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Abstract

A ��nite� Fibonacci string Fn is de�ned as follows� F� � b� F� � a�
for every integer n � 	� Fn � Fn��Fn��
 For n � �� the length of Fn is
denoted by fn � jFnj
 The in�nite Fibonacci string F is the string which
contains every Fn� n � �� as a pre�x
 Apart from their general theoretical
importance� Fibonacci strings are often cited as worst case examples for
algorithms which compute all the repetitions or all the �Abelian squares in



a given string
 In this paper we provide a characterization of all the squares
in F � hence in every pre�x Fn� this characterization naturally gives rise to
a ��fn� algorithm which speci�es all the squares of Fn in an appropriate
encoding
 This encoding is made possible by the fact that the squares of Fn

occur consecutively� in �runs� the number of which is ��fn�
 By contrast�
the known general algorithms for the computation of the repetitions in an
arbitrary string require ��fn log fn� time �and produce ��fn log fn� outputs�
when applied to a Fibonacci string Fn


Keywords Combinatorial algorithms� string algorithms� lower bounds


� Introduction

Fibonacci numbers and strings have been studied extensively over the years
�see ������
 Here we are interested in the Fibonacci numbers and strings as
a tool used in the design and analysis of algorithms
 There is a plethora of
algorithms whose analysis makes use of Fibonacci numbers� e
g
� searching�
sorting� hashing� random number generation� Euclid�s gcd computation� etc

����
 Fibonacci strings are often cited as worst case examples for algorithms in
string pattern matching �e
g
� the Knuth�Morris�Pratt algorithm� the Boyer�
Moore algorithm� the Aho�Corashic automaton ���� and in string statistics
�computing all the repetitions ���� computing all the �Abelian squares ����


A ��nite� Fibonacci string Fn is de�ned as follows� F� � b� F� � a� for
every integer n � 	� Fn � Fn��Fn�� �see Figure ��
 For n � �� the length
of Fn is denoted by fn � jFnj� while it is convenient to de�ne f� � �
 The
in�nite Fibonacci string F is the string which contains every Fn� n � �� as a
pre�x


Furthermore� if a given string x de�ned on an arbitrary alphabet A can
be written in the form x � yukz for some integer k � 	� some �possibly
empty� strings y and z� and some nonempty string u� then uk � uu � � �u �k
times� is said to be a repetition in x
 If in particular k � 	� the repetition is
called a square
 Thus� for example� the string x � ababcacacaab de�ned on
A � fa� b� cg contains the repetition �ca�� and the squares �ab��� �ac��� and
a�
 The study of repetitions in strings is motivated by the equivalent prob�
lem� encountered by molecular biologists� of automatically detecting repeated
regions �with errors� in DNA and protein sequences �see �����


	



There exist three well�known algorithms �	������ for �nding all the repe�
titions in a given string x � x����jxj�
 Each of these algorithms is asymptoti�
cally optimal� executing in time ��jxj log jxj�� which is also the time required
���� merely to recognize whether or not x contains a repetition
 Indeed� the
execution time achieved by the three algorithms depends on an encoding of
repetitions in triples �i� p� k� denoting

x�i��i � kp� �� � x�i��i � p� ��k�

where it is required that the substring x�i��i�p��� be primitive� that is� not
itself a repetition � x�i��i�j��� denotes the substring x that starts at position
i and has length j
 It is easy to see that� without this primitivity requirement�
the straightforward reporting of distinct squares in a given string x might
require as many as ��n�� outputs� for example� x � an contains bn���c
distinct squares but it can be encoded in only one triple ��� �� n�
 Thus� the
encoding of the output is of critical importance to the performance of the
algorithms


In ��� it is shown that� in terms of the �i� p� k��encoding� Fibonacci strings
Fn give rise to ��fn log fn� distinct repetitions� and so in some sense represent
a worst case� both for these algorithms and for this encoding
 It is not shown�
however� whether or not there might exist some other encoding of repetitions
which would� at least for Fibonacci strings� perhaps for all strings� make it
possible to produce an asymptotically smaller amount of output


Fibonacci strings also represent a worst case for other algorithms dealing
with generalized repetitions
 Cummings and Smyth ��� have shown that Fn

contains ��f �n� �weak repetitions �Abelian squares�� and it turns out also
that the �covers ��������� of a circular Fibonacci string are of cardinality
��f �n�


In Section 	 of this paper we provide a complete characterization of the
squares in Fibonacci strings� in particular� we show that they occur in �runs
at adjacent positions of F � where each run consists of cyclic rotations of some
Fibonacci string Fk� k � �
 In Section � we show that the number of runs
of squares in a �nite Fibonacci string Fn is ��fn�� and so we are able to
describe a simple linear �in terms of fn� algorithm� executing in ��fn� time�
to compute all of them


This algorithm depends on a slightly modi�ed encoding of the output
which reports runs of squares using only a single triple of integers
 This al�
gorithm can only be said to compute all the squares of Fn� if the user is willing

�



to accept the encoding of squares into runs R as an appropriate response to a
query
 It thus remains an open question� of considerable theoretical interest�
whether or not there exist classes of strings x that give rise to ��jxj log jxj�
distinct repetitions over all �appropriate encodings of the output
 Another
interesting open problem is whether there exist classes of strings x for which
the size of the encoding �runs� studied in this paper is more than O�jxj�


� Characterizing the squares

In this section we adopt a four�stage approach to characterizing all of the
squares in F �

�i� By expressing F only in terms of Fn and Fn��� we identify the positions
of squares of the form F �

n � n � �� 	� � � � � �Theorem 	
���

�ii� We show that in the �rst stage we have identi�ed all the squares of the
form F �

n �Theorem 	
	��

�iii� We quote a �folklore result �a proof can be found in ����� that for every
square u� in F � u is necessarily a cyclic rotation of some Fn �Theorem
	
���

�iv� We exhibit all the squares in F as elements of �runs� where the be�
ginning of each run is determined by one of the squares F �

n �Theorem
	
��


To begin the �rst stage� we generalize the de�nition of a Fibonacci string

Let F �x� y� denote the in�nite Fibonacci string on the �alphabet fx� yg�
where now x and y denote arbitrary strings on any alphabet
 �In fact� as we
shall see below� we even allow x and y to be integers
� In the sequel� we will
consider x and y either as letters of an alphabet or as strings� whenever
ambiguity arises� we explicitly state which of the two interpretations is used

Then

F �x� y� � xyxxyxyxxyxxyxyx � � �
and� in particular� F �a� b� � F � the �ordinary in�nite Fibonacci string
de�ned above
 The notation Fn�x� y� is similarly de�ned in the obvious way


�



Lemma ��� For every integer n � � and all strings x� y� Fn���x� y� �
Fn�xy� x��

Proof Observe that the result holds for n � �� ��

F��x� y� � F��xy� x� � x�
F��x� y� � F��xy� x� � xy�

Suppose now that for some integer N � ��

Fn���x� y� � Fn�xy� x�� n � �� �� � � � � N�

Then
FN���x� y� � FN���x� y�FN�x� y�

� FN �xy� x�FN���xy� x�
� FN���xy� x��

and the result follows by induction
 �

Repeated application of Lemma 	
� leads to an important result �ex�
pressed in another form by Pansiot ������

Lemma ��� For all integers k� n satisfying � � k � n� ��

Fn�k�Fk��� Fk� � Fn�

Proof By successive applications of Lemma 	
��

Fn�k�Fk��� Fk� � Fn�k���Fk� Fk���
� Fn�k���Fk��� Fk���
�

�

�

� Fn�F�� F��
� Fn� �

Of course it is an immediate consequence of this result that� for every integer
n � ��

F � F �Fn��� Fn� � Fn��FnFn��Fn��FnFn��FnFn��Fn��Fn � � � �	���

�



Thus Lemma 	
	 enables us to express any Fibonacci string entirely in
terms of selected Fibonacci substrings Fn�� and Fn� we are able to focus only
on the squares generated by those substrings
 In order to prove our �rst main
theorem� we need one more simple fact�

Lemma ��� For every integer n � 	� F �
n � Fn��Fn���

Proof Follows from rewriting Fn�� � FnFn��
 �

For all nonnegative integers i and n� let �i�n denote the sum of the �rst
i values in F �fn��� fn�
 Then ���n � � for all n and� for example� for n � ��

F �f�� f�� � ������������������ � � � �

so that ���� � �� ���� � �� ���� � 	�� ���� � ��

Based on this notation� it is now possible to specify positions in F where

Fn�� and F �
n occur� later on �Theorem 	
	�� we will show that these positions

are the only positions in F where F �
n occur


Theorem ��� For every integer i � ��
�a� Fn�� � F ��i�n � ����i�n � fn���� n � 	�
�b� F �

n � F ��i�n � ����i�n � 	fn�� n � ��

Proof Observe that since every occurrence of Fn in F �viewed as a string
over fFn� Fn��g� is followed by an occurrence of Fn�� � Fn��Fn��Fn��� there�
fore Fn�� occurs at every occurrence of Fn in F 
 Then �a� is an immediate
consequence of Lemma 	
	� it merely says that Fn�� occurs at the beginning
of F and then at displacements of fn�� or fn� depending on whether the
current term in �	
�� is Fn�� or Fn� respectively
 By Lemma 	
� and the
fact that� for n � �� Fn�� is a pre�x of both Fn�� and Fn� we see that these
positions also mark occurrences of F �

n � and so �b� follows
 �

The objection may be raised to Theorem 	
��b� that it is restricted to
the cases n � � and so does not locate squares F �

� � a� and F �
� � �ab��


However� as the next result shows� such squares are implicitly included�

Lemma ��� For n � �� 	� F �
n occurs in F only as a substring of F �

n���

Proof It is straightforward to verify that for n � �� 	� F �
n�� contains F �

n as
a substring
 Since a� does not occur in F � each occurrence of a� in F must

�



always be surrounded by b�s� and so be a substring of baab
 Also� since b�

does not occur in F � each occurrence of b in F must be surrounded by a�s�
so that baab is a substring of abaaba � F �

� 
 Similarly for n � 	� it follows
from Lemma 	
	 that F � F �F�� F�� � F �ab� a�� where ab occurs in F �ab� a�
only as the letter ab� as above we have that �ab�� occurs in F only as a
substring of abaababaab � �F��ab� a��

� � F �
� 
 �

Thus Theorem 	
� e�ectively allows us to locate occurrences of squares
F �
n for all n � �� we go on now to show that these occurrences are in fact

the only ones in F 
 To do so� we introduce the idea of a border of a given
string x� that is� a substring of x which is both a pre�x and a su�x of x

We introduce also an in�nite border array B where� for every nonnegative
integer n� B�n� is the length of the longest border of Fn� then B�n� is the
�failure function ��	� of Fn and� for example� B��� � � corresponding to the
longest border aba of F� � abaababa
 The following result is proved also in
���


Lemma ��� For every integer n � 	� B�n� � fn���

Proof By induction on n
 Observe that the lemma holds for n � 	� �� and
suppose that it holds for every integer � � n � N � �� but not for n � N 

Since FN � FN��FN��FN��� it follows that B�N � � fN��
 On the other
hand� since by the inductive hypothesis B�N � �� � fN�� and since for every
integer k � 	� B�k� � B�k � �� � fk��� we see that

B�N � � fN�� � fN�� � fN���

Thus� setting B�N � � fN��� i for some integer i � ���fN��� we observe that�
since FN�� is a pre�x of FN���

F ����i� � F �fN�� � ���fN�� � i� �	�	a�
� F �fN�� � i� ���fN��� �	�	b�
� F �fN�� � ���fN�� � i� �	�	c�
� F �fN � i� ���fN �� �	�	d�

From �	
	c� and �	
	d� we conclude that F ����i� is a border of FN��
 Hence�
by the inductive hypothesis� i � fN��
 From �	
	a� and �	
	b�� however� we
conclude that F ����i� is also a border of FN��
 But this is impossible� since
the �nal letters of FN�� and FN�� are not the same
 Then there can exist
no integer n � N � 	 for which the lemma does not hold
 �

�



The next lemma uses this result to establish an important property of
Fibonacci strings
 Suppose that an arbitrary string x is written in the form
uv� where u �but not v� is possibly empty� then x� � vu is said to be a
rotation of x of degree juj
 For example� the rotations of x � F� � abaab
are abaab� baaba� aabab� ababa and babaa� of degrees � to � respectively
 We
show that a Fibonacci string cannot coincide with any rotation of itself� a
result related to work of de Luca ����

Lemma ��� For every integer n � 	� Fn is not equal to any rotation of Fn

other than itself�

Proof The result holds for n � 	
 Therefore� for some n � � suppose the
contrary� that there exists an integer k � ���fn � � such that

Fn � F ����fn� � F �k � ���fn�F ����k��

But then F ����k� and F �k � ���fn� are both borders of Fn� and one of these
borders has length at least fn�	 � fn��� in contradiction to Lemma 	
�
 �

Theorem ��� For every integer n � �� Theorem ��	�b� speci�es all the
occurrences of F �

n in F �

Proof By Lemma 	
� the result holds for n � �� 	 if it holds for n � �
 But
for n � �� Theorem 	
��b� makes clear that every position in F is included
in some occurrence of F �

n 
 Hence any other occurrence of F �
n not speci�ed by

Theorem 	
��b� would require that Fn coincide with a rotation of itself� in
contradiction to Lemma 	
�
 �

As the third stage of our characterization of the squares in F � we quote
a �folklore result �S e ebold provides a proof in ������

Theorem ��� For every nonempty substring u� of F � u is a rotation of Fn

for some n � �� �

Finally� in order to complete the characterization of the squares of F �
we need to de�ne a new encoding
 Suppose that F contains a set of h � �
consecutive squares

R�i� p� h� � f�i� p� 	�� � � � � �i� h� �� p� 	�g�

�



all of length 	p
 We say that R�i� p� h� is a run of squares of length h
 Then
observe that for every integer j � i � ���i � h � �� the square �j� p� 	� is a
rotation of �j � �� p� 	� of degree �� by virtue of the fact that

F �j� � F �j � p� � F �j � 	p��

and so �j� p� 	� is a rotation of �i� p� 	� of degree �j � i� mod p
 For example�
the substring abaabaaba of F contains the run of squares

R��� �� �� � f�aba��� �baa��� �aab��� �aba��g�

where each square in the run is a rotation of degree � of the preceding one

More generally� observe that for n � � every occurrence of

F �

n � ��i�n � �� fn� ��

in F gives rise to a run of squares R��i�n��� fn� fn� corresponding to the fn
rotations of Fn
 Indeed� we have

Lemma ��	 For all integers n � � and i � �� R��i�n ��� fn� fn� is a run of
squares of F if and only if F �i� �� � b�

Proof Observe that F �i � �� � b if and only if F �Fn��� Fn��i � �� � Fn in
the expansion �	
��
 Then

F �Fn��� Fn��i� ���i � �� � FnFn��Fn��

or
F �Fn��� Fn��i � ���i� �� � FnFn��Fn�

In either of these cases� FnFn��Fn is a pre�x of F �Fn��� Fn��i����i���� and
it is straightforward to verify that FnFn��Fn � F �

nFn��Fn��
 This proves
su�ciency


To prove necessity� observe that if F �i � �� � a� F �Fn��� Fn��i � ���i � 	�
has pre�x Fn��Fn� which as we have just seen equals F �

nFn��Fn��
 Since
Fn��Fn�� is a rotation of Fn��� it follows from Lemma 	
� that Fn��Fn�� ��
Fn��� hence that Fn��Fn is not a pre�x of F �

n � F �
nFn��Fn��
 �

More precise information about the runs of squares that occur when F �i�
�� �� b is provided by the following lemma�

�



Lemma ��
 For every integer n � 	� Fn � Fn��Fn�� � � �F�u� where u � ab
if n is even� and u � ba otherwise�

Proof By induction on n
 Observe that the result holds when n � 	� ��
and suppose that it holds for some n � N � 	
 But then� writing FN �
FN��FN��FN��� we see� using the inductive hypothesis� that it must hold
also for n � N 
 �

From Lemma 	
� it follows immediately that Fn and its rotation Fn��Fn��

of degree fn�� di�er in precisely the last two positions
 Thus� as we have seen
in the proof of Lemma 	
��

F �Fn��� Fn��i� ���i � 	� � F �

nFn��Fn��

di�ers from F �
nFn�� only in the last two positions whenever F �i � �� � a
 It

follows that in this case R��i�n��� fn� fn����� is the maximal run of squares
of F � F �Fn��� Fn�
 Furthermore� it follows also that none of the positions

�i�n � fn�����i�n � fn��

of F can mark the beginning of squares of rotations of Fn
 Thus all the
possible squares of length 	fn have been accounted for� and since by Theorem
	
� there are no other possible squares� we have established the main result
of this section�

Theorem ��� For every integer n � �� the squares of F of length 	fn are
�a� R��i�n � �� fn� fn� if and only if F �i� �� � b�
�b� R��i�n � �� fn� fn�� � �� if and only if F �i� �� � a�
where i assumes all nonnegative integral values� �

As an example of this theorem� consider the case n � ��

F �F�� F�� � �abaababa��abaab��abaababa��abaababa��abaab��abaababa��abaab� � � �
For i � ����� �i�� takes the values �� �� ��� 	�� 	�� ��� respectively� and so

the �rst six runs of squares of length 	f� � �� are

R��� �� 	�� R��� �� ��� R���� �� 	�� R�		� �� 	�� R���� �� ��� R���� �� 	��

The �rst square in each of these runs contains one occurrence of �ab�� and
one occurrence of �ba��
 Note that this sequence of runs can be simpli�ed to
R��� �� 	�� R��� �� ��� R�		� �� 	�� R���� �� ��


��



Theorem 	
� tells us how to locate a run� after we determine whether
F �i � �� � a or not
 The next lemma provides the basis of a constant time
and space routine �assuming that the !oor functions below can be computed
in constant time and space� for checking whether F �i��� � a� a proof can be
found in ���� and an alternate approach in ���
 The same information could
also be provided by an appropriate preprocessing of Fn�j�� j � �� 	� � � � � fn�
requiring only ��fn� time


Lemma ��� If � � �

�
�� �

p
�� �the golden mean�� then

F �i� �

��
�
a if b�i� ����c � b�i���c � ��

b otherwise� �

� Computing the squares

Theorem 	
� tells us how to locate all the squares in the in�nite Fibonacci
string F � in practice� however� we will be asked to compute the squares
in a given �nite Fibonacci string Fn
 The algorithm SQUARES� given in
Pascal�like pseudocode in Figure 	� performs this computation for n � � �
it is convenient to treat the cases n � � separately
 The algorithm is based
primarily on Theorem 	
�� with some minor complications related to the
special conditions that arise when Fn terminates
 We make the simplifying
assumption that� for k � � or �� outputs of squares of length 	fk implicitly
specify those of length 	fk��� in accordance with Lemma 	
�


Since each required value of a Fibonacci number fk� k � �� 	� � � � � n� can
be computed in constant time� it follows that the compound if statement
inside the inner for loop in this algorithm also executes in constant time

This if statement will be executed exactly

Qn �
n��X
k	�

�fn�k � �� 	�

� fn � fn�� � �� �n� ��

times� by Lemma 	
�� a quantity which reduces to fn�� � �n � ��
 Hence�
excluding the squares a�� �ab��� and �ba��� Qn gives exactly the number of
triples output by SQUARES�Fn�� that is� exactly the number of runs of

��



squares in Fn
 If in addition the excluded squares are identi�ed and printed
separately by the routine output� we will have

Qn � fn�� � �n� �� � fn�� � fn�� � 	

� fn � �n � ���

In either case the time requirement of the algorithm is ��fn�
 As for the
space requirement� observe that there is only a single reference to Fn in the
algorithm� when it becomes necessary to determine the value of Fn�i � ���
where � � i � fn�� � 	
 Lemma 	
� allows us to determine this value in
constant time and space
 We thus state formally our result�

Theorem ��� For every integer n � �� the algorithm SQUARES computes
all the runs of squares in Fn using ��fn� time and O��� space� �

We remark again that this algorithm can only be said to compute all the
squares of Fn if the user is willing to accept the encoding of squares into
runs R as an appropriate response to a query
 Indeed� a slight modi�cation
to SQUARES could reduce the amount of output still further� by reporting
adjacent runs of squares �which occur whenever Fk occurs in Fn�Fk��� Fk�� as
a single run
 Such a modi�cation would reduce the number of runs reported
by a constant factor of �� but the total number of outputs would still be
��fn�
 It appears that an asymptotic reduction �say to ��log fn� outputs�
could not be achieved in a manner consistent with an appropriate response
to the user�s request
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F� � b
F� � a
F� � ab
F� � aba
F� � abaab
F� � abaababa
F
 � abaababaabaab
F� � abaababaabaababaababa
F� � abaababaabaababaababaabaababaabaab
F� � abaababaabaababaababaabaababaabaababaababaabaababaababa

Figure �� Fibonacci Strings
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algorithm SQUARES �Fn��

fThis loop computes all the squares of length 	fk� k � ���n� 	�g
for k � ���n� 	 do

fThis loop considers all but the last term of Fn�k�Fk��� Fk� � Fn

�Lemma �����g
for i � ���fn�k � 	 do
if i � � then

� � �� fMaintain the invariant � � �i�n � ��g
output ��� fk� fk�� � ��� fTheorem ���b��g
� � � � fk��

else

� � � � fk�
if Fn�i� �� � a then f Lemma ��� g
output ��� fk� fk�� � ��� fTheorem ���b��g
� � � � fk��

else

if i � fn�k � 	 then
fA special case arises when Fn ends in FkFk���g
output ��� fk� fk�� � ��

else

output ��� fk� fk�� fTheorem ���a��g
if k � � or � then
�nd squares of length 	fk�� in the last term of Fn�k�Fk��� Fk�

fThe details are straightforward� and are omitted�g

Figure 	� The algorithm
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