

MURDOCH RESEARCH REPOSITORY

Authors Version

Cummings, L.J. and Smyth, W.F. (1997) Weak repetitions in
strings. Journal of Combinatorial Mathematics and

Combinatorial Computing, 24 . pp. 33-48.

http://researchrepository.murdoch.edu.au/27541/

Copyright: © 1997 Charles Babbage Research Centre

It is posted here for your personal use. No further distribution is permitted.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Repository

https://core.ac.uk/display/77135488?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://researchrepository.murdoch.edu.au/27541/

WEAK REPETITIONS IN STRINGS

L� J� Cummings

Faculty of Mathematics

University of Waterloo

W� F� Smyth

Department of Computer Science � Systems

McMaster University

School of Computing

Curtin University of Technology

ABSTRACT

A weak repetition in a string consists of two or more adjacent substrings which

are permutations of each other� We describe a straightforward ��n�� algorithm

which computes all the weak repetitions in a given string of length n de�ned on

an arbitrary alphabet A� Using results on Fibonacci and other simple strings� we

prove that this algorithm is asymptotically optimal over all known encodings of the

output�

� INTRODUCTION

Interest in the periodic behaviour of strings dates back to Thue �T	
� at the turn

of the century� Thue considered what we call here strong repetitions �equal adjacent

substrings� and showed how to construct an in�nitely long string on an alphabet

of only three letters with no strong repetitions� �Other constructions on three

letters have been discovered several times since� most recently by Dekking �D��

and Pleasants �P�	� � the latter lists several references to earlier constructions��

More recently� Erd�os �E
�� p� ��	� considered �Abelian squares� �what we call weak

repetitions� adjacent substrings that are permutations of each other�� and asked

what was the minimum size of alphabet on which in�nitely long strings with no

weak repetitions could be constructed� In ��	 Pleasants �P�	� gave a construction

on an alphabet of �ve characters� and Ker�anen �K�� has very recently found a best

possible construction on only four characters�

Typeset by AMS�TEX

�

It has been only in the last �� years or so� with the increased modern empha�

sis on algorithms� that a problem more in the spirit of computer science has been

considered� how to compute �e�ciently� all the repetitions in a given string x of

length n� It might be supposed that in the worst case such a computation would

require time ��n��� since it can easily be seen that the string x � an contains

bn���c strong �also weak� repetitions� �For example� a� contains �ve distinct rep�

etitions aa� three distinct repetitions a�a�� and one repetition a�a��� However� in

��� Crochemore �C���� using a clever encoding of repetitions �see the next section��

devised a ��n log n� algorithm to compute all the strong repetitions in a string x

de�ned on an ordered alphabet� Crochemore also showed that� in his encoding� a

Fibonacci string of length n contains ��n log n� repetitions� so that� at least with

respect to his encoding� his algorithm was �optimal�� Somewhat later� two other�

quite di�erent� algorithms for computing all the strong repetitions were published

�AP��� ML���� both also requiring ��n log n� time� but now over an arbitrary al�

phabet�

This paper discusses� apparently for the �rst time� the computation of all the

weak repetitions in x� This problem generalizes and includes the corresponding

strong repetitions problem� since every strong repetition is also a weak one� In Sec�

tion � we introduce some notation and terminology� in particular another encoding

�called the R�encoding� which appears to be more natural for weak repetitions� In

Section � we then describe an algorithm for computing all the weak repetitions in x�

this �obvious� algorithm executes in time ��n�� on all strings of length n� In Sec�

tion �� the main part of the paper� we show that� in the R�encoding� the Fibonacci

string contains ��n�� weak repetitions� further that� in Crochemore s encoding�

another simple string contains ��n�� weak repetitions� With respect to known en�

codings� therefore� we conclude that the computation of all weak repetitions is a

��n�� problem� A �nal section gives some brief concluding remarks�

� TERMINOLOGY � NOTATION

Let A denote a �possibly in�nite� set of distinct elements ai� i � �� �� � � � � � which

are not required to be ordered� We call A an alphabet and its elements letters� Let

A� denote the set of all concatenations of elements of A� and let A� � f�g � A��

where � denotes the empty element� The elements of A� are called strings� and a

string x of length jxj � n � � is written x � x�x� � � � xn� where each xi � A� If

�

x � uv� then u is said to be a pre�x and v a su�x of x� For any positive integer k�

a concatenation of k identical strings u is written uk�

A string x is said to be strongly periodic of order k if there exists an integer k � �

and a string u � A� such that x � uk� Similarly� x is said to be weakly periodic of

order k if there exists k � � and u� � A� such that x � u�u� � � � uk� where each ui�

� � i � k� is a permutation of u� �that is� a concatenation of the same elements of

A� but not necessarily in the same order�� When k � � in these de�nitions� x is said

to be a strong �respectively� weak� square� If x is not strongly �respectively� weakly�

periodic of any order k� then we shall say that x is strongly �respectively� weakly�

primitive� If there exists a strongly �respectively� weakly� periodic string w such

that x � uwv for some strings u� v � A�� then w is said to be a strong �respectively�

weak� repetition in x� The following observations are immediate consequences of

these de�nitions�

! if x is strongly periodic of order k� then x is weakly periodic of order k�

! if x is weakly primitive� then x is strongly primitive�

! if x is strongly �respectively� weakly� periodic of order k and k� j k� then x is

strongly �respectively� weakly� periodic of order k��

! the number of weak repetitions in x is at least as great as the number of strong

repetitions in x�

Consider some examples on the alphabet A � fa� bg� x � abaababa is weakly

primitive� therefore strongly primitive� x � abbaabba is weakly periodic of order

�� hence weakly periodic of order �� and is also strongly periodic of order �� x �

bbaababa is strongly primitive and weakly periodic of order �� x � abbabababaab

is weakly periodic of order
� hence weakly periodic of orders � and �� The string

x � abbaba contains strong �hence weak� repetitions b� and �ba�� and� in addition�

the weak repetitions �ab��ba� and �ab��ba��ba�� as we have seen� the string x � an

contains exactly bn���c strong �hence weak� squares�

Observing that it su�ces to compute maximum�length repetitions of primitive

substrings� Crochemore �C��� improves the de�nition of strong repetition as follows�

Suppose there exist an integer k � �� strings u and v� and a nonempty strongly

primitive string z such that x � uzkv and z is neither a su�x of u nor a pre�x of v�

Then the strong repetition zk is uniquely speci�ed by the triple �juj"�� jzj� k�� where

juj " � gives the position of the repetition� jzj its period� and k its order� Clearly

the collection of all such triples for a given string x speci�es the strong repetitions

�

of x� we call this collection the C�encoding of the strong repetitions and denote it

C�x�� With the obvious adjustments� a C�encoding of the weak repetitions can be

de�ned in a similar way� Observe that for the string x � an� C�x� �
�

��� �� n�
�

for both strong and weak repetitions� thus all the repetitions in x� including the

bn���c squares� are described by a single triple�

Other encoding schemes are possible for strong#weak repetitions� For instance�

one may think of the cth position of x as a centre of strong#weak squares of various

lengths� then if a substring

x�c�px
�
c�p � �xc�pxc�p�� � � �xc����xcxc�� � � �xc�p��� ���

were a strong#weak square of period p � pc � minfc� �� n � c " �g centred at c�

it could be encoded by the pair �c� p�� Clearly a collection of all such pairs �c� p�

could be used to specify all the repetitions of x� This collection can be further

compressed by taking advantage of cases where� for given c� the periods p fall into

ranges of acceptable values� thus� for p� � p�� the pairs �c� p��� �c� p�"��� � � � � �c� p��

may be expressed as a range triple �c� p�� p��� A collection of such triples identifying

all squares in x is called an R�encoding of the repetitions and denoted R�x�� For

the string x � an� for example� a minimum�cardinality R�encoding is given by

R�x� �
�

�c� �� pc�� c � �� �� � � � � n
�

� of cardinality n� ��

In �C��� it was shown that� for Fibonacci strings fi� i � 	� �� � � � � � and for strong

repetitions�

jC�fi�j � ��Fi log Fi��

where Fi denotes jfij� �Fibonacci strings are de�ned on A � fa� bg as follows�

f� � b� f� � a� for every i � �� fi � fi��fi���� It follows then that� with respect

to the C�encoding� the algorithms which compute strong repetitions in O�n log n�

time are asymptotically optimal� In this paper we consider both the C�encoding

and the R�encoding for weak repetitions� and exhibit classes of strings of length n

such that both encodings necessarily contain ��n�� elements� thus algorithms� such

as the one described in Section �� which compute weak repetitions in O�n�� time�

are also� with respect to known encodings� asymptotically optimal�

� A WEAK REPETITIONS ALGORITHM

Here we outline a simple ��n�� algorithm �called Algorithm A� which computes

a minimum�cardinality R�encoding of the weak repetitions in a given string x �

�

x�x� � � �xn� We suppose that x contains exactly m distinct letters� which we denote

by �i� i � �� �� � � � �m� Clearly m � n� The algorithm considers in turn each

potential centre c � �� �� � � � � n of x to determine every integer p � ��� pc� such that

the pair �c� p� encodes a weak repetition� Recall that pc � minfc� �� n� c" �g�

Algorithm A makes use of two O�n� integer arrays� $�	��m� and INDEX����n��

For i � �� �� � � � �m� $�i� is used as a counter of the number of occurrences of �i� each

occurrence to the left of c is counted with a decrement of �� while each occurrence

to the right is counted with an increment of �� $�	� is used as a �global� counter�

as we shall see� $�	� � 	 if and only if a weak repetition has been found�

The array INDEX is used to specify positions in $� according to the following

rule�

INDEX�j� � i�	 xj � �i�

Thus $
�
INDEX�j�

�
is the counter corresponding to xj � and so INDEX e�ectively

replaces x� which is not mentioned at all in the main part of the algorithm�

The replacement of x by INDEX is performed in a preprocessing phase� Where x

is de�ned on an arbitrary alphabet A� this replacement requires time O�n��� if A is

totally ordered� the replacement can be e�ected �using a search tree� for example�

in time O�n log n�� if A is �xed and �nite� conversion reduces to an O�n� table

lookup procedure�

Corresponding to each potential centre c � �� �� � � � � n� Algorithm A computes

a linked list L consisting of all ranges �p�� p�� such that for every p � �p�� p��� �c� p�

encodes a weak square� To accomplish this� the algorithm �rst initializes L to a

single entry ��� pc� and then updates L by eliminating ranges which cannot give rise

to weak repetitions� After all updates to L have been made� therefore� L consists

of exactly those ranges of values of p which do give rise to weak repetitions� Over

all possible values of c� the aggregate of these lists is equivalent to a minimum�

cardinality R�x�� and since L can contain at most dpc��e elements� it is clear that

jR�x�j � O�n��� Moreover� since the algorithm handles the update of L without

backtracking � that is� in monotone increasing order of p �� it follows that� for

each c� update of L requires time O�n� and� over all values of c� time O�n���

Corresponding to each potential centre c � �� �� � � � � n� Algorithm A �rst initial�

izes all counters to zero� initializes L� and then� for each integer p � �� �� � � � � pc�

decrements the counter $
�
INDEX�c�p�

�
and increments $

�
INDEX�c"p���

�
� The

entire processing for each centre c is as follows�

�

initialize all counters to zero� L
 ��� pc��

for p
 � to pc do

i
 INDEX�c� p�� $�i�
 $�i�� ��

if $�i� � 	 then

$�	�
 $�	�� �

else

$�	�
 $�	� " ��

i
 INDEX�c " p� ��� $�i�
 $�i� " ��

if $�i� � 	 then

$�	�
 $�	�� �

else

$�	�
 $�	� " ��

if $�	� �� 	 then

delete p from L�

It is easy to see that $�	� � 	 after the processing for the current value of p if

and only if �c� p� encodes a weak square� Over all values of c and p� the interior of

the for loop for p will be executed once for each of exactly bn���c position pairs

c� p and c " p � �� it follows that Algorithm A requires ��n�� time� As we have

seen� the additional space required for Algorithm A consists of L� $ and INDEX�

and is thus ��n��

As an example of the operation of this algorithm� suppose

x � f� � abaababaabaab

and consider c � � �so that pc �
�� Then only for p � � and p � � does it

occur that $�	� �� 	� for p � �� L becomes
�

���
�
�

and for p � �� L becomes�
��� ��� ���
�

�
� Thus the elements of R�x� which are output corresponding to c � �

are ��� �� �� and ��� ��
��

The algorithm described here is an �obvious� algorithm� but it does not appear

to be easy to improve on� We have devised two other algorithms as follows�

! Algorithm B� which� for each potential centre c� eliminates periods p from L

which are inconsistent with the distribution of each individual letter �i in x�

! Algorithm C� which� for each c� eliminates from L all periods p which are in�

consistent with a �balance� between pairs of letters found close to position c in

x�

	

Neither of these algorithms can guarantee that backtracking will not occur in

the update of L� and so each executes in time O�mn��� However� since it would not

always be necessary to test all pairs of positions in x� it was expected that in many

cases these algorithms would execute more quickly than Algorithm A� Timed runs

of all the algorithms on long repetition�free and repetition�dense strings have not

supported this expectation �TT��� Algorithms B and C both appear to execute

much more slowly on average than Algorithm A�

� DISCUSSION OF COMPLEXITY

In this section we show that for Fibonacci strings fn� jR�fn�j � ��F �
n�� and also

that for the strings gn � �aababbab�n of length �n� jC�gn�j � ��n��� We conclude

then that Algorithm A is asymptotically optimal over the C� and R�encodings of

the output�

We consider �rst gn � �aababbab�n � a string of length Gn � �n� In particular�

we consider the weak repetitions of gn as expressed in the C�encoding� indeed� we

initially con�ne our attention to those repetitions �i� p� k� where i � � �mod �� and

p � � �mod ��� We show �rst that for this special class of weak repetitions� it must

be true that k � �� and hence that there exist exactly
�
n��
�

�
of them�

Observe �rst that for i � � �mod ��� gn�i� � a� Observe also that gn may be

written in the form

a�abab��baba��abab��baba� � � � �abab�bab�

so that for p � �� �� � � � � � there exists a weak square �in fact a palindrome�

a�ababbaba��p����	a� ���

provided that

i " �p� � � �n� ���

We see that each component of each square ��� necessarily contains �p " ���� a s

and �p � ���� b s� that is� an excess of a s over b s of one� Furthermore� each such

square is followed by substrings b� ba� bab� babb � � � � each of which will contain at

least as many b s as a s� Thus no squares ��� can be extended to cubes� from which

we conclude that k � ��

We wish now to count the number of occurrences �n of the weak squares �i� p� ��

in gn� From ��� it follows that p � ��n� i " ����� so that

�n �

n��X
i���
�

�
n�i�����X
p���	�

�

�

n��X
i���
�

�n� �i � �����

� n� �
nX

i��

�i� ��

�

�
n " �

�

�
�

Essentially the same argument� with the roles of a and b reversed� shows that for

i � � �mod �� and p � � �mod �� there are another
�
n��
�

�
weak squares �i� p� ���

Similarly� the cases i � � �mod �� and i � � �mod �� with p � � �mod �� add an

additional
�
n��
�

�
and

�
n
�

�
weak squares� respectively� Thus the total number of weak

repetitions in the C�encoding for odd positions i of gn is �
�
n��
�

�
"
�
n
�

�
� �n� " n�

We have then

Theorem �� jC�gn�j � ��G�
n�� �

In fact� it is also true for the R�encoding that jR�gn�j � ��G�
n�� But it turns

out in this case� due to the regularity of gn� that a very slight modi�cation of the

R�encoding can be used to reduce the output required to ��Gn�� The modi�ca�

tion required is to replace the triples �c� p�� p�� of the R�encoding by quadruples

�c� p�� d� k� representing the squares

�c� p��� �c� p� " d�� � � � � �c� p� " �k � ��d��

Therefore� in order to establish more clearly that the R�encoding requires in the

worst case output quadratic in the length of the string� we consider next the Fi�

bonacci string fn and show that jR�fn�j � ��F �
n��

The Parikh or frequency vector of a string x � x�x� � � � xn over an alphabet A is

an integer vector 	�x� of length
 � jAj� where the ith element 	�x��i� counts the

number of occurrences in x of the ith element of A� �For example� if A � fa� bg�

then 	�a� � ��� 	� and 	�b� � �	� ���� For strings x�y over A� it is easy to see that

	�xy� � 	�x� " 	�y��

�

Observe also that xy is a weak square if and only if 	�x� � 	�y�� so that in such a

case 	�xy� � �	�x�� We state a special case of an important lemma on Sturmian

strings which will be useful later�

Lemma �� Let u and v denote any two substrings of equal length of a Fibonacci

string� Then 	�u�� 	�v� can only take one of the values �	� 	�� ���� ��� �������

Proof� See �BS��� �

Let ws�x� denote the number of weak squares
�
of the form �c� p�

�
in a string

x� We now turn our attention to the estimation of ws�fn�� Clearly ws�fn� �

jR�fn�j� In order to estimate more precisely� consider the two�dimensional array

T � T ����Fn� ���Fn� formed by applying the following rule�

T �c� p� � �� if fn contains a weak square �c� p��

� 	� otherwise�

Recall from Section � the de�nition of pc� which for Fibonacci strings we modify to

pc � minfc� �� Fn � c " �g�

Then clearly for every p � pc� T �c� p� � 	� so that row c of T contains at most pc

nonzero entries and column p is all zeros for every p � Fn��� Observe also that for

integers p such that � � p � Fn��� column p of T contains at most Fn � �p " �

nonzero entries� Since the number of weak squares is just the number of ones in T �

we can then easily compute a crude upper bound for ws�fn��

Lemma �� ws�fn� � bF �
n��c�

Proof� The upper bound is just the sum of the possibly nonzero entries in the

columns of T � When Fn is even� this sum is

�Fn � �� " �Fn � �� " � � �" � � F �
n���

and when Fn is odd� the sum is

�Fn � �� " �Fn � �� " � � �" � � �F �
n � �����

Both these sums reduce to bF �
n��c� �

Obviously� the upper bound in Lemma � is far from being best possible� For

example� f
 has length F
 � �� and contains ��
 weak squares� but the bound

��

provided by Lemma � is ��� In order to compute more precise bounds on ws�fn��

we consider now what may be called the diagonals of the array T� These are ordered

collections of the values of all those positions in T which may possibly take the value

�� they are de�ned as follows�

Dc �
�
T �c� c� ��� T �c" �� c� ��� � � � � T ��c� �� ��

�
� ���

where c � �� �� � � � �M � with M � dFn��e if Fn is odd and dFn��e " � otherwise�

and

D�

c �
�
T �c" �� c� ��� T �c " �� c� ��� � � � � T ��c� �� ��

�
� ���

for c � �� �� � � � � dFn��e� The collections Dc and D�

c are interleaved cross�diagonal

entries that together �ll a triangle of T whose sides are the �rst column� the main

cross�diagonal� and the �rst diagonal below the main diagonal� Observe that jDcj �

jD�

cj � c��� From now on we shall treat the Dc and D�

c simply as strings of length

c� � de�ned on the alphabet A � f	� �g�

The following lemma shows that adjacent positions in any Dc or D�

c can be both

zero or both one only if the substring aa occurs at a speci�ed location in fn� This

will pave the way for showing that approximately half of the entries in each Dc or

D�

c are ones� hence that the number of weak squares in fn is order F �
n�

Lemma �� Suppose x is any Fibonacci string� For integers c � ��� Fn � �� and

p � ��� pc�� let h� � T �c� p� and h� � T �c"�� p��� denote adjacent positions in some

diagonal Dc or D�

c of the array T � Then h� � h� if and only if xc�p � xc�p�� � a�

Proof� Let q denote the Parikh vector of xc and let q� denote the Parikh vector

of xc�pxc�p��� Observe that q � �	� �� or ��� 	� and that� since b� never occurs

in any Fibonacci string� q� �� �	� ��� It follows that q� � ��� 	� if and only if

xc�p � xc�p�� � a� Recall the notation x�c�p and x�c�p introduced in ���� Now let

�� � 	�x�c�p� � 	�x�c�p�� �
�

�� � 	�x�c���p��� � 	�x�c���p���� ���

and observe by Lemma � that �� and �� can assume only the values �	� 	�� �������

or ���� ��� From �
� it follows that

	�x�c���p��� � 	�x�c�p� � q�

	�x�c���p��� � 	�x�c�p� " �� " q � q��

��

and so ��� implies that

q� � ��� � ��� " �q� ���

First consider the case h� � h� � �� that is� �� � �� � �	� 	�� Then ��� implies

that q� � �q and� since q� �� �	� ��� it follows that q� � ��� 	��

Next suppose that h� � h� � 	� so that neither �� nor �� can equal �	� 	�� Then

if �� � ��� ��� tells us again that q� � ��� 	�� while otherwise �� � ���� so that ���

reduces to q� � ���� " q�� once more implying that q� � ��� 	��

Conversely� when h� � � and h� � 	� it follows from ��� that q� � �q� ��� where

�� � ���� �� or ������� this equality can hold only if q� � ��� ��� We reach the same

conclusion in the case h� � 	� h� � �� Since all possibilities have been considered�

the result is proved� �

Lemma �� Suppose x is any Fibonacci string� Let d denote any bit string ���

or ��� of length c� � corresponding to x� and suppose that 	�d� � �i� j�� where i

counts the frequency of zeros and j the frequency of ones� Then

�a� j � i " � if and only if c is even and

x�c���c��x
�
c���c�� � x�x� � � �x�c��

has su�x aa�

�b� i � j " � if and only if c is odd and x�c���c��x
�
c���c�� has su�x aaba�

�c� j � i � j " �� otherwise�

Proof� Suppose �rst that d � Dc for some valid integer c� To exclude trivial cases�

suppose that c � �� Then the c� � entries dh� h � �� �� � � � � c� �� in d are � or 	

according as the c� � substrings

x�c�c��x
�
c�c�� � �x�x� � � � xc����xc � � � x�c���

x�c���c��x
�
c���c�� � �x�x	 � � �xc��xc�� � � � x�c���

���

x��c����x
�
�c���� � x�c��x�c��

are squares or not� respectively� Observe that dh � T �c " h� �� c� h�� Therefore�

by Lemma �� consecutive entries dh and dh��� � � h � c � �� are unequal if and

��

only if x�h�� �� x�h� Thus consecutive entries in d %ip%op �from 	 to �� or from �

to 	� as determined by the �rst c� � pairs of entries in x�

x�x�� x�x	� � � � � x�c�x�c�	�

Consider the case in which one of these pairs is aa� Occurrences of aa cannot exist

either at the beginning or at the end of x� and in fact must always be embedded

in substrings x� � abaaba� that is� preceded by a pair ab and followed by a pair

ba� Thus� except in the case that the substring x� in question is a terminating

substring �su�x� of x�c�c��x
�
c�c�� � x�x� � � �x�c��� the entries in d corresponding to

x� must be either �		� or 	��	� depending on whether or not the substring marks

the beginning of a square in x� In each of these cases� the number of zeros equals

the number of ones� and the �nal entry equals the initial one� Since pairs in x which

are not aa must be either ab or ba� each of which causes a %ip%op in d� it follows

that� except when x� is a su�x� the number of ones and the number of zeros in d

can di�er by at most one� In particular� for any even position h � c� ��

	�d�d� � � � dh� � �h��� h���� ��

a fact used below�

Now consider the case in which x� is a su�x of x�x� � � �x�c��� In this case the

�nal entries in d are either �		 or 	��� But observe in particular that the �nal

entry dc�� in d is determined by whether or not x�c�� � x�c��� that is� whether

or not b � a� Thus dc�� � 	� so that only the case �		 is possible� In this case� if

in addition c is odd� it follows from �� that 	�d�d� � � � dc��� � � c��
�
� c��

�
�� and so

i � �c " ���� � j " �� �That this case actually arises may be seen by considering

f
 and c � ����

Finally� consider the only remaining case� aa a su�x of x�x� � � � x�c��� This is

the only case in which dc�� � �� and� since aa is always preceded by ab� it follows

that dc�� � 	� Thus when c is odd� 	�d� � � c��� � c��� �� while when c is even�

	�d� � � c� � �� c� �� so that j � i " ��

Thus the result is proved for d � Dc� An almost identical argument establishes

the result also for d � D�

c� �

We remark now that in the strings Dc and D�

c� every instance in which case �a�

of Lemma � holds is matched by an instance of case �b�� and vice versa� That is� c is

odd and x�x� � � �x�c�� has su�x aaba if and only if c� � is even and x�x� � � � x�c�	

��

has su�x aa� It follows that in counting the cumulative frequency of ones in the

Dc and in the D�

c� we can simply ignore cases �a� and �b�� and count b�c � ����c

ones in each of these strings� The total number of ones in T is then just the sum

of b�c � ����c over all strings Dc and D�

c� where c takes the values speci�ed in ���

and ���� For example� for Fn � � �mod ��� it is not di�cult to compute that

ws�fn� �

�Fn����	X
k��

k

� �F �
n � �Fn � �����

Similar calculations may be carried out for Fn � 	� �� � �mod ��� yielding

Theorem �� ws�fn� � �F �
n � �Fn " q���� where

�a� q � 	 if Fn � 	 �mod ���

�b� q � � if Fn � � �mod ���

�c� q � �� if Fn � � �mod ��� �

This result speci�es the number of weak squares �c� p� in fn� However� the

question remains whether� by encoding every collection �c� p��� �c� p�"��� � � � � �c� p��

of weak squares as a single triple �c� p�� p��� an algorithm could perhaps run faster

than O�F �
n�� that is� in time proportional to something less than the square of the

string length� For example� in f� the weak repetitions can be encoded by only

�	 triples� ��� �� ��� �
� �� ��� �
� �� ��� ��� �� ��� ��� ��
�� �� �� ��� �� �� ��� ��	� �� ���

���� �� ��� ���� �� ��� Without the use of the triples� �� pairs �c� p� would be required�

Observe that any one of these output triples� say �c� p�� p��� corresponds to a

sequence� or run� of one or more consecutive ones in row c of the matrix T � specif�

ically�

T �c� p�� � T �c� p� " �� � � � � � T �c� p�� � ��

where T �c� p� " �� � 	 and also

p� � � �	 T �c� p� � �� � 	�

Thus whenever 	� occurs in row c of T � a run �triple� is beginning� and whenever

�	 occurs� a run �triple� is ending� Therefore� to determine a lower bound on the

number of output triples� we may count the occurrences of 	� or of �	� As it turns

out� it is convenient �and su�cient� to count the total occurrences of both 	� and

�	� and then divide by two� the following technical lemma provides the basis for

doing this�

��

Lemma �� Let x denote any Fibonacci string� and let i � � and j � i " � denote

any two nonadjacent positions in x such that j � i is odd� Let

c � �i " j " ����� p � �j � i� �����

Then T �c� p� � T �c� p " �� if and only if xi � xj �

Proof� Since the occurrences are nonadjacent� and since j�i is odd� it follows that

a substring w of even length lies between positions i and j� In fact� w � x�c�px
�
c�p�

where c and p are as de�ned in the statement of the lemma�

Suppose �rst that xi � xj � and consider the case in which w is a weak square�

Then T �c� p� � �� But since xi � xj � it follows that T �c� p " �� � � also� Similarly�

when w is not a weak square� it is clear that T �c� p� � T �c� p " �� � 	�

Conversely� suppose that T �c� p� � T �c� p" ��� If w is a weak square� then we see

that xiwxj must be also� and so we conclude that xi � xj � Similarly� if w is not a

weak square� then neither is xiwxj � and so it follows from Lemma � that� in this

case also� xi � xj � �

Lemma � tells us that by counting all the pairs �i� j�� j� i � �� for which xi �� xj

and j � i is odd� we will identify all cases in which T �c� p� �� T �c� p " ��� that is�

all occurrences of 	� �beginning of a run of ones� and of �	 �end of a run of ones�

in the triangle of T determined by the strings ��� and ���� These occurrences do

not include all beginnings and all ends of runs� speci�cally excluded are beginnings

of runs for which p � � �corresponding to occurrences of aa in x� and endings of

runs for which p � pc� Thus the number of pairs �i� j� is only a lower bound on the

number of runs� nevertheless� as we shall now show� this number is ��jxj���

Suppose that some Fibonacci string fn is given� n � �� It is easy to show that b

occurs Fn�� times in fn� and so it follows that there are Fn�� occurrences of a� Let

m � � denote the number of b s at odd positions of fn� then Fn���m b s occur at

even positions� Note that there are dFn��e odd positions and bFn��c even positions

in fn� Hence there are dFn��e�m a s at odd positions and bFn��c�Fn�� "m a s

at even positions�

To simplify the computation a little� let us assume that n is odd� so that fn

ends in a and every occurrence of b has exactly two neighbouring occurrences of a�

It is these two neighbouring occurrences that are excluded by the �nonadjacent�

condition of Lemma �� Then over all b s occurring at odd positions� the total

��

number of nonadjacent pairs with a s occurring at even positions is given by

m
�
bFn��c � Fn�� "m� �

�
�

Similarly� the total number of nonadjacent pairs corresponding to b s at even posi�

tions and a s at odd positions is

�
Fn�� �m

��
dFn��e �m� �

�
�

Then jR�fn�j� the total number of runs of ones in T � is at least

�

�

n
m
�
bFn��c � dFn��e � Fn�� " �m

�
" Fn��

�
dFn��e �m� �

�o

�
�

�

�
Fn���Fn��� ���m��Fn�� � �m " ��

�
� m� � �Fn�� " ��m " Fn���Fn��� ����

� g�m��

The function g�m� achieves its minimum value if

dg�m�

dm
� �m� �Fn�� " �� � 	�

that is� if m � �Fn�� " ����� In this case�

g�m� �
�
Fn���Fn�� �
� � �

�
���

Since Fn�� � Fn��� it follows that for su�ciently large n� g�m� � F �
n��
� and

hence that jR�fn�j � ��F �
n�� Since jR�fn�j � ws�fn�� so that by Theorem �

jR�fn�j � O�F �
n�� we have thus proved

Theorem �� jR�fn�j � ��F �
n�� �

In fact� it appears that� making use of more precise calculations� it is possible to

establish that jR�fn�j ws�fn����

� CONCLUDING REMARKS

In this paper we have presented a simple ��n�� algorithm for �nding all the

weak repetitions in a given string x of length n� We have shown that this algorithm

is optimal over known encodings of the output� in the course of doing so� we have

derived an exact expression for the number of weak squares in a Fibonacci string�

��

We remark that the methodology used to count weak squares and weak repetitions

in Fibonacci strings may also have applications to similar counting problems on

other strings�

The results of this paper suggest� but do not clearly establish� that the compu�

tation of the weak repetitions in x is an ��n�� problem� To prove this conjecture� it

would be necessary to �nd an information�theoretic argument that would show that

��n�� processing steps are required in the worst case� In fact� an even stronger re�

sult has been proved for the strong repetitions problem �ML���� Main and Lorentz

show that� over a possibly in�nite alphabet� ��n log n� time is required to determine

whether or not x contains a strong repetition� We give here a somewhat di�erent

proof which applies also to weak repetitions�

For a string x of length n� suppose that n � �k for some positive integer k�

and suppose further that the letter xn�� does not appear in xn����xn���� � � � xn�

Suppose in fact that this property applies recursively to substrings of x of length

�k��� �k��� � � � � �� It follows then that any weak �or strong� repetition in x occurs

either in the substring x�x� � � �xn�� or in xn����xn���� � � �xn� In order to verify this

fact� it is both necessary and su�cient to perform n�� comparisons of xn�� against

xn����� xn����� � � � � xn� Let c�n� denote the number of comparisons required to

perform the veri�cation� Then

c�n� � �c�n��� " n���

a recurrence relation which can easily be solved� using the initial condition c��� � 	�

to yield

c�n� �
n

�
log� n�

Hence

Theorem �� Let x be a string of length n� The time required to determine whether

or not x contains a �strong or weak� repetition is ��n log n�� �

It appears likely that for weak repetitions the lower bound of Theorem � can

be increased to ��n��� If so� then it would follow that any other weak repetitions

algorithms would necessarily require ��n�� time�

REFERENCES

�	

	AP
�� A� Apostolico & F� P� Preparata� Optimal o�line detection of repe

titions in a string� Theoretical Comp� Sci� �� ����� �������

	BS��� J� Berstel & P� S'e'e� A characterization of Sturmian morphisms� The

Mathematical Foundations of Computer Science� A� Borzyszkowski & S� Sokolowski

�eds��� Springer�Verlag ���� �����	�

	C
�� M� Crochemore�An optimal algorithm for computing the repetitions

in a word� Inf� Proc� Lett� ���� ����� ������	�

	D��� F� M� Dekking� Strongly nonrepetitive sequences and progression

free sets� JCT Series �A� �� ���� ��������

	E��� P� Erd�os� Some unsolved problems� Hungarian Academy of Sciences Mat�

Kutat�o Int�ezet K�ozl�
 ��
�� ��������

	K��� V� Ker�anen� Abelian squares are avoidable on � letters� Lecture Notes

in Computer Science
��� Springer�Verlag ���� ������

	ML
�� M� G� Main & R� J� Lorentz� An O�nlogn� algorithm for �nding all

repetitions in a string� J� Algs� � ����� ��������

	P��� P� A� Pleasants� Nonrepetitive sequences� Proc� Cambridge Phil� Soc�

� ���	�� �
������

	T��� A� Thue� �Uber unendliche Zeichenreichen� Norske Vid� Selsk� Skr� I	

Mat� Nat� Kl� Christiana � ��	
� �����

	TT��� C� Y� Tan & T� K� K� Teo� honours project� School of Computing� Curtin

University �����

ACKNOWLEDGEMENTS

The work of both authors was supported in part by grants from the Natural

Sciences & Engineering Research Council of Canada� The authors express their

appreciation of the work of Chin Yong Tan and Kelvin Teo of Curtin University�

who programmed and tested the algorithms discussed in this paper�

Revised
 November ����

