

MURDOCH RESEARCH REPOSITORY

This is the author’s final version of the work, as accepted for publication
following peer review but without the publisher’s layout or pagination.

The definitive version is available at :

http://dx.doi.org/10.1016/S0304-3975(96)00141-7

Iliopoulos, C.S., Moore, D. and Smyth, W.F. (1997) A characterization of the
squares in a Fibonacci string.

Theoretical Computer Science, 172 (1-2). pp. 281-291.

http://researchrepository.murdoch.edu.au/27529/

Copyright: © 1997 Elsevier B.V.
It is posted here for your personal use. No further distribution is permitted.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Research Repository

https://core.ac.uk/display/77135463?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1016/S0304-3975(96)00141-7
http://researchrepository.murdoch.edu.au/27529/

A characterization of the Squares in

a Fibonacci string

Costas S� Iliopoulos

Dept of Computer Science

King�s College London

London WC�R �LS

England �

Curtin University

csi�dcs�kcl�ac�uk

Dennis Moore

School of Computing

Curtin University

GPO Box U ����

Perth 	

�

Australia

moore�cs�curtin�edu�au

W� F� Smyth

Dept of Comp� Sci� � Systems

McMaster University

Hamilton

Canada L�S �K� �

Curtin University

smyth�mcmaster�ca

Abstract

A ��nite� Fibonacci string Fn is de�ned as follows� F� � b� F� � a�
for every integer n � 	� Fn � Fn��Fn��
 For n � �� the length of Fn is
denoted by fn � jFnj
 The in�nite Fibonacci string F is the string which
contains every Fn� n � �� as a pre�x
 Apart from their general theoretical
importance� Fibonacci strings are often cited as worst case examples for
algorithms which compute all the repetitions or all the �Abelian squares in

a given string
 In this paper we provide a characterization of all the squares
in F � hence in every pre�x Fn� this characterization naturally gives rise to
a ��fn� algorithm which speci�es all the squares of Fn in an appropriate
encoding
 This encoding is made possible by the fact that the squares of Fn

occur consecutively� in �runs� the number of which is ��fn�
 By contrast�
the known general algorithms for the computation of the repetitions in an
arbitrary string require ��fn log fn� time �and produce ��fn log fn� outputs�
when applied to a Fibonacci string Fn

Keywords Combinatorial algorithms� string algorithms� lower bounds

� Introduction

Fibonacci numbers and strings have been studied extensively over the years
�see ������
 Here we are interested in the Fibonacci numbers and strings as
a tool used in the design and analysis of algorithms
 There is a plethora of
algorithms whose analysis makes use of Fibonacci numbers� e
g
� searching�
sorting� hashing� random number generation� Euclid�s gcd computation� etc

����
 Fibonacci strings are often cited as worst case examples for algorithms in
string pattern matching �e
g
� the Knuth�Morris�Pratt algorithm� the Boyer�
Moore algorithm� the Aho�Corashic automaton ���� and in string statistics
�computing all the repetitions ���� computing all the �Abelian squares ����

A ��nite� Fibonacci string Fn is de�ned as follows� F� � b� F� � a� for
every integer n � 	� Fn � Fn��Fn�� �see Figure ��
 For n � �� the length
of Fn is denoted by fn � jFnj� while it is convenient to de�ne f� � �
 The
in�nite Fibonacci string F is the string which contains every Fn� n � �� as a
pre�x

Furthermore� if a given string x de�ned on an arbitrary alphabet A can
be written in the form x � yukz for some integer k � 	� some �possibly
empty� strings y and z� and some nonempty string u� then uk � uu � � �u �k
times� is said to be a repetition in x
 If in particular k � 	� the repetition is
called a square
 Thus� for example� the string x � ababcacacaab de�ned on
A � fa� b� cg contains the repetition �ca�� and the squares �ab��� �ac��� and
a�
 The study of repetitions in strings is motivated by the equivalent prob�
lem� encountered by molecular biologists� of automatically detecting repeated
regions �with errors� in DNA and protein sequences �see �����

	

There exist three well�known algorithms �	������ for �nding all the repe�
titions in a given string x � x����jxj�
 Each of these algorithms is asymptoti�
cally optimal� executing in time ��jxj log jxj�� which is also the time required
���� merely to recognize whether or not x contains a repetition
 Indeed� the
execution time achieved by the three algorithms depends on an encoding of
repetitions in triples �i� p� k� denoting

x�i��i � kp� �� � x�i��i � p� ��k�

where it is required that the substring x�i��i�p��� be primitive� that is� not
itself a repetition � x�i��i�j��� denotes the substring x that starts at position
i and has length j
 It is easy to see that� without this primitivity requirement�
the straightforward reporting of distinct squares in a given string x might
require as many as ��n�� outputs� for example� x � an contains bn���c
distinct squares but it can be encoded in only one triple ��� �� n�
 Thus� the
encoding of the output is of critical importance to the performance of the
algorithms

In ��� it is shown that� in terms of the �i� p� k��encoding� Fibonacci strings
Fn give rise to ��fn log fn� distinct repetitions� and so in some sense represent
a worst case� both for these algorithms and for this encoding
 It is not shown�
however� whether or not there might exist some other encoding of repetitions
which would� at least for Fibonacci strings� perhaps for all strings� make it
possible to produce an asymptotically smaller amount of output

Fibonacci strings also represent a worst case for other algorithms dealing
with generalized repetitions
 Cummings and Smyth ��� have shown that Fn

contains ��f �n� �weak repetitions �Abelian squares�� and it turns out also
that the �covers ��������� of a circular Fibonacci string are of cardinality
��f �n�

In Section 	 of this paper we provide a complete characterization of the
squares in Fibonacci strings� in particular� we show that they occur in �runs
at adjacent positions of F � where each run consists of cyclic rotations of some
Fibonacci string Fk� k � �
 In Section � we show that the number of runs
of squares in a �nite Fibonacci string Fn is ��fn�� and so we are able to
describe a simple linear �in terms of fn� algorithm� executing in ��fn� time�
to compute all of them

This algorithm depends on a slightly modi�ed encoding of the output
which reports runs of squares using only a single triple of integers
 This al�
gorithm can only be said to compute all the squares of Fn� if the user is willing

�

to accept the encoding of squares into runs R as an appropriate response to a
query
 It thus remains an open question� of considerable theoretical interest�
whether or not there exist classes of strings x that give rise to ��jxj log jxj�
distinct repetitions over all �appropriate encodings of the output
 Another
interesting open problem is whether there exist classes of strings x for which
the size of the encoding �runs� studied in this paper is more than O�jxj�

� Characterizing the squares

In this section we adopt a four�stage approach to characterizing all of the
squares in F �

�i� By expressing F only in terms of Fn and Fn��� we identify the positions
of squares of the form F �

n � n � �� 	� � � � � �Theorem 	
���

�ii� We show that in the �rst stage we have identi�ed all the squares of the
form F �

n �Theorem 	
	��

�iii� We quote a �folklore result �a proof can be found in ����� that for every
square u� in F � u is necessarily a cyclic rotation of some Fn �Theorem
	
���

�iv� We exhibit all the squares in F as elements of �runs� where the be�
ginning of each run is determined by one of the squares F �

n �Theorem
	
��

To begin the �rst stage� we generalize the de�nition of a Fibonacci string

Let F �x� y� denote the in�nite Fibonacci string on the �alphabet fx� yg�
where now x and y denote arbitrary strings on any alphabet
 �In fact� as we
shall see below� we even allow x and y to be integers
� In the sequel� we will
consider x and y either as letters of an alphabet or as strings� whenever
ambiguity arises� we explicitly state which of the two interpretations is used

Then

F �x� y� � xyxxyxyxxyxxyxyx � � �
and� in particular� F �a� b� � F � the �ordinary in�nite Fibonacci string
de�ned above
 The notation Fn�x� y� is similarly de�ned in the obvious way

�

Lemma ��� For every integer n � � and all strings x� y� Fn���x� y� �
Fn�xy� x��

Proof Observe that the result holds for n � �� ��

F��x� y� � F��xy� x� � x�
F��x� y� � F��xy� x� � xy�

Suppose now that for some integer N � ��

Fn���x� y� � Fn�xy� x�� n � �� �� � � � � N�

Then
FN���x� y� � FN���x� y�FN�x� y�

� FN �xy� x�FN���xy� x�
� FN���xy� x��

and the result follows by induction
 �

Repeated application of Lemma 	
� leads to an important result �ex�
pressed in another form by Pansiot ������

Lemma ��� For all integers k� n satisfying � � k � n� ��

Fn�k�Fk��� Fk� � Fn�

Proof By successive applications of Lemma 	
��

Fn�k�Fk��� Fk� � Fn�k���Fk� Fk���
� Fn�k���Fk��� Fk���
�

�

�

� Fn�F�� F��
� Fn� �

Of course it is an immediate consequence of this result that� for every integer
n � ��

F � F �Fn��� Fn� � Fn��FnFn��Fn��FnFn��FnFn��Fn��Fn � � � �	���

�

Thus Lemma 	
	 enables us to express any Fibonacci string entirely in
terms of selected Fibonacci substrings Fn�� and Fn� we are able to focus only
on the squares generated by those substrings
 In order to prove our �rst main
theorem� we need one more simple fact�

Lemma ��� For every integer n � 	� F �
n � Fn��Fn���

Proof Follows from rewriting Fn�� � FnFn��
 �

For all nonnegative integers i and n� let �i�n denote the sum of the �rst
i values in F �fn��� fn�
 Then ���n � � for all n and� for example� for n � ��

F �f�� f�� � ������������������ � � � �

so that ���� � �� ���� � �� ���� � 	�� ���� � ��

Based on this notation� it is now possible to specify positions in F where

Fn�� and F �
n occur� later on �Theorem 	
	�� we will show that these positions

are the only positions in F where F �
n occur

Theorem ��� For every integer i � ��
�a� Fn�� � F ��i�n � ����i�n � fn���� n � 	�
�b� F �

n � F ��i�n � ����i�n � 	fn�� n � ��

Proof Observe that since every occurrence of Fn in F �viewed as a string
over fFn� Fn��g� is followed by an occurrence of Fn�� � Fn��Fn��Fn��� there�
fore Fn�� occurs at every occurrence of Fn in F
 Then �a� is an immediate
consequence of Lemma 	
	� it merely says that Fn�� occurs at the beginning
of F and then at displacements of fn�� or fn� depending on whether the
current term in �	
�� is Fn�� or Fn� respectively
 By Lemma 	
� and the
fact that� for n � �� Fn�� is a pre�x of both Fn�� and Fn� we see that these
positions also mark occurrences of F �

n � and so �b� follows
 �

The objection may be raised to Theorem 	
��b� that it is restricted to
the cases n � � and so does not locate squares F �

� � a� and F �
� � �ab��

However� as the next result shows� such squares are implicitly included�

Lemma ��� For n � �� 	� F �
n occurs in F only as a substring of F �

n���

Proof It is straightforward to verify that for n � �� 	� F �
n�� contains F �

n as
a substring
 Since a� does not occur in F � each occurrence of a� in F must

�

always be surrounded by b�s� and so be a substring of baab
 Also� since b�

does not occur in F � each occurrence of b in F must be surrounded by a�s�
so that baab is a substring of abaaba � F �

�
 Similarly for n � 	� it follows
from Lemma 	
	 that F � F �F�� F�� � F �ab� a�� where ab occurs in F �ab� a�
only as the letter ab� as above we have that �ab�� occurs in F only as a
substring of abaababaab � �F��ab� a��

� � F �
�
 �

Thus Theorem 	
� e�ectively allows us to locate occurrences of squares
F �
n for all n � �� we go on now to show that these occurrences are in fact

the only ones in F
 To do so� we introduce the idea of a border of a given
string x� that is� a substring of x which is both a pre�x and a su�x of x

We introduce also an in�nite border array B where� for every nonnegative
integer n� B�n� is the length of the longest border of Fn� then B�n� is the
�failure function ��	� of Fn and� for example� B��� � � corresponding to the
longest border aba of F� � abaababa
 The following result is proved also in
���

Lemma ��� For every integer n � 	� B�n� � fn���

Proof By induction on n
 Observe that the lemma holds for n � 	� �� and
suppose that it holds for every integer � � n � N � �� but not for n � N

Since FN � FN��FN��FN��� it follows that B�N � � fN��
 On the other
hand� since by the inductive hypothesis B�N � �� � fN�� and since for every
integer k � 	� B�k� � B�k � �� � fk��� we see that

B�N � � fN�� � fN�� � fN���

Thus� setting B�N � � fN��� i for some integer i � ���fN��� we observe that�
since FN�� is a pre�x of FN���

F ����i� � F �fN�� � ���fN�� � i� �	�	a�
� F �fN�� � i� ���fN��� �	�	b�
� F �fN�� � ���fN�� � i� �	�	c�
� F �fN � i� ���fN �� �	�	d�

From �	
	c� and �	
	d� we conclude that F ����i� is a border of FN��
 Hence�
by the inductive hypothesis� i � fN��
 From �	
	a� and �	
	b�� however� we
conclude that F ����i� is also a border of FN��
 But this is impossible� since
the �nal letters of FN�� and FN�� are not the same
 Then there can exist
no integer n � N � 	 for which the lemma does not hold
 �

�

The next lemma uses this result to establish an important property of
Fibonacci strings
 Suppose that an arbitrary string x is written in the form
uv� where u �but not v� is possibly empty� then x� � vu is said to be a
rotation of x of degree juj
 For example� the rotations of x � F� � abaab
are abaab� baaba� aabab� ababa and babaa� of degrees � to � respectively
 We
show that a Fibonacci string cannot coincide with any rotation of itself� a
result related to work of de Luca ����

Lemma ��� For every integer n � 	� Fn is not equal to any rotation of Fn

other than itself�

Proof The result holds for n � 	
 Therefore� for some n � � suppose the
contrary� that there exists an integer k � ���fn � � such that

Fn � F ����fn� � F �k � ���fn�F ����k��

But then F ����k� and F �k � ���fn� are both borders of Fn� and one of these
borders has length at least fn�	 � fn��� in contradiction to Lemma 	
�
 �

Theorem ��� For every integer n � �� Theorem ��	�b� speci�es all the
occurrences of F �

n in F �

Proof By Lemma 	
� the result holds for n � �� 	 if it holds for n � �
 But
for n � �� Theorem 	
��b� makes clear that every position in F is included
in some occurrence of F �

n
 Hence any other occurrence of F �
n not speci�ed by

Theorem 	
��b� would require that Fn coincide with a rotation of itself� in
contradiction to Lemma 	
�
 �

As the third stage of our characterization of the squares in F � we quote
a �folklore result �S e ebold provides a proof in ������

Theorem ��� For every nonempty substring u� of F � u is a rotation of Fn

for some n � �� �

Finally� in order to complete the characterization of the squares of F �
we need to de�ne a new encoding
 Suppose that F contains a set of h � �
consecutive squares

R�i� p� h� � f�i� p� 	�� � � � � �i� h� �� p� 	�g�

�

all of length 	p
 We say that R�i� p� h� is a run of squares of length h
 Then
observe that for every integer j � i � ���i � h � �� the square �j� p� 	� is a
rotation of �j � �� p� 	� of degree �� by virtue of the fact that

F �j� � F �j � p� � F �j � 	p��

and so �j� p� 	� is a rotation of �i� p� 	� of degree �j � i� mod p
 For example�
the substring abaabaaba of F contains the run of squares

R��� �� �� � f�aba��� �baa��� �aab��� �aba��g�

where each square in the run is a rotation of degree � of the preceding one

More generally� observe that for n � � every occurrence of

F �

n � ��i�n � �� fn� ��

in F gives rise to a run of squares R��i�n��� fn� fn� corresponding to the fn
rotations of Fn
 Indeed� we have

Lemma ��	 For all integers n � � and i � �� R��i�n ��� fn� fn� is a run of
squares of F if and only if F �i� �� � b�

Proof Observe that F �i � �� � b if and only if F �Fn��� Fn��i � �� � Fn in
the expansion �	
��
 Then

F �Fn��� Fn��i� ���i � �� � FnFn��Fn��

or
F �Fn��� Fn��i � ���i� �� � FnFn��Fn�

In either of these cases� FnFn��Fn is a pre�x of F �Fn��� Fn��i����i���� and
it is straightforward to verify that FnFn��Fn � F �

nFn��Fn��
 This proves
su�ciency

To prove necessity� observe that if F �i � �� � a� F �Fn��� Fn��i � ���i � 	�
has pre�x Fn��Fn� which as we have just seen equals F �

nFn��Fn��
 Since
Fn��Fn�� is a rotation of Fn��� it follows from Lemma 	
� that Fn��Fn�� ��
Fn��� hence that Fn��Fn is not a pre�x of F �

n � F �
nFn��Fn��
 �

More precise information about the runs of squares that occur when F �i�
�� �� b is provided by the following lemma�

�

Lemma ��
 For every integer n � 	� Fn � Fn��Fn�� � � �F�u� where u � ab
if n is even� and u � ba otherwise�

Proof By induction on n
 Observe that the result holds when n � 	� ��
and suppose that it holds for some n � N � 	
 But then� writing FN �
FN��FN��FN��� we see� using the inductive hypothesis� that it must hold
also for n � N
 �

From Lemma 	
� it follows immediately that Fn and its rotation Fn��Fn��

of degree fn�� di�er in precisely the last two positions
 Thus� as we have seen
in the proof of Lemma 	
��

F �Fn��� Fn��i� ���i � 	� � F �

nFn��Fn��

di�ers from F �
nFn�� only in the last two positions whenever F �i � �� � a
 It

follows that in this case R��i�n��� fn� fn����� is the maximal run of squares
of F � F �Fn��� Fn�
 Furthermore� it follows also that none of the positions

�i�n � fn�����i�n � fn��

of F can mark the beginning of squares of rotations of Fn
 Thus all the
possible squares of length 	fn have been accounted for� and since by Theorem
	
� there are no other possible squares� we have established the main result
of this section�

Theorem ��� For every integer n � �� the squares of F of length 	fn are
�a� R��i�n � �� fn� fn� if and only if F �i� �� � b�
�b� R��i�n � �� fn� fn�� � �� if and only if F �i� �� � a�
where i assumes all nonnegative integral values� �

As an example of this theorem� consider the case n � ��

F �F�� F�� � �abaababa��abaab��abaababa��abaababa��abaab��abaababa��abaab� � � �
For i � ����� �i�� takes the values �� �� ��� 	�� 	�� ��� respectively� and so

the �rst six runs of squares of length 	f� � �� are

R��� �� 	�� R��� �� ��� R���� �� 	�� R�		� �� 	�� R���� �� ��� R���� �� 	��

The �rst square in each of these runs contains one occurrence of �ab�� and
one occurrence of �ba��
 Note that this sequence of runs can be simpli�ed to
R��� �� 	�� R��� �� ��� R�		� �� 	�� R���� �� ��

��

Theorem 	
� tells us how to locate a run� after we determine whether
F �i � �� � a or not
 The next lemma provides the basis of a constant time
and space routine �assuming that the !oor functions below can be computed
in constant time and space� for checking whether F �i��� � a� a proof can be
found in ���� and an alternate approach in ���
 The same information could
also be provided by an appropriate preprocessing of Fn�j�� j � �� 	� � � � � fn�
requiring only ��fn� time

Lemma ��� If � � �

�
�� �

p
�� �the golden mean�� then

F �i� �

��
�
a if b�i� ����c � b�i���c � ��

b otherwise� �

� Computing the squares

Theorem 	
� tells us how to locate all the squares in the in�nite Fibonacci
string F � in practice� however� we will be asked to compute the squares
in a given �nite Fibonacci string Fn
 The algorithm SQUARES� given in
Pascal�like pseudocode in Figure 	� performs this computation for n � � �
it is convenient to treat the cases n � � separately
 The algorithm is based
primarily on Theorem 	
�� with some minor complications related to the
special conditions that arise when Fn terminates
 We make the simplifying
assumption that� for k � � or �� outputs of squares of length 	fk implicitly
specify those of length 	fk��� in accordance with Lemma 	
�

Since each required value of a Fibonacci number fk� k � �� 	� � � � � n� can
be computed in constant time� it follows that the compound if statement
inside the inner for loop in this algorithm also executes in constant time

This if statement will be executed exactly

Qn �
n��X
k	�

�fn�k � �� 	�

� fn � fn�� � �� �n� ��

times� by Lemma 	
�� a quantity which reduces to fn�� � �n � ��
 Hence�
excluding the squares a�� �ab��� and �ba��� Qn gives exactly the number of
triples output by SQUARES�Fn�� that is� exactly the number of runs of

��

squares in Fn
 If in addition the excluded squares are identi�ed and printed
separately by the routine output� we will have

Qn � fn�� � �n� �� � fn�� � fn�� � 	

� fn � �n � ���

In either case the time requirement of the algorithm is ��fn�
 As for the
space requirement� observe that there is only a single reference to Fn in the
algorithm� when it becomes necessary to determine the value of Fn�i � ���
where � � i � fn�� � 	
 Lemma 	
� allows us to determine this value in
constant time and space
 We thus state formally our result�

Theorem ��� For every integer n � �� the algorithm SQUARES computes
all the runs of squares in Fn using ��fn� time and O��� space� �

We remark again that this algorithm can only be said to compute all the
squares of Fn if the user is willing to accept the encoding of squares into
runs R as an appropriate response to a query
 Indeed� a slight modi�cation
to SQUARES could reduce the amount of output still further� by reporting
adjacent runs of squares �which occur whenever Fk occurs in Fn�Fk��� Fk�� as
a single run
 Such a modi�cation would reduce the number of runs reported
by a constant factor of �� but the total number of outputs would still be
��fn�
 It appears that an asymptotic reduction �say to ��log fn� outputs�
could not be achieved in a manner consistent with an appropriate response
to the user�s request

Acknowledgements

The work of the �rst author was supported in part by SERC grants GR"F
����� and GR"J ������ NATO Grant No
 CRG ���	��� ESPRIT BRA Grant
No
 ���� for ALCOM II� and MRC Grant No
 G �������
 The work of
the third author was supported in part by Grant No
 A���� of the Natural
Sciences # Engineering Research Council of Canada and by Grant No
 GO�
�	��� of the Medical Research Council of Canada

References

�	

��� A
 V
 Aho
 Algorithms for �nding patterns in strings
 Handbook of
Theoretical Computer Science� Elsevier� ������

�	� A
 Apostolico and F
 P
 Preparata
 Optimal o��line detection of repe�
titions in a string
 Theoretical Computer Science� Volume 		� pages
	������� ������

��� J
 Berstel
 Fibonacci words
 Book of L� Springer�Verlag� pages ���	��
������

��� M
 Crochemore
 An optimal algorithm for computing the repetitions in
a word
 Information Processing Letters� Volume �	��� pages 	���	���
������

��� L
 J
 Cummings� D
 Moore and J
 Karhumaki
 Borders of Fibonacci
strings
 Journal of Combinatorial Mathematics
 Combinatorial Com�
puting� to appear

��� L
 J
 Cummings # W
 F
 Smyth
 Weak repetitions in strings
 Journal of
Combinatorial Mathematics
 Combinatorial Computing� to appear

��� A
 de Luca
 A combinatorial property of the Fibonacci words
 Informa�
tion Processing Letters� Volume �	��� pages ������� ������

��� L
 E
 Dickson
 History of the Theory of Numbers� Chelsea� ������

��� C
 S
 Iliopoulos� D
 Moore and K
 Park
 Covering a string
 In Fourth
Annual Symposium on Combinatorial Pattern Matching� pages ����	�
������

���� C
 S
 Iliopoulos and W
 F
 Smyth
 The covers of a circular Fibonacci
String Submitted

���� D
 E
 Knuth
 The Art of Computer Programming� Addison Wesley�
������

��	� D
 E
 Knuth� J
 H
 Morris and V
 R
 Pratt
 Fast pattern matching in
strings
 SIAM Journal of Computing� Volume �� pages �		����� ������

��

���� M
 G
 Main and R
 J
 Lorentz
 An O�n logn� algorithm for �nding all
repetitions in a string
 Journal of Algorithms Volume �� pages �		���	�
������

���� D
 Moore and W
 F
 Smyth
 An optimal algorithm to compute all the
covers of a string
 Information Processing Letters� Volume ����� pages
	���	��� ������

���� J
 J
 Pansiot
 Mots in�nis de Fibonacci et morphismes it er es
 RAIRO
Informatique Th�eorique� Volume ���	� pages �������� ������

���� P
 S e ebold
 Propri et es Combinatoires des Mots In�nis Engendr es par
Certains Morphismes
 Report No
 ������ LITP� Paris� ������

���� T
 F
 Smith and M
 S
 Waterman
 Identi�cation of common molecular
sequences
 Journal of Molecular Biology� Volume ���� pages ��������
������

��

F� � b
F� � a
F� � ab
F� � aba
F� � abaab
F� � abaababa
F
 � abaababaabaab
F� � abaababaabaababaababa
F� � abaababaabaababaababaabaababaabaab
F� � abaababaabaababaababaabaababaabaababaababaabaababaababa

Figure �� Fibonacci Strings

��

algorithm SQUARES �Fn��

fThis loop computes all the squares of length 	fk� k � ���n� 	�g
for k � ���n� 	 do

fThis loop considers all but the last term of Fn�k�Fk��� Fk� � Fn

�Lemma �����g
for i � ���fn�k � 	 do
if i � � then

� � �� fMaintain the invariant � � �i�n � ��g
output ��� fk� fk�� � ��� fTheorem ���b��g
� � � � fk��

else

� � � � fk�
if Fn�i� �� � a then f Lemma ��� g
output ��� fk� fk�� � ��� fTheorem ���b��g
� � � � fk��

else

if i � fn�k � 	 then
fA special case arises when Fn ends in FkFk���g
output ��� fk� fk�� � ��

else

output ��� fk� fk�� fTheorem ���a��g
if k � � or � then
�nd squares of length 	fk�� in the last term of Fn�k�Fk��� Fk�

fThe details are straightforward� and are omitted�g

Figure 	� The algorithm

��

