

MURDOCH RESEARCH REPOSITORY

Authors Version

Smyth, W.F. (1997) Approximate periodicity in strings.
Utilitas Mathematica, 51 . pp. 125-135.

http://researchrepository.murdoch.edu.au/27543/

Copyright: © 1997 Utilitas Mathematica Publishing Inc

It is posted here for your personal use. No further distribution is permitted.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Repository

https://core.ac.uk/display/77135491?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://researchrepository.murdoch.edu.au/27543/

APPROXIMATE PERIODICITY IN STRINGS

W� F� Smyth

School of Computing

Curtin University of Technology

Department of Computer Science � Systems

McMaster University

ABSTRACT

In many application areas �for instance� DNA sequence analysis�� it becomes
important to compute various kinds of �approximate period� of a given string y�
Here we discuss three such approximate periods and the algorithms which compute
them� an Abelian generator� a cover� and a seed� Let u be a substring of y�
Then u is an Abelian generator of y i	 y is a concatenation of substrings which are
permutations of u
 u is a cover of y i	 every letter of y is contained in an occurrence
of u in y
 and u is a seed of y i	 y is a substring of a string y� with cover u� Observe
that� according to these de�nitions� y is an Abelian generator� a cover� and a seed
of itself�

� INTRODUCTION

Let A denote a nonempty ��nite or in�nite� set called the alphabet� An element
of A is called a letter� Denote by A� the �in�nite� set of all ��nite� concatenations
of the letters of A� We call the elements of A� strings and we say then that A� is
the set of all possible nonempty strings over the alphabet A� For example� given
A � fa� bg�

A� � fa� b� a�� ab� ba� b�� � � � � g

denotes the set of all strings on two letters a and b� Observe that in A� there are
exactly mn strings containing n letters� where m � jAj� Denoting by � the empty
string� we write A� � A� � f�g� the set of all strings over A�

A string x that is a concatenation of n �
 letters is said to have length jxj � n�
In particular� a nonempty string x of length n is written

x � x���x��� � � �x�n��

abbreviated to x����n�� Given integers i and j satisfying � � i � j � n� we say that
x�i��j� � x�i�x�i � �� � � �x�j� is a substring of x� If i � � or j � n� x�i��j� is called
a proper substring of x� Clearly every substring of x is also a string
 that is� an
element of A�� If x can be written as a concatenation uv of two �proper� substrings
u and v� then n � juj� jvj� u is said to be a pre�x of x� and v is called a su�x of
x� A string u that is both a pre�x and a su�x of x is called a border of x�

If x has a border� it is called periodic
 otherwise� x is said to be primitive� For
example� x � ababb is primitive� Let u denote a border of x of length j� where

Typeset by AMS�TEX

�

�

� � j � n� �
 then the string x����p�� where p � n� j� is called the j�period of x
and the integer k � bn�pc is called the j�exponent of x� For example� observe that
the string x � abaab has only the single border u � ab of length j � �
 thus x has
��period x������ � aba and ��exponent b���c � �� On the other hand� x � abaabaab
has two borders ab and abaab of lengths � and � respectively� giving rise to ��period
x������ � �aba��� ��exponent b���c � �� ��period x������ � aba� and ��exponent
b���c � �� Let u� denote the border of x of maximum length j�� where possibly
j� �
 �in the case that x is primitive�
 then the j��period and the j��exponent of x
are simply called the period and the exponent� respectively� of x� Thus a primitive
string x has period x and exponent k � �� A nonprimitive string is said to be
weakly periodic i	 it has exponent k � � and strongly periodic i	 k � �� Thus abaab
is weakly periodic and abaabaab is strongly periodic� A strongly periodic string x
is said to be a repetition �or repetitive� i	 n � pk
 in this case� we call the period
of x its generator� For example� ababab � �ab�� has n � �� p � �� k � �� and is
therefore a repetition with generator ab�

The above de�nitions provide a basic vocabulary for a discussion of algorithms
for �nding patterns in strings� Section � classi�es these patterns into three distinct
categories �speci�c� generic� intrinsic�
 in particular� an algorithm for �nding an
important intrinsic pattern called the �normal form� is described� Section �� the
main part of this paper� examines various generic patterns and the algorithms for
�nding them
 these patterns and their associated algorithms turn out to be related
in interesting ways� Section � outlines open problems and future work�

� A CLASSIFICATION OF PATTERNS

Most problems on strings reduce to �nding some kind of pattern in them� but
the nature of the pattern that is searched for varies widely� Traditionally� over the
last �
 years� the pattern has generally been what we will call here speci�c
 that is�
the pattern is itself a given string� say u� and the search is for all occurrences of u
in a given string x� For example� given u � aaba and

x � abaabaabaab� � � � �����

the two overlapping occurrences of u would be encoded by the set f�� �g� indicating
that

u � x��� �� � x��� ���

The classical algorithms for �nding speci�c patterns are due to Knuth�Morris�Pratt
�KMP��� and Boyer�Moore �BM���� both of which execute in time linear in the
length jxj of the string being searched� independent of the length of the pattern�
Since ���� literally dozens of variant� improved and hybrid algorithms have been
proposed� some of the most recent of which are described in �CH���GG���WM����
Further variation is derived from the fact that the pattern u can include �don�t�
care� letters each of which may be any element of A� Thus� for example� a search
for u � a� in ������ where � means �either a or b�� would yield matches

x������ � x������ � x������ � x��
����� � ab�

x������ � x������ � x�����
� � aa�

�

Another common variation of the speci�c pattern matching problem is called ap�

proximate pattern matching �not to be confused with the �approximate periods�
discussed in Section ��� Approximate pattern matching is particularly important in
DNA sequence analysis
 a best match is chosen based on a system of �scoring� which
responds to the insertion of new letters into the pattern and the deletion�change
of existing ones �GP�
��

During the last �� years interest has grown in �nding patterns not speci�ed as
substrings� but de�ned rather in terms of their properties� we call such patterns
generic� The classic example of a generic pattern is a repetition �de�ned in Section
��� The mathematical study of repetitions dates back to Thue �T
�� at the turn of
the century� but it is only since about ���
 that computer scientists have begun to
consider algorithms to �nd all the repetitions in a given string x � what we shall
call here the R Problem� Three such algorithms � using very di	erent methods
� have since been designed �C���AP���ML���� each executing in time ��n logn��
where n � jxj� These algorithms encode repetitions as triples �i� p� k�� k � ��
signifying that

�a� x�i��i� p� �� is not a repetition

�b� x�i��i� pk � �� � x�i��i� p� ��k

�c� x�i��i� p�k � ��� �� �� x�i��i� p� ��k���

In example ������ the output triples are f��� �� ��� ��� �� ��� ��� �� ��g for a�� ��� �� ��
for �aba��� ��� �� �� for �baa��� and ��� �� �� for �aab��� We shall have more to say
about repetitions and other kinds of generic pattern in Section ��

A third class of patterns consists of those whose existence is not in question� these
patterns always exist in any string x� and so are called intrinsic� For an ordered
alphabet� the classic example of an intrinsic pattern in x is the decomposition of x
into �Lyndon words� �CFL���� A string w is a Lyndon word if and only if� for every
pre�x u and su�x v such that w � uv� it is true that w � vu in lexicographical
order� Thus every single letter of A is a Lyndon word� and� for example� if A � fa� bg
with a � b� then ab and aab are Lyndon words� but not aa� ba or aba� It turns out
�CFL��� that there is a unique decomposition of every string

x � w�w� � � �wm

into Lyndon words w� � w� � � � � � wm� For the example ������ the unique Lyndon
decomposition is x � w�w�w�w�� where

w� � ab
 wi � aab� for i � �� �� ��

The Lyndon decomposition of x can be computed in time ��n� �D���IS���
 this
decomposition is intimately connected with the idea of a �circular� string �see
Section ��� and has unexpected applications to computer graphics �IS��� and graph
theory �CB����

What is perhaps the most important and widely�applicable intrinsic pattern is
computable even on an unordered alphabet� as is now described� For any nonempty
string x� let k � � be the greatest integer such that

x � �v�v�kv� � � � �����

�

over all possible choices of the strings v� �possibly empty� and v �� �� Then let v�

be the maximum length string v� which satis�es ������ Thus

x � �v�v�kv�� � � � �����

We call the righthand side of ����� the normal form of x� In terms of the de�nitions
of Section �� it is easy to see that �v�v�k��v� is the longest border of x� hence that
p � jv�vj
 then x����p� is the period and k the exponent� Therefore ����� may be
rewritten

x � x����p�kx����r�� � � � �����

where r � jv�j� Then x is primitive i	 k � � and r �

 weakly periodic i	 k � �
and r �

 strongly periodic i	 k � �
 and a repetition with generator x����p� i	
k � � and r �
�

The normal form is an immediate consequence of the classical failure function
computation� Let f denote a string of integers in which f �i�� � � i � n� is the
length of the longest border of x����i�� f is called the failure function of x and can
be computed in time ��n� by a standard algorithm �AHU���� Then

p � n� f �n�
 k � bn�pc
 r � n� pk� � � � �����

For the example ������ n � ��� f �n� � �� p � �� k � �� and r � �� We have just
seen that the normal form allows us to identify a repetition and its generator
 in
the next section we shall see that it is also useful for the identi�cation of other�
more subtle generic patterns�

� FINDING GENERIC PATTERNS

We begin by revisiting the R Problem� �nding all the repetitions in a given string
x of length n �
� As we have seen� this problem can be solved in time ��n logn�

the question arises whether the time requirement is least possible� Consider �rst
the � distinct squares in the string x � a��

x������ � x������ � x������ � x������ � x������ � a�

x������ � x������ � x������ � �aa��

x������ � �aaa���

Generalizing this example slightly� it is easy to prove by induction that� for arbi�
trary n� there are bn���c distinct squares in the string x � an� and so the �i� p� k�
encoding of repetitions described in Section � is critical in reducing the size of
the required output below ��n��� In this example� all bn���c repetitions would
in fact be encoded by the single output ��� �� n�� but it turns out that a Fibonacci
string of length n actually requires ��n logn� outputs in the �i� p� k� encoding �C����
�A Fibonacci string is a string whose length n is a Fibonacci number� de�ned on
A � fa� bg as follows� f� � b� f� � a
 fj � fj��fj�� for every integer j � ���
Indeed� as shown in �ML���� a much stronger statment holds� independent of any

�

encoding of the output� even to recognize whether or not a given string contains
a repetition requires time �n logn�� Thus the three ��n logn� algorithms are in
fact asymptotically optimal� and we have

Theorem ��� Finding all the repetitions in x requires exactly ��n logn� time� �

We now introduce a new kind of generic pattern� A nonempty string y is said
to be an Abelian repetition i	 for some integer m � ��

y � u�u� � � �um� � � � �����

where each ui� i � �� �� � � � �m� is a permutation of u�� If in addition m � m� is
the greatest integer satisfying ������ then each ui� � � i � m�� is called an Abelian

generator of y� For example� the string y� � ababbaababba is an Abelian repetition
corresponding to m � �� �� � with Abelian generators fab� bag and m� � �
 while
y� � ababababbbaa is an Abelian repetition corresponding to m � �� � with Abelian
generators fabab� bbaag and m� � �� Clearly every repetition is also an Abelian
repetition� and so the AR Problem � that of �nding all Abelian repetitions in a
given string x � is a generalization of the R Problem� Observe however that not
every generator is necessarily an Abelian generator� y� has generator ababba� not
ab� At the same time� neither is it true that every Abelian generator is a generator�
y� is not a repetition and has no generator�

The AR Problem is apparently more di�cult than the R Problem �CS���� The
fastest known algorithm is an �obvious� one and requires ��n�� time in all cases�
Further� it has been shown that� for all known encodings of the output� there
exist strings �speci�cally� Fibonacci strings again� which give rise to ��n�� Abelian
repetitions �CS���� On the other hand� the best lower bound on the problem of
recognizing whether or not x contains an Abelian repetition is �n logn�� the same
as the bound for the corresponding recognition problem on repetitions� Thus� the
following conjecture remains open�

Conjecture ��� Finding all the Abelian repetitions in x requires ��n�� time in
the worst case� �

Even if this conjecture is true� it still remains an open problem whether or not
there exists an O�n�� time AR algorithm which� when applied to some strings x�
would require time somewhere between �n logn� and O�n��
 such an algorithm
would be of particular interest if its execution time were ��maxfn logn� r�x�g��
where r�x� denotes the size of the output�

The generator of an Abelian repetition is one kind of approximate period
 we
now consider another� quite di	erent one called a �cover�� Suppose u is a substring
of a given string y� Then we say that u is a cover of y i	 every element of y is
contained in an occurrence of u in y� Thus y� � abaabaabaab has covers y� and
abaab� while y� � abaababaaba has covers y�� �aba�

� and aba� A cover u of y is said
to be proper i	 u �� y� Observe that a generator of a repetition y is a proper cover
of y� so that the problem of �nding all the proper covers� if any� of y �which we call
the PC Problem� generalizes the problem of �nding the generator� if any� of y� If y
has a proper cover� we say that y is coverable� Then every repetition is coverable�

�

and so the problem of �nding all the coverable strings in a given string x �which
we call the CS Problem� is a generalization of the R Problem�

It turns out �MS���MS��� that the covers of a given string y can be characterized
in terms of the normal form �����
 that is� in terms of the parameters ������

Theorem ��� Suppose a given string y has normal form y����p�ky����r�� Then each
cover of y is either
�a� y����p�jy����r�� j � �� �� � � � � k
 or
�b� �if k � �� a proper cover of y����p� r�
 or
�c� �if k � �� a cover of y����r� which also covers y����p� r��

As an example of this theorem� consider y � ababaabababaabababaabababa with
normal form speci�ed by �p� k� r� � ��� �� ��� The proper covers of y are y������y�������
y�������y������� together with �since k � �� the proper covers of y� � y������� �
ababaabababa� y� in turn has normal form given by �p�� k�� r�� � ��� �� �� whose
proper covers are �since k� � �� those covers of y�����r�� � ababa which also cover
y�
 that is� ababa and aba� Observe that� since proper covers of y are necessarily
also pre�xes of y� the four proper covers found in this example can economically be
output merely by specifying four pre�x lengths
 that is f�� �� ��� ��g�

This example illustrates the way in which Theorem ��� leads directly to a classical
divide�and�conquer algorithm for the PC Problem� �nding all the covers of y is
reduced essentially to �nding all the covers of a speci�ed proper pre�x of y� Note
that in Theorem ����b� the pre�x is of length less than �jyj��� while in Theorem
����c� the pre�x is of length less than jyj��� Thus the D!C algorithm requires at
most O�log jyj� recursive steps to compute all the covers of y� The hard part of this
algorithm arises from Theorem ����c�� where it is necessary to check that a cover
of y����r� also covers y����p � r�
 however� it turns out that� with some O�n� time
preprocessing to compute a doubly�linked list of O�n� integers �in addition to the
n integers required for the failure function�� this check� and in fact each step of the
D!C algorithm� can be executed in constant time� We have then

Theorem ��� Let y denote a string of length n� Finding all the covers of y requires
exactly ��n� time and ��n� additional space� �

This method of handling the PC Problem suggests that it might be possible to
compute all the covers of every pre�x of a given string y �the PPC problem� in
��n� time� thus improving on the currently fastest algorithm �B��� that requires
��n logn� time� Hence�

Conjecture ��� Finding all the covers of every pre�x of y requires ��n� time�

We now brie"y consider the CS Problem which� since it is a generalization of the
R Problem� can at best be solved in time �n logn�� In �AE�
� an O�n log� n� time
algorithm for the CS Problem was proposed� while in �MS��� it was suggested that
the insights gained from Theorems ��� and ��� might give rise to a faster algorithm�
Hence�

Conjecture ��� Finding all the coverable strings in x requires ��n logn� time in
the worst case� �

	

We now turn to the �nal kind of approximate periodicity to be considered in
this section� A substring u of y is said to be a seed of y i	 y is a substring of a
string y� with cover u� Thus� since y is a substring of itself� every cover of y is
necessarily also a seed of y� and so the problem of �nding all the proper seeds of y
�which we call here the PS Problem� is a generalization of the PC Problem de�ned
above� In �IMP��� a ��n logn� time algorithm is presented for the solution of the
PS Problem
 however� recent results �IMPS��� encourage the conjecture that the
PS problem can actually be solved in linear time� These results are outlined below�

We observe �rst that a given string y of length n may have ��n�� seeds� For
example� consider the string y � �abc��ab� whose normal form is speci�ed by the
parameters �p� k� r� � ��� �� ��� It is not hard to see that the seeds of this string
are exactly all the substrings of y of length at least p � �
 we may enumerate
these substrings by specifying �rst y itself� then �abc��a and �bca��b� and then
exactly p � � �rotations� of each pre�x y����j� of length j � p� p��� � � � � n� p���
Thus� for j � �� the corresponding seeds are the substrings fabc� bca� cabg� while
for j � n� p� � � ��� they are f�abc��� �bca��� �cab��g� Then the total number of
distinct seeds in this example is

p�n� p� ���� � p
�
�n� p� ��� p� �

�
�

�
� � � � � � �� �p� ��

�
�

By holding k and r constant while allowing p to increase inde�nitely� an in�nite
family of such examples can be generated� for each of which there are exactly
p�n � p � ���� seeds� Since p 	 n��� it follows that the number of seeds of each
member of this family is ��n���

To make these ideas both more general and more precise� we require some further
de�nitions� First let a rotation of a nonempty string y � y����n� be any substring of
yy����n��� of length exactly n� We denote the rotations of y by the symbols Ri�y��
i � �� �� � � � � n� where Ri�y� � y�i��n�y����i� ��
 thus R��y� � y� A closely related
idea is that of the circular string C�y� of a given string y� formed by concatenating
y��� at the right of y�n�� Alternatively� C�y� may be thought of as the string of
length n which contains each Ri�y�� i � �� �� � � � � n� as a substring� In fact� observe
that a string y� is a rotation of y if and only if C�y� � C�y��� For a circular string
C�y�� a cover u is de�ned to be a substring of some Ri�y� which is a cover �in the
ordinary sense� of some substring of yy����n � �� of length at least n� Observe in
particular that every rotation of y is a cover of C�y�
 a cover of C�y� which is not
a rotation of y is said to be proper� As an example� consider the string y� � baaba�
The rotations of y� are

R� � baaba� R� � aabab� R� � ababa� R� � babaa� R� � abaab

and� even though y� has no proper cover� C�y�� has the proper cover u � aba� since
u is a cover of the substring R� � ababa of y�y�������� Based on these de�nitions�
the following result can now be proved �IMPS����

Theorem ��	 Suppose a given string y has normal form y����p�ky����r�� Then the
seeds of y are exactly the following�
�a� all substrings of y of length at least p

�b� all proper covers of C�y����p��� �

The seeds speci�ed by Theorem ����a� are determined as a direct consequence of
the ��n� time normal form computation
 in fact� to describe these seeds� it su�ces
to output p� and so these seeds may be regarded as being computable in linear time�
Thus the PS Problem is reduced to the problem of �nding all the proper covers of
a circular string �called here the CC Problem��

In order to discuss the CC Problem� we need two simple ideas� The �rst of these
is the normal form of a circular string C�y�� which is de�ned to be the normal
form of that rotation Rj�y� whose normal form �in the ordinary sense� minimizes
the value of p over all the rotations of y� Thus� conceptually� the normal form
of a circular string can be determined by computing the normal form of all of its
rotations� For the example y� given above� the normal form of C�y�� is just the
normal form of R�� determined by the parameters �p� k� r� � ��� �� ��� The second
idea required is that of an �extension�� given a string y� we say that vyu is an
extension of y i	 v is either a su�x of y or empty� and u is either a pre�x of y or
empty� We observe that� given a string y� there exists a set of extensions of every
rotation of y which has the same set of covers that C�y� has� This remark suggests
the following outline of a linear time algorithm to solve the CC Problem �IMPS����

��� Compute the normal form z � Rj�y� of C�y� �using modi�ed failure function
computations��

��� Compute minimum extensions E�z� of z which include a subset of the covers
of C�y��

��� Use the Moore�Smyth algorithm �MS��� to compute the covers of E�z��

We have then

Conjecture ��
 Let y denote a string of length n� Finding all the covers of C�y��
hence �nding all the seeds of y� requires exactly ��n� time and
��n� additional space� �

� CONCLUDING REMARKS

This paper has surveyed some of the most important kinds of pattern which
are recognized and searched for in strings� In particular� generic patterns that
correspond to some form of approximate periodicity have been discussed� as well
as the algorithms that compute them� Interesting and suggestive relationships
have been discovered among these patterns and their associated algorithms� and
a number of open problems have been stated� Above all� it appears likely that
there are many di	erent kinds of approximate periodicity which have not yet been
recognized� and which may well be e�ciently computable� It is this possibility
which motivates my own future work in this area�

REFERENCES

�AHU	�� Alfred V� Aho� John E� Hopcroft ! Je	rey D� Ullman� The Design �

Analysis of Computer Algorithms� Addison�Wesley �������

�

�AE
�� A� Apostolico ! Andrzej Ehrenfeucht� E�cient Detection of Quasiperiod�

icities in Strings� Tech� Report No� �
��� The Leonardo Fibonacci Institute� Trento�
Italy ����
��

�AP
�� A� Apostolico ! F� P� Preparata� Optimal o��line detection of repe�
titions in a string� TCS �� ������ ��������

�B
�� D� Breslauer� An on�line string superprimitivity test� Inform� Process�
Lett� �� ������ ��������

�BM		� R� S� Boyer ! J� S� Moore� A fast string searching algorithm� Com�
mun� ACM �	 ������ ��������

�CFL�
� K� T� Chen� R� H� Fox ! R� C� Lyndon� Free di�erential calculus IV�
Ann� of Math�
� ������ ������

�CB
�� C� J� Colbourn ! K� S� Booth� Linear time isomorphism problems
for trees� interval graphs� and planar graphs� SIAM J� Comput� �	 ������
�
������

�CH
��Richard Cole ! Ramesh Hariharan� Tighter bounds on the exact com�
plexity of string matching� Proc�

rd Annual IEEE Symposium on Foundations

of Comp� Sci� ������ �

��
��

�C
�� Max Crochemore� An optimal algorithm for �nding the repetitions
in a word� IPL ���� ������ ��������

�CS
�� L� J� Cummings ! W� F� Smyth�Weak repetitions in strings� J� Comb�
Math� � Comb� Computing� to appear�

�D
�� P� Duval� Factoring words over an ordered alphabet� J� Algs� � ������
��������

�GG
�� Zvi Galil ! Ra	aele Giancarlo� On the exact complexity of string
matching� upper bounds� SIAM J� Comput� ���
 ������ �
������

�GP
�� Zvi Galil ! Kunsoo Park� An improved algorithm for approximate
string matching� SIAM J� Comput� ���
 ����
� ��������

�IMP
�� C� S� Iliopoulos� Dennis Moore ! Kunsoo Park� Covering a string�
Proc� Fourth Annual Symposium on Combinatorial Pattern Matching ������ ���
���

�IMPS
�� C� S� Iliopoulos� Dennis Moore� Kunsoo Park ! W� F� Smyth� Com�
puting all the seeds of a string in linear time� work in progress�

�IS

� C� S� Iliopoulos ! W� F� Smyth� PRAM algorithms for identifying
polygon similarity� Springer�Verlag Lecture Notes in Computer Science �	�� H�
Djidjev �ed�� ������ ������

�IS
�� C� S� Iliopoulos ! W� F� Smyth� A fast average case algorithm for
Lyndon decomposition� Internat� J� Computer Math� �� ������ ������

�KMP		� D� E� Knuth� J� H� Morris ! V� B� Pratt� Fast pattern matching in
strings� SIAM J� Comput�
 ������ ��������

�ML
�� Michael G� Main ! Richard J� Lorentz� An O�n logn� algorithm for
�nding all repetitions in a string� J� Algs� � ������ ��������

�MS
�� Dennis Moore ! W� F� Smyth� An optimal algorithm to compute all
the covers of a string� Inform� Process� Lett� �	 ������ ��������

��

�MS
�� Dennis Moore ! W� F� Smyth� Correction to� An optimal algorithm
to compute all the covers of a string� Inform� Process� Lett� �� ������ �
���
��

�T��� A� Thue� �Uber unendliche Zeichenreichen� Norske Vid� Selsk� Skr� I�

Mat� Nat� Kl� Christiana � ���
�� �����

�WM
�� Sun Wu ! Udi Manber� Fast text searching allowing errors� Com�
mun� ACM
���	 ������ ������

ACKNOWLEDGEMENTS

This work was supported in part by Grant No� A���
 of the Natural Sciences !
Engineering Research Council of Canada�

