair of “light” and 

“dark” zones were counted as one growth zone and assumed to reflect annual 

growth. To minimise possible preparation error, only test plates with one or more 

growth zones were used. The growth zones were counted twice on separate 
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occasions. Counts differed on three samples and in each case counts only differed 

by one growth zone. In the cases where counts differed, a third count was 

performed to resolve the discrepancies.  

In order to eliminate reader bias, a subsample of 26 test plates was counted by a 

second reader (Peter Coulson) with experience in reading fish otolith growth zones. 

The second reader’s counts were then compared with those recorded by the author. 

The level of agreement between the two readers was high. There was a single 

discrepancy in growth zone counts and it differed by one zone.  In this case, both 

readers agreed to use the author’s count as the second reader was reading sand 

dollar growth zones for the first time.  

4.2.4 Width of growth zones 

Images of test plates with clear growth zones in resin were taken using a SLR 

camera and used for measuring the widths of the growth zones. The zone widths on 

test plates were measured in 33 individuals. Each growth zone was measured to the 

nearest millimetre. The plates used to measure the growth zone widths were a 

subsample of the plates used in the growth zone counts.  

The initial growth zone was measured from the edge of the test plate to the edge of 

the first “dark” zone. Generally, the initial growth zone at the oral end of the plate 

is the widest, with subsequent zones decreasing in width.  

4.2.5 Trial validation of growth zones using tetracycline 

In a preliminary trial, 25 sand dollars were then kept in two 1x1 metre holding tanks 

in a temperature controlled room at 20°C. Filtered seawater was used to supply the 

tanks. Surface sediment was obtained from the shallows at Point Walter to cover 
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the bottom of the holding tanks to a depth of at least 5 cm. Both the water and 

sediment were partially replaced weekly for the duration of the trial to maintain 

clean water conditions and a food supply for the sand dollars. No additional food 

was provided to the sand dollars to avoid fouling of the water in the tanks. After 

two weeks, all the sand dollars were still alive and conditions in the holding tank 

were deemed suitable for maintaining the selected number of animals. Twenty 

large sand dollars were selected and injected with tetracycline (20 mg mL-1) at a 

dose rate of 0.1 mL per 10 g of body weight (Gage 1992a). The five remaining sand 

dollars acted as control animals. The tetracycline-tagged sand dollars were then 

returned to the holding tanks. 

After two weeks, eight tagged sand dollars and one control sand dollar were 

removed from the aquaria and their jaw segments and test plates viewed under UV 

light to locate the fluorescent tetracycline tag. After approximately five weeks, a 

further three tagged animals and one control animal were removed for analysis of 

jaw segments and test plates. After seven weeks, the jaw segments and test plates 

of the nine remaining tagged sand dollars and three controls were analysed. 

In an attempt to tag juvenile sand dollars with tetracycline, 25 juvenile sand dollars 

were immersed in a solution of 2 g of tetracycline per 100 mL of seawater for five 

minutes as they were too small to inject. The juveniles were then returned to the 

holding tanks but none survived. 

4.2.6 Observation of growth over time 

In order to try to ascertain the growth rate of adult Peronella lesueuri in the natural 

environment, adult sand dollars were enclosed in large open-top holding cages 
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constructed on the sea floor at Jervoise Bay and observed over approximately four 

months. The four circular cages were approximately six metres in diameter 

(circumference = 20 m, area =  31 m2) and constructed with wire mesh. On 20 

September 2010, 240 sand dollars between 88 and 164 mm were measured (the 

measurements were taken the same way as in section 4.2.1.1). Their tests were 

numbered with pencil and they were evenly distributed between the holding cages.  

When divers returned on 4 November 2010, the cages were found to have been 

destroyed due to rough weather and sea conditions. Many of the sand dollars were 

free moving around the study area. However, divers were able to recover and 

measure 142 of the numbered sand dollars. Divers returned to the site on 3 

February 2011 and measured 127 sand dollars. 

4.2.7 Statistical Methods for Size Frequency and Growth Curve Analysis 

The size frequency distributions indicated that Peronella lesueuri had a life 

expectancy longer than the study period making it impossible to follow a cohort 

from settlement through to senescence. P. lesueuri also appeared to achieve adult 

size quickly and form a stable size class of large individuals which comprised of 

several year classes, which meant that large sand dollars could not be aged by 

tracking a cohort through size frequency distributions. Conversely, growth zone 

counts could not be performed on juvenile test plates as they were too fragile to 

withstand the processing require to reveal the growth zones within the test plates. 

The size frequency distributions at the beginning of the sampling period consisted 

of two groups of animals; a group of small individuals and a group of large 

individuals. However, from June 2010 onwards the size frequency distributions 
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appeared to contain three groups, with the appearance of intermediate-sized 

animals. The numbers of groups in the distribution, however, were not distinct due 

to the small number of sand dollars of intermediate size. The group of 

intermediate-sized animals also overlapped with the group of smaller animals. In 

order to determine the likely number of groups present within each size frequency 

distribution, the data was analysed using mixture analysis in PAST version 2.12 

(Paleontological Statistics). To determine the best fit, the size frequency data for 

each month in question was tested against models consisting of two or three 

groups. The fit of the models to the data was measured by the Akaike Information 

Criterion (AIC) value. The AIC value provides a mean of model selection as it 

measures the relative goodness of fit of a statistical model. The model which 

produced the smallest AIC value was deemed the best fit.   

Density data obtained from the sled sampling was further used to corroborate the 

recruitment period indicated by the size frequency data and to determine 

recruitment strength and juvenile mortality. 

An arbitrary birth date of 1 March was assigned to all the juveniles and pooled 

length-at-age data for the 2009 and 2010 cohort of recruits was obtained from the 

size frequency distributions. This was combined with length-at-age data for large 

“adult” sand dollars obtained from growth zone counts in order to construct a 

scatter plot to fit a growth curve for Peronella lesueuri. 

In order to find the best descriptor of growth for Peronella lesueuri, the resulting 

scatter plot was tested against four commonly used growth functions: von 
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Bertalanffy, Brody-Bertalanffy, Gompertz and Richards’ growth curves using the 

nonlinear curve fitting function in JMP (SAS Institute). 
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4.3 Results 

4.3.1 Size frequency distribution 

Size frequency distributions were constructed for each sampling date. However, for 

ease of interpretation, histograms which best depicted the trends observed were 

used (Figure 4.3). The largest individual encountered during the study measured 

182 mm. This suggests that this is the maximum size Peronella lesueuri can attain in 

Cockburn Sound. The mesh size of the dredge used to obtain the sand dollars was 

10 mm square. The amount of sediment collected during the dredging process 

regularly clogged the mesh, allowing the dredge to retain contents much less than 

10 mm in size. The three smallest individuals recorded were 8 mm in length. Two of 

the 8 mm individuals were encountered in August 2009 and one in July 2010. Both 

instances were early in the recruitment period and the scarcity of individuals 8 mm 

in size even at the commencement of recruitment suggest that at that early life 

stage growth is relatively rapid. 

The monthly size distributions obtained throughout the study period showed the 

presence of two distinct groups of sand dollars from May 2009 (Figure 4.3) before 

increasing to three groups in June 2010. Akaike Information Criterion (AIC) values 

indicated that all distributions between June 2010 and April 2011 were likely to 

contain three groups of sand dollars of different size (Table 4.1).  

Two of these groups show size progression over time and are likely to be made up 

of year classes. A single group encompassing the larger “adult” size classes (120-180 

mm) appear to be stable in time and may be made up of a single year class, 

although it is more likely to consist of several year classes of individuals that had 
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attained or were close to maximum size. Sand dollars of intermediate size were 

scarce and not observed in the first year of study. 

Figure 4.3 Peronella lesueuri size frequency distributions from Jervoise Bay in 

Cockburn Sound from May 2009 to April 2011. Group 1 consists of the stable adult 

population, likely to contain individuals from several cohorts. Cohorts 2009 and 
2010 represent the juveniles that recruited into the population in 2009 and 2010.  
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Table 4.1 Akaike Information Criterion (AIC) values indicating the number of groups 

best fit to the data from June 2010 – April 2011. The smaller AIC value indicates a 

better fit. 

Month Number of Groups Akaike IC value Best fit number of 

groups 

June 2010 

2 621.7 

3 3 589.7 

July 2010 

2 946.2 

3 3 920.6 

August 2010 

2 696.8 

3 3 669.9 

September 2010 

2 646.8 

3 3 603.7 

October 2010 

2 745.4 

3 3 693.5 

November 2010 

2 1017 

3 3 949 

December 2010 

2 764.2 

3 3 724.6 

January 2011 

2 880.5 

3 3 872.4 

February 2011 

2 759.7 

3 3 751.4 

March 2011 

2 573.6 

3 3 568.7 

April 2011 

2 249.2 

3 3 246 
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4.3.2 Timing of recruitment  

At the beginning of the study in May 2009, two groups were seen in the size 

frequency distribution (Figure 4.3). The first and largest group consisted of 

individuals in the 120-180 mm size range. As this group of animals was likely to be 

made up of several cohorts of individuals, this will be referred to as Group 1. A 

second group was made up of nine individuals in the size class 10-20 mm. In August 

2009, there was a large increase in the number of individuals in the second group. 

The second group was interpreted as a newly recruited cohort that settled before 

May 2009 (cohort 2009) (Figure 4.3). Between November 2009 and January 2010, 

the number of individuals from cohort 2009 decreased and remained low (<10 

individuals) as the cohort increased in size throughout 2010 and 2011.  

In June 2010, what appeared to be a third group was detected in the size frequency 

distribution (Table 4.3). This third group became more visually apparent in July 

2010 (Figure 4.3) when 6 individuals were recorded in the 0-10 mm size class and 

17 individuals were encountered in the 10-20 mm size class. This group of 

individuals continued to increase in size up to the end of sampling in April 2011 and 

was interpreted as a new cohort (cohort 2010) of individuals that settled after May 

2010. The number of individuals encountered from cohort 2010 was lower than 

that of cohort 2009 (Figure 4.3).  

4.3.3 Recruitment strength 

There was marked variability in the density and juvenile percentage of two cohorts 

of recruits (2009 and 2010) during the study period (Figure 4.4). New cohorts were 

first detected in winter (May-July) of each year and continued to recruit into the 
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population in subsequent months. This was reflected by the spike in densities of 

juvenile sand dollars and percentage of juveniles within samples of both cohorts 

between July and January in 2009 and August and January in 2010.  

Between July and December 2009, density of cohort 2009 increased rapidly from 

0.02 to 0.42 individuals m-2 (Figure 4.4A). Within the same period, the percentage 

of juveniles went from 2.6% of the total number of individuals sampled for the 

month to peak at 63.3% in November 2009 (Figure 4.4B). Between June and 

November 2010, the percentage of juveniles in the sample increased six-fold from 

5.4% to 35.0%. Density increased from 0.007 to 0.07 individuals m-2. Based on the 

percentages of juveniles encountered in samples at the peak of the recruitment 

period, the recruitment strength of cohort 2009 was approximately twice that of 

cohort 2010. This indicated that Peronella lesueuri juveniles recruited between 

winter and summer and recruitment strength varied annually.  The variability of 

annual recruitment is reinforced by the absence of a 2008 cohort. 
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Figure 4.4 Changes in A) juvenile cohort density and B) juvenile cohort percentage 
over the sampling period. 

  

A) 

B) 



130 
 

 

4.3.4 Growth rates of recruited cohorts 

The mean length of cohort 2009 increased from 17.78 mm (X ± SD = 17.78 ± 1.09, n 

= 9) in May 2009 to 39.17 mm (X ± SD = 39.17 ± 12.94, n = 23) in April 2010 (Figure 

4.5). This translated into a mean growth rate of 21.39 mm yr-1 for cohort 2009 in 

the first year. 

The size class of cohort 2009 continued to increase, attaining a mean length of 

48.50 mm (X ± SD = 48.50 ± 16.89, n = 12) in May 2010 and 114.75 mm (X ± SD = 

114.75 ± 6.70, n = 2) in March 2011 (Figure 4.5). There appeared to be a decrease in 

mean length of cohort 2009 between March and April 2011. This was due to a small 

sample size (2 individuals) in April 2011. Because of this, the change in mean length 

of cohort 2009 up to March 2011 was used to derive the mean growth rate of 71.45 

mm yr-1 in the second year. In September 2010, at approximately 1.5 years of age, 

the growth rate of cohort 2009 appeared to increase rapidly (Figure 4.5). Between 

September 2010 and March 2011, juveniles from cohort 2009 grew at a rapid rate 

of 9.79 mm month-1 or 117.5 mm yr-1. 

The mean length of cohort 2010 increased from 14 mm (X ± SD = 14 ± 0.37, n = 6) in 

June 2010 to 45 mm (X ± SD = 45 ± 3.94, n = 4) in April 2011 (Figure 4.5), which 

translated into an approximate growth rate of 37.2 mm yr-1 for cohort 2010 in the 

first year. 
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Figure 4.5 Increase in mean length ± SD of 2009 and 2010 cohorts between May 
2009 and April 2011. 

 

4.3.5 Mortality of recruited cohorts 

Densities of juveniles and percentages of juveniles within samples recorded sharp 

decreases over the first summer (November to January period) for both cohorts 

(Figure 4.4). The low numbers of intermediate-sized sand dollars suggests the likely 

cause of this decrease is high juvenile mortality. 

Between December 2009 and January 2010, juvenile density from cohort 2009 

decreased sharply from 0.42 to 0.05 individuals m-2 (Figure 4.4A), with a 

corresponding decrease in percentage of juveniles in the dredge sample from 59.0% 

to 15.6% (Figure 4.4B), equivalent to a mortality rate of 73.6% month-1. In the first 

year (May 2009 to May 2010), juvenile mortality was 88%. Second year (May 2010 
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to April 2011) juvenile mortality of cohort 2009 was approximately 48%. By the 

time the proportion of juveniles in the samples stabilised in September 2010, 

mortality of cohort 2009 was approximately 94%.  Between September 2010 and 

April 2011, the percentage of juveniles for cohort 2009 fluctuated between 2.26 

and 4.29% and mortality appeared to be extremely low. However, due to the small 

numbers of sand dollars of intermediate size encountered in each sample (between 

two and five individuals), the percentages of juveniles in cohort 2009 were unlikely 

to give a reliable mortality rate for the second year.  

The 2010 cohort of juveniles showed a similar decrease in density between 

November and December 2010 from 0.07 to 0.03 individuals m-2 (Figure 4.4A). 

Percentage of juveniles also decreased between November 2010 and January 2011 

from 35.0% to 10.8%, equivalent to a mortality rate of 34.6% month-1(Figure 4.4B).  

By the end of the study period in April 2011, the mortality of cohort 2010 was 78%. 

The trend of the graph indicated that percentages and densities of juveniles were 

unlikely to increase if the study had been continued (Figure 4.4A and B). 

The density and percentage data from juveniles of cohort 2009 and 2010 indicated 

an annual mortality of Peronella lesueuri recruits of up to 94%. The highest 

mortality rates were observed over a short period between November and January 

each year. For cohort 2009, the mortality rate then gradually decreased after 

January 2010 before the population stabilised in September 2010, after which 

mortality was low. The population of cohort 2010 had yet to stabilise at the end of 

the study period.  
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4.3.6 Verification of growth and growth zones 

4.3.6.1 Tetracycline tagged sand dollars 

The use of tetracycline to verify growth zones in Peronella lesueuri jaw segments 

and test plates was tested. All the juveniles immersed in tetracycline for five 

minutes died within two days of immersion. 

Tetracycline tags did not show up in the jaw segments and test plates of the 20 

tagged sand dollars, despite individuals being sampled at 2 weeks, 4 weeks, 6 weeks 

and 7.5 weeks. Ellers and Johnson (2009) reported that tetracycline tags were 

visible in jaw segments of the sea urchin Strongylocentrotus droebachiensis six to 

13 days after tagging. Given that the tetracycline tags were not visible after several 

weeks, it was concluded that tetracycline tagging was not a suitable method of 

verifying growth zones in Peronella lesueuri. 

4.3.6.2 Sand dollar growth  

At the start of the observational period in September 2010, the mean length of the 

240 sand dollars collected for the holding cages was 138.82 ± 10.45 mm (Table 4.2). 

Over the next 5 months, the sand dollars in the holding cages did not appear to 

grow in length. When re-measured in November 2010, the mean length was 139.03 

± 9.20 mm and in February 2011, the mean length was 140.33 ± 813 mm. 

Comparing the means using Tukey-Kramer HSD (p<0.01) showed no significant 

differences between all mean pairs, indicating that there was no measureable 

increase in length in adult sand dollars over time.  
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Table 4.2 Mean lengths of sand dollars measured on 20 September 2010, 30 

November 2010 and 3 February 2011. 

Date N Mean length ± standard deviation 

20 Sep 2010 240 138.82 ± 10.45 

30 Nov 2010 147 139.03 ± 9.20 

3 February 2011 124 140.33 ± 8.13 

 

4.3.7 Growth Zones 

The initial growth in all sand dollar plates was represented by an indistinct grey 

zone at the oral edge of the test plate (Figure 4.6A). This initial zone was likely to be 

the slow winter growth of the newly recruited juveniles. This is supported by the 

size frequency histograms (Figure 4.3) that show initial recruitment of juveniles (≥8 

mm) occurred in winter. Assuming a birth date of 1 March, which is the middle of 

the spawning season (Chapter 3), juvenile sand dollars (≥10 mm) are approximately 

6 months old before the first light zone starts to form in spring (September).   

Many test plates had distinct light zone between the last counted growth zone and 

the end of the test plate with no distinct formation of the subsequent dark zone 

(Figure 4.6B). As most of the tests examined for growth zones were from sand 

dollars collected in winter (August 2011), this light zone represented the growth 

from the previous spring and summer of at least 6 months.  
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Figure 4.6 Sand dollar test plate. Black dots indicate each dark zone and arrows 

indicate: A) indistinct grey area of initial growth; and B) light area of growth after 
last counted ring. 

 

Age of each sand dollar was therefore estimated as: 

BxAyearsAge ++=)(  

Where  

)( yearsAge = estimated age of sand dollar 

A  = time taken to form initial grey zone (year); 

x = number of growth zones; and 

B = time taken to form the last light zone to the edge of the test plate (year). 

In this case, both A and B were 0.5 years. Therefore; 

1)( += xyearsAge  
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A t-test with unequal variances was conducted in Microsoft Excel to determine if 

the mean length of sand dollars aged using zone counts was significantly different 

from the mean length of sand dollars of the same age obtained from size frequency 

data. The mean lengths of sand dollars at two years of age obtained using both 

methods were not significantly different (t test, t10 = 2.2, p = 0.06). This supports 

the hypothesis that the growth zones observed in the Peronella lesueuri test plates 

are annual and that large P. lesueuri individuals can be aged reliably up to 7 years 

using growth zone counts. Animals older than 7 years that have stopped growing, 

however, may not be able be aged with this method.                                                                                                                             

4.3.8 Growth zone width in Peronella lesueuri adults 

Growth zones found within the oral test plates show general decreases in width 

with each subsequent zone toward the edge of the plate. The initial growth zone 

was measured from the edge of the test plate to the edge of the first “dark” zone. It 

consisted of an indistinct grey “initial” zone prior to a more distinct pair of light and 

dark zones. This “initial” zone was interpreted as the initial winter growth of newly 

recruited juveniles. Due to this “initial” zone, the first growth zone was the widest; 

however, it was most likely to have formed over 1.5 years.  

On the oral test plate used for the measurement, the growth zone formation 

decreased from an initial width of 7.1 mm yr-1 to 1.3 mm yr-1 by the fifth zone 

(approximately age 6 years) (Figure 4.7). Only one individual in the sample, 

however, was recorded to have six growth zones.  The decrease in the width of 

subsequent growth zones suggested a decrease in the rate of growth of the sand 

dollar as it ages. The first growth zone was the largest in all test plates examined 
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and was deduced to have formed when the sand dollar was approximately 1.5 years 

of age.  

 

Figure 4.7 Width of growth zone formation per annum in the test plates of P. 

lesueuri. 

 

4.3.9 Growth Curve 

Both the Gompertz and the Richards’ growth curves provided close fits. The 

Richards’ (1987) growth curve, however, provided a slightly better fit to the data 

and was used to describe the relationship between test length and age (Table 4.3). 

Cabanac and Himmelman (1996) found that the Richard’s growth curve was ideal 

for describing the growth of sand dollar Echinarachnius parma in the Gulf of St 

Lawrence, Canada. 
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Table 4.3 The sum of squares and R2 values of the Gompertz and Richards’ growth 

curves when fitted to length-at-age data for Peronella lesueuri. The higher R2 value 

indicates that the Richards’ growth curve provided a slightly better fit to the data. 

Growth Curve Sum of Squares     R2 value 

         Gompertz             103471 0.9178 

         Richards’            84349 0.9324 

 

The relationship of test diameter to age of P. lesueuri was best described by the 

Richards’ (1987) Growth Function (Figure 4.8). The curve indicates that the rate of 

growth increases to a maximum of approximately 60 mm yr-1 at approximately two 

years of age. This is close to the 71.45 mm yr-1 juvenile growth observed in cohort 

2009 in the second year (Section 4.3.4). The data from the size frequency 

distribution also shows that juveniles rapidly increase in size in the first two years of 

life and appear to join the “adult” size population towards the end of the second 

year of life (Figure 4.3). The graph shows the growth rate slowing rapidly at 

approximately 2.5 years of age (Figure 4.8). The Richards’ growth curve predicts 

that the growth rate for sand dollars older than 2.5 years was almost zero.  

While the growth rate appears to have stopped at 2.5 years, individuals with 

between two and four growth zones were common. This suggests that growth 

zones continue to be laid down despite the lack of major increase in test length of 

the sand dollars. Although subsequent growth zones decreased in width, the final 

zones in all test plates were wide enough to be distinct (Figure 4.7) when viewed 

under the microscope. There was no evidence of growth rings becoming 

indistinguishable or getting too close together. The growth rings can thus be used 

to accurately age the sand dollar population in Cockburn Sound. 
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Figure 4.8 Growth curve for Peronella lesueuri based on the increase in test length 

of juveniles and growth ring counts from test plates for adults. The black dots 
represent age-at-length data obtained from size frequency distributions of 2009 

and 2010 cohorts of recruits and the blue crosses represent age-at-length data 

obtained from growth zone counts. 

 

Individuals with up to four growth zones, aged at five years, were commonly 

observed, however, one individual had six growth zones, putting its age at 7 years.   

The close-to-zero growth rate of adult sand dollars is consistent with the 

observations of no significant growth in adult sand dollars over a period of five 

months (Section 4.3.6.2). 
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4.4 Discussion 

Peronella lesueuri is common on the shallow, subtidal shelves of south-western 

Australia. The two-year study of a population in Jervoise Bay in Cockburn Sound 

revealed distinct trends and provides the first report of Peronella lesueuri life 

history and growth. Size frequency histograms revealed a predominantly bimodal 

structure (with intermediate-sized individuals less common) and annual 

recruitment. Juvenile densities and juvenile percentages in the monthly samples 

over time revealed high juvenile mortality in the first year. Growth zone counts 

from test plates allowed age estimates of individuals from the “standing” adult 

sand dollar population and combined with age-at-length data from juveniles 

measured for size frequency histograms, a growth curve was estimated for 

Peronella lesueuri. 

4.4.1 Recruitment 

Recruitment in most marine invertebrates is pulsed rather than continuous (Ebert 

et al. 1993). Pulsed recruitment has been observed in a range of echinoid species 

including Strongylocentrotus franciscanus and S. purpuratus (Ebert et al. 1993; 

Ebert et al. 1994), Lytechinus variegatus (Beddingfield and McClintock 2000), and 

sand dollars Dendraster excentricus (Cameron and Rumrill 1982), Mellita 

quinquiesperforata (Lane and Lawrence 1980), Echinarachnius parma (Steimle 

1990; Cabanac and Himmelman 1996) and Arachnoides placenta (Haycock 2004), in 

keeping with cyclic reproduction. While annual recruitment is common, some 

species of echinoids showed two settlement peaks per year. For example, the sea 

urchin Paracentrotus lividus in the Mediterranean showed a main recruitment over 

spring-summer and a smaller recruitment event over autumn-winter (López et al. 
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1998; Tomas et al. 2004). Dexter (1977)  found that recruitment of the sand dollar 

Encope stokesi in Panama occurred year round, with peak recruitment between 

January and April. This year round recruitment was likely due to the short life 

expectancy of E. stokesi of less than one year (Dexter 1977). Size frequency 

histograms indicated that annual recruitment was evident in Peronella lesueuri with 

peak recruitment in spring. Given that P. lesueuri spawned annually from 

midsummer to early autumn, the appearance of newly-settled juveniles (0-10 mm) 

in May 2009 and July 2010 suggested that juveniles required approximately six 

months to settle and grow to a post-settlement size that enabled them to be 

collected by the sampling methods used.  

4.4.2 Recruitment variability 

Despite the potential for regular pulsed recruitment, recruitment variability is 

common in echinoids, with strong recruitment in some years and little or none in 

others. Cabanac and Himmelman (1996) noted little or no recruitment in the three 

years they studied the Echinarachnius parma population at Havre-Saint-Pierre in 

the Gulf of St. Lawrence, Canada. The spatangoid Echinocardium cordatum in the 

Dutch North Sea recruited in five out of the 10 years of observation and successful 

cohorts were only developed in three years (Beukema 1985). In Cockburn Sound, it 

appears that Peronella lesueuri recruitment is an annual event. However, the 

recruitment strength of cohort 2009 was twice that of cohort 2010, indicating large 

variability in annual recruitment.  

A variable recruitment could also cause the bimodal size frequency distributions 

encountered in the first year of the study. A hypothesis is that there was little or no 
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recruitment in 2008 which resulted in an absence of an intermediate-sized group in 

the size frequency distributions of 2009. Causes for this could be low settlement 

rates or high post-settlement mortality of juveniles. The sampling method used in 

this study only detected juveniles 8 mm and larger, hence the size frequency 

distributions were unreliable for assessing settlement. Although this study did not 

explore the factors affecting settlement of Peronella lesueuri, other studies have 

indicated that a range of factors including current variations (Cameron and Rumrill 

1982; Ebert et al. 1994), temperature (Hernández et al. 2010), presence of 

predators (Highsmith 1982), habitat differences (Tomas et al. 2004), as well as 

substrate conditioning by adults of the species (Pearce and Scheibling 1990), could 

affect settlement as well as post-settlement survival of echinoid larvae, 

consequently affecting the abundance of the adult population.  

4.4.3 Cohort mortality and growth 

An alternative hypothesis for the bimodal size frequency distributions was that 

settlement occurred but there was an extremely high juvenile mortality of cohort 

2008 prior to the commencement of the study. The decrease in juvenile 

percentages could also be due to migration of juveniles out of the study area (Ebert 

and Dexter 1975). Adult Peronella lesueuri had directionally random movement 

rates of between 2.0 and 5.3 cm hr-1 (Yeo et al. 2013); juveniles which were much 

smaller were likely to move slower. The mass migration of juveniles away from the 

study area was therefore unlikely. In addition, the scarcity of sand dollars of 

intermediate size indicated that a high mortality rate was a more reasonable 

explanation.  Data from the study showed extremely high juvenile mortality over 

one or two months in summer of up to 74%. The highest juvenile mortality occurred 
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between November and January for both cohorts of recruits, at a time when sea 

surface temperatures peaked in Cockburn Sound (Figure 4.8). Although speculative, 

the warmer temperatures observed during this period may have contributed to a 

higher incidence of juvenile deaths in the new recruits. 

In the first year of life, juvenile mortality for cohort 2009 was 88%. This decreased 

to approximately 48% mortality in the second year. A variety of echinoids have 

been observed to have high juvenile mortality in the first year with decreases in 

mortality rates in subsequent years. A mortality rate of 95% was observed in the 

first year for a cohort of recruits from a population of Mellita quinquiesperforata in 

Tampa Bay, Florida (Lane and Lawrence 1980). The mortality rate of the cohort 

subsequently decreased to 88% in the second year of life and 61% in the third year. 

In Spain, the sea urchin Paracentrotus lividus had a 90% mortality rate in the first 

year after settlement (López et al. 1998). The rate decreased to 60% in juveniles of 

12 mm to adults of reproductive size.  

 



144 
 

Figure 4.8 Mean sea surface temperatures in Cockburn Sound from March 2009 

until April 2011 (IMOS 2011). 

 

The decrease in the mortality rate as Peronella lesueuri juveniles grew larger 

indicated that there was a refuge in size. As juveniles increase in size, they become 

less susceptible to predators (Highsmith 1982) and transportation by water 

movement (Cabanac and Himmelman 1996) amongst other environmental 

stressors. The percentages for cohort 2009 appeared to stabilise in September 2010, 

when the mean length of juveniles for the cohort was 56 mm. The smaller juvenile 

sand dollars have a thin fragile test that is prone to breakage. At 56 mm, juveniles 

of Peronella lesueuri may be large enough and their tests are thick and heavy 

enough to be less susceptible to environmental factors, including water currents 

and shifting sand, that may transport, bury or crush them. From September 2010 

until the end of the study in April 2011, there appeared to be an acceleration in the 



145 
 

growth rate of cohort 2009 (Figure 4.5). Studies by Niesen (1977) and Birkeland and 

Chia (1971) indicated that growth rates of populations of the sand dollar Dendraster 

excentricus in habitats with differing conditions were not the same. Sand dollar 

populations in unprotected habitats, unsuitable substrates or areas of low food 

availability had lower growth rates because the energy cost of maintenance was 

high in these unfavourable conditions, likely at the expense of growth. A possible 

explanation for the accelerated growth in cohort 2009 after September 2010 was 

that larger juvenile sand dollars, without the high energy expense required to 

maintain growth in conditions unfavourable to smaller sand dollars, could direct the 

energy obtained from food into growth. 

4.4.4 Growth Zones 

The size frequency distributions in this study were unable to provide an accurate 

age estimate and growth rate of the larger sand dollars, so the growth zones 

observed within the test plates were used. Several species of sand dollars have 

been aged using growth ring counts, including Echinarachnius parma (Steimle 1990; 

Cabanac and Himmelman 1996), Astriclypeus manni (Kang et al. 2007), Clypeaster 

japonicus (Kang et al. 2007), Dendraster excentricus (Birkeland and Chia 1971) and 

Mellita quinquiesperforata (Lane and Lawrence 1980).  

Several authors have, however, cautioned against using growth zones as echinoid 

age indicators without calibrating the periodicity of the growth zones (Ebert 1988; 

Russell and Meredith 2000; Tan and Lawrence 2001) because changes in 

environmental factors, for example, fluctuations in food availability, have been 

shown to cause additional growth zones (Pearse and Pearse 1975). An attempt to 
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determine the periodicity of growth zones in the Peronella lesueuri test plates using 

tetracycline tags was unsuccessful when the fluorescent markers failed to show up 

under ultraviolet light in the jaw and test plates of all of the tagged sand dollars. 

However, the environmental conditions in Cockburn Sound have a pronounced 

seasonal cycle, which increases the likelihood of annual formation of growth zones 

in the sand dollar test. In addition, echinoids have been known to partition energy 

resources away from somatic growth to facilitate reproductive growth (Agatsuma 

and Nakata 2004). Agatsuma and Nakata (2004) found that the growth in sea urchin 

Hemicentrotus pulcherrimus in Oshoro Bay, Japan, ceased during winter, when 

gametogenesis was initiated. This cessation of growth caused the formation of a 

dark band in the growth zone. It is therefore reasonable to postulate that the 

distinct annual reproductive cycle of Peronella lesueuri (Chapter 4) would cause 

seasonal changes in energy allocated for test growth, which could cause annual 

growth bands to form. With the indistinct zone at the oral edge of the test plate 

hypothesized to be the result of the slow growth during the first winter of the 

newly settled recruits, it is proposed that the first growth zone is formed at 

approximately one and a half years of age. There also appeared to be a concurrence 

in the predicted length-at-age of sand dollars with one growth zone with that of 

juvenile cohorts observed over two years.  

4.4.5 Growth curve 

When the pooled length-at-age for the juvenile cohorts was combined with the 

estimated length-at-age of large sand dollars from growth zone counts, an S-shaped 

growth curve was obtained (Figure 4.8). Other sand dollar species also show similar 

S-shaped growth curves (Steimle 1990; Cabanac and Himmelman 1996). The growth 
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rate of Peronella lesueuri increases with size to a maximum of 60 mm yr-1 when the 

sand dollars are approximately two years of age and 100 mm in length, then slows 

rapidly (Figure 4.8). The rapid growth rate of sand dollars of intermediate size 

predicted by the Richards’ growth curve suggests that the time P. lesueuri juveniles 

spend at this size should be reduced. This, coupled with a high juvenile mortality 

and variable annual recruitment, provides an explanation for the scarcity of sand 

dollars between 50 and 100 mm. 

The growth curve indicated that beyond approximately two and a half years of age, 

the growth rate of Peronella lesueuri is almost zero. This is supported by the 

observation of no change in mean length of a subsample of tagged sand dollars 

over time. The width of growth zones was observed to progressively decrease 

(Figure 4.7), also suggesting a slowing in growth over time. The cessation or slowing 

of growth has been observed in other species of sand dollars. Kang et al. (2007) 

concluded that in both Astriclypeus manni and Clypeaster japonicus most of the 

growth occurred in the first four years of life, with growth discontinued in the fifth 

and sixth year. Growth in Echinarachnius parma, which has a longer life expectancy, 

also appeared to cease or slow at approximately seven and a half years of age, 

when maturity was attained (Cabanac and Himmelman 1996). Reproductive data 

for P. lesueuri appeared to support the theory that the slowing of growth at two 

and a half years of age was due to attainment of sexual maturity. Sand dollars 

larger than 115 mm were deemed to be sexually mature (Chapter 4), at 

approximately two years of age (Figure 4.8). Plasticity in the allocation of energy 

resources away from somatic growth has been noted in Mellita quinquiesperforata; 

energy for growth was used on maintenance in sand dollars living in rough beach 
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conditions (Tavares and Borzone 2006) and energy from somatic growth was 

channelled to support reproduction (Lane and Lawrence 1980). The attainment of 

sexual maturity in P. lesueuri concurrently with the slowing of growth strongly 

suggests that energy previously used to support somatic growth is channelled to 

fulfil the high energy demands of reproduction.   

4.4.6 Predictions of maximum size and longevity 

Peronella lesueuri is a large sand dollar; the largest individual recorded in this study 

was 182 mm in length. Individuals that large, however, were rare. The average 

maximum size of 139 mm predicted by the Richards’ growth curve is consistent 

with the mean modal size of around 140-150 mm of large sand dollars (Group 1) 

from the size frequency distributions. Environmental conditions have been known 

to affect the maximum attainable size of Dendraster excentricus at Alki Point in 

Seattle, USA (Birkeland and Chia 1971), with the population in the harsher 

environment having a smaller mean adult size. The adult size of P. lesueuri 

indicated by the growth curve and size frequency distributions in this study, while 

useful as a general guide, may not reflect the sizes attainable in populations outside 

Cockburn Sound. Personal observations of P. lesueuri in other areas around Perth, 

e.g. C.Y. O’Connor Beach and Swan River, suggested that sand dollars in these areas 

were smaller than those observed in Cockburn Sound. Further research, however, is 

needed to confirm this.  

Although working on different species of sand dollars, Steimle (1990) and Kang et al. 

(2007) both noted that due to reduced growth rates as sand dollars reached 

senescence, growths rings became either indistinguishable or too close together. 
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The consequence of this was that age could be underestimated by growth zone 

counts. Although the subsequent growth zones observed in the Peronella lesueuri 

test plates decreased in width, the final zones in all test plates were distinct (Figure 

4.7) and with no evidence of growth rings becoming indistinguishable; while it is 

possible that age of larger sand dollars were underestimated by growth zone counts, 

this is unlikely. 

In Cockburn Sound, although growth in the Peronella lesueuri population appears to 

stop after approximately three years, growth rings continue to form (Figure 4.8) 

Individuals with between two and four growth zones, aged between, three and five 

years were most common (Figure 4.8). ). In this study, only one individual was 

encountered with the maximum number of six growth zones, putting its age at 

seven years. Senescence is not evident in the growth rings of this sand dollar 

population and therefore, it is likely that its average longevity of three to five years 

can be attributed to predation or other environmental factors and that maximum 

life span in an ideal environment without predators would likely be longer.    
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Chapter 5. Seasonal and diel variation in movement 

rhythms of sand dollar, Peronella lesueuri 

(Valenciennes, 1841), in Cockburn Sound, Western 

Australia  

 

This chapter has been published as a paper in  

Marine Biology Volume 160, Issue 2, pg 277-284, DOI 10.1007/s00227-012-2086-3. 
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research and the co-authors were my supervisors, who provided field and editorial 

help. 

 

…………………………………………………………………… 

Sharon Yeo Sue-Yee  

 

*The nomenclature of this species has been misidentified as Peronella lesueuri (Valenciennes, 1841) from the 

website, Atlas of Living Australia. The correct species name should be Peronella lesueuri (L. Agassiz, 1841) (Kroh 

2012).  
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Abstract 

Rates and direction of movement in the sand dollar Peronella lesueuri were 

measured in summer and winter in Cockburn Sound, a large coastal embayment in 

south-western Australia. P. lesueuri was found to have a diurnal activity pattern 

throughout the year and had a greater movement rate in the summer (mean of 5.3 

cm hr-1, day; 3.9 cm hr-1, night) than in the winter (mean of 2.7 cm hr-1, day; 2.0 cm 

hr-1, night). Seasonal change in temperature and physiological requirements by the 

sand dollar are the most likely reason for the seasonal differences. Reasons for 

diurnal variation were not clear. Direction of movement was found to be random at 

both times of the year. Based on these movement rates, one sand dollar can 

bioturbate an approximate area of 0.1 m2 day-1 and 36.4  m2 year-1. At a 

conservative density estimate of 0.5 sand dollars per m2 it takes approximately 20 
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days for the sand dollars to rework the entire area of the sediments in the habitats 

they occupy.  

Introduction 

Sandy subtidal substrates form a vast proportion of the habitats along the world’s 

coastlines with a range of faunal and floral assemblages, which show a diversity of 

patterns of distribution and abundances (Thrush 1991; Morrisey et al. 1992) often 

determined by gradients of physical disturbance of the seabed (Clark 1946).  To 

best adjust to the shifting substrates, current and swell that often affect the soft-

sediment communities at shallower depth, many organisms possess a means of 

locomotion (Tomas et al. 2004). Locomotion of benthic fauna can mix the 

sediments and cause bioturbation, which has major implications for biogeochemical 

cycling at the sea bed (Lohrer et al. 2004).  

Irregular urchins, which include the sand dollars, are active burrowers in many 

benthic communities and are known to play a key role in bioturbation, influencing 

the biogeochemistry of surface sediments (Lohrer et al. 2004; Lohrer et al. 2005). 

To date, research on movement rates of echinoids has largely focused on regular 

echinoids (Tertschnig 1989; Domenici et al. 2003; Hereu 2005; Lauzon-Guay et al. 

2006; Lauzon-Guay and Scheibling 2007; Ceccherelli et al. 2009), with few reports 

on movement of irregular echinoids, especially sand dollars.  

Forming a dominant and conspicuous part of the soft sediment community in 

Cockburn Sound is the sand dollar, Peronella lesueuri. P. lesueuri is a large (15 cm 

diameter) sand dollar, with a wide Indo-Pacific distribution  (Miskelly 2002). In 

Australia P. lesueuri is widely distributed and has been recorded from Queensland 
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(Clark 1938), the Kimberley region (Keesing et al. 2011), the Dampier Archipelago 

(Marsh and Morrison 2004), and down the west coast as far south as Albany (Clark 

1938). In Cockburn Sound, P. lesueuri can occur at densities of up to 6 individuals m-

2 (Forehead and Thompson 2010). P. lesueuri is a shallow burrower and occurs at 

densities which may influence surface sediment chemistry and community 

dynamics. Therefore knowledge of seasonal and diel movement rates and rhythms 

of this species are of key interest in understanding coastal sediment 

biogeochemical dynamics. 

Sand dollars generally lie flat on the substrate and move forward along the 

anterior-posterior axis (Chia 1969; Merrill and Hobson 1970; Ghiold 1979) with 

occasional reversal or rotation upon encountering an obstacle (Chia 1969). D. 

excentricus, however, has been observed to be positioned on an incline to feed on 

suspended material (Merrill and Hobson 1970; Francisco and Herzka 2010) and was 

able to actively move in the inclined position. Movement rates for several species 

have been documented (Weihe and Gray 1968; Bell and Frey 1969; Ebert and 

Dexter 1975). In those studies, the seasonal and diurnal differences in movement 

rates were not investigated. As yet, there have been no published studies on 

movement patterns of the sand dollar, P. lesueuri. This study aimed to provide an 

insight into seasonal and diel movement rates and patterns of P. lesueuri. 

Methods 

The study was carried out on the P. lesueuri population at Jervoise Bank (32°09’S, 

115°45’E) in Cockburn Sound, Western Australia. Cockburn Sound is a semi-

enclosed embayment in the southwest of Western Australia, approximately 16 
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kilometres long and 9 kilometres wide (Steedman and Craig 1983). It consists of a 

main basin of mud and silt, 17-22 metres deep, and is edged with shallower sandy 

sills and beaches (Marsh and Devaney 1978; Pearce et al. 2011). Cockburn Sound 

has a mean maximum daily tidal range of 0.55 m and wind-driven currents with a 

mean of 0.05 m s-1 (Steedman and Craig 1983). Sea surface temperatures in the 

area range from a low of 16ºC in the winter to a high of 23ºC in the summer (Pearce 

et al. 1999). The experiment was first carried out in the winter (26 and 27 July 2010) 

and repeated in summer (1 and 2 February 2011).  

The positions of the sand dollars (n = 262 in July, n = 185 in February) were marked 

in the morning (between 0900h and 1100h) by divers using SCUBA by inserting a 

numbered flag into the sediment 2 cm behind the animal in order not to disturb 

them or hamper direction of movement. The time of initial marking of each sand 

dollar was recorded. Divers returned in the late afternoon (between 1530 h and 

1730 h) and the net distance each animal had moved from its flag was measured 

(Distance moved = Distance from flag – 2 cm) with a measuring tape. The net 

movement is the minimum absolute distance moved or total displacement as 

measured from the flag as not all sand dollars move in a straight line. The direction 

of movement was measured with a dive compass. When the measurements were 

made, the time was also recorded for an accurate calculation of movement rate.  

The flag was then moved 2 cm behind the same sand dollar and the animals were 

left overnight. The next morning (between 0900 h and 1100 h) divers measured the 

direction and distance moved by the sand dollars and recorded the time. 

Occasionally, when divers returned to check the distance moved by the sand dollars, 
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the paths of individuals had crossed. In these instances divers differentiated 

individuals by the direction of the tracks left in the sand from the flag to the sand 

dollar. 

Analysis 

Within each season (winter and summer) paired sample t-tests (α = 0.01) were used 

to test the difference between day and night movement rates. Differences in day 

and night movement rates between seasons were tested using t-tests with unequal 

variances (α = 0.01).  

Frequency distributions of seasonal and diel movement rates were plotted and 

statistically tested to determine the best fitting distribution. 

Directional readings were divided into eight categories (North, Northeast, East, 

Southeast, South, Southwest, West, Northwest) and movement rates and 

directional measurements were analysed with one-factorial analysis of variance 

(ANOVA). 

Results  

Peronella lesueuri was observed to be more active in the summer than in the winter 

and movement rates were generally higher in the day (Figure 1). In the summer, the 

rate of movement during the day ranged from 0 to 20.7 cm hr-1 (X ± SD = 5.3 ± 3.5 

cm, N = 207). At night, the movement was less, with the rate between 0.3 and 11.4 

cm hr-1 (X ± SD = 3.9 ± 2.0 cm, N = 185). The movement rates recorded in the winter 

were also higher in the day, ranging from 0 to 12.3 cm hr-1 (X ± SD = 2.7 ± 2.3 cm, N 

= 283) during the day and from 0.1 to 11.0 cm hr-1 (X ± SD = 2.0 ± 1.4 cm, N = 262) 

at night. 
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Figure 1. Seasonal and diel mean movement rates of Peronella lesueuri in Cockburn 

Sound with standard error bars. 

 

Frequency distribution of the movement rates indicated that modal movement 

rates were higher in the summer than winter (Figure 2a-b).  During the winter, 

modal movement rates were 0-0.5 cm hr-1 in the day and 1.01-1.5 and 2.01-2.5 cm 

hr-1 at night (Figure 2a). Summer modal movement rates were 3.01-3.5 and 3.51-4.0 

cm hr-1 in the day and 3.01-3.5 cm hr-1 at night (Figure 2b). The range of movement 

rates in the day was larger in summer, with a maximum of 20.7 cm hr-1. In the 

winter the maximum rate recorded in the day was 12.3 cm hr-1. In both seasons, 

maximum rate of movement at night was around 11.0 cm hr-1. All the distribution 

histograms were tested against a normal and a lognormal distribution. In all cases, 

the log-likelihood values indicated that the lognormal distribution was the best fit 

and that the movement distributions were skewed.       
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Figure 2a-b. Seasonal and diel frequency distribution of distance moved by P. 

lesueuri in a) winter and b) summer 
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The day and night rates of movement by P. lesueuri demonstrated diurnal activity, 

with a significantly higher rate of movement during the day, both during summer (t 

test, t184 = 6.7, P < 0.01) and winter (t test, t261 = 3.8, P < 0.01).  

P. lesueuri also exhibited a seasonal activity rhythm, with both day and night rates 

of movement higher in summer (Day, Paired t-test, t488 = 9.623, P < 0.01; Night, 

Paired t-test, t445 = 11.893, P = 0.01) than in winter. 

Irrespective of the season and time of day, P. lesueuri did not exhibit directionality 

in their movement ( Summer day ANOVA: F = 0.881, p = 0.523; Summer night 

ANOVA: F = 1.568, p = 0.148; Winter day ANOVA: F = 1.496, p = 0.176; Winter night 

ANOVA: F = 0.719, p = 0.656) (Figure 3). 
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Figure 3a-d. Polar plots of sand dollar movement rate (cm/hr) vs direction (degrees) 

in a) Summer/Day, b) Summer/Night,  c) Winter/Day and d) Winter/Night 

 

  

a) b) 

c) d) 
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Discussion 

Rates of Movement 

Peronella lesueuri was observed to have movement rates of up to 20.7 cm hr-1, 

comparable to rates observed in other sand dollars. Encope grandis has been 

observed to move at least 12.5 cm hr-1 (3 m day-1) (Ebert and Dexter 1975) while 

Mellita quinquesperforata is reported to move an average of 1.25 cm hr-1 (30 cm 

day-1) although rates of 5-7.5 cm hr-1 were common (Bell and Frey 1969). Weihe 

and Gray (1968) also observed M. quinquesperforata to move at a rate of 1.25 cm 

hr-1 on sandy sediments, although the rate of movement dropped to 0.42 cm hr-1 

when in sandy mud. Although Dendraster excentricus was observed to have average 

movement rates of 18.6 cm hr-1 (0.31 cm min-1) (Merrill and Hobson 1970), active 

individuals of Dendraster excentricus have been reported to move at a rate of  120 

cm hr-1 (2 cm min-1) (Chia 1969); this high rate of movement was unlikely to have 

been sustained for any length of time however, as the sand dollars usually buried 

themselves within 15 minutes (Chia 1969).  

Direction of movement 

Studies on sand dollars show that while they have a predominantly forward 

movement (Weihe and Gray 1968; Chia 1969; Cabanac and Himmelman 1998), they 

also show randomness in direction of movement. In Cockburn Sound the tagged P. 

lesueuri showed random choice of movement direction at all times (p value range: 

0.148 – 0.656). This corroborates an earlier study in which Weihe and Gray (1968) 

found that when initially placed oriented towards a particular direction, the 

subsequent directional choice of the sand dollar Mellita quinquiesperforata was 
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random and unaffected by the prevailing current direction. Similarly, Dendraster 

excentricus was observed lying randomly on the sediment at Alki Point in Seattle, 

Washington, in no relation to the direction of the current (Chia 1969). Experiments 

conducted by Cabanac and Himmelman (1998) on Echinarachnius parma showed 

that slope and current affected directional movement of individuals of different 

sizes. Larger sand dollars had a tendency to move upslope and upstream to 

shallower waters, while smaller individuals preferred downslope movement and did 

not move far from the experiment release point. The authors suggested that in 

shallow water conditions juveniles are more vulnerable to predators and more 

likely to be affected by turbulent water. Adult Echinarachnius parma were less likely 

to be dislodged by water turbulence, therefore they could migrate to shallower 

waters  to take advantage of the food resources (Cabanac and Himmelman 1996).  

Hydrodynamics affect positions and movement rates of D. excentricus; the sand 

dollars lay flat and moved frequently in the calm, shallow water , were in an 

inclined position in moderate swell  and were buried in the sediment in heavy seas 

(Merrill and Hobson 1970; Tomas et al. 2004; Francisco and Herzka 2010). During 

the course of this study, P. lesueuri was always observed either burrowed or flat on 

the substrate surface. With microtides and low tidal and wind-driven currents 

within Cockburn Sound, subtidal sediments are relatively stable and do not require 

P. lesueuri to exhibit adjustment behaviours. In addition, as the sand dollars are 

large and heavy, lying flat on the substrate and burrowing would provide optimum 

stability. 
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Seasonal movement patterns 

Movement rates for P. lesueuri showed seasonal differences, with significantly 

higher summer movement rates. Such seasonal activity patterns are commonly 

observed amongst sub-tropical and temperate echinoderms, including echinoids, 

and are usually correlated to seasonal cycles in photoperiod, temperature and food 

availability. P. lesueuri, like most sand dollar species, either lies flat on or is partially 

buried in the substrate. The diet of P. lesueuri is not known but sand dollars are 

size-selective deposit feeders, feeding on diatoms from the microphytobenthos, 

foraminifera and other microeukaryotes, as well as the bacterial components 

coating the sedimentary particles (Mooi and Telford 1982; Findlay and White 1983; 

Ellers and Telford 1984; Telford et al. 1987). In echinoids, feeding, burrowing and 

locomotion all occur simultaneously (Ghiold 1979), with movement being an 

important part of food acquisition (Mooi and Telford 1982). Productivity of marine 

sediments is greater in summer as a result of higher temperatures, increased 

photoperiod and decreased turbidity (Miles and Sundbäck 2000; Boer et al. 2009) 

and an enhanced feeding rate by P. lesueuri in summer maybe in response to this.  

Sea surface temperatures in areas around Cockburn Sound range from a maximum 

of 23⁰C in the summer to a low of 16⁰C in the winter (Pearce et al. 1999), thus 

higher movement rates in P. lesueuri could be associated with higher temperatures. 

A study on the sand dollar Mellita quinquesperforata showed that it fed almost 

continuously with rate of feeding being higher at warmer, summer water 

temperatures (Lane and Lawrence 1982). Heart urchins Brissopsis lyrifera and 

Schizaster canaliferus both show increased activity rates during the summer 

(Schinner 1993; Hollertz and Duchene 2001). Clear seasonal changes in rates of 
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both movement and feeding have also been measured for other echinoderm 

classes; e.g. the crown-of-thorns starfish Acanthaster planci (Keesing and Lucas 

1992; Keesing 1995) with rates of both movement and feeding greater in summer 

than in winter. Seasonal cycles of feeding intensity exhibited by sea cucumbers in 

Canada were related to the availability (Hamel and Mercier 1998) and quality (Singh 

et al. 1999) of food rather than temperature and photoperiod. Seasonal changes in 

water temperature play a role in increasing the metabolic rate of marine 

invertebrates, however, metabolic rate increase may also be caused by increasing 

physiological activity associated with feeding, growth and reproduction 

(Brockington and Clarke 2001). The reproductive periodicity of P. lesueuri is 

unknown. However, seasonal variation in movement may be co-incident with 

reproductive changes.  

Morin et al.(1985)  observed a seasonal migratory movement in the sand dollar 

(D.excentricus) beds in southern California. The sand dollars moved shoreward in 

summer and expanded seaward in winter in correlation with day length. While the 

factor controlling this shoreward migration was not identified, Morin et.al (1985) 

suggested that it was beneficial to sand dollar reproduction. No obvious migratory 

movement was observed in the population of P. lesueuri in Cockburn Sound, 

suggesting that the seasonal environmental conditions were not adverse enough to 

effect a migratory response. 

Diurnal movement  

P. lesueuri displayed a diurnal activity pattern throughout the year, moving at a 

greater rate during the day (p < 0.01 both in winter and summer). Diurnal patterns 
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of behaviour are usually a response to food availability or predator avoidance. 

Diurnal movement in P. lesueuri may be in response to diurnal changes in the 

sediment. For example, microphytobenthos demonstrates diurnal migration within 

the sediment that is highly influenced by solar irradiation, with microphytobenthos 

migrating to the surface of the sediment during the day (Longphuirt et al. 2006). A 

heightened grazing intensity in tandem with microphytobenthos migration to the 

sediment surface could explain the higher rate of movement exhibited by P. 

lesueuri during the day. There has been no study on the diurnal changes in 

sediment biogeochemistry in our research area.  

Laboratory studies have shown that sea urchins such as Strongylocentrotus 

droebachiensis and Paracentrotus lividus can detect light (Domenici et al. 2003; 

Ullrich-Luter et al. 2011), which can determine both direction and speed of 

movement (Domenici et al. 2003). This ability to detect light has not been studied in 

sand dollars, but could provide an explanation to the differing movement rates 

during the course of the day. 

Nocturnal activity patterns are commonly observed in echinoids as a response to 

predation pressure during the day in habitats where their major predators have a 

diurnal rhythm activity (Nelson and Vance 1979; Bernstein et al. 1981; Hereu 2005; 

Miyamoto and Kohshima 2006; Young and Bellwood 2011). Some species of sea 

urchins appear to remain in their burrows during the day and emerge at night to 

forage (Nelson and Vance 1979; Hereu 2005). P. lesueuri are commonly found in 

open, sediment substrates with little or no shelter. Individuals are, however, usually 

found partially burrowed into the sediment, or camouflaged with a layer of 
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sediment covering the aboral surface. Observations on the sand dollar Dendraster 

excentricus show that it can bury itself within 15 minutes (Chia 1969) and from 

personal observation, it takes an individual P. lesueuri, with all sediment shaken 

loose from its test, less than 30 minutes to re-bury itself. With this high level of 

camouflage ability, the diurnal pattern of activity of P. lesueuri suggests that 

predator avoidance is not a factor in its regulation of movement. Size is a further 

factor known to affect echinoderm movement rates. Keesing (1995) found diurnal 

patterns of activity of Acanthaster planci were strongest in smaller starfish which 

remained cryptic and were less mobile during the day, probably as an anti predator 

response. We were not able to compare movement patterns in small and large P. 

lesueuri, the former being either very uncommon or very cryptic. As was suggested 

for A. planci by Keesing (1995), large P. lesueuri probably achieve a refuge from 

predation in size and this may also help explain their diurnal behaviour pattern. 

Ecological implications of movement behaviour 

Feeding and locomotion occur simultaneously in burrowing echinoids (Ghiold 1979).  

When burrowing echinoids dominate a soft-bottomed habitat, they have the ability 

to turn over enough sediment to affect infaunal abundances (Dahlgren et al. 1999), 

lower levels of organic matter, inhibit eutrophication (Michio et al. 2003) and 

improve conditions for microphythobenthos production (Lohrer et al. 2004). P. 

lesueuri feeds and burrows on the surface sediment (top 1-2 cm) (Thompson and 

Riddle 2005), moving by manipulation of locomotory spines on their oral surface. As 

P. lesueuri burrows, the locomotory spines stir up food particles from the sediment 

below the oral surface (Mooi and Telford 1982). This action reworks the sediment, 

leaving a trail the width of its body. Based on the movement rates collected in this 
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experiment, one sand dollar with an average width of 12 cm moving at an 

annualized rate of 83 cm day-1 (mean of day and night rates in winter and summer), 

will bioturbate an area of approximately 0.1 m2 day-1 and 36.4 m2 annually. This 

means that at a conservative density estimate of 0.5 sand dollars per m2 it takes 

approximately 20 days for the sand dollars to rework the entire area of the 

sediments in the habitats they occupy. This implies that surface sediments in the 

sand dollar habitats are completely reworked approximately 18 times a year.  

Through differences in movement rates, this study establishes that Peronella 

lesueuri in Cockburn Sound, Western Australia demonstrates diurnal and seasonal 

patterns of activity with random directionality of movement. In view of the 

burrowing and deposit feeding habits of P. lesueuri, there are strong implications 

for how its activity patterns can affect coastal soft sediment habitats.  
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Chapter 6  Conclusion 

The pink sand dollar, Peronella lesueuri, has a wide Indo-Pacific distribution; it has 

been recorded in Hong Kong (Agassiz and Clark 1914; Clark 1921), Southern Japan 

(Agassiz and Clark 1914; Clark 1921), Singapore (Agassiz and Clark 1914) and the 

Philippines (Agassiz and Clark 1914).  In Australia, its distribution extends from 

southern Queensland, northward and westward towards Darwin and Broome, and 

then along the west coast down to Fremantle and Albany (Clark 1938). In Cockburn 

Sound, southwest Australia, P. lesueuri is common in the sandy sediment substrates. 

A survey of a range of sites within Cockburn Sound showed that Peronella lesueuri 

was found in the shallower, sandy sills that surround the Sound but is notably 

absent from the deeper central basin, where the sediment is mainly composed of 

silt, suggesting that sediment composition is important in determining distribution. 

Silt has been shown to hinder movement, smother and cause death in several 

species of sand dollars (Weihe and Gray 1968; Merrill and Hobson 1970; Ghiold 

1979; Ghiold 1982) by accumulating at the base of the spines and preventing spine 

and food movement (Ghiold 1979) and this may also be an important factor in  P. 

lesueuri. Although there have been previous reports of sand dollar densities of up 

to 6 individuals m-2 in Cockburn Sound (Forehead and Thompson 2010), lower 

densities of between 0.3 to 2.5 individuals m-2 were recorded in this study. All the 

sites at which P. lesueuri occurred were at a depth of ten metres or less with 

sediment composed mainly of coarse to fine sands. Sand dollar densities were 

highest at sites less than five metres in depth with fine and medium sands, 

indicating that these were ideal environmental conditions for P. lesueuri.  
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Given the detrimental effects of silt on many species of sand dollars, the large-scale 

re-suspension and deposition of silt within sand dollar habitats may have effects on 

their population abundances. Extensive dredging activities at Bird Shoal, North 

Carolina deposited silt and mud on the sand flats, prevented settlement of larvae or 

smothered juveniles, decreasing the abundance of sand dollar Mellita 

quinquiesperforata (Weihe and Gray 1968). In Cockburn Sound, the effects of the 

sediment stirred up over the years by the dredging and rock wall creation of the 

Jervoise Bay harbour as well as the dredging of access channels to the Kwinana strip, 

and construction of the Garden Island causeway, on the recruitment and 

abundance of sand dollar populations in the Sound are unknown. Current 

recreational and commercial use of Cockburn Sound is extensive and as it continues 

to increase, new proposals for development such as the Mangles Bay Marina 

Tourist Precinct (Strategen 2012) and the Port Rockingham Marina (RPS 

Environment and Planning Pty RPS Environment and Planning Pty Ltd 2008) mean 

that more dredging and construction within the Sound will be likely. Therefore, 

there is a need to determine the effects sediment resuspension will have on the 

sand dollar population in Cockburn Sound.  

Like many echinoids, Peronella lesueuri was observed to have a sex ratio of 1:1. 

There was no obvious external sexual dimorphism and the sand dollar could only be 

sexed upon dissection. All Individuals 115 mm and larger had sexable gonads and 

were deemed to be sexually mature. Age-at-length indicated that attainment of 

sexual maturity occurred between 1.5 and two years of age. Growth in Peronella 

lesueuri follows a sigmoidal growth curve and is best represented by the Richards’ 

growth curve. Growth in newly recruited juveniles accelerated to a maximum 
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growth rate of 60 mm yr-1 at two years of age, after which the growth rate 

decreased rapidly to almost zero at two and a half years of age. This corresponded 

to the age at which P. lesueuri attained sexual maturity, suggesting that energy 

previously used to support somatic growth was channelled to fulfil the high energy 

demands of reproduction. The maximum size in the population studied as 182 mm. 

The maximum life expectancy was approximately five years.  

Histological analysis of gonads over time showed that Peronella lesueuri had an 

annual reproductive cycle with peak spawning in summer. P. lesueuri gonads 

underwent gametogenesis in spring, spawned in summer, were spent in autumn 

and recovered over winter. The sequence of change in the gametogenic cells and 

nutritive phagocytes in P. lesueuri gonads followed the pattern that had been 

described in other echinoids (Chatlynne 1969; Chen and Chen 1993; Byrne et al. 

1998; Haycock 2004; Nunes and Jangoux 2004; Martinez-Pita et al. 2008). Growth, 

mature, partially spawned, spent and recovery stages of the gametogenic cycle 

were observed in both sexes and the stages were highly synchronised between 

sexes. As this was a field study, it was not possible to fully assess the effects of 

exogenous factors on the P. lesueuri reproductive cycle. However, correlations 

between oocyte proportions and sea surface temperature (SST) as well as mean 

bright sunshine hours (BSH) suggest that annual changes in one or both of these 

factors had effects on the reproductive cycle of P. lesueuri.  Further research under 

controlled conditions need to be conducted to identify the regulatory factors and to 

determine their effects on the reproductive cycle of P. lesueuri. 
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Peronella lesueuri recruits annually. Spikes in the population densities of P. lesueuri 

at Jervoise Bay in December 2010 and January 2011 were clear indications of 

recruitment events. This is confirmed by size frequency distributions taken over the 

same period which recorded spikes in the number of juveniles. Although peak 

recruitment occurs in late spring and early summer, juveniles 8 mm and larger 

started appearing amongst the adult population around May/June, approximately 

five or six months after peak spawning. Despite the potential to recruit annually, 

there was annual variation in recruitment strength. The recruitment strength of 

juvenile cohort 2009 was twice that of cohort 2010. Although the factors affecting 

recruitment variability in P. lesueuri were not explored in this study, other studies 

have indicated that a whole suite of factors, including temperature (Hernández et al. 

2010), current variations (Cameron and Rumrill 1982) and sediment suspension 

(Weihe and Gray 1968), could affect recruitment strength. Juvenile mortality was 

high, with up to 88% mortality in the first year. Juvenile mortality rates peaked at 

up to 74% mortality over one or two months in the summer, coinciding with 

maximum sea surface temperatures in Cockburn Sound. The high sea surface 

temperatures may have contributed to the higher incidence of juvenile deaths. 

Juvenile sand dollars appear to find refuge in size; juvenile number stabilised when 

the mean length of the cohort was 56 mm. At this size, juveniles may be less 

susceptible to environmental stressors, such as transportation by water movement 

(Cabanac and Himmelman 1996). 

Peronella lesueuri was found at seven sites within Cockburn Sound, with the mean 

test lengths larger at three sites. These sites were shallow (< five metres) and 

mainly composed of medium sands. A study of the sediments at different depths at 
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Parmelia Bank in Cockburn Sound indicated that sediment at depth of four to eight 

metres were the most productive for epibenthic microphytobenthos (Forehead and 

Thompson 2010). This suggests that there may be some association between 

productive marine sediments and sand dollar growth rate, thus enabling faster 

growing juvenile sand dollars to achieve a larger size before growth slowed.  

Peronella lesueuri was found to have a diurnal activity pattern throughout the year 

and had a greater movement rate in the summer than in the winter. Seasonal 

changes in water temperature play a role in increasing the metabolic rate of marine 

invertebrates; however, metabolic rate increase may also be caused by increasing 

physiological activity associated with feeding, growth and reproduction 

(Brockington and Clarke 2001). In summer, P. lesueuri is actively spawning and the 

increased movement in the summer may be due to enhanced feeding required to 

fulfil the energy requirements of reproduction. Another explanation for increased 

movement in summer is increased feeding in response to  increased productivity of 

marine sediments as a result of higher temperatures, increased photoperiod and 

decreased turbidity (Miles and Sundbäck 2000; Boer et al. 2009). Reasons for 

diurnal variation in movement rates were not clear. Direction of movement was 

found to be random at both times of the year.  

Peronella lesueuri feeds and burrows on the surface sediment (top 1-2 cm). When 

burrowing echinoids dominate a soft-bottomed habitat, they have the ability to 

turn over enough sediment to affect infaunal abundances (Dahlgren et al. 1999), 

lower levels of organic matter, inhibit eutrophication (Michio et al. 2003) and 

improve conditions for microphytobenthos production (Lohrer et al. 2004). Based 

on their movement rates, one sand dollar can bioturbate an approximate area of 
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0.1 m2 day-1 and 36.4 m2 year-1. At a conservative density estimate of 0.5 sand 

dollars per m2 it takes approximately 20 days for the sand dollars to rework the 

entire area of the sediments in the habitats they occupy. This makes P. lesueuri 

ecologically significant as a sediment bioturbator within their habitat and thus 

potentially an important agent in mediating biogeochemical processes in surface 

sediments. In Cockburn Sound, P. lesueuri occurs at the depths at which the 

sediment is the most productive (Forehead and Thompson 2010). The densities at 

which they occur suggest that the bioturbation effects produced by their 

movement through the sediment may affect sediment productivity by improving 

condition for microphytobenthos production such as sediment irrigation and 

nitrogen remineralisation. 

Although the factors that affect reproduction, recruitment, growth and movement 

in P. lesueuri were not the focus of this study, it was apparent that temperature had 

the potential to significantly affect all the four biological aspects studied. The 

bathymetry of Cockburn Sound causes it to act mainly as a closed system 

(Steedman and Craig 1983). Therefore, irregular weather events can cause 

significant changes in temperature within the Sound as there is little water 

exchange with the open ocean. During the summer of 2010/2011, a “marine heat 

wave” was observed off the Western Australian coast, causing water temperatures 

within the Sound to rise up to 2° Celsius above the long-term seasonal mean. It is 

unclear if this affected P. lesueuri populations within Cockburn Sound, although it 

coincided with a lower percentage of ova in female gonads as well as a weaker 

recruitment. With climate change gradually increasing global temperatures (New et 
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al. 2011), further research is required to identify temperature and the other factors 

that influence the biology of P. lesueuri and determine their effects. 

In Cockburn Sound, it was established that the composition of sediment grain size 

was a determining factor in the distribution and density of Peronella lesueuri. This 

study is also the first to provide the histological description of the gametogenic 

cycle in P. lesueuri and ascertain that both the reproductive cycle and recruitment 

in P. lesueuri is annual. Like other species of sand dollars, there was annual 

variability in recruitment strength and juvenile mortality was high. While the 

bioturbation effects of burrowing heart urchins have been well studied 

(Widdicombe and Austen 1998; Lohrer et al. 2005; Vopel et al. 2007), the study of 

diurnal and seasonal patterns of activity in P. lesueuri is the first to indicate that 

sand dollars are ecologically significant sediment bioturbators. The densities in 

which P. lesueuri is found on the shallow sediment bottoms imply that they have a 

potentially important role as an agent in mediating biogeochemical processes in the 

surface sediments.  

The diet of Peronella lesueuri remains unknown, along with the factors that affect 

reproduction, recruitment and growth. More research is required to fully assess the 

biological and ecological significance of P. lesueuri. While gaps remain in our 

knowledge of the biology and ecology of Peronella lesueuri, it is clear that this 

species is locally important in the ecology of Cockburn Sound. 

The majority of the sand dollars studied thus far have been temperate species. This 

study of Peronella lesueuri biology and ecology adds to the knowledge of 

subtropical sand dollar species, which has so far been scant. P. lesueuri, like many 
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other species of sand dollars, including Echinarachnius parma and Mellita 

quinquiesperforata (Telford et al. 1987), prefers fine to coarse sand sediments for 

burrowing and feeding. Despite its large size, P. lesueuri achieves average maximum 

size within two and a half years, much faster than the five to ten year range at 

which other sand dollar species take to reach maximum size (Ebert and Dexter 

1975). This is due to their extremely high growth rate. The study also identified the 

significance of the burrowing action of sand dollars on the surface sediments, even 

at low densities of 0.5 individuals m-2. Previously this had only been studied for 

heart urchins (Widdicombe and Austen 1998; Hollertz and Duchene 2001; Lohrer et 

al. 2004; Lohrer et al. 2005). Given that other sand dollar species have the 

propensity to aggregate, their movement through the surface sediments would 

have an even greater ecological impact on their habitats.  
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