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ABSTRACT

A weak repetition in a string consists of two or more adjacent substrings which

are permutations of each other� We describe a straightforward ��n�� algorithm

which computes all the weak repetitions in a given string of length n de�ned on

an arbitrary alphabet A� Using results on Fibonacci and other simple strings� we

prove that this algorithm is asymptotically optimal over all known encodings of the

output�

� INTRODUCTION

Interest in the periodic behaviour of strings dates back to Thue �T	
� at the turn

of the century� Thue considered what we call here strong repetitions �equal adjacent

substrings� and showed how to construct an in�nitely long string on an alphabet

of only three letters with no strong repetitions� �Other constructions on three

letters have been discovered several times since� most recently by Dekking �D�
�

and Pleasants �P�	� � the latter lists several references to earlier constructions��

More recently� Erd�os �E
�� p� ��	� considered �Abelian squares� �what we call weak

repetitions� adjacent substrings that are permutations of each other�� and asked

what was the minimum size of alphabet on which in�nitely long strings with no

weak repetitions could be constructed� In �
�	 Pleasants �P�	� gave a construction

on an alphabet of �ve characters� and Ker�anen �K
�� has very recently found a best

possible construction on only four characters�
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It has been only in the last �� years or so� with the increased modern empha�

sis on algorithms� that a problem more in the spirit of computer science has been

considered� how to compute �e�ciently� all the repetitions in a given string x of

length n� It might be supposed that in the worst case such a computation would

require time ��n��� since it can easily be seen that the string x � an contains

bn���c strong �also weak� repetitions� �For example� a� contains �ve distinct rep�

etitions aa� three distinct repetitions a�a�� and one repetition a�a��� However� in

�
�� Crochemore �C���� using a clever encoding of repetitions �see the next section��

devised a ��n log n� algorithm to compute all the strong repetitions in a string x

de�ned on an ordered alphabet� Crochemore also showed that� in his encoding� a

Fibonacci string of length n contains ��n log n� repetitions� so that� at least with

respect to his encoding� his algorithm was �optimal�� Somewhat later� two other�

quite di�erent� algorithms for computing all the strong repetitions were published

�AP��� ML���� both also requiring ��n log n� time� but now over an arbitrary al�

phabet�

This paper discusses� apparently for the �rst time� the computation of all the

weak repetitions in x� This problem generalizes and includes the corresponding

strong repetitions problem� since every strong repetition is also a weak one� In Sec�

tion � we introduce some notation and terminology� in particular another encoding

�called the R�encoding� which appears to be more natural for weak repetitions� In

Section � we then describe an algorithm for computing all the weak repetitions in x�

this �obvious� algorithm executes in time ��n�� on all strings of length n� In Sec�

tion �� the main part of the paper� we show that� in the R�encoding� the Fibonacci

string contains ��n�� weak repetitions� further that� in Crochemore s encoding�

another simple string contains ��n�� weak repetitions� With respect to known en�

codings� therefore� we conclude that the computation of all weak repetitions is a

��n�� problem� A �nal section gives some brief concluding remarks�

� TERMINOLOGY � NOTATION

Let A denote a �possibly in�nite� set of distinct elements ai� i � �� �� � � � � � which

are not required to be ordered� We call A an alphabet and its elements letters� Let

A� denote the set of all concatenations of elements of A� and let A� � f�g � A��

where � denotes the empty element� The elements of A� are called strings� and a

string x of length jxj � n � � is written x � x�x� � � � xn� where each xi � A� If
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x � uv� then u is said to be a pre�x and v a su�x of x� For any positive integer k�

a concatenation of k identical strings u is written uk�

A string x is said to be strongly periodic of order k if there exists an integer k � �

and a string u � A� such that x � uk� Similarly� x is said to be weakly periodic of

order k if there exists k � � and u� � A� such that x � u�u� � � � uk� where each ui�

� � i � k� is a permutation of u� �that is� a concatenation of the same elements of

A� but not necessarily in the same order�� When k � � in these de�nitions� x is said

to be a strong �respectively� weak� square� If x is not strongly �respectively� weakly�

periodic of any order k� then we shall say that x is strongly �respectively� weakly�

primitive� If there exists a strongly �respectively� weakly� periodic string w such

that x � uwv for some strings u� v � A�� then w is said to be a strong �respectively�

weak� repetition in x� The following observations are immediate consequences of

these de�nitions�

! if x is strongly periodic of order k� then x is weakly periodic of order k�

! if x is weakly primitive� then x is strongly primitive�

! if x is strongly �respectively� weakly� periodic of order k and k� j k� then x is

strongly �respectively� weakly� periodic of order k��

! the number of weak repetitions in x is at least as great as the number of strong

repetitions in x�

Consider some examples on the alphabet A � fa� bg� x � abaababa is weakly

primitive� therefore strongly primitive� x � abbaabba is weakly periodic of order

�� hence weakly periodic of order �� and is also strongly periodic of order �� x �

bbaababa is strongly primitive and weakly periodic of order �� x � abbabababaab

is weakly periodic of order 
� hence weakly periodic of orders � and �� The string

x � abbaba contains strong �hence weak� repetitions b� and �ba�� and� in addition�

the weak repetitions �ab��ba� and �ab��ba��ba�� as we have seen� the string x � an

contains exactly bn���c strong �hence weak� squares�

Observing that it su�ces to compute maximum�length repetitions of primitive

substrings� Crochemore �C��� improves the de�nition of strong repetition as follows�

Suppose there exist an integer k � �� strings u and v� and a nonempty strongly

primitive string z such that x � uzkv and z is neither a su�x of u nor a pre�x of v�

Then the strong repetition zk is uniquely speci�ed by the triple �juj"�� jzj� k�� where

juj " � gives the position of the repetition� jzj its period� and k its order� Clearly

the collection of all such triples for a given string x speci�es the strong repetitions
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of x� we call this collection the C�encoding of the strong repetitions and denote it

C�x�� With the obvious adjustments� a C�encoding of the weak repetitions can be

de�ned in a similar way� Observe that for the string x � an� C�x� �
�

��� �� n�
�

for both strong and weak repetitions� thus all the repetitions in x� including the

bn���c squares� are described by a single triple�

Other encoding schemes are possible for strong#weak repetitions� For instance�

one may think of the cth position of x as a centre of strong#weak squares of various

lengths� then if a substring

x�c�px
�
c�p � �xc�pxc�p�� � � �xc����xcxc�� � � �xc�p��� ���

were a strong#weak square of period p � pc � minfc� �� n � c " �g centred at c�

it could be encoded by the pair �c� p�� Clearly a collection of all such pairs �c� p�

could be used to specify all the repetitions of x� This collection can be further

compressed by taking advantage of cases where� for given c� the periods p fall into

ranges of acceptable values� thus� for p� � p�� the pairs �c� p��� �c� p�"��� � � � � �c� p��

may be expressed as a range triple �c� p�� p��� A collection of such triples identifying

all squares in x is called an R�encoding of the repetitions and denoted R�x�� For

the string x � an� for example� a minimum�cardinality R�encoding is given by

R�x� �
�

�c� �� pc�� c � �� �� � � � � n
�

� of cardinality n� ��

In �C��� it was shown that� for Fibonacci strings fi� i � 	� �� � � � � � and for strong

repetitions�

jC�fi�j � ��Fi log Fi��

where Fi denotes jfij� �Fibonacci strings are de�ned on A � fa� bg as follows�

f� � b� f� � a� for every i � �� fi � fi��fi���� It follows then that� with respect

to the C�encoding� the algorithms which compute strong repetitions in O�n log n�

time are asymptotically optimal� In this paper we consider both the C�encoding

and the R�encoding for weak repetitions� and exhibit classes of strings of length n

such that both encodings necessarily contain ��n�� elements� thus algorithms� such

as the one described in Section �� which compute weak repetitions in O�n�� time�

are also� with respect to known encodings� asymptotically optimal�

� A WEAK REPETITIONS ALGORITHM

Here we outline a simple ��n�� algorithm �called Algorithm A� which computes

a minimum�cardinality R�encoding of the weak repetitions in a given string x �
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x�x� � � �xn� We suppose that x contains exactly m distinct letters� which we denote

by �i� i � �� �� � � � �m� Clearly m � n� The algorithm considers in turn each

potential centre c � �� �� � � � � n of x to determine every integer p � ��� pc� such that

the pair �c� p� encodes a weak repetition� Recall that pc � minfc� �� n� c" �g�

Algorithm A makes use of two O�n� integer arrays� $�	��m� and INDEX����n��

For i � �� �� � � � �m� $�i� is used as a counter of the number of occurrences of �i� each

occurrence to the left of c is counted with a decrement of �� while each occurrence

to the right is counted with an increment of �� $�	� is used as a �global� counter�

as we shall see� $�	� � 	 if and only if a weak repetition has been found�

The array INDEX is used to specify positions in $� according to the following

rule�

INDEX�j� � i�	 xj � �i�

Thus $
�
INDEX�j�

�
is the counter corresponding to xj � and so INDEX e�ectively

replaces x� which is not mentioned at all in the main part of the algorithm�

The replacement of x by INDEX is performed in a preprocessing phase� Where x

is de�ned on an arbitrary alphabet A� this replacement requires time O�n��� if A is

totally ordered� the replacement can be e�ected �using a search tree� for example�

in time O�n log n�� if A is �xed and �nite� conversion reduces to an O�n� table

lookup procedure�

Corresponding to each potential centre c � �� �� � � � � n� Algorithm A computes

a linked list L consisting of all ranges �p�� p�� such that for every p � �p�� p��� �c� p�

encodes a weak square� To accomplish this� the algorithm �rst initializes L to a

single entry ��� pc� and then updates L by eliminating ranges which cannot give rise

to weak repetitions� After all updates to L have been made� therefore� L consists

of exactly those ranges of values of p which do give rise to weak repetitions� Over

all possible values of c� the aggregate of these lists is equivalent to a minimum�

cardinality R�x�� and since L can contain at most dpc��e elements� it is clear that

jR�x�j � O�n��� Moreover� since the algorithm handles the update of L without

backtracking � that is� in monotone increasing order of p �� it follows that� for

each c� update of L requires time O�n� and� over all values of c� time O�n���

Corresponding to each potential centre c � �� �� � � � � n� Algorithm A �rst initial�

izes all counters to zero� initializes L� and then� for each integer p � �� �� � � � � pc�

decrements the counter $
�
INDEX�c�p�

�
and increments $

�
INDEX�c"p���

�
� The

entire processing for each centre c is as follows�
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initialize all counters to zero� L
 ��� pc��

for p
 � to pc do

i
 INDEX�c� p�� $�i� 
 $�i�� ��

if $�i� � 	 then

$�	� 
 $�	�� �

else

$�	� 
 $�	� " ��

i
 INDEX�c " p� ��� $�i� 
 $�i� " ��

if $�i� � 	 then

$�	� 
 $�	�� �

else

$�	� 
 $�	� " ��

if $�	� �� 	 then

delete p from L�

It is easy to see that $�	� � 	 after the processing for the current value of p if

and only if �c� p� encodes a weak square� Over all values of c and p� the interior of

the for loop for p will be executed once for each of exactly bn���c position pairs

c� p and c " p � �� it follows that Algorithm A requires ��n�� time� As we have

seen� the additional space required for Algorithm A consists of L� $ and INDEX�

and is thus ��n��

As an example of the operation of this algorithm� suppose

x � f� � abaababaabaab

and consider c � � �so that pc � 
�� Then only for p � � and p � � does it

occur that $�	� �� 	� for p � �� L becomes
�

��� 
�
�

and for p � �� L becomes�
��� ��� ��� 
�

�
� Thus the elements of R�x� which are output corresponding to c � �

are ��� �� �� and ��� �� 
��

The algorithm described here is an �obvious� algorithm� but it does not appear

to be easy to improve on� We have devised two other algorithms as follows�

! Algorithm B� which� for each potential centre c� eliminates periods p from L

which are inconsistent with the distribution of each individual letter �i in x�

! Algorithm C� which� for each c� eliminates from L all periods p which are in�

consistent with a �balance� between pairs of letters found close to position c in

x�



	

Neither of these algorithms can guarantee that backtracking will not occur in

the update of L� and so each executes in time O�mn��� However� since it would not

always be necessary to test all pairs of positions in x� it was expected that in many

cases these algorithms would execute more quickly than Algorithm A� Timed runs

of all the algorithms on long repetition�free and repetition�dense strings have not

supported this expectation �TT
��� Algorithms B and C both appear to execute

much more slowly on average than Algorithm A�

� DISCUSSION OF COMPLEXITY

In this section we show that for Fibonacci strings fn� jR�fn�j � ��F �
n�� and also

that for the strings gn � �aababbab�n of length �n� jC�gn�j � ��n��� We conclude

then that Algorithm A is asymptotically optimal over the C� and R�encodings of

the output�

We consider �rst gn � �aababbab�n � a string of length Gn � �n� In particular�

we consider the weak repetitions of gn as expressed in the C�encoding� indeed� we

initially con�ne our attention to those repetitions �i� p� k� where i � � �mod �� and

p � � �mod ��� We show �rst that for this special class of weak repetitions� it must

be true that k � �� and hence that there exist exactly
�
n��
�

�
of them�

Observe �rst that for i � � �mod ��� gn�i� � a� Observe also that gn may be

written in the form

a�abab��baba��abab��baba� � � � �abab�bab�

so that for p � �� �� 
� � � � � there exists a weak square �in fact a palindrome�

a�ababbaba��p����	a� ���

provided that

i " �p� � � �n� ���

We see that each component of each square ��� necessarily contains �p " ���� a s

and �p � ���� b s� that is� an excess of a s over b s of one� Furthermore� each such

square is followed by substrings b� ba� bab� babb � � � � each of which will contain at

least as many b s as a s� Thus no squares ��� can be extended to cubes� from which

we conclude that k � ��






We wish now to count the number of occurrences �n of the weak squares �i� p� ��

in gn� From ��� it follows that p � ��n� i " ����� so that

�n �

n��X
i���
�

�
n�i�����X
p���	�

�

�

n��X
i���
�

�n� �i � �����

� n� �
nX

i��

�i� ��

�

�
n " �

�

�
�

Essentially the same argument� with the roles of a and b reversed� shows that for

i � � �mod �� and p � � �mod �� there are another
�
n��
�

�
weak squares �i� p� ���

Similarly� the cases i � � �mod �� and i � � �mod �� with p � � �mod �� add an

additional
�
n��
�

�
and

�
n
�

�
weak squares� respectively� Thus the total number of weak

repetitions in the C�encoding for odd positions i of gn is �
�
n��
�

�
"
�
n
�

�
� �n� " n�

We have then

Theorem �� jC�gn�j � ��G�
n�� �

In fact� it is also true for the R�encoding that jR�gn�j � ��G�
n�� But it turns

out in this case� due to the regularity of gn� that a very slight modi�cation of the

R�encoding can be used to reduce the output required to ��Gn�� The modi�ca�

tion required is to replace the triples �c� p�� p�� of the R�encoding by quadruples

�c� p�� d� k� representing the squares

�c� p��� �c� p� " d�� � � � � �c� p� " �k � ��d��

Therefore� in order to establish more clearly that the R�encoding requires in the

worst case output quadratic in the length of the string� we consider next the Fi�

bonacci string fn and show that jR�fn�j � ��F �
n��

The Parikh or frequency vector of a string x � x�x� � � � xn over an alphabet A is

an integer vector 	�x� of length 
 � jAj� where the ith element 	�x��i� counts the

number of occurrences in x of the ith element of A� �For example� if A � fa� bg�

then 	�a� � ��� 	� and 	�b� � �	� ���� For strings x�y over A� it is easy to see that

	�xy� � 	�x� " 	�y��



�

Observe also that xy is a weak square if and only if 	�x� � 	�y�� so that in such a

case 	�xy� � �	�x�� We state a special case of an important lemma on Sturmian

strings which will be useful later�

Lemma �� Let u and v denote any two substrings of equal length of a Fibonacci

string� Then 	�u�� 	�v� can only take one of the values �	� 	�� ���� ��� �������

Proof� See �BS
��� �

Let ws�x� denote the number of weak squares
�
of the form �c� p�

�
in a string

x� We now turn our attention to the estimation of ws�fn�� Clearly ws�fn� �

jR�fn�j� In order to estimate more precisely� consider the two�dimensional array

T � T ����Fn� ���Fn� formed by applying the following rule�

T �c� p� � �� if fn contains a weak square �c� p��

� 	� otherwise�

Recall from Section � the de�nition of pc� which for Fibonacci strings we modify to

pc � minfc� �� Fn � c " �g�

Then clearly for every p � pc� T �c� p� � 	� so that row c of T contains at most pc

nonzero entries and column p is all zeros for every p � Fn��� Observe also that for

integers p such that � � p � Fn��� column p of T contains at most Fn � �p " �

nonzero entries� Since the number of weak squares is just the number of ones in T �

we can then easily compute a crude upper bound for ws�fn��

Lemma �� ws�fn� � bF �
n��c�

Proof� The upper bound is just the sum of the possibly nonzero entries in the

columns of T � When Fn is even� this sum is

�Fn � �� " �Fn � �� " � � �" � � F �
n���

and when Fn is odd� the sum is

�Fn � �� " �Fn � �� " � � �" � � �F �
n � �����

Both these sums reduce to bF �
n��c� �

Obviously� the upper bound in Lemma � is far from being best possible� For

example� f
 has length F
 � �� and contains ��
 weak squares� but the bound



��

provided by Lemma � is ��
� In order to compute more precise bounds on ws�fn��

we consider now what may be called the diagonals of the array T� These are ordered

collections of the values of all those positions in T which may possibly take the value

�� they are de�ned as follows�

Dc �
�
T �c� c� ��� T �c" �� c� ��� � � � � T ��c� �� ��

�
� ���

where c � �� �� � � � �M � with M � dFn��e if Fn is odd and dFn��e " � otherwise�

and

D�

c �
�
T �c" �� c� ��� T �c " �� c� ��� � � � � T ��c� �� ��

�
� ���

for c � �� �� � � � � dFn��e� The collections Dc and D�

c are interleaved cross�diagonal

entries that together �ll a triangle of T whose sides are the �rst column� the main

cross�diagonal� and the �rst diagonal below the main diagonal� Observe that jDcj �

jD�

cj � c��� From now on we shall treat the Dc and D�

c simply as strings of length

c� � de�ned on the alphabet A � f	� �g�

The following lemma shows that adjacent positions in any Dc or D�

c can be both

zero or both one only if the substring aa occurs at a speci�ed location in fn� This

will pave the way for showing that approximately half of the entries in each Dc or

D�

c are ones� hence that the number of weak squares in fn is order F �
n�

Lemma �� Suppose x is any Fibonacci string� For integers c � ��� Fn � �� and

p � ��� pc�� let h� � T �c� p� and h� � T �c"�� p��� denote adjacent positions in some

diagonal Dc or D�

c of the array T � Then h� � h� if and only if xc�p � xc�p�� � a�

Proof� Let q denote the Parikh vector of xc and let q� denote the Parikh vector

of xc�pxc�p��� Observe that q � �	� �� or ��� 	� and that� since b� never occurs

in any Fibonacci string� q� �� �	� ��� It follows that q� � ��� 	� if and only if

xc�p � xc�p�� � a� Recall the notation x�c�p and x�c�p introduced in ���� Now let

�� � 	�x�c�p� � 	�x�c�p�� �
�

�� � 	�x�c���p��� � 	�x�c���p���� ���

and observe by Lemma � that �� and �� can assume only the values �	� 	�� �������

or ���� ��� From �
� it follows that

	�x�c���p��� � 	�x�c�p� � q�

	�x�c���p��� � 	�x�c�p� " �� " q � q��



��

and so ��� implies that

q� � ��� � ��� " �q� ���

First consider the case h� � h� � �� that is� �� � �� � �	� 	�� Then ��� implies

that q� � �q and� since q� �� �	� ��� it follows that q� � ��� 	��

Next suppose that h� � h� � 	� so that neither �� nor �� can equal �	� 	�� Then

if �� � ��� ��� tells us again that q� � ��� 	�� while otherwise �� � ���� so that ���

reduces to q� � ���� " q�� once more implying that q� � ��� 	��

Conversely� when h� � � and h� � 	� it follows from ��� that q� � �q� ��� where

�� � ���� �� or ������� this equality can hold only if q� � ��� ��� We reach the same

conclusion in the case h� � 	� h� � �� Since all possibilities have been considered�

the result is proved� �

Lemma �� Suppose x is any Fibonacci string� Let d denote any bit string ���

or ��� of length c� � corresponding to x� and suppose that 	�d� � �i� j�� where i

counts the frequency of zeros and j the frequency of ones� Then

�a� j � i " � if and only if c is even and

x�c���c��x
�
c���c�� � x�x� � � �x�c��

has su�x aa�

�b� i � j " � if and only if c is odd and x�c���c��x
�
c���c�� has su�x aaba�

�c� j � i � j " �� otherwise�

Proof� Suppose �rst that d � Dc for some valid integer c� To exclude trivial cases�

suppose that c � �� Then the c� � entries dh� h � �� �� � � � � c� �� in d are � or 	

according as the c� � substrings

x�c�c��x
�
c�c�� � �x�x� � � � xc����xc � � � x�c���

x�c���c��x
�
c���c�� � �x�x	 � � �xc��xc�� � � � x�c���

���

x��c����x
�
�c���� � x�c��x�c��

are squares or not� respectively� Observe that dh � T �c " h� �� c� h�� Therefore�

by Lemma �� consecutive entries dh and dh��� � � h � c � �� are unequal if and



��

only if x�h�� �� x�h� Thus consecutive entries in d %ip%op �from 	 to �� or from �

to 	� as determined by the �rst c� � pairs of entries in x�

x�x�� x�x	� � � � � x�c�
x�c�	�

Consider the case in which one of these pairs is aa� Occurrences of aa cannot exist

either at the beginning or at the end of x� and in fact must always be embedded

in substrings x� � abaaba� that is� preceded by a pair ab and followed by a pair

ba� Thus� except in the case that the substring x� in question is a terminating

substring �su�x� of x�c�c��x
�
c�c�� � x�x� � � �x�c��� the entries in d corresponding to

x� must be either �		� or 	��	� depending on whether or not the substring marks

the beginning of a square in x� In each of these cases� the number of zeros equals

the number of ones� and the �nal entry equals the initial one� Since pairs in x which

are not aa must be either ab or ba� each of which causes a %ip%op in d� it follows

that� except when x� is a su�x� the number of ones and the number of zeros in d

can di�er by at most one� In particular� for any even position h � c� ��

	�d�d� � � � dh� � �h��� h���� �
�

a fact used below�

Now consider the case in which x� is a su�x of x�x� � � �x�c��� In this case the

�nal entries in d are either �		 or 	��� But observe in particular that the �nal

entry dc�� in d is determined by whether or not x�c�� � x�c��� that is� whether

or not b � a� Thus dc�� � 	� so that only the case �		 is possible� In this case� if

in addition c is odd� it follows from �
� that 	�d�d� � � � dc��� � � c��
�
� c��

�
�� and so

i � �c " ���� � j " �� �That this case actually arises may be seen by considering

f
 and c � ����

Finally� consider the only remaining case� aa a su�x of x�x� � � � x�c��� This is

the only case in which dc�� � �� and� since aa is always preceded by ab� it follows

that dc�� � 	� Thus when c is odd� 	�d� � � c��� � c��� �� while when c is even�

	�d� � � c� � �� c� �� so that j � i " ��

Thus the result is proved for d � Dc� An almost identical argument establishes

the result also for d � D�

c� �

We remark now that in the strings Dc and D�

c� every instance in which case �a�

of Lemma � holds is matched by an instance of case �b�� and vice versa� That is� c is

odd and x�x� � � �x�c�� has su�x aaba if and only if c� � is even and x�x� � � � x�c�	



��

has su�x aa� It follows that in counting the cumulative frequency of ones in the

Dc and in the D�

c� we can simply ignore cases �a� and �b�� and count b�c � ����c

ones in each of these strings� The total number of ones in T is then just the sum

of b�c � ����c over all strings Dc and D�

c� where c takes the values speci�ed in ���

and ���� For example� for Fn � � �mod ��� it is not di�cult to compute that

ws�fn� �

�Fn����	X
k��

k

� �F �
n � �Fn � �����

Similar calculations may be carried out for Fn � 	� �� � �mod ��� yielding

Theorem �� ws�fn� � �F �
n � �Fn " q���� where

�a� q � 	 if Fn � 	 �mod ���

�b� q � � if Fn � � �mod ���

�c� q � �� if Fn � � �mod ��� �

This result speci�es the number of weak squares �c� p� in fn� However� the

question remains whether� by encoding every collection �c� p��� �c� p�"��� � � � � �c� p��

of weak squares as a single triple �c� p�� p��� an algorithm could perhaps run faster

than O�F �
n�� that is� in time proportional to something less than the square of the

string length� For example� in f� the weak repetitions can be encoded by only

�	 triples� ��� �� ��� �
� �� ��� �
� �� ��� ��� �� ��� ��� �� 
�� �
� �� ��� �
� �� ��� ��	� �� ���

���� �� ��� ���� �� ��� Without the use of the triples� �� pairs �c� p� would be required�

Observe that any one of these output triples� say �c� p�� p��� corresponds to a

sequence� or run� of one or more consecutive ones in row c of the matrix T � specif�

ically�

T �c� p�� � T �c� p� " �� � � � � � T �c� p�� � ��

where T �c� p� " �� � 	 and also

p� � � �	 T �c� p� � �� � 	�

Thus whenever 	� occurs in row c of T � a run �triple� is beginning� and whenever

�	 occurs� a run �triple� is ending� Therefore� to determine a lower bound on the

number of output triples� we may count the occurrences of 	� or of �	� As it turns

out� it is convenient �and su�cient� to count the total occurrences of both 	� and

�	� and then divide by two� the following technical lemma provides the basis for

doing this�



��

Lemma �� Let x denote any Fibonacci string� and let i � � and j � i " � denote

any two nonadjacent positions in x such that j � i is odd� Let

c � �i " j " ����� p � �j � i� �����

Then T �c� p� � T �c� p " �� if and only if xi � xj �

Proof� Since the occurrences are nonadjacent� and since j�i is odd� it follows that

a substring w of even length lies between positions i and j� In fact� w � x�c�px
�
c�p�

where c and p are as de�ned in the statement of the lemma�

Suppose �rst that xi � xj � and consider the case in which w is a weak square�

Then T �c� p� � �� But since xi � xj � it follows that T �c� p " �� � � also� Similarly�

when w is not a weak square� it is clear that T �c� p� � T �c� p " �� � 	�

Conversely� suppose that T �c� p� � T �c� p" ��� If w is a weak square� then we see

that xiwxj must be also� and so we conclude that xi � xj � Similarly� if w is not a

weak square� then neither is xiwxj � and so it follows from Lemma � that� in this

case also� xi � xj � �

Lemma � tells us that by counting all the pairs �i� j�� j� i � �� for which xi �� xj

and j � i is odd� we will identify all cases in which T �c� p� �� T �c� p " ��� that is�

all occurrences of 	� �beginning of a run of ones� and of �	 �end of a run of ones�

in the triangle of T determined by the strings ��� and ���� These occurrences do

not include all beginnings and all ends of runs� speci�cally excluded are beginnings

of runs for which p � � �corresponding to occurrences of aa in x� and endings of

runs for which p � pc� Thus the number of pairs �i� j� is only a lower bound on the

number of runs� nevertheless� as we shall now show� this number is ��jxj���

Suppose that some Fibonacci string fn is given� n � �� It is easy to show that b

occurs Fn�� times in fn� and so it follows that there are Fn�� occurrences of a� Let

m � � denote the number of b s at odd positions of fn� then Fn���m b s occur at

even positions� Note that there are dFn��e odd positions and bFn��c even positions

in fn� Hence there are dFn��e�m a s at odd positions and bFn��c�Fn�� "m a s

at even positions�

To simplify the computation a little� let us assume that n is odd� so that fn

ends in a and every occurrence of b has exactly two neighbouring occurrences of a�

It is these two neighbouring occurrences that are excluded by the �nonadjacent�

condition of Lemma �� Then over all b s occurring at odd positions� the total
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number of nonadjacent pairs with a s occurring at even positions is given by

m
�
bFn��c � Fn�� "m� �

�
�

Similarly� the total number of nonadjacent pairs corresponding to b s at even posi�

tions and a s at odd positions is

�
Fn�� �m

��
dFn��e �m� �

�
�

Then jR�fn�j� the total number of runs of ones in T � is at least

�

�

n
m
�
bFn��c � dFn��e � Fn�� " �m

�
" Fn��

�
dFn��e �m� �

�o

�
�

�

�
Fn���Fn��� ���m��Fn�� � �m " ��

�
� m� � �Fn�� " ��m " Fn���Fn��� ����

� g�m��

The function g�m� achieves its minimum value if

dg�m�

dm
� �m� �Fn�� " �� � 	�

that is� if m � �Fn�� " ����� In this case�

g�m� �
�
Fn���Fn�� � 
� � �

�
���

Since Fn�� � Fn��� it follows that for su�ciently large n� g�m� � F �
n��
� and

hence that jR�fn�j � ��F �
n�� Since jR�fn�j � ws�fn�� so that by Theorem �

jR�fn�j � O�F �
n�� we have thus proved

Theorem �� jR�fn�j � ��F �
n�� �

In fact� it appears that� making use of more precise calculations� it is possible to

establish that jR�fn�j 
 ws�fn����

� CONCLUDING REMARKS

In this paper we have presented a simple ��n�� algorithm for �nding all the

weak repetitions in a given string x of length n� We have shown that this algorithm

is optimal over known encodings of the output� in the course of doing so� we have

derived an exact expression for the number of weak squares in a Fibonacci string�
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We remark that the methodology used to count weak squares and weak repetitions

in Fibonacci strings may also have applications to similar counting problems on

other strings�

The results of this paper suggest� but do not clearly establish� that the compu�

tation of the weak repetitions in x is an ��n�� problem� To prove this conjecture� it

would be necessary to �nd an information�theoretic argument that would show that

��n�� processing steps are required in the worst case� In fact� an even stronger re�

sult has been proved for the strong repetitions problem �ML���� Main and Lorentz

show that� over a possibly in�nite alphabet� ��n log n� time is required to determine

whether or not x contains a strong repetition� We give here a somewhat di�erent

proof which applies also to weak repetitions�

For a string x of length n� suppose that n � �k for some positive integer k�

and suppose further that the letter xn�� does not appear in xn����xn���� � � � xn�

Suppose in fact that this property applies recursively to substrings of x of length

�k��� �k��� � � � � �� It follows then that any weak �or strong� repetition in x occurs

either in the substring x�x� � � �xn�� or in xn����xn���� � � �xn� In order to verify this

fact� it is both necessary and su�cient to perform n�� comparisons of xn�� against

xn����� xn����� � � � � xn� Let c�n� denote the number of comparisons required to

perform the veri�cation� Then

c�n� � �c�n��� " n���

a recurrence relation which can easily be solved� using the initial condition c��� � 	�

to yield

c�n� �
n

�
log� n�

Hence

Theorem �� Let x be a string of length n� The time required to determine whether

or not x contains a �strong or weak� repetition is ��n log n�� �

It appears likely that for weak repetitions the lower bound of Theorem � can

be increased to ��n��� If so� then it would follow that any other weak repetitions

algorithms would necessarily require ��n�� time�
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