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Abstract
Characterisation of Hepatitis C virus (HCV)-specific CD8+ T-cell responses in the context

of multiple HCV exposures is critical to identify broadly protective immune responses

necessary for an effective HCV vaccine against the different HCV genotypes. However,

host and viral genetic diversity complicates vaccine development. To compensate for the

observed variation in circulating autologous viruses and host molecules that restrict antigen

presentation (human leucocyte antigens; HLA), this study used a reverse genomics

approach that identified sites of viral adaptation to HLA-restricted T-cell immune pressure to

predict genotype-specific HCV CD8+ T-cell targets. Peptides representing these putative

HCV CD8+ T-cell targets, and their adapted form, were used in individualised IFN-γ ELISpot

assays to screen for HCV-specific T-cell responses in 133 HCV-seropositive subjects with

high-risk of multiple HCV exposures. The data obtained from this study i) confirmed that

genetic studies of viral evolution is an effective approach to detect novel in vivo HCV T-cell

targets, ii) showed that HCV-specific T-cell epitopes can be recognised in their adapted form

and would not have been detected using wild-type peptides and iii) showed that HCV-

specific T-cell (but not antibody) responses against alternate genotypes in chronic HCV-

infected subjects are readily found, implying clearance of previous alternate genotype

infection. In summary, HCV adaptation to HLA Class I-restricted T-cell responses plays a

central role in anti-HCV immunity and multiple HCV genotype exposure is highly prevalent in

at-risk exposure populations, which are important considerations for future vaccine design.
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Introduction
Hepatitis C virus (HCV) infection remains a major health problem worldwide. Although the
recent development of direct-acting anti-viral (DAA) drugs has revolutionised the efficacy of
treatment for hepatitis C, these new drugs will not prevent re-infection, which is a common
occurrence in high-risk HCV exposure populations [1]. Accordingly, there is a continuing
need for the development of a protective vaccine against circulating genetically diverse HCV
genotypes (GTs).

The ability to develop a T-cell based vaccine against HCV should be bolstered by knowledge
of the effective CD4+ and CD8+ T-cell responses that mediate natural immunity in humans [2].
However, the diversity of HCV strains and of host molecules that restrict antigen presentation
(human leucocyte antigens; HLA) complicates our ability to understand host-viral interplay and
has hampered progress in the development of a HCV vaccine.

Host HLA genes have been subject to positive selection from repeated exposure to infectious
pathogens in our history and as such exhibit an extraordinary level of diversity at the population
level that results in often non-overlapping sets of viral peptides presented by different individu-
als. Such diversity in antigen presentation within host populations makes it difficult to identify
and assess HCV T-cell targets. The natural variation observed for HCV strains due to a high
mutation rate leading to immune escape (adaptation) as well as repeat exposure to variant
strains due to high risk behaviour adds an additional layer of complexity in host-viral interplay
[3–5]. Although previous studies have identified a number of HCV T-cell targets, utilising pep-
tides derived from reference strains, the breadth of HLA alleles and viral sequences examined in
these studies tend to be narrow relative to the diversity of the HLA genes and circulating HCV
strains within populations ([6], www.iedb.org). Furthermore, when using overlapping peptides
in cellular assays the specificity of the HLA-restriction of the T-cell response is sometimes
unclear due to the extensive HLA repertoire of subjects. As shown for HIV [7], HLA and viral
diversity within a host population need to be considered when developing a T-cell based vac-
cine, however this analysis is lacking for HCV.

We previously performed a large population-based genetic study to identify allele specific
HLA Class I-associated viral polymorphisms within the non-structural proteins of HCV in the
context of GT1 and GT3 infection [8, 9]. These HLA Class I-associated viral polymorphisms
represent amino acids selected by HLA Class I-restricted T-cell pressure and therefore are
likely to mark true in vivo CD8+ T-cell targets or epitopes. As the genetic study identifies viral
adaptations within circulating viruses in the population, it overcomes the limitation of
previous cellular studies that commonly utilise peptides that are based on a reference or
consensus sequence, which typically differ from diverse circulating viral strains. Accordingly,
the genetic study enables the design of T-cell targets for cellular testing that allow comparison
between adapted and non-adapted variants for a T-cell epitope. Furthermore, given the limited
overlap in viral adaptation sites between GT1 and GT3 [9], a number of these T-cell targets are
likely to represent HCV GT-specific T-cell epitopes.

There is also limited evaluation of the immune hierarchy of T-cell responses during HCV
infection. Data on anti-HIV immunity has shown that HLA-B-restricted responses play a major
role in the overall HIV-specific CD8+ T-cell response [10] and have the strongest effect on
HIV infection outcome [11]. Furthermore, recent evidence suggests differences in the likely
contribution of host HLA Class I-restricted responses between DNA and RNA viruses and also
between the RNA virus genera flaviviruses (that contains HCV) and other RNA virus genera
[11, 12]. However, data in regards to the contribution of HLA-A, -B and -C-restricted responses
to the overall anti-HCV response during infection are missing, mainly due to the focus on a
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small set of immunodominant HLA-B-restricted epitopes and HLA-A�02-restricted T-cell
epitopes in the literature.

Population-based genetic studies of viral adaptation provide leads on putative T-cell targets
for all HLA class I loci without bias [8, 9, 13, 14]. In this study, predicted HLA Class I-restricted
T-cell epitopes based on HLA Class I-associated viral polymorphisms were initially evaluated
for their capacity to elicit ex vivo CD8+ T-cell responses. These peptides were then used to
compare the contribution of HLA-A, -B and -C-restricted responses to the overall HCV-
specific CD8+ T-cell response and to assess the extent of historic exposure to different GTs.
Overall, this study presents data on anti-HCV T-cell responses, which accounts for circulating
viral variation, GT specificity and HLA diversity in subjects with resolved and chronic
infection after multiple HCV exposures.

Materials and Methods

Study Subjects
HCV-exposed individuals (n = 133; 10 spontaneous resolvers, 25 resolvers following pegylated
IFN-α/ribavirin treatment, 93 subjects with chronic HCV infection and five subjects with
unknown infection status—i.e. unknown treatment resolver or spontaneous resolver due to
lack of clinical information) were recruited from tertiary hospitals in Western Australia
between 2006–2012. Each subject was followed for up to three years with a maximum of four
blood samples taken per year (Table 1). The HCV GTs within the cohort were GT1 (51.1%)
and GT3 (29.3%) and 19.5% with unknown GT exposure. Fifty per cent of subjects were
exposed to HCV via contaminated blood clotting factors (male subjects with X-linked Haemo-
philia) whereas the remaining 50% represented individuals that acquired HCV infection pre-
dominantly via intravenous drug use (IDU). For subjects with Haemophilia modelling shows

Table 1. Subject demographics and clinical data.

n %

Outcome

Spontaneous resolver 10 7.5

Treatment resolver 25 18.8

Chronic 93 69.9

unknown * 5 3.8

Genotype

1 ^ 68 51.1

2 B 2 1.5

3 ^ 39 29.3

4 B 1 0.8

unknown * 24 19.5

Transmission mode

Blood product 67 50.4

Other# 66 49.6

Gender

Female 34 25.6

Male 99 74.4

* information unknown due to limited clinical history or lack of viraemic plasma sample
^ includes a single individual co-infected with GT1 and GT3 strains
# predominately IDU and Tattoo

doi:10.1371/journal.pone.0130420.t001
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the likelihood of infection with more than one viral strain [15] and data from studies on intra-
venous drug users (IVDU) show that the level of repeat exposure to diverse viral strains is
high [16].

Ethics statement
Written, informed consent from all subjects was obtained for this study. Ethics approval for
the conduct of this research was obtained from the Royal Perth Hospital Ethics Committee
(EC2004/005). The protocol and the procedures of the study were conducted in conformity
with the ethical guidelines of the World Medical Association Declaration of Helsinki.

Viral HCV RNA extraction
Viral RNA was extracted from plasma using the COBAS AMPLICOR HCV Specimen Prepara-
tion Kit v2.0 (Roche) according to the manufacturer’s instructions.

PBMC separation and DNA extraction
Peripheral Blood Mononuclear Cells (PBMCs) and DNA were obtained from whole blood.
PBMCs were isolated using the Accuspin System-Histopaque method (Sigma) and DNA was
extracted using the QIAmp DNA Blood Mini Kit (QIAGEN) according to the manufacturer’s
guidelines.

HLA Genotyping
Sequence-based four-digit HLA Class I typing was performed by direct DNA sequencing meth-
ods as previously described [8].

HCVGenotyping
HCV GTs/subtypes were assigned by clinical tests using commercial assays (INNO-LiPA HCV
II; Innogenetics) and confirmed by phylogenetic analysis as previously described [9].

HCV sequencing
Sequencing of the HCV non-structural genes was performed as previously described [8, 9].
Briefly, RT-PCRs were performed using extracted viral RNA to amplify the non-structural
regions of HCV. First-round products were used as templates in nested second-round PCRs
using generic or GT-specific primers. Amplicons were sequenced using the BigDye Terminator
v3.1 cycle sequencing kit (Applied Biosystems) according to manufacturer’s recommendations
and electropherograms edited using Assign (Conexio Genomics). Mixtures were identified
where the secondary peak was�20% of the major peak.

Prediction of HCV peptides
Web-based HLA binding programs SYFPHEITI ([17]; www.syfpeithi.de) and BIMAS ([18];
www-bimas.cit.nih.gov/molbio/hla_bind) were used to predict HCV-specific HLA Class I-
restricted T-cell epitopes based on a list of HLA-associated HCV polymorphisms (p<0.05)
identified by our previous analysis of NS2-NS5B HCV sequences from chronic HCV GT1-in-
fected individuals [8, 9]. Specifically, at least 10 amino acids either side of the site of HLA-asso-
ciation was used in the web-based HLA-binding prediction programs. In addition, T-cell
epitopes were predicted using a statistical HLA-binding prediction model described in [19]. A
total of 76 putative GT1 CD8+ T-cell targets were identified in this study. A selection of
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published HLA Class I-restricted HCV GT1 T-cell epitopes was also included in the IFN-γ
ELISpot assays. In order to capture immune responses towards the circulating viral strains
within the cohort, consensus and up to two variant versions of peptides were synthesised
(Mimotopes) based on sequence data from the genetic study [9]. The set of peptides
corresponding to the GT1 CD8+ T-cell targets and used in the IFN-γ ELISpot assays are
listed in S1 Table. As there was little overlap in the HLA-associated HCV polymorphisms
found in GT1 and GT3 [9], likely reflecting limited overlap in T-cell pressure on the HCV
genome (or sites of viral adaptation), the CD8+ T-cell epitopes identified in this study are
likely to be GT-specific. However, peptides that elicit cross GT-reactive responses cannot be
excluded.

Binding score cut-offs for the two web-based programs were determined relative to the
median score for the known HCV CD8+ T-cell epitopes in S1 Table. Accordingly, a good
binder was based on a prediction score above 20 for SYFPHEITI and/or 100 for BIMAS.
Retrospectively, approximately a third of the putative epitopes were predicted to be good or
intermediate binders by the IEDB HLA binding prediction program (<500 IC50; [20]; http://
tools.immuneepitope.org/mhci/). However, more than half (57.8%) of the peptides deemed
to be a non-binder with IEDB elicited a response in the IFN-γ ELISpot (based on criteria
described below). As these HLA-associated viral polymorphisms would only be evaluated
using IFN-γ ELISpot assays, predictions of processing mutations is not shown.

IFN-γ ELISpot assays
ELISpot assays were performed using the Biomek FX liquid-handling system (Beckman Coul-
ter) as previously described [21]. The protocol was adjusted to optimise the detection of HCV-
specific T-cell responses as follows: PBMCs were added to an IFN-γ (Mabtech) pre-coated 96
well ELISpot plate (MAIPS, Millipore) at a concentration of 200,000 cells/well and incubated
overnight with HCV peptides (final concentration of 10μl/ml). At least one well per study sub-
ject was allocated as a positive control (anti-CD3 antibody, Mabtech) and three wells as nega-
tive (autologous PBMC cells only) controls.

Individualised HLA-based analysis of HCV-specific T-cell responses
We deemed a predicted HLA Class I-restricted T-cell epitope a true in vivo target if any of the
corresponding peptides (consensus or variant) elicited an IFN-γ T-cell response at�25 spot
forming units (SFU)/million PBMCs after background subtraction [22]. The background was
defined as the mean plus three times the standard deviation of the number of spots counted in
the triplicate negative control wells. The median background was 7.0. Given the large number
of peptides tested for each individual, peptides were tested as singletons. However, of the 53
epitopes that were deemed positive using this approach (S1 Table), 18 were known HCV CD8+

T-cell epitopes and of the new targets identified six were positive in at least two independent
IFN-γ ELISpot assays for the same subject and a further 14 were positive in at least two
subjects. Given the large number of peptides tested for each subject, confirmatory ELISpot
assays or intracellular cytokine staining using flow cytometry was not possible.

Individuals sharing a particular HLA allele were tested with the same set of HLA-matched
peptides and peptides had to be tested in a minimum of five HLA-matched individuals to be
included in the final analysis. Each epitope-specific response rate is calculated as the proportion
of the tested individuals who yielded a positive response to that epitope (�25 SFU/million
PBMCs).

The response rate of CD8+ T-cell epitopes normalises for the bias that could be introduced
in the data set by i) larger sample sizes of study subjects carrying common HLA alleles, and ii)
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variation in the number of peptide variants spanning the same T-cell epitope. Assessment of
relative CD8+ T-cell epitope response rates across proteins and the HLA loci was undertaken
by nested mixed effect modelling of individual responses within a generalized linear regression
framework to accommodate the within-individual correlations.

Analysis of antibody responses to different GTs
Serum samples from 73 subjects were tested with a commercial “serotyping” assay (Murex Bio-
tech Limited) in order to find evidence for antibody responses to more than one GT. Briefly,
immunoplates were precoated with synthetic peptides derived from the NS4 protein from
HCV GT1-6. Diluted serum samples were added in the presence of competing peptides to
block cross-reactivity. Captured antibodies were then detected using an anti-human IgG anti-
body enzyme complex with resulting colour read at 450nm absorbance and results analysed
following the manufacturer’s instructions.

Results

Reverse genomics approach identifies novel HCV T-cell targets
Using leads from a population-based genetic study [8, 9] in combination with web-based bind-
ing programs (see Methods for details), we predicted 76 HLA Class I-restricted HCV GT1 T-
cell epitopes of which 16 had previously been described (S1 Table). Peptides corresponding to
these putative T-cell epitopes and an additional 16 previously published HLA Class I-restricted
HCV GT1 T-cell epitopes were tested using IFN-γ ELISpot assays. The panel of peptides used
in each assay was customised to the HLA repertoire of each individual in the cohort (n = 133),
which consisted of subjects with chronic HCV infection and spontaneous or treatment-
induced resolution (Table 1). The median SFU/million PBMCs was 63 with an interquartile
range of 38.5–117.

This approach confirmed a total of 35 previously unknown HLA Class I-restricted GT1 T-
cell epitopes comprising 14 HLA-A-, 17 HLA-B- and 4 HLA-C-restricted T-cell epitopes (S1
Table). Of these, four GT1 T-cell epitopes included a viral adaptation that was present in the
most common circulating (consensus) viral sequence (indicated by an odds ratio of<1 in the
genetic analysis; [8, 9]). Accordingly, peptides with the consensus sequence at these sites would
effectively equate to testing for a T-cell response against escaped variants and epitopes may
have been missed if a consensus-based approach had been used to identify T-cell epitopes.

Overall, the proportion of predicted HCV T-cell epitopes that elicited a response was similar
to that observed for known HCV T-cell epitopes. Specifically, 19/23 (82.6%) predicted HLA-A
epitopes versus 10/15 (66.7%) known HLA-A epitopes (of which six targets were the same
between predicted and known) elicited an IFN-γ response in at least one subject while 23/44
(52.3%) predicted HLA-B epitopes versus 6/11 (54.5%) known HLA-B epitopes (of which 10
targets were the same between predicted and known) elicited an IFN-γ response in at least one
subject. Four out of nine predicted epitopes for HLA-C elicited a response in at least one sub-
ject while none of the two known HLA-C epitopes elicited a response in any of the tested sub-
jects. These results confirm that the reverse genomics approach described here is an effective
tool to identify true in vivo T-cell targets.

HLA-A-restricted immune responses are prevalent in the overall immune
response against HCV GT1
In previous population-based genetic studies of HCV, we identified more HLA-B than HLA-A
associated HCV polymorphisms [8, 9], which is similar to studies examining these statistical
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associations from single source HCV outbreaks [23, 24]. Based on the predictions from this
genetic study, a greater number of HCV T-cell targets restricted by HLA-B (n = 44) were tested
relative to HLA-A (n = 23). Nevertheless, the majority of HLA-A-restricted T-cell epitopes
generated an immune response in the cohort tested, but many of the predicted HLA-B-
restricted T-cell epitopes did not elicit IFN-γ responses (eight HLA-A restricted versus 29
HLA-B-restricted targets did not elicit a response in at least one individual at�25 SFU/million
PBMCs; Fig 1).

To take into account the discrepancy in subject numbers for the different HLA alleles, the
efficiency of peptides in triggering an IFN-γ CD8+ T-cell response was evaluated based on a
response rate per CD8+ T-cell epitope (see Methods). HLA-B- and -C-restricted epitopes were
less likely to elicit a response than HLA-A-restricted epitopes (OR 1.63 (1.14–2.35, 95% CI)
p = 0.008 and 4.28 (1.84–9.95) p = 0.0007, respectively, Fig 2A). As well, HLA-B-restricted T-
cell epitopes were more likely to elicit a response than HLA-C-restricted T-cell epitopes (OR
2.62 (1.10–6.25, 95% CI) p = 0.03). It should be noted that the overall number of predicted T-
cell epitopes obtained for the HLA-C alleles using the approach here remains small, partly due
to the limited information known about the binding capabilities of different HLA-C alleles.

Fig 1. Breakdown of HLA-specific T-cell targets tested and number eliciting a T-cell response based on an IFN-γ ELISpot assay. Predicted T-cell
targets include published HCV T-cell targets that contain a site associated with a specific HLA allele with the same restriction. Number in bracket indicates
number of subjects tested that carry the particular HLA type.

doi:10.1371/journal.pone.0130420.g001
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Identification of commonly targeted HCV GT1 CD8+ T-cell epitopes in
the non-structural proteins
The highest response rates were predominately seen towards previously described T-cell epi-
topes HLA-A�02-NS3-1072 (CINGVCWTV), HLA-A�01-NS3-1436 (ATDALMTGY),
HLA-B�27-NS5B-2841 (ARMILLTHF) and HLA-B�37-NS2-870 (RDAVILLM) (Fig 2B) that
all showed evidence of adaptation based on the genetic analysis. Interestingly, some of these T-
cell epitopes, such as HLA-A�01-NS3-1436 (ATDALMTGY; [25]) and HLA-B�27-NS5B-2841
(ARMILLTHF; [4]) have been previously termed “immunodominant”.

Fig 2. A. Contribution of HLA-A-, -B- and -C-restricted responses to overall anti-HCV immunity in the cohort. Response rates of predicted (circle), published
with adaptation (square) and published (triangle) HCV CD8+ T-cell epitopes are shown in relation to the HLA loci. HLA-A-restricted T-cell epitopes have a
significantly higher response rate compared to HLA-B- and -C-restricted T-cell epitopes (p = 0.008 and p = 0.0007, respectively). B. Response rate of T-cell
epitopes within the HCV non-structural proteins. Predicted (circle) T-cell epitope, published T-cell epitope with adaptation (square) and published (triangle) T-
cell epitopes that elicit an IFN-γ response. T-cell epitopes with the highest response rates are indicated. There was a greater response rate in NS3 relative to
the other proteins (p = 0.02).

doi:10.1371/journal.pone.0130420.g002
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When comparing the response rates of the HLA Class I-restricted T-cell epitopes tested
across the different viral proteins, T-cell epitopes within the more conserved NS3 and NS5 did
tend to have a higher response rate than those within NS2 and NS4 (Fig 2B). This trend only
reached statistical significance in NS3 (OR 1.55 (1.07–2.24, 95% CI) p = 0.02). Of note, many
of the T-cell epitopes that elicited a response in NS3 and NS5B have previously been described
while many of those within the other non-structural HCV proteins are novel (S1 Table).

Immune responses against adapted virus common in chronic HCV
infection
Of the 29 T-cell epitopes that were tested with both the adapted and non-adapted form and
elicited a response in chronic HCV GT1-infected subjects, 11 T-cell epitopes were only recog-
nised when presented in their adapted form and would not have been detected using wild-type
peptides. Of the remaining 18 T-cell epitopes, 12 were recognised in both the non-adapted and
adapted form. For these 12 T-cell epitopes, 15 of 17 chronic HCV GT1-infected subjects had
higher IFN-γ responses to the adapted form compared to the non-adapted form and of these
subjects four had more than a two-fold difference in responses but there was no significant dif-
ference overall between responses to adapted and non-adapted peptides (Mann-Whitney,
p = 0.2; median difference 42 SFU/106 PBMCs). Six T-cell epitopes were only recognised in the
non-adapted form.

Individuals at high-risk of multiple HCV exposure are able to mount
CD8+ T-cell responses against previously encountered HCV GT strains
Most subjects in this study have been repetitively exposed to the different circulating HCV GTs
due to the nature of their exposure. Therefore, chronic HCV-infected subjects currently
infected with non-GT1 strains were screened for T-cell responses against GT1 peptides to
reveal T-cell responses mounted during potentially previously resolved GT1 infection (Fig 3).
Using this approach, 37.9% (11/29) of chronic non-GT1-infected subjects responded to pep-
tides in the HCV GT1 peptide panel. This finding suggests that GT1 RNA-negative subjects
may have previously successfully cleared GT1 virus and maintained a memory T-cell response
against the resolved GT1 infection.

Interestingly, of the 35 novel HCV GT1 T-cell epitopes identified in this study peptides cor-
responding to 13 epitopes elicited a response only from non-GT1-infected subjects; six were
restricted by HLA-B27—a HLA allele associated with good outcome following HCV infection
[4, 26, 27] (Table 2). For most of the GT1 epitopes that elicited a response in non-GT1 infected
subjects, the corresponding GT3 sequence reduced predicted binding scores, suggesting these
are likely to be GT1-specific responses. Furthermore, some of the responses in non-GT1-in-
fected subjects were elicited by peptides spanning the known GT1-specific
HLA-B�2705-restricted epitope at position 2841–2849 in NS5B [3] (Table 2).

In order to determine if these GT1 peptides were likely to reflect GT-specific responses, we
tested using ELISpot analysis, where possible, the alternative genotype 3 peptide sequences
(often corresponding to the autologous virus) in GT 3 chronic-infected subjects that exhibited
a response in the initial screen (Table 2). Furthermore, we also tested, where possible, chronic
GT1 infected individuals and resolvers with these alternative genotype 3 peptides where a
response for a GT1 peptide was detected in the initial screen (Table 2 and Fig 4). These data
suggest limited cross-reactivity between these peptides and support our findings that these epi-
topes are likely to represent GT-specific epitopes and accordingly the responses in the GT3-in-
fected subjects likely represents clearance of a prior exposure.
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Individuals at high-risk of multiple HCV exposure no longer show
serological evidence of multiple GT exposure
Evidence of multiple HCV exposures was examined using a HCV serological assay in a subset
of 37 chronic HCV-infected subjects and 33 subjects with resolved HCV infection. Of the
chronic HCV-infected subjects 25 were GT1-infected and 12 were GT3-infected. Serological
testing confirmed 22/25 GT1 infections and 6/12 GT3 infections. There was no evidence of
antibodies against alternative GTs in any of the chronic HCV-infected subjects. Of the subjects
that underwent HCV serology testing, 10 of the GT3-infected subjects responded to GT1
peptides.

For subjects with resolved HCV infection but with known infecting GT, serological testing
confirmed GT1 infection in 6/7, GT2 infection in 2/2 and GT3 infection in 2/5 subjects. For
those with unknown infecting GT, the GT could not be determined in 13/20 subjects as the ser-
otyping assay was negative, most likely due to the loss of anti-HCV antibody responses over
time. One subject with resolved infection had evidence of dual infection with GT1 and GT2 by
serotyping and another subject had been typed as GT3-infected by PCR but was positive for
anti-GT1 antibodies by serotyping. Thus, except for two subjects, evidence for dual infection or
cleared past infection could not be found by serological analysis, which is consistent with the
observation that T-cell responses outlast antibody responses by decades [28, 29].

Discussion
Genetic studies that identify sites in the viral genome under HLA-restricted host immune pres-
sure (“HLA footprints”) offer an effective way to analyse T-cell responses to viruses. This
approach takes viral polymorphisms and population diversity in HLA genes into account and
has been applied to HIV vaccine design [7]. Although some studies, including our own, have
used a reverse genomics approach to identify a small number of epitopes [24, 30], the approach

Fig 3. Chronic non-GT1-infected individuals are able to mount T-cell responses to GT1 epitopes. The
SFU/million PBMCs are shown for subjects with known GT1 infection and non-GT1 infection. Although
subjects may have responded to more than one peptide covering an epitope, in this figure only the highest
response was used.

doi:10.1371/journal.pone.0130420.g003
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has not been used to study HCV-specific T-cell responses in a systematic manner. This study
provides evidence that HLA-associated viral polymorphisms in the HCV genome can act as
markers of in vivo CD8+ T-cell selection pressure and can be used to identify novel CD8+

T-cell targets and adaptation, and assess GT-specific immunity. As the genetic-guided
approach is most helpful in areas of the viral genome that show evidence of viral variation due

Table 2. GT1 peptides that elicit a response in non-GT1 infected subjects.

HLA Protein Position GT1 peptides tested Corresponding GT3 consensus sequence Response with GT3 peptide (n)

GT1 and GT3 infected subject responders

A02 NS2 821 VVLV/a/fGLMAL GV/iLVLFGFF# Response (1)@; no response (4)*

A02 822 VLV/fGLMALTL V/iL/aVLFGFFTL No response*(2)

A01 836 KVYISWCLW KHWIGRLIW Not tested

A02 935 QMAMIKLGAL QMIILSVGRW# Not tested

A02 NS3 1406 KLVALGLNAV^ KLRGMGLNAV# No response*(1)

A01 1436 ATDALMTGY^ ATDALMTGY/f~ Yes*

A02 NS4B 1868 IMSGEVPSM^ IMGGELPTT/a# Response (1) and no response (1)

B40 1871 GEVPSTEDL^ GELPTTEDL Not tested

B07 1873 VPSMEDLVNL LPTTEDLVNL Not tested

A02 NS5A 2252 ILDSFDPLV^ ILDSFEPLR# No response*(1)

A24 2280 KFPLAMPVW^ KYPPALPIW No response (1)

A11 2281 FT/aPALPIWAR YPPALPIWAR# No response*(2)

A02 2334 VLTESSVSTA QLDGSNVSAA# No response* (1)

A02 2338 ST/sVSTALAEL SNVSAALAAL# No response*(1)

A11 NS5B 2748 GVQEDAASLR GVDEDRTALR# Not tested

B27 2841 A/vRMIL/mM/lTHF^ VRMVMMTHF No response (1)

A01 2858 QLEQALDCEIY ILDRPLDFEMY Not tested

A02 2878 DLPP/lIIQRL DLPAIIERL Not tested

B44 2939 AICGKYLFNW KICGLYLFNW No response*(3)

GT3 infected subject only responders

C04 NS2 848 YFLTRVEAQL YTICRCES/aAL No response*(1)

B37 870 RDAVILLM RDGVILLT Not tested

B44 NS3 1201 LETTMRSPVF LSTQARSPSF# Not tested

A11 1265 GAYMSKAH/yGI/v/a^ GSFMSRAYGT No response*(1)

B27 1499 YRFVAPGER YRYVAPGER# Not tested

B27 1577 KQSGENFPYL KQQGLNFSYL Not tested

A11 1636 TLTHPVTK^ CLTHPVTK# Not tested

B27 NS5A 2204 SQLSAPSLK SQLSAPSLK~ Yes*

B27 NS5B 2855 ARDQLEQAL SQEILDRPL# Not tested

B27 2884 QRLHGLSAF ERLHGLSAF# Not tested

B55 2898 SPGEINRVAA^ SPVELNRVAG# Not tested

B44 2924 ARSVRAKLL ARA/sVRAKLI No response*(1)

B27 2936 GRAAICGRY^ GKAKICGLY# Not tested

^known epitope;
~consensus sequence the same for GT1 and GT3;
#binding prediction from IEDB reduced in GT3 sequence; variants tested separated by dash and indicated by lowercase.

*indicates at least one chronic GT3-infected subject included.
@lower response elicited by GT3 peptide than for the GT1 peptide (715 versus 30 SFU/106 PBMCs). Note that where available for the GT3-infected

subjects, the autologous sequence matched the testing peptide.

doi:10.1371/journal.pone.0130420.t002
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to lower functional constraint of the target area, this study focussed on the identification of
novel epitopes within non-structural genes NS2-NS5B and excluded conserved areas such as
the Core/P7 genes that have been extensively mapped for T-cell targets and HCV envelope
genes in which sequence variations are driven by antibody rather than T-cell-derived selection
pressure. Furthermore, it is likely that the approach used here identified GT-specific epitopes
and was used to study GT-specific CD8+ T cell responses in subjects with high risk of multiple
GT exposure.

As the approach used here identified HLA Class I-restricted T-cell epitopes for HLA-A, -B
and -C we were able to compare the response rate of epitopes based on their HLA Class I
locus-restriction. These HLA class I loci are closely related and have overlapping functions
with respect to T-cell antigen presentation and NK-cell recognition but, aside from peptide

Fig 4. Examples of likely GT-specific responses using ELISpot analysis. The two panels (A) and (B)
represent GT1-epitopes that elicited responses fromGT3-infected subjects. Peptides representing GT1
peptides tested in the original ELISpot screen and in a subsequent ELISpot with the alternative GT3 peptide
(s). Original screen result is shown on the front row (grey) and subsequent ELISpot assay on the second row
(black; mean SFU/106 PBMCs from duplicates). Each panel represents data from a single subject.

doi:10.1371/journal.pone.0130420.g004
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binding specificity, subtle differences in these interactions are likely to exist. Furthermore,
viruses can affect the expression of the different HLA class loci on the cell surface [31] and the
level of expression of these molecules can affect infection outcome [32] suggesting that differ-
ences in the influence of the different HLA loci on infection outcome is likely to be reflected in
measures of immune pressure on the virus. In HIV, HLA-B-restricted immune responses
appear to be the dominant drivers of anti-HIV immunity [10]. Similarly, a study of a single
source outbreak [24] identified HLA-B alleles to have a dominant effect on HLA-driven HCV
evolution. In this study there were more HLA-B-associated HCV polymorphisms than
HLA-A-associated changes, however HLA-A-restricted CD8+ T-cell responses were more
readily detectable compared with HLA-B-restricted T-cell epitopes. One possible explanation
for this observation is that due to the higher heterozygosity value of the HLA-B locus than for
the HLA-A locus, lesser numbers of subjects were tested using peptides for any given HLA-B
allele relative to HLA-A alleles. For example, most HLA-A�01 and -A�02 predicted T-cell
epitopes elicited responses but for these peptides 40 and 63 subjects respectively were tested
compared to HLA-B�57 predicted T-cell targets where only 14 subjects were tested with the
corresponding peptides. Whilst the probability of observing at least one positive response to a
particular epitope is dependent on the numbers tested, the comparisons of the relative
response rate of the epitope-specific CD8+ T-cell responses accommodate the unequal sample
sizes. Unfortunately, due to insufficient numbers of spontaneous resolvers we could not
compare HLA locus-specific T-cell responses between individuals with different infection
outcome in order to assess the quality of the different HLA locus-restricted responses.
Although there is data to suggest HCV affects HLA class I expression [33] the specificity of this
host-viral interaction is unknown and accordingly the difference in the bias observed in the
genetic leads based on viral adaptation and HLA-loci specific T-cell responses warrants further
characterisation.

Results from this study suggested that NS3 and, to a lesser extent, NS5B, genes that code for
the viral protease and polymerase, respectively, are most targeted of the non-structural HCV
proteins for HLA Class I-restricted CD8+ T-cells. T-cell epitopes that lay within these proteins
will be of particular importance for HCV vaccine design as research into HIV has shown that
T-cell epitopes within proteins with enzymatic functions tolerate limited viral sequence
evolution and sequence changes can coincide with reduced viral fitness [34–36]. In the case of
HCV, several studies have reported the appearance of “escape”mutations in T-cell epitopes in
NS3 and NS5B that were selected by strong CD8+ T-cell responses and led to variants with
reduced viral replication capacity [3, 36–38]. Although these viral variants might be able to
evade one particular CD8+ T-cell response, a reduction in virus levels could facilitate immune
control initiated by remaining ‘intact’ CD8+ T-cell responses against other areas of the
genome.

Subjects with chronic HCV infection commonly show evidence for viral escape and
responses that are directed against variant/adapted peptides rather than the non-adapted form.
Similar findings have been described for HIV [39] and this has since influenced the selection of
peptides for vaccine design. This also highlights the fact that HCV can escape natural CD8+

T-cell responses and therefore vaccine-induced responses. Accordingly, specific considerations
for vaccine design may include incorporating T-cell epitopes, which are not subject to early
escape such as ‘subdominant’ epitopes, inclusion of conserved epitopes that are less subject to
adaptation and specific exclusion of T-cell epitopes, which appear to have adapted at the
population level and are contained within the most common or consensus strains or elicit
ineffective responses against the adapted form.

This study also showed that GT1 CD8+ T-cell responses were evident in ~38% of chronic
non-GT1-infected subjects that have likely encountered previous HCV strains in the past,
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implying a previously cleared GT1 infection in these subjects. This is further supported by the
number of novel GT1 T-cell epitopes identified by including non-GT1 infected subjects in the
screening of which several were restricted by the ‘protective’HLA-B27 allele. The limited
cross-reactivity highlighted by ELISpot assays incorporating the alternative GT3 peptides for
these GT1 epitopes in subjects with these responses suggests these are GT-specific epitopes.
This is further supported by the significant sequence variation between GT1 and GT3 and
previous studies comparing immune pressure for the two GTs [4, 9], suggesting these
‘effective’ immune responses are unlikely to be cross-GT specific responses. This finding
could also provide an explanation why many previous studies of cellular responses in HCV-
infected individuals that did not account for the GT of infection were able to detect T-cell
responses using a GT1-based reference sequence, even in subjects with GT3 infection. It is
important to note that the peptide panel used in this study was based on viral sequences from
the chronic HCV-infected subjects in this study as well as from other subjects in previous
studies [8, 9] and should therefore account for the diversity of strains in the autologous
viruses of subjects in this study.

The detected HCV GT-specific T-cell responses outlast GT-specific antibody responses,
which is consistent with previous studies [28, 29] and therefore CD8+ T-cell responses can be
used to detect historic infections. The observation of ‘effective’ yet non-cross reactive T-cell
responses is not unique to the CD8+ T-cell subsets but has also been previously reported in the
context of CD4+ T-cell responses [40, 41].

We did not make a direct comparison of the breadth and magnitude of CD8+ T-cell
responses between spontaneous resolvers versus subjects with chronic infection due to the
limited number of spontaneous resolvers overall and the likely prior history of exposure in the
chronic HCV-infected subjects. Furthermore, as the peptide panel set used in this study does
not include all HCV proteins, we could not exclude prior exposure in those subjects with
chronic infection that did not respond to peptides from an alternate GT strain.

Finally, this study demonstrates that a reverse-genomics approach, based on the identifica-
tion of viral adaptation to host’s T-cell responses, can identify T-cell targets and allows effective
testing of the anti-viral immune response to circulating viral variants to which the individual
was likely exposed in their infection history. The observations described in this study provide
an important overview of anti-HCV immunity and viral adaptation necessary for rational
immunogen design of a preventative HCV vaccine in the context of multiple GT exposure and
to examine the signature of an effective T-cell response against the virus.
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