

MURDOCH RESEARCH REPOSITORY

This is the author’s final version of the work, as accepted for publication
following peer review but without the publisher’s layout or pagination.

The definitive version is available at :

 http://dx.doi.org/10.1016/j.tcs.2015.06.056

Christodoulakis, M., Ryan, P.J., Smyth, W.F. and Wang, S. (2015)
Indeterminate strings, prefix arrays & undirected graphs.

Theoretical Computer Science . In Press.

http://researchrepository.murdoch.edu.au/27493/

Copyright: © 2015 Elsevier B.V.
It is posted here for your personal use. No further distribution is permitted.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Repository

https://core.ac.uk/display/77135391?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1016/j.tcs.2015.06.056
http://researchrepository.murdoch.edu.au/27493/

Accepted Manuscript

Indeterminate strings, prefix arrays & undirected graphs

Manolis Christodoulakis, P.J. Ryan, W.F. Smyth, Shu Wang

PII: S0304-3975(15)00566-6
DOI: http://dx.doi.org/10.1016/j.tcs.2015.06.056
Reference: TCS 10313

To appear in: Theoretical Computer Science

Received date: 1 March 2013
Revised date: 25 June 2015
Accepted date: 26 June 2015

Please cite this article in press as: M. Christodoulakis et al., Indeterminate strings, prefix arrays & undirected graphs, Theoret. Comput. Sci.
(2015), http://dx.doi.org/10.1016/j.tcs.2015.06.056

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing
this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is
published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all
legal disclaimers that apply to the journal pertain.

http://dx.doi.org/10.1016/j.tcs.2015.06.056

Indeterminate Strings, Prefix Arrays &
Undirected Graphs

Manolis Christodoulakisa, P. J. Ryanb, W. F. Smythb,c,1,∗, Shu Wangd

aDepartment of Electrical & Computer Engineering, University of Cyprus, PO Box 20537,
1678 Nicosia, Cyprus, Email: christodoulakis.manolis@ucy.ac.cy

b Algorithms Research Group, Department of Computing & Software, McMaster University,
Hamilton, Ontario, Canada L8S 4K1, Email: {ryanpj,smyth}@mcmaster.ca,

Web: www.cas.mcmaster.ca/cas/research/algorithms.htm
c School of Engineering & Information Technology, Murdoch University, 90 South Street,

Murdoch WA 6150, Australia
d IBM Toronto Software Lab, 8200 Warden Avenue, Markham, Ontario, Canada L6G 1C7,

Email: wangs@ca.ibm.com

Abstract

An integer array y = y[1..n] is said to be feasible if and only if y[1] = n and,
for every i ∈ 2..n, i ≤ i+y[i] ≤ n+1. A string is said to be indeterminate if
and only if at least one of its elements is a subset of cardinality greater than one
of a given alphabet Σ; otherwise it is said to be regular. A feasible array y is
said to be regular if and only if it is the prefix array of some regular string. We
show using a graph model that every feasible array of integers is a prefix array
of some (indeterminate or regular) string, and for regular strings corresponding
to y, we use the model to provide a lower bound on the alphabet size. We show
further that there is a 1–1 correspondence between labelled simple graphs and
indeterminate strings, and we show how to determine the minimum alphabet
size σ of an indeterminate string x based on its associated graph Gx. Thus,
in this sense, indeterminate strings are a more natural object of combinatorial
interest than the strings on elements of Σ that have traditionally been studied.

Keywords: indeterminate string, regular string, prefix array, prefix table,
feasible array, undirected graph, minimum alphabet size, lexicographical order.

1. Introduction

Pattern matching in strings — that is, locating all the occurrences of a given
pattern in a given text — has been studied for at least half a century. A major
breakthrough was the realization that preprocessing the pattern would allow the
problem to be solved significantly faster. Perhaps the first form of preprocessing

∗Corresponding author.
1The work of the third author was supported in part by a grant from the Natural Sciences

& Engineering Research Council of Canada.

Preprint submitted to Theoretical Computer Science June 29, 2015

was proposed in the seminal paper by Morris & Pratt [MP70], which computed
the border array of the pattern; that is, an array β, of the same length as the
pattern p, such that β[i] is the length of the longest proper prefix of p[1..i] that
is also a suffix.

In recent years, a generalization of the classical string pattern matching
problem has been introduced, where either the pattern or the text, or both,
contain sets of symbols at each position, as opposed to a single symbol per posi-
tion in regular strings. These types of sequences are known as indeterminate
strings and were first introduced in a famous paper by Fischer & Paterson
[FP74], then later studied by Abrahamson [A87]. In the last ten years or so,
much work has been done by Blanchet-Sadri and her associates (for example,
[BSH02]) on “strings with holes” — that is, strings on an alphabet Σ augmented
by a single letter, a “hole” or “wildcard”, that matches all other symbols in Σ.
The monograph [B08] summarizes much of the pioneering work in this area.
For indeterminate strings in their full generality, the third and fourth authors
of this paper have collaborated on several papers, especially in the contexts of
pattern-matching [HS03, HSW06, HSW08, SW09] and extensions to periodicity
[SW08, SW09a].

In the search for a preprocessing approach to speed up the pattern matching
problem on indeterminate strings, it soon became clear that the border array is
of limited use. For regular strings x, the border array has the desirable property
that any border of a border of x is also a border of x— thus β implicitly specifies
every border of every prefix of x. For indeterminate x, however, due to the
nontransitivity of the match operation, this is not true [SW09, SW09a]. Hence
border arrays cannot be used to speed up pattern matching on indeterminate
strings. However, it turns out to be possible to make use of another data
structure, the prefix array π, in which π[i] is the length of the longest substring
beginning at position i of x that matches a prefix of x.

Apparently the first algorithm for computing the prefix array occurred as a
routine in the repetitions algorithm of Main & Lorentz [ML84]; see also [S03, pp.
340–347]. A slightly improved algorithm is given in [L05, Section 8.4], and two
algorithms for computing a “compressed” prefix array are described in [SW08].
A comprehensive treatment of prefix array construction algorithms can be found
in [BKS13]. As noted above, for regular strings the border array and the prefix
array are equivalent: it is claimed in [CHL01, CHL07], and demonstrated in
detail in [BKS13], that there are Θ(n)-time algorithms to compute one from
the other. On the other hand, as shown in [SW08], for indeterminate strings
the prefix array actually allows all borders of every prefix to be specified, while
the border array does not [HS03, IMMP03]. Thus the prefix array provides a
more compact and more general mechanism for identifying borders, hence for
describing periodicity, in indeterminate strings.

[SW08] describes an algorithm that computes the prefix array of any inde-
terminate string. In this paper we consider the “reverse engineering” problem
of computing a string corresponding to a given “feasible” array y — that is,
any array that could conceivably be a prefix array. The first reverse engineering
problem was introduced in [FLRS99, FGLR02], where a linear-time algorithm

2

was described to compute a lexicographically least string whose border array
was a given integer array — or to return the result that no such string ex-
ists. There have been many such results published since, corresponding to other
data structures and other conditions; for example, [BIST03, DLL05, FS06]. In
[CCR09] a linear-time algorithm is described to compute a lexicographically
least regular string x corresponding to a given feasible array y, or to return an
error if y corresponds to no regular string.

In this paper we solve the more general reverse engineering problem for any
feasible array y, regardless of whether it corresponds to a regular string or not.
Moreover, we establish a remarkable connection between labelled graphs and
indeterminate strings. The remainder of the paper is organized as follows. Sec-
tion 2 provides preliminary information and all the necessary definitions that
are used throughout the paper. In Section 3 we prove the surprising result that
every feasible array is in fact a prefix array of some string (regular or indeter-
minate); further, we characterize the minimum alphabet size of a regular string
corresponding to a given prefix array in terms of the largest clique in the neg-
ative “prefix” graph P−. We go on to give necessary and sufficient conditions
that a given prefix array is regular. Section 4 establishes the duality between
strings (whether regular or indeterminate) and labelled undirected graphs; also
it provides a characterization of the minimum alphabet size of an indetermi-
nate string x in terms of the number of “independent” maximal cliques in the
“associated graph” Gx. Section 5 outlines future work.

2. Preliminaries

Traditionally, a string is a sequence of letters taken from some alphabet Σ.
Since we discuss “indeterminate strings” in this paper, we begin by generalizing
the definition as follows:

Definition 1. A string with base alphabet Σ is either empty or else a sequence
of nonempty subsets of Σ. A 1-element subset of Σ is called a regular letter;
otherwise it is indeterminate. Similarly, a nonempty string consisting only
of regular letters is regular, otherwise indeterminate. The empty string ε is
regular.

All alphabets and all strings discussed in this paper are finite. We denote
by Σ′ the set of all nonempty subsets of Σ, with σ = |Σ| and σ′ = |Σ′| = 2σ−1.
On a given alphabet Σ, there are altogether (σ′)n distinct nonempty strings of
length n, of which σn are regular.

Definition 2. Two elements λ, μ of Σ′ are said to match (written λ ≈ μ) if
they have nonempty intersection. Two strings x, y match (x ≈ y) if they have
the same length and all corresponding letters match.

Thus two regular letters match if and only if they are equal. But note that
for indeterminate letters λ, μ, ν, it may be that λ ≈ μ and λ ≈ ν, while μ �≈ ν:
for example, λ = {1, 2}, μ = 1, ν = 2.

3

Definition 3. If a string x can be written x = u1v and x = wu2 for nonempty
strings v, w, where u1 ≈ u2, then x is said to have a border of length |u1| =
|u2|.

Note that choosing v = w = x yields the empty border ε of length 0.
The border array of a string x = x[1..n] is an integer array β[1..n] such

that β[i] is the length of the longest border of x[1..i], that is, the length of the
longest suffix of x[1..i] that is also a prefix of x[1..i]. For regular strings x, the
border array β implicitly specifies every border of every prefix of x, since any
border of a border of x is also a border of x. For indeterminate strings, however,
due to the nontransitivity of the match operation, this is not true; for example,

u = a{a, b}b (1)

has a border of length 2 (a{a, b} ≈ {a, b}b), and both borders a{a, b} and {a, b}b
have a border of length 1 (a ≈ {a, b} and {a, b} ≈ b, respectively), but u has
no border of length 1. It turns out that another simple data structure can be
employed to compensate for these deficiencies:

Definition 4. The prefix array of a string x = x[1..n] is the integer array
y = y[1..n] such that for every i ∈ 1..n, y[i] is the length of the longest prefix of
x[i..n] that matches a prefix of x. Thus for every prefix array y, y[1] = n.

For regular strings the border array and the prefix array are equivalent and
there are Θ(n)-time algorithms to compute one from the other [BKS13]. On
the other hand, for indeterminate strings the prefix array actually allows all
borders of every prefix to be specified, while the border array does not [SW08].
For instance, in the above example (1), the prefix array of u is y = 320, telling
us that u[2..3] ≈ u[1..2] (u has a border of length 2), hence that u[2] ≈ u[1]
(prefix u[1..2] has a border of length 1) and u[3] ≈ u[2] (suffix u[2..3] has a
border of length 1), but, since y[3] = 0, also that u has no border of length 1.

In order to study the “reverse engineering” problem — that is, computing
the string(s) that correspond to a given prefix array — it has to be established
first whether a given integer array could conceivably be a prefix array of some
string. To this end, another definition is helpful:

Definition 5. An integer array y = y[1..n] such that y[1] = n and, for every
i ∈ 2..n,

0 ≤ y[i] ≤ n+1−i, (2)

is said to be feasible. A feasible array that is a prefix array of a regular string
is said to be regular.

We will often use the condition i ≤ i+y[i] ≤ n+1, equivalent to (2). Note
that there are n! distinct feasible arrays of length n. Recalling that there are
(2σ−1)n distinct strings of length n for a fixed alphabet size σ, and applying
Stirling’s inequality [K68, p. 479]

n! >
√
2πn(n/e)n,

4

where e = 2.718 · · · is the base of the natural logarithm, we see that (for fixed
σ) the number of feasible arrays exceeds the number of strings whenever n is
large enough that √

2πn
(n

e(2σ−1)

)n

> 1. (3)

Thus for a fixed alphabet Σ there exist feasible arrays that correspond to no
(indeterminate) string on Σ. We shall see however that for unconstrained n and
σ, there always exist multiple strings corresponding to any given feasible array.

3. Prefix Arrays & Indeterminate Strings

In this section, we first prove that every feasible array y is a prefix array of
some string (regular or indeterminate), and show how to compute a string that
corresponds to y by using a graphical representation of it. We then identify
the minimum alphabet size of a regular string corresponding to a given prefix
array in terms of the properties of the corresponding graph. Finally, we provide
necessary and sufficient conditions that a given prefix array is regular.

3.1. The Feasible Array & the Prefix Graph

We begin with an immediate consequence of Definition 4:

Remark 6. Let x = x[1..n] be a string. An integer array y = y[1..n] is the
prefix array of x if and only if for each position i ∈ 1..n, the following two
conditions hold:

(a) x
[
1..y[i]

] ≈ x
[
i..i+ y[i]− 1

]
;

(b) if i+ y[i] ≤ n, then x
[
y[i] + 1

] �≈ x
[
i+ y[i]

]
.

We now prove the main result of this section.

Lemma 7. Every feasible array is the prefix array of some string.

Proof. Consider an undirected graph P = (V,E) whose vertex set V is the set
of positions 1..n in a given feasible array y. The edge set E is defined as follows:

E = {(h, k) : for all i ∈ 2..n and for all h ∈ 1..y[i], k = i+ h− 1} (4)

We then define x as follows: for each non-isolated vertex i, let x[i] be the set
of edges incident with i; for each isolated vertex i, let x[i] be the singleton set
containing the loop (i, i). Let Σ = E ∪ L where L is the set of loops. We claim
that y is the prefix array of x = x[1..n].

To see this, note that for an index i such that y[i] > 0, Remark 6(a) is
satisfied by construction. Then, by Remark 6(b), for all y[i] > 0 with i+y[i] ≤ n,

x
[
y[i]+1

] �≈ x
[
i+y[i]

]
.

In case y[i] = 0, Remark 6(a) is satisfied vacuously. Moreover, i is isolated
and thus x[i] = {(i, i)}, which does not match x[1]; consequently, Remark 6(b)
is again satisfied. Therefore, y coincides with the prefix array of x, which is a
string over the set Σ′ of subsets of Σ.

5

1

2

3

4

5

6

7

8

Figure 1: P+
y1

for y1 = 80103010

1

2

3

4

5

6

7

8

Figure 2: P−
y1

for y1 = 80103010

The construction described in this proof yields a string x whose prefix array
is y, but x is only one string among many. For example, given the feasible array
y = 80103010, and applying Remark 6(a) as shown in the construction above,
we get:

• y[3] = 1 yields x[1] ≈ x[3]

• y[5] = 3 yields x[1] ≈ x[5], x[2] ≈ x[6], and x[3] ≈ x[7]

• y[7] = 1 yields x[1] ≈ x[7]

Hence, this construction yields edges E = {(1, 3), (1, 5), (2, 6), (3, 7), (1, 7)} and
loops L = {(4, 4), (8, 8)}, as can be seen in Fig. 1. Relabelling these seven
edges/loops as a, b, c, d, e, f, g respectively, we construct x as described in the
proof of Lemma 7:

x = {a, b, e}{c}{a, d}{f}{b}{c}{d, e}{g}, (5)

an indeterminate string, when in fact y is also the prefix array of the regular
string x = abacabad (and so, by Definition 5, itself regular).

Definition 8. Let P = (V,E) be a labelled graph with vertex set V = {1, 2, . . . , n}
consisting of positions in a given feasible array y. In P we define, for i ∈ 2..n,
two kinds of edge (compare Remark 6):

(a) for every h ∈ 1..y[i], (h, i+h−1) is called a positive edge;

(b) (1+y[i], i+y[i]) is called a negative edge, provided i+y[i] ≤ n.

E+ and E− denote the sets of positive and negative edges, respectively. We
write E = E+ ∪ E−, P+ = (V,E+), P− = (V,E−), and we call P the prefix
graph of y. If x is a string having y as its prefix array, then we also refer to
P as the prefix graph of x.

6

1

2

3

4

5

6

7

8

Figure 3: P+
y2

for y2 = 80420311

1

2

3

4

5

6

7

8

Figure 4: P−
y2

for y2 = 80420311

Figures 1–4 show the prefix graphs for

1 2 3 4 5 6 7 8

y1 = 8 0 1 0 3 0 1 0
y2 = 8 0 4 2 0 3 1 1

From Definition 8 it is clear that

Remark 9. For every feasible array y, there exists one and only one prefix
graph P, which therefore may be written Py; moreover, Py = Py′ if and only
if y = y′.

Recall that a graph G = (V,E) is said to be connected if every pair of ver-
tices in V is joined by a path in E. A connected component (or component,
for short) of G is a subgraph G′ = (V ′, E′) formed on a largest subset V ′ ⊆ V
such that every pair of vertices i, j ∈ V ′ is joined by a path formed from edges
E′ ⊆ E. The graph P+ of Figure 1 has four disjoint connected components,
while that of Figure 3 has only one.

The basic properties of the prefix graph Py of a feasible array y = y[1..n]
are as follows:

Lemma 10. Let P = Py be the prefix graph corresponding to a given feasible
array y.

(a) E+ and E− are disjoint and |E−| = n−s where s is the number of indices
i ∈ 1..n for which i+y[i] = n+1. For every i ∈ 2..n, either (1, i) ∈ E+ or
(1, i) ∈ E−.

(b) If (i, j) ∈ E−, where i < j, then y[j−i+1] = i−1, and for every h ∈ 1..i−1,
(h, j − i+ h) ∈ E+.

(c) y is regular if and only if the end vertices of every edge of P− occur in
disjoint connected components of P+. (Thus if P− contains an edge and
P+ has only one connected component, y is not regular.)

7

Proof.

(a) First fix i and consider edges (h, k), where k−h = i−1. If (p+1, p+i) ∈ E−

is such an edge, then the edges in E+ must satisfy 1 ≤ h ≤ p and therefore
are distinct from (p+1, p+i). This shows that E+ and E− are disjoint.
Secondly, |E−| = n−s since there is exactly one negative edge for each of
the possible values of i, except those for which i+y[i] = n+1. Finally, it is
easily seen from Definition 8 that (1, i) is a positive edge if y[i] is positive,
whereas (1, i) is a negative edge if y[i] = 0.

(b) The first statement follows from rewriting Definition 8(b) with j = i+y[i],
the second directly from Definition 8(a).

(c) [if] Suppose that every negative edge joins two vertices in disjoint con-
nected components of P+. Form a regular string x as follows: for each
component C of P+, assign a unique identical letter, say λC , to all posi-
tions x[i] for which i ∈ C. We show that y is the prefix array of x[1..n]
and therefore that y is regular. Fix a value i ∈ 2..n. For any j such that
1 ≤ j ≤ y[i], (j, j+ i−1) is a positive edge. Thus j and j+ i−1 are in the
same component of P+, and hence x[j] = x[j + i− 1]. We also note that
(y[i] + 1,y[i] + i) is a negative edge (provided y[i]+i ≤ n). If so, then by
hypothesis y[i] + 1 and y[i] + i lie in disjoint components of P+, so that,
by the uniqueness of λC , x

[
y[i] + 1

] �≈ x
[
y[i] + i

]
. This is precisely what

we need in order to conclude that y is the prefix array of x[1..n]. Since x
is regular, so is y, as required.

[only if] Suppose that y is regular, therefore the prefix array of a regular
string x. Now consider any negative edge (p, q) of the prefix graph P
of y, so that by Remark 6(b) x[p] �≈ x[q]. If p and q were in the same
component of P+, we would have by Remark 6(a) a path in P+ joining p
to q consisting of edges (h, k) such that x[h] ≈ x[k]. By the regularity of
y, this requires x[h] = x[k], so that x[p] = x[q], a contradiction.

From Definition 8, we see that |E+| can be as small as 0 (for example, when
x = abn−1) or as large as

(
n
2

)
(when x = an). From Lemma 10(b) we see that

many of the edges in E+ can be deduced from those in E−. In fact, if we add
an extra node n+1 and also, in the cases i > 1 for which i+y[i] = n+1 — that is,
whenever x has a border of length y[i] = n+1−i —, add the edges (1+y[i], n+1)
to E−, then all of E+ can be deduced from E−. Let us call this graph with the
additional node and edges the augmented prefix graph and denote it by P̂
with corresponding edge sets Ê+ = E+ and Ê−. By Lemma 10(a), Ê− consists
of exactly n−1 edges, which together determine O(n2) edges in E+. Of course
the converse is also true: E+ determines Ê−. Hence, from Remark 9, either P+

or P̂− is sufficient to determine a corresponding prefix array y.
However, a bit more can be said. From Lemma 10(b) we see that every edge

(i, j) ∈ E− determines the value y[j−i+1] of a position j−i+1 in y. Thus a

8

simple scan of y can identify all positions h that are not determined by E−; for
all such h, it must be true that y[h] = n−h+1. In other words E− determines
Ê−. Writing A ≡ B to mean that A can be computed from B, and vice versa,
we may summarize this discussion as follows:

Remark 11. y ≡ P+
y ≡ P̂y ≡ P̂−

y ≡ P−
y : the prefix array y and the negative

prefix graph P−
y provide the same information and so determine the same set of

(not necessarily regular) strings x; furthermore P−
y can be computed from y in

linear time.

In fact, we can specify a simple Θ(n)-time procedure to compute Py from
y that for each j lists in increasing order the nodes i < j such that (i, j) ∈ E−:

for h ← 2 to n do
j ← h+y[h]; i ← y[h]+1

if j ≤ n then E [j] +← i

Figure 5: For each j list the edges (i, j) of E− in increasing order of i.

Next consider Lemma 10(c). This result tells us that the regularity of y can
be determined by computing the connected components of P+

y , then determining

whether or not for each edge (i, j) in P−
y , i and j occur in different connected

components of P+
y . The algorithm formulated in [T72] computes the connected

components of an undirected graph in time proportional to the number of edges;
this gives rise to a straightforward algorithm to determine the regularity of y
in time O(|E+|). As noted below, the algorithm of [CCR09] performs this
calculation in time O(|V |).

Recall [BM08, p. 188] that a t-clique in a graph G is a complete subgraph
Kt of G on t vertices, e.g. vertices constitute 1-cliques, edges 2-cliques, triangles
3-cliques, and so on. The order t of a largest clique in G is called the clique
number ω = ω(G) of G. Note that, E = ∅ ⇔ ω = 1, since every isolated
vertex is a complete subgraph. We say that a t-clique is maximal if it is not a
subclique of any (t+1)-clique.

Definition 12. If y is a regular feasible array, then its prefix graph Py is also
said to be regular.

3.2. Lexicographically Least Regular String for a Prefix Array

We use these ideas to characterize the minimum alphabet size of any regular
string with a given prefix graph P. Suppose that the edges (i, j), i < j, of
regular P−, are computed and stored according to j, as specified in Figure 5.
Suppose further that, without loss of generality, x is defined on the alphabet
Σ of consecutive positive integers — thus x will be lexicographically least with
respect to these integers. Figure 6 describes an on-line algorithm ASSIGN that,
from the lists S[j] of edges in P−, computes a lexicographically least string x
on t = ω(P−) letters whose prefix graph is P.

9

procedure ASSIGN (P−,x)
� The edges (i, j) of P− are available in E [j]
� in increasing order of i (Figure 5).

t ← 1; N [t] ← 0
for j ← 1 to n do

E [j] = {(i1, j), (i2, j), . . . , (ir, j)}
if r = 0 then x[j] ← 1
� Thus, if P− has no edges, x = 1n.
else

� Determine the least letter � that does not occur
� at any position ih in E [j]; possibly � = t+1.
for h ← 1 to r do N

[
x[ih]

] ← 1
� ← 1
while � ≤ t and N [�] = 1 do � ← �+1
if � > t then t ← �; N [t] ← 0
for h ← 1 to r do N

[
x[ih]

] ← 0
x[j] ← �

Figure 6: Given the negative prefix graph P− of a prefix graph P known to be regular,
compute a lexicographically least string x on t = ω(P−) letters whose prefix graph is P.

Algorithm ASSIGN maintains a bit vector N that, for each j, specifies the
letters x[i] that have occurred at positions (i, j) ∈ E− — that is, N

[
x[i]

]
= 1.

Observe that a new letter t+1 is added if and only if vertex j has an edge to
vertices representing all previous letters 1..t. This is true for every t ≥ 1. Thus
letter t+1 is introduced if and only if there are already t vertices that form a
clique in P−. Consequently the number of letters used by the algorithm to form
x is exactly t = ω(P−). Note also that the letter assigned at each position j
is least with respect to the preceding letters, whether the letter is a new one in
the string or not. Since the letters are introduced from left to right and never
changed, x must therefore be lexicographically least with respect to P−. Note
further that, since position j in the lexicographically least x is determined for
j = 1, 2, . . . , n based solely on preceding positions i < j, it suffices to use P−

rather than the augmented P̂−, in accordance with Remark 11.
Next consider the time requirement of Algorithm ASSIGN. Since we know

from Lemma 10(a) that P− has at most n−1 edges, it follows that, within the
for loop, at most n−1 entries in E need to be accessed. The processing that
updates the bit vector N , in order to determine the least letter � to be assigned
to x[j], requires Θ(r) time, where r is the size of S[j], in order to set both
N
[
x[ih]

] ← 1 and N
[
x[ih]

] ← 0; in addition the while loop requires O(r) time
in the worst case. Since |E−| ≤ n−1, it follows that the sum of all |S[j]| = r is
O(n), and so the overall time requirement is Θ(n).

Lemma 13. For a regular prefix graph P on n vertices, Algorithm ASSIGN
computes in Θ(n) time a lexicographically least string on t = ω(P−) letters
whose prefix graph is P.

10

Proof. We need to show that the string x computed by the algorithm is indeed
consistent with P (that is, by Remark 11, the corresponding prefix array y).
Observe that S is always empty for j = 1, so that therefore the initial assignment
x[1] ← 1 is consistent with the subgraph P1 on a single vertex. Suppose then
that x[1..j−1] has been computed by ASSIGN for some j ∈ 2..n so as to be
consistent with the subgraph Pj−1 on vertices 1, 2, . . . , j−1. For the addition of
vertex (position) j, there are three possibilities:

|S| = 0. In this case, x[j] ← 1, the least letter, so that x[j] = x[1], and
therefore x[1..j] remains consistent with P−

j = P−
j−1.

S gives rise to t distinct letters. Here x[j] ← t+1, a new letter. Since this is
the first occurrence of t+1 in x, and since there is no alternative, therefore
x[1..j] is again consistent with Pj and has only the empty border.

S gives rise to t′ < t distinct letters. From the set S we know that x[1..j−1]
has exactly r borders not continued to x[1..j]. The longest of these borders
is x[1..ir−1]. There may be a border of x[1..j−1] that is on the other
hand actually continued to x[1..j]. If not, then the assignment x[j] ← � is
consistent with Pj , where � is the least letter not precluded by S. Suppose
then that there exists a border x[1..i] = x[j−i+1..j], i ≥ 1. Note that
while there may be more than one such border, x[i] must be the same
for each one, since we suppose that x is regular. Furthermore, x[i] was
chosen by the algorithm to be a minimum letter �i with respect to the
prefix x[1..i−1]; since x[j−i+1..j−1] = x[1..i−1], the choice of a minimum
letter with respect to x[1..j−1] must yield �j = �i, hence also consistent
with Pj .

Therefore by induction the lexicographically least string x[1..j] is consistent
with Pj . We have argued above that x is lexicographically least, also that the
time requirement of the algorithm is Θ(n). Thus the lemma is proved.

Notice that the alphabet size determined by ASSIGN is least possible, given
P. Instead of assigning letters to positions in x, we could just as well have
labelled vertices of P with these letters; thus we have

Corollary 14. The class of regular negative prefix graphs P− has the property
that the chromatic number χ(P−) equals the clique number ω(P−) for every
graph in the class; χ(P−) is also the minimum alphabet size of the underlying
string x determined by P−.

This property does not hold in general; in [M55], for example, it is shown that
there exist triangle-free graphs G (ω(G) = 2) with arbitrarily large chromatic
number.

To get a sense of the labelling, consider the following regular prefix array

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

y = 20 0 1 0 3 0 3 0 3 0 1 0 7 0 1 0 4 0 1 0

11

whose corresponding P−
y has edges (sorted as in Algorithm ASSIGN)

(1, 2), (1, 4), (2, 4), (1, 6), (1, 8), (4, 8), (1, 10), (4, 10),

(1, 12), (2, 12), (4, 12), (1, 14), (1, 16), (2, 16), (1, 18),

(1, 20), (2, 20), (8, 20).

P−
y has a single maximal clique on four vertices, (1, 2, 4, 12), and the correspond-

ing lexicographically least string is

y = abacabababadabacabac.

Note that P̂−
y contains in addition the edge (5, 21) not required for the lexico-

graphically least x.
Now consider t-cliques {i1, i2, . . . , it} (not necessarily maximal) in regular

prefix arrays P− for which i1 = 1, together with regular strings x whose prefix
graph is P. A 1-clique corresponds to a prefix p1 = λ1 of x, where λ1 is some
(say, smallest) letter. Then for every 2-clique (1, i2) in P−, there must exist a
corresponding prefix p2 of x such that

p2 = λ1w1λ2,

where λ2 > λ1 and w1 is a (possibly empty) substring. Similarly, for every
3-clique (1, i2, i3) in P−, there exists a corresponding prefix p3 of x such that

p3 = λ1w1λ2w2λ1w1λ3

= p2w2p
′
2,

where p2,p
′
2 are identical but for distinct rightmost letters λ2 and λ3 > λ2,

respectively. In general, for every t-clique (1, i2, i3, . . . , it) in P−, there exists a
corresponding prefix pt of x such that

pt = pt−1wt−1p
′
t−1,

where pt−1,p
′
t−1 are substrings identical but for rightmost letters λt−1 and

λt > λt−1, respectively. Thus every t-clique in regular P− corresponds to a
prefix of length |pt|−1 of the corresponding string x that has t−2 nonempty
borders. The length of this prefix can be minimized by choosing every wj ,
j ∈ 1..t−1, to be empty, so that the strings pj double in length at each step:
hence there exists a prefix graph on 2t−1 vertices (or, equivalently, a feasible
array of length 2t−1) whose corresponding strings cannot be implemented on
less than t letters. Thus

Lemma 15 (See also [CCR09], Proposition 4.8.). For a given regular feasible
array y = y[1..n], a regular string x whose prefix array is y can be constructed
using no more than �log2 n�+1 letters.

[CCR09] describes a lemma more complex than Algorithm ASSIGN, but
that does not require a regular prefix array as input: a nonregular feasible array
is rejected at the first position detected.

12

(a)

1

i+r−2

s−r+1

i+r−2

r

y[r]

s

y[s]

i r+i−1

i−1

s+i−1

i−1

(b)

1

y[s]

s

y[s]

r

y[r]

i−r

s+r−1

i−r

i s+i−1

(c)

1

y[r]

s−r+1

i−s

r

y[r]

s

y[s]

i−s

i−r+1 i

Figure 7: The three cases of Lemma 17.

3.3. Necessary & Sufficient Conditions for Regularity

We conclude this section with two equivalent necessary and sufficient con-
ditions for y to be regular. A string x is said to be strongly indeterminate
(INDET, for short) if and only if its prefix array is not regular. Recall from
Definition 5 that a feasible array is regular if and only if it is a prefix array of a
regular string. Thus, for example, the string (5), although certainly indetermi-
nate, is not INDET because it is consistent with the feasible array y = 80103010
that is a prefix array of the regular string x = abacabad. If on the other hand y
is not regular, then as we have seen (Lemma 10(c)) there must exist a position
i such that x[i] ≈ x[r] and x[i] ≈ x[s], while x[r] �≈ x[s], for some positions r
and s; in such a case we say that x[i] is INDET. (In terms of the prefix graph
P, (i, r) ∈ E+, (i, s) ∈ E+, (r, s) ∈ E−.)

We state two versions of what is essentially the same lemma; we prove the
second.

Lemma 16. Suppose that x = x[1..n] is a nonempty string with prefix array y.
Then for i ∈ 1..n, x[i] is INDET (and so therefore also x) if and only if there
exist positions r and s > r such that y[s−r+1] = r−1 and one of the following
holds:

(a) y[r−i+1] ≥ i, y[s−i+1] ≥ i (1 ≤ i < r < s ≤ n);

(b) y[i−r+1] ≥ r, y[s−i+1] ≥ i (1 ≤ r < i < s ≤ n);

(c) y[i−r+1] ≥ r, y[i−s+1] ≥ s (1 ≤ r < s < i ≤ n).

Lemma 17. Suppose that x = x[1..n] is a nonempty string with prefix array y.
Then for i ∈ 1..n, x[i] is INDET (and so therefore also x) if and only if there
exist positions r and s such that one of the following holds:

(a) y[r] ≥ i, y[s] ≥ i, y[s−r+1] = i+r−2;

13

(b) r+y[r] > i, y[s] ≥ i, y[s+r−1] = i−r;

(c) r+y[r] > i, s+y[s] > i, y[s−r+1] = i−s.

Proof. If x[i] is INDET, then there must exist positions r′ and s′ such that
x[i] ≈ x[r′], x[i] ≈ x[s′], x[r′] �≈ x[s′]. Conversely, if such r′ and s′ exist, then
x[i] is INDET. Without loss of generality, suppose that s′ > r′. Then three
cases arise depending on the relative values of the distinct integers i, r′, s′ (see
Figure 7):

(a) (1 ≤ i < r′ < s′ ≤ n) Since x[i] ≈ x[r′] and i < r′, it follows that
x[1..i] ≈ x[r′−i+1..r′], hence that y[r′−i+1] ≥ i; similarly, y[s′−i+1] ≥ i.
Since x[r′] �≈ x[s′] and r′ < s′, therefore y[s′−r′+1] = r′−1. Setting
r ← r′−i+1, s ← s′−i+1 yields the desired result.

(b) (1 ≤ r′ < i < s′ ≤ n) Since x[i] ≈ x[r′] and r′ < i, therefore x[1..r′] ≈
x[i−r′+1..i], and so y[i−r′+1] ≥ r′; as in (a), y[s′−i+1] ≥ i. Also as
in (a), y[s′−r′+1] = r′−1. Setting r ← i−r′+1, s ← s′−i+1 yields the
result.

(c) (1 ≤ r′ < s′ < i ≤ n) As in (b), y[i−r′+1] ≥ r′; similarly, y[i−s′+1] ≥ s′.
As in (a) and (b), y[s′−r′+1] = r′−1. Setting s ← i−r′+1, r ← i−s′+1
yields the result.

4. Graphs & Indeterminate Strings

Here we extend the ideas of Section 3 to establish a remarkable connec-
tion between labelled graphs and indeterminate strings. Recall that a graph is
simple if and only if it is undirected and contains neither loops nor multiple
edges.

We define the associated graph, Gx = (Vx, Ex), of a string x to be the
simple graph whose vertices are positions 1, 2, . . . , n in x and whose edges are the
pairs (i, j) such that x[i] ≈ x[j]. Thus Ex identifies all the matching positions
in x, not only those determined by the prefix array. On the other hand, we
may think of each pair (i, j) �∈ Ex as a negative edge, x[i] �≈ x[j]. Thus Gx
determines all the pairs of positions in x that match or do not match each other.

It should be noted here that while Gx determines the matchings of positions
in x, it does not uniquely determine the alphabet of x. For example,

Ex =
{
(1, 2), (1, 3), (1, 4), (1, 5), (2, 3), (2, 4), (2, 6), (3, 5), (3, 6)

}

describes
1 2 3 4 5 6

x1 = {a, b, c} {a, b, d} {a, c, d} b c d

as well as
1 2 3 4 5 6

x2 = {a, b} {a, c} {b, c} a b c

14

1

2

3

4

5

6

7

8

Figure 8: Gx3
for

x3 = {a, b}{c, d}{a, b}{e, f}ac{a, h}g

1

2

3

4

5

6

7

8

Figure 9: Gx4 for
x4 = {a, b, e}{c}{a, d}{f}{b}{c}{d, e}{g}

Thus a given simple graph G = (V,E) with n vertices can be the associ-
ated graph of distinct strings. Another way to generate additional strings is by
permuting the vertex labels. Given any unlabelled G, we can generate strings
x = x[1..n] by labelling the n vertices V of G with integers 1..n, and forming a
string x of which G, with this labelling, is the associated graph. Thus an unla-
belled graph G corresponds to a set of strings x determined by the n! possible
labellings of V . For instance, given the graph

� � �

there are six possible labellings, three of which, for example

� � �1 2 3 � � �2 3 1 � � �3 1 2

can be chosen to lead to distinguishable regular strings x1 = aab, x2 =
abb, x3 = aba, respectively. In this case the other three labellings determine
the same three strings.

Consider a given string x. Suppose that for some position i0 ∈ 1..n, x[i0]
matches x[i1],x[i2], . . . ,x[ik] for some k ≥ 0, and matches no other elements
of x. We say that position i0 is essentially regular if and only if the entries
in positions i1, i2, . . . , ik match each other pairwise. If every position in x is
essentially regular, we say that x itself is essentially regular. For example,
the string

x3 = {a, b}{c, d}{a, b}{e, f}ac{a, h}g,
with associated graph shown in Fig. 8, though indeterminate, is essentially
regular with prefix array y = 80103010; to see this, observe that position 1
matches positions 3, 5, and 7, which also pairwise match each other. On the
other hand, string (5),

x4 = {a, b, e}c{a, d}fbc{d, e}g,

15

also with prefix array y, is not essentially regular, since position 1 again matches
positions 3, 5 and 7, but position 5 does not match 3 and 7 (Fig. 9).

We have

Lemma 18. A string x is essentially regular if and only if the associated graph
Gx of x is a disjoint union of cliques.

Thus combinatorics on (regular, essentially regular) words is the study of
labelled collections of cliques. For example, for x = an, the associated graph
Gx is simply the complete graph Kn; while for x such that x[i] ≈ x[j] ⇒ i = j,
Gx is n copies of K1. More generally, for essentially regular x, the number of
disjoint cliques in Gx is just the number of distinct letters in a regular string
having the same associated graph as x, and the order of each clique is the
number of times the corresponding letter occurs.

Recall that a maximal clique (sometimes abbreviated MC) Kt in a graph
G = (V,E) is a clique that is not a subgraph of any other clique in G. Thus
if Kt is maximal, then for every vertex j not in Kt, there exists some vertex i
of Kt such that (i, j) �∈ E. Every isolated vertex is a maximal clique K1, and
every vertex of G must belong to at least one maximal clique.

Definition 19. Let G = (V,E) be a finite simple graph, let S be the set of all
MC in G, and let I be a smallest subset of S such that every vertex of V and
every edge of E occur at least once in some cligue of I. Then I is said to be an
independent set in G, and so the MC in I are also said to be independent
(I), while those in D = S−I are dependent (D). (We see below that there may
be more than one independent set in G.)

An edge of G is said to be a free edge if it belongs to exactly one MC.
Then every MC that contains a free edge is necessarily an element of every
independent set I of G, as is every K1. However, the converse is not true: as
we discover in Figure 12, there exist graphs with no free edges.

A related idea is more useful: given an independent set I = {I1, I2, . . . , Iσ}
consisting of σ maximal cliques (IMCs for short) of a graph G, we say that an
edge e of Ij , j ∈ 1..σ, is a special edge if it occurs in no other IMC of I.
Remark 20. Every non-isolated IMC Ij, 1 ≤ j ≤ σ, in an independent set
I = {I1, I2, . . . , Iσ}, contains at least one special edge.

Proof. Suppose that I contains a non-isolated IMC Ij with the property that
every edge e in Ij also occurs in some other IMC of I. But then Ij could be
deleted from I without reducing the number of edges covered, contradicting the
requirement in Definition 19 that I be “smallest”.

We will see that for the associated graph G = Gx of a string x, an indepen-
dent set is closely related to alphabet size. Consider for example

x = {a, b}a{a, c}c{b, c}ab{a, c}, (6)

16

1

2

3

4

5

6

7

8

Figure 10: Gx for
x = {a, b}a{a, c}c{b, c}ab{a, c}

1

2

3

4

5

6

7

8

Figure 11: Gx′ for

x′ = {a, c}{a, d}{a, b}b{b, c}ad{a, b}

for which Gx (see Figure 10) has four MC

C1 = 12368, C2 = 3458, C3 = 1358, C4 = 157, (7)

of which, by Definition 19, C1, C2, C4 are independent, since each contains at
least one free edge ((1, 2), (3, 4), (1, 7), respectively). However, 1358 is depen-
dent, since its adjacencies all occur elsewhere (138 is a subclique of C1, 358 a
subclique of C2, 15 an edge of C4, and so every edge of 1358 occurs in at least
one of the other three cliques). Thus exactly three of the MC are independent,
and we see that (6) has a minimum alphabet of three letters. On the other
hand, if Gx′ (see Figure 11) has MC

C1 = 12368, C2 = 3458, C3 = 1358, C4 = 27, (8)

all four of them are independent, and we claim that no corresponding string x′

can be constructed on fewer than four letters, while

1 2 3 4 5 6 7 8

x′ = {a, c} {a, d} {a, b} b {b, c} a d {a, b} (9)

achieves the lower bound.
Indeed, given an independent set I = {I1, I2, . . . , Iσ} of a graph G, we

can define a canonical associated string x, defined on exactly σ letters,
as follows. Suppose that initially every x[i], i = 1, 2, . . . , n, is empty; then for
s = 1, 2, . . . , σ, form

x[i] ← x[i] ∪ λs

if and only if vertex i occurs in Is, where λs is a unique regular letter associated
with Is. This ensures that x[i1] ≈ x[i2] if and only if (i1, i2) is an edge in one of
the IMC of G. Since by Definition 19 this assignment includes all the vertices
and all the edges of G, it follows that G = Gx is the associated graph of x, a

17

1

2

3

4

5

6

Figure 12: Graph G on six vertices with
eight MC, four of them independent, and
no free edges.

1

2

3

4

5

6

7

8

Figure 13: Graph G on eight vertices with
16 MC, six of them independent, and no
free edges.

string on a base alphabet of size σ. For our example of Figure 11, the canonical
representation is

1 2 3 4 5 6 7 8

x′ = {a, c} {a, d} {a, b, c} b {b, c} a d {a, b, c}, (10)

containing two more occurrences of regular letters than (9), though with the
same base alphabet.

Conjecture 21. Suppose that G = Gx is the associated graph of x with inde-
pendent set I = {I1, I2, . . . , Iσ}. Then the minimum alphabet size on which x
can be built is σ.

The following simple algorithm might be a candidate to compute an inde-
pendent set:

1. Label I every MC that has a free edge;

2. Alternate steps (a) and (b) until no new labellings occur:

(a) Label D each unlabelled MC with at least one edge in an MC labelled
I;

(b) Label I each unlabelled MC with at least one edge in an MC labelled
D.

However, suppose that some subgraph H of G remains unlabelled after the
termination of step 2 of the algorithm. Then every edge e of H must belong
to at least two MC of H, since otherwise it would have been labelled in step 1.
Moreover, any MC containing e cannot be labelled either I or D, and so H can
only be a subgraph sharing no edges with the rest of G and also containing no
free edges.

18

To show that such a subgraph can exist, consider the triangulated graph G
on six vertices V = {1, 2, 3, 4, 5, 6}, where the only pairs (i, j) that are not edges
are (1, 5), (2, 6) and (3, 4), as shown in Figure 12. There are eight MC

123, 146, 245, 356; 456, 124, 235, 136

of which either the first four or the last four can be chosen to be independent,
thus by Conjecture 21 yielding a corresponding string x on four regular letters.

A more complex example is the graph G on vertices V = {1, 2, 3, 4, 5, 6, 7, 8}
with maximal cliques {1, 2, 3, 4}, {5, 6, 7, 8}, and 14 others, as shown in Fig-
ure 13. The only pairs (i, j) that are not edges are (1, 7), (2, 8), (3, 5), and
(4, 6). In this case it turns out that there are six IMC in each independent set
I, for example

1234, 5678, 1368, 1458, 2367, 2457,

and so by Conjecture 21 a corresponding string x can be constructed using six
regular letters (one letter per IMC):

x = {a, c, d}{a, e, f}{a, c, e}{a, d, f}{b, d, f}{b, c, e}{b, e, f}{b, c, d}.

These examples show that whenever graphs or subgraphs without free edges
exist, the identification of independent MC becomes more difficult. In such cases
we know of no algorithm to compute them apart from exhaustive search. Thus,
while it is straightforward, given x, to determine Gx, it is nontrivial, given G,
to determine a string x on a smallest alphabet such that G = Gx.

From Lemma 18 it follows that the maximum alphabet size required for an
essentially regular string x is n; thus to compute x from a feasible array y
is potentially an O(n) algorithm and, as shown in [CCR09], is actually O(n).
However, for indeterminate strings, Conjecture 21 shows that the minimum
alphabet size is the number σ of independent maximal cliques in Gx. A classical
result from graph theory [MM65] shows that the number of maximal cliques may
be as much as 3n/3, and so an indeterminate string potentially could require an
alphabet of exponential size. For example, for n = 6, consider the graph Gx on
six vertices Vx = {1, 2, . . . , 6} with nine edges (9 = 36/3)

Ex = {(1, 2), (1, 4), (1, 6), (2, 3), (2, 5), (3, 4), (3, 6), (4, 5), (5, 6)},

as shown in Figure 14. Each of these edges is a maximal independent 2-clique,
and so by Conjecture 21 a corresponding string is

x = {a, b, c}{a, d, e}{d, f, g}{b, f, h}{e, h, i}{c, g, i},

defined on an alphabet of nine regular letters with prefix array y = 650301.
Note here that information is lost in the transformation from x to y. The

prefix graph P+ corresponding to 650301 has the same nine edges Ex, but P−

contains, instead of the six negative edges

(1, 3), (1, 5), (2, 4), (2, 6), (3, 5), (4, 6)

19

1

2

3

4

5

6

Figure 14: Identifying the minimum alphabet size from the number of independent maximal
cliques (Conjecture 21)

implied by Ex, just two: E− = {(1, 3), (1, 5)}. Thus by reverse engineering y
we get the much simpler (but still necessarily indeterminate) string

x′ = a{ab}b{ab}b{ab},
whose associated graph Gx′ has, in addition to the nine edges of Ex, also the
four (now positive) edges (2, 4), (2, 6), (3, 5), (4, 6). Thus in Gx′ there are only
two maximal cliques, on the vertices 23456 and 1246, independent of each other,
and so by Conjecture 21 x′ can be constructed using σ = 2 regular letters.

The fastest known algorithm to compute all maximal cliques is described
in [BK73], but of course it must be exponential in the worst case (3n/3 maxi-
mal cliques); it is not known how many independent maximal cliques can exist
in a graph constructed from a prefix array. The graph P+ corresponding to y2 =
80420311 contains seven independent maximal cliques (138, 146, 17, 24, 25, 27, 35).
Thus, regarding this graph as an associated graph Gx of some string x tells us
by Conjecture 21 that seven regular letters would be needed to represent it.

5. Summary & Future Work

In this paper we have explored connections among indeterminate strings,
prefix arrays, and undirected graphs, some of them quite unexpected (by us, at
least). We believe that many other connections exist that may yield combina-
torial insights and thus more efficient algorithms. For example:

1. How many independent maximal cliques can exist in the associated graph
Gx of a string x computed (on a minimum alphabet) from a given prefix
array y?

2. Find an efficient algorithm to compute a string on a minimum alphabet
corresponding to a given nonregular prefix array.

3. Find an efficient algorithm to compute an associated string with a mini-
mum number of regular letters corresponding to given graph G.

20

4. What classes of graphs G exist that, as associated graphs G = Gx of some
string x, have fewer than exponential independent maximal cliques, and
so therefore may give rise to efficient algorithms for the determination of
x on a minimum alphabet? Put another way: characterize graphs that
have an exponential number of independent maximal cliques.

5. Can we recognize strings x with associated graphs Gx that have an expo-
nential number of independent maximal cliques?

6. Can known results from graph theory be used to design efficient algorithms
for computing patterns in indeterminate strings?

Acknowledgements

We are grateful to Jean-Pierre Duval and Arnaud Lefebvre of the Univer-
sité de Rouen for useful discussions, also to Zsuzsa Lipták of the Università di
Verona, and to the referees, for helpful comments.

References

[A87] Karl Abrahamson, Generalized string matching, SIAM J. Com-
puting 16–6 (1987) 1039–1051.

[BIST03] H. Bannai, S. Inenaga, A. Shinohara & M. Takeda, Inferring
strings from graphs and arrays, Mathematical Foundations of
Computer Science, Springer Lecture Notes in Computer Science
LNCS 2747, B. Rovan & P. Vojtás (eds.) (2003) 208–217.

[B08] Francine Blanchet-Sadri, Algorithmic Combinatorics on Partial
Words, Chapman & Hall/CRC (2008) 385 pp.

[BSH02] Francine Blanchet-Sadri & Robert A. Hegstrom, Partial words
and a theorem of Fine and Wilf revisited, Theoret. Comput.
Sci. 270–1/2 (2002) 401–409.

[BKS13] Widmer Bland, Gregory Kucherov & W. F. Smyth, Prefix table
construction & conversion, Proc. 24th Internat. Workshop on
Combinatorial Algs., Springer Lecture Notes in Computer Science
LNCS 8288, Thierry Lecroq & Laurent Mouchard (eds.) (2013) 41–
53.

[BM08] J. A. Bondy & U. S. R. Murty, Graph Theory, Springer (2008) 651
pp.

[BK73] C. Bron & J. Kerbosch, Algorithm 457: finding all cliques of
an undirected graph, Communications of the ACM 16–9 (1973)
575–577.

21

[CCR09] Julien Clément, Maxime Crochemore & Giuseppina Rindone, Re-
verse engineering prefix tables, Proc. 26th Symp. Theoretical
Aspects of Computer Science, Susanne Albers & Jean-Yves Marion
(eds.) (2009) 289–300.

[CHL01] Maxime Crochemore, Christophe Hancart & Thierry Lecroq, Algo-
rithmique du Texte, Vuibert (2001) 347 pp.

[CHL07] Maxime Crochemore, Christophe Hancart & Thierry Lecroq, Algo-
rithms on Strings, Cambridge University Press (2007) 392 pp.

[DLL05] Jean-Pierre Duval, Thierry Lecroq & Arnaud Lefebvre, Border ar-
ray on a bounded alphabet, J. Automata, Languages & Combi-
natorics 10–1 (2005) 51–60.

[FP74] Michael J. Fischer & Michael S. Paterson, String-matching and
other products, Complexity of Computation, Proc. SIAM-AMS 7
(1974) 113-125.

[FLRS99] Frantisek Franek, Weilin Lu, P. J. Ryan, W. F. Smyth, Yu Sun &
Lu Yang, Verifying a border array in linear time (preliminary
version), Proc. 10th Australasian Workshop on Combinatorial Algs.,
School of Computing, Curtin University of Technology (1999) 26–33.

[FGLR02] Frantisek Franek, Shudi Gao, Weilin Lu, P. J. Ryan, W. F. Smyth,
Yu Sun & Lu Yang, Verifying a border array in linear time, J.
Combinatorial Maths. & Combinatorial Comput. 42 (2002) 223-236.

[FS06] Frantisek Franek & W. F. Smyth, Reconstructing a suffix array,
Internat. J. Foundations of Computer Science 17–6 (2006) 1281–
1295.

[HS03] Jan Holub & W. F. Smyth, Algorithms on indeterminate
strings, Proc. 14th Australasian Workshop on Combinatorial Algs.
(2003) 36–45.

[HSW06] Jan Holub, W. F. Smyth & Shu Wang, Hybrid pattern-matching
algorithms on indeterminate strings, London Algorithmics and
Stringology 2006, J. Daykin, M. Mohamed & K. Steinhoefel (eds.),
King’s College London Series Texts in Algorithmics (2006) 115–133.

[HSW08] Jan Holub, W. F. Smyth & Shu Wang, Fast pattern-matching on
indeterminate strings, J. Discrete Algorithms 6–1 (2008) 37–50.

[IMMP03] Costas S. Iliopoulos, Manal Mohamed, Laurent Mouchard, Katerina
G. Perdikuri, W. F. Smyth & Athanasios K. Tsakalidis, String
regularities with don’t cares, Nordic J. Comput. 10–1 (2003)
40–51.

22

[K68] Joseph W. Kitchen Jr., Calculus of One Variable, Addison-Wesley
(1968).

[L05] M. Lothaire, Applied Combinatorics on Words, Cambridge Univer-
sity Press (2005) 610 pp.

[ML84] Michael G. Main & Richard J. Lorentz, An O(n log n) algorithm
for finding all repetitions in a string, J. Algorithms 5 (1984)
422–432.

[MM65] J. W. Moon & L. Moser, On cliques in graphs, Israel J. Math. 3
(1965) 23–28.

[MSM99] Dennis Moore, W. F. Smyth & Dianne Miller, Counting distinct
strings, Algorithmica 13–1 (1999) 1–13.

[MP70] James H. Morris & Vaughan R. Pratt, A Linear Pattern-Matching
Algorithm, Tech. Rep. 40, University of California, Berkeley (1970).

[M55] J. Mycielski, Sur le colorage des graphes, Colloq. Math. 3 (1955)
161–162.

[S03] Bill Smyth, Computing Patterns in Strings, Pearson Addison-
Wesley (2003) 423 pp.

[SW08] W. F. Smyth & Shu Wang, New perspectives on the prefix
array, Proc. 15th String Processing & Inform. Retrieval Symp.,
Springer Lecture Notes in Computer Science LNCS 5280 (2008) 133–
143.

[SW09a] W. F. Smyth & Shu Wang, A new approach to the periodic-
ity lemma on strings with holes, Theoret. Comput. Sci. 410–43
(2009) 4295–4302.

[SW09] W. F. Smyth & Shu Wang, An adaptive hybrid pattern-
matching algorithm on indeterminate strings, Internat. J.
Foundations of Computer Science 20–6 (2009) 985–1004.

[T72] Robert Tarjan, Depth-first search and linear graph algo-
rithms, SIAM J. Computing 1 (1972) 146–160.

23

