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APPROXIMATE PERIODICITY IN STRINGS
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School of Computing

Curtin University of Technology

Department of Computer Science � Systems

McMaster University

ABSTRACT

In many application areas �for instance� DNA sequence analysis�� it becomes
important to compute various kinds of �approximate period� of a given string y�
Here we discuss three such approximate periods and the algorithms which compute
them� an Abelian generator� a cover� and a seed� Let u be a substring of y�
Then u is an Abelian generator of y i	 y is a concatenation of substrings which are
permutations of u
 u is a cover of y i	 every letter of y is contained in an occurrence
of u in y
 and u is a seed of y i	 y is a substring of a string y� with cover u� Observe
that� according to these de�nitions� y is an Abelian generator� a cover� and a seed
of itself�

� INTRODUCTION

Let A denote a nonempty ��nite or in�nite� set called the alphabet� An element
of A is called a letter� Denote by A� the �in�nite� set of all ��nite� concatenations
of the letters of A� We call the elements of A� strings and we say then that A� is
the set of all possible nonempty strings over the alphabet A� For example� given
A � fa� bg�

A� � fa� b� a�� ab� ba� b�� � � � � g

denotes the set of all strings on two letters a and b� Observe that in A� there are
exactly mn strings containing n letters� where m � jAj� Denoting by � the empty
string� we write A� � A� � f�g� the set of all strings over A�

A string x that is a concatenation of n �  letters is said to have length jxj � n�
In particular� a nonempty string x of length n is written

x � x���x��� � � �x�n��

abbreviated to x����n�� Given integers i and j satisfying � � i � j � n� we say that
x�i��j� � x�i�x�i � �� � � �x�j� is a substring of x� If i � � or j � n� x�i��j� is called
a proper substring of x� Clearly every substring of x is also a string
 that is� an
element of A�� If x can be written as a concatenation uv of two �proper� substrings
u and v� then n � juj� jvj� u is said to be a pre�x of x� and v is called a su�x of
x� A string u that is both a pre�x and a su�x of x is called a border of x�

If x has a border� it is called periodic
 otherwise� x is said to be primitive� For
example� x � ababb is primitive� Let u denote a border of x of length j� where
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� � j � n� �
 then the string x����p�� where p � n� j� is called the j�period of x
and the integer k � bn�pc is called the j�exponent of x� For example� observe that
the string x � abaab has only the single border u � ab of length j � �
 thus x has
��period x������ � aba and ��exponent b���c � �� On the other hand� x � abaabaab
has two borders ab and abaab of lengths � and � respectively� giving rise to ��period
x������ � �aba��� ��exponent b���c � �� ��period x������ � aba� and ��exponent
b���c � �� Let u� denote the border of x of maximum length j�� where possibly
j� �  �in the case that x is primitive�
 then the j��period and the j��exponent of x
are simply called the period and the exponent� respectively� of x� Thus a primitive
string x has period x and exponent k � �� A nonprimitive string is said to be
weakly periodic i	 it has exponent k � � and strongly periodic i	 k � �� Thus abaab
is weakly periodic and abaabaab is strongly periodic� A strongly periodic string x
is said to be a repetition �or repetitive� i	 n � pk
 in this case� we call the period
of x its generator� For example� ababab � �ab�� has n � �� p � �� k � �� and is
therefore a repetition with generator ab�

The above de�nitions provide a basic vocabulary for a discussion of algorithms
for �nding patterns in strings� Section � classi�es these patterns into three distinct
categories �speci�c� generic� intrinsic�
 in particular� an algorithm for �nding an
important intrinsic pattern called the �normal form� is described� Section �� the
main part of this paper� examines various generic patterns and the algorithms for
�nding them
 these patterns and their associated algorithms turn out to be related
in interesting ways� Section � outlines open problems and future work�

� A CLASSIFICATION OF PATTERNS

Most problems on strings reduce to �nding some kind of pattern in them� but
the nature of the pattern that is searched for varies widely� Traditionally� over the
last � years� the pattern has generally been what we will call here speci�c
 that is�
the pattern is itself a given string� say u� and the search is for all occurrences of u
in a given string x� For example� given u � aaba and

x � abaabaabaab� � � � �����

the two overlapping occurrences of u would be encoded by the set f�� �g� indicating
that

u � x��� �� � x��� ���

The classical algorithms for �nding speci�c patterns are due to Knuth�Morris�Pratt
�KMP��� and Boyer�Moore �BM���� both of which execute in time linear in the
length jxj of the string being searched� independent of the length of the pattern�
Since ���� literally dozens of variant� improved and hybrid algorithms have been
proposed� some of the most recent of which are described in �CH���GG���WM����
Further variation is derived from the fact that the pattern u can include �don�t�
care� letters each of which may be any element of A� Thus� for example� a search
for u � a� in ������ where � means �either a or b�� would yield matches

x������ � x������ � x������ � x������� � ab�

x������ � x������ � x������ � aa�



�

Another common variation of the speci�c pattern matching problem is called ap�

proximate pattern matching �not to be confused with the �approximate periods�
discussed in Section ��� Approximate pattern matching is particularly important in
DNA sequence analysis
 a best match is chosen based on a system of �scoring� which
responds to the insertion of new letters into the pattern and the deletion�change
of existing ones �GP���

During the last �� years interest has grown in �nding patterns not speci�ed as
substrings� but de�ned rather in terms of their properties� we call such patterns
generic� The classic example of a generic pattern is a repetition �de�ned in Section
��� The mathematical study of repetitions dates back to Thue �T�� at the turn of
the century� but it is only since about ��� that computer scientists have begun to
consider algorithms to �nd all the repetitions in a given string x � what we shall
call here the R Problem� Three such algorithms � using very di	erent methods
� have since been designed �C���AP���ML���� each executing in time ��n logn��
where n � jxj� These algorithms encode repetitions as triples �i� p� k�� k � ��
signifying that

�a� x�i��i� p� �� is not a repetition

�b� x�i��i� pk � �� � x�i��i� p� ��k

�c� x�i��i� p�k � ��� �� �� x�i��i� p� ��k���

In example ������ the output triples are f��� �� ��� ��� �� ��� ��� �� ��g for a�� ��� �� ��
for �aba��� ��� �� �� for �baa��� and ��� �� �� for �aab��� We shall have more to say
about repetitions and other kinds of generic pattern in Section ��

A third class of patterns consists of those whose existence is not in question� these
patterns always exist in any string x� and so are called intrinsic� For an ordered
alphabet� the classic example of an intrinsic pattern in x is the decomposition of x
into �Lyndon words� �CFL���� A string w is a Lyndon word if and only if� for every
pre�x u and su�x v such that w � uv� it is true that w � vu in lexicographical
order� Thus every single letter of A is a Lyndon word� and� for example� if A � fa� bg
with a � b� then ab and aab are Lyndon words� but not aa� ba or aba� It turns out
�CFL��� that there is a unique decomposition of every string

x � w�w� � � �wm

into Lyndon words w� � w� � � � � � wm� For the example ������ the unique Lyndon
decomposition is x � w�w�w�w�� where

w� � ab
 wi � aab� for i � �� �� ��

The Lyndon decomposition of x can be computed in time ��n� �D���IS���
 this
decomposition is intimately connected with the idea of a �circular� string �see
Section ��� and has unexpected applications to computer graphics �IS��� and graph
theory �CB����

What is perhaps the most important and widely�applicable intrinsic pattern is
computable even on an unordered alphabet� as is now described� For any nonempty
string x� let k � � be the greatest integer such that

x � �v�v�kv� � � � �����
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over all possible choices of the strings v� �possibly empty� and v �� �� Then let v�

be the maximum length string v� which satis�es ������ Thus

x � �v�v�kv�� � � � �����

We call the righthand side of ����� the normal form of x� In terms of the de�nitions
of Section �� it is easy to see that �v�v�k��v� is the longest border of x� hence that
p � jv�vj
 then x����p� is the period and k the exponent� Therefore ����� may be
rewritten

x � x����p�kx����r�� � � � �����

where r � jv�j� Then x is primitive i	 k � � and r � 
 weakly periodic i	 k � �
and r � 
 strongly periodic i	 k � �
 and a repetition with generator x����p� i	
k � � and r � �

The normal form is an immediate consequence of the classical failure function
computation� Let f denote a string of integers in which f �i�� � � i � n� is the
length of the longest border of x����i�� f is called the failure function of x and can
be computed in time ��n� by a standard algorithm �AHU���� Then

p � n� f �n�
 k � bn�pc
 r � n� pk� � � � �����

For the example ������ n � ��� f �n� � �� p � �� k � �� and r � �� We have just
seen that the normal form allows us to identify a repetition and its generator
 in
the next section we shall see that it is also useful for the identi�cation of other�
more subtle generic patterns�

� FINDING GENERIC PATTERNS

We begin by revisiting the R Problem� �nding all the repetitions in a given string
x of length n � � As we have seen� this problem can be solved in time ��n logn�

the question arises whether the time requirement is least possible� Consider �rst
the � distinct squares in the string x � a��

x������ � x������ � x������ � x������ � x������ � a�


x������ � x������ � x������ � �aa��


x������ � �aaa���

Generalizing this example slightly� it is easy to prove by induction that� for arbi�
trary n� there are bn���c distinct squares in the string x � an� and so the �i� p� k�
encoding of repetitions described in Section � is critical in reducing the size of
the required output below ��n��� In this example� all bn���c repetitions would
in fact be encoded by the single output ��� �� n�� but it turns out that a Fibonacci
string of length n actually requires ��n logn� outputs in the �i� p� k� encoding �C����
�A Fibonacci string is a string whose length n is a Fibonacci number� de�ned on
A � fa� bg as follows� f� � b� f� � a
 fj � fj��fj�� for every integer j � ���
Indeed� as shown in �ML���� a much stronger statment holds� independent of any
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encoding of the output� even to recognize whether or not a given string contains
a repetition requires time  �n logn�� Thus the three ��n logn� algorithms are in
fact asymptotically optimal� and we have

Theorem ��� Finding all the repetitions in x requires exactly ��n logn� time� �

We now introduce a new kind of generic pattern� A nonempty string y is said
to be an Abelian repetition i	 for some integer m � ��

y � u�u� � � �um� � � � �����

where each ui� i � �� �� � � � �m� is a permutation of u�� If in addition m � m� is
the greatest integer satisfying ������ then each ui� � � i � m�� is called an Abelian

generator of y� For example� the string y� � ababbaababba is an Abelian repetition
corresponding to m � �� �� � with Abelian generators fab� bag and m� � �
 while
y� � ababababbbaa is an Abelian repetition corresponding to m � �� � with Abelian
generators fabab� bbaag and m� � �� Clearly every repetition is also an Abelian
repetition� and so the AR Problem � that of �nding all Abelian repetitions in a
given string x � is a generalization of the R Problem� Observe however that not
every generator is necessarily an Abelian generator� y� has generator ababba� not
ab� At the same time� neither is it true that every Abelian generator is a generator�
y� is not a repetition and has no generator�

The AR Problem is apparently more di�cult than the R Problem �CS���� The
fastest known algorithm is an �obvious� one and requires ��n�� time in all cases�
Further� it has been shown that� for all known encodings of the output� there
exist strings �speci�cally� Fibonacci strings again� which give rise to ��n�� Abelian
repetitions �CS���� On the other hand� the best lower bound on the problem of
recognizing whether or not x contains an Abelian repetition is  �n logn�� the same
as the bound for the corresponding recognition problem on repetitions� Thus� the
following conjecture remains open�

Conjecture ��� Finding all the Abelian repetitions in x requires ��n�� time in
the worst case� �

Even if this conjecture is true� it still remains an open problem whether or not
there exists an O�n�� time AR algorithm which� when applied to some strings x�
would require time somewhere between  �n logn� and O�n��
 such an algorithm
would be of particular interest if its execution time were ��maxfn logn� r�x�g��
where r�x� denotes the size of the output�

The generator of an Abelian repetition is one kind of approximate period
 we
now consider another� quite di	erent one called a �cover�� Suppose u is a substring
of a given string y� Then we say that u is a cover of y i	 every element of y is
contained in an occurrence of u in y� Thus y� � abaabaabaab has covers y� and
abaab� while y� � abaababaaba has covers y�� �aba�

� and aba� A cover u of y is said
to be proper i	 u �� y� Observe that a generator of a repetition y is a proper cover
of y� so that the problem of �nding all the proper covers� if any� of y �which we call
the PC Problem� generalizes the problem of �nding the generator� if any� of y� If y
has a proper cover� we say that y is coverable� Then every repetition is coverable�
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and so the problem of �nding all the coverable strings in a given string x �which
we call the CS Problem� is a generalization of the R Problem�

It turns out �MS���MS��� that the covers of a given string y can be characterized
in terms of the normal form �����
 that is� in terms of the parameters ������

Theorem ��� Suppose a given string y has normal form y����p�ky����r�� Then each
cover of y is either
�a� y����p�jy����r�� j � �� �� � � � � k
 or
�b� �if k � �� a proper cover of y����p� r�
 or
�c� �if k � �� a cover of y����r� which also covers y����p� r��

As an example of this theorem� consider y � ababaabababaabababaabababa with
normal form speci�ed by �p� k� r� � ��� �� ��� The proper covers of y are y������y�������
y�������y������� together with �since k � �� the proper covers of y� � y������� �
ababaabababa� y� in turn has normal form given by �p�� k�� r�� � ��� �� �� whose
proper covers are �since k� � �� those covers of y�����r�� � ababa which also cover
y�
 that is� ababa and aba� Observe that� since proper covers of y are necessarily
also pre�xes of y� the four proper covers found in this example can economically be
output merely by specifying four pre�x lengths
 that is f�� �� ��� ��g�

This example illustrates the way in which Theorem ��� leads directly to a classical
divide�and�conquer algorithm for the PC Problem� �nding all the covers of y is
reduced essentially to �nding all the covers of a speci�ed proper pre�x of y� Note
that in Theorem ����b� the pre�x is of length less than �jyj��� while in Theorem
����c� the pre�x is of length less than jyj��� Thus the D!C algorithm requires at
most O�log jyj� recursive steps to compute all the covers of y� The hard part of this
algorithm arises from Theorem ����c�� where it is necessary to check that a cover
of y����r� also covers y����p � r�
 however� it turns out that� with some O�n� time
preprocessing to compute a doubly�linked list of O�n� integers �in addition to the
n integers required for the failure function�� this check� and in fact each step of the
D!C algorithm� can be executed in constant time� We have then

Theorem ��� Let y denote a string of length n� Finding all the covers of y requires
exactly ��n� time and ��n� additional space� �

This method of handling the PC Problem suggests that it might be possible to
compute all the covers of every pre�x of a given string y �the PPC problem� in
��n� time� thus improving on the currently fastest algorithm �B��� that requires
��n logn� time� Hence�

Conjecture ��� Finding all the covers of every pre�x of y requires ��n� time�

We now brie"y consider the CS Problem which� since it is a generalization of the
R Problem� can at best be solved in time  �n logn�� In �AE�� an O�n log� n� time
algorithm for the CS Problem was proposed� while in �MS��� it was suggested that
the insights gained from Theorems ��� and ��� might give rise to a faster algorithm�
Hence�

Conjecture ��� Finding all the coverable strings in x requires ��n logn� time in
the worst case� �



	

We now turn to the �nal kind of approximate periodicity to be considered in
this section� A substring u of y is said to be a seed of y i	 y is a substring of a
string y� with cover u� Thus� since y is a substring of itself� every cover of y is
necessarily also a seed of y� and so the problem of �nding all the proper seeds of y
�which we call here the PS Problem� is a generalization of the PC Problem de�ned
above� In �IMP��� a ��n logn� time algorithm is presented for the solution of the
PS Problem
 however� recent results �IMPS��� encourage the conjecture that the
PS problem can actually be solved in linear time� These results are outlined below�

We observe �rst that a given string y of length n may have ��n�� seeds� For
example� consider the string y � �abc��ab� whose normal form is speci�ed by the
parameters �p� k� r� � ��� �� ��� It is not hard to see that the seeds of this string
are exactly all the substrings of y of length at least p � �
 we may enumerate
these substrings by specifying �rst y itself� then �abc��a and �bca��b� and then
exactly p � � �rotations� of each pre�x y����j� of length j � p� p��� � � � � n� p���
Thus� for j � �� the corresponding seeds are the substrings fabc� bca� cabg� while
for j � n� p� � � ��� they are f�abc��� �bca��� �cab��g� Then the total number of
distinct seeds in this example is

p�n� p� ���� � p
�
�n� p� ��� p� �

�
�

�
� � � � � � �� �p� ��

�
�

By holding k and r constant while allowing p to increase inde�nitely� an in�nite
family of such examples can be generated� for each of which there are exactly
p�n � p � ���� seeds� Since p 	 n��� it follows that the number of seeds of each
member of this family is ��n���

To make these ideas both more general and more precise� we require some further
de�nitions� First let a rotation of a nonempty string y � y����n� be any substring of
yy����n��� of length exactly n� We denote the rotations of y by the symbols Ri�y��
i � �� �� � � � � n� where Ri�y� � y�i��n�y����i� ��
 thus R��y� � y� A closely related
idea is that of the circular string C�y� of a given string y� formed by concatenating
y��� at the right of y�n�� Alternatively� C�y� may be thought of as the string of
length n which contains each Ri�y�� i � �� �� � � � � n� as a substring� In fact� observe
that a string y� is a rotation of y if and only if C�y� � C�y��� For a circular string
C�y�� a cover u is de�ned to be a substring of some Ri�y� which is a cover �in the
ordinary sense� of some substring of yy����n � �� of length at least n� Observe in
particular that every rotation of y is a cover of C�y�
 a cover of C�y� which is not
a rotation of y is said to be proper� As an example� consider the string y� � baaba�
The rotations of y� are

R� � baaba� R� � aabab� R� � ababa� R� � babaa� R� � abaab


and� even though y� has no proper cover� C�y�� has the proper cover u � aba� since
u is a cover of the substring R� � ababa of y�y�������� Based on these de�nitions�
the following result can now be proved �IMPS����

Theorem ��	 Suppose a given string y has normal form y����p�ky����r�� Then the
seeds of y are exactly the following�
�a� all substrings of y of length at least p







�b� all proper covers of C�y����p��� �

The seeds speci�ed by Theorem ����a� are determined as a direct consequence of
the ��n� time normal form computation
 in fact� to describe these seeds� it su�ces
to output p� and so these seeds may be regarded as being computable in linear time�
Thus the PS Problem is reduced to the problem of �nding all the proper covers of
a circular string �called here the CC Problem��

In order to discuss the CC Problem� we need two simple ideas� The �rst of these
is the normal form of a circular string C�y�� which is de�ned to be the normal
form of that rotation Rj�y� whose normal form �in the ordinary sense� minimizes
the value of p over all the rotations of y� Thus� conceptually� the normal form
of a circular string can be determined by computing the normal form of all of its
rotations� For the example y� given above� the normal form of C�y�� is just the
normal form of R�� determined by the parameters �p� k� r� � ��� �� ��� The second
idea required is that of an �extension�� given a string y� we say that vyu is an
extension of y i	 v is either a su�x of y or empty� and u is either a pre�x of y or
empty� We observe that� given a string y� there exists a set of extensions of every
rotation of y which has the same set of covers that C�y� has� This remark suggests
the following outline of a linear time algorithm to solve the CC Problem �IMPS����

��� Compute the normal form z � Rj�y� of C�y� �using modi�ed failure function
computations��

��� Compute minimum extensions E�z� of z which include a subset of the covers
of C�y��

��� Use the Moore�Smyth algorithm �MS��� to compute the covers of E�z��

We have then

Conjecture ��
 Let y denote a string of length n� Finding all the covers of C�y��
hence �nding all the seeds of y� requires exactly ��n� time and
��n� additional space� �

� CONCLUDING REMARKS

This paper has surveyed some of the most important kinds of pattern which
are recognized and searched for in strings� In particular� generic patterns that
correspond to some form of approximate periodicity have been discussed� as well
as the algorithms that compute them� Interesting and suggestive relationships
have been discovered among these patterns and their associated algorithms� and
a number of open problems have been stated� Above all� it appears likely that
there are many di	erent kinds of approximate periodicity which have not yet been
recognized� and which may well be e�ciently computable� It is this possibility
which motivates my own future work in this area�
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