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SUM GRAPHS OF SMALL SUM NUMBER

W� F� Smyth

Department of Computer Science � Systems
McMaster University

School of Computing Science
Curtin University of Technology

ABSTRACT

Given an integer r � �� let Gr � �V�E� denote a graph consisting of
a simple �nite undirected connected nontrivial graph G together with r
isolated vertices Kr� Let L � V � Z

� denote a labelling of the vertices of
Gr with distinct positive integers� Then Gr is said to be a sum graph if
there exists a labelling L such that for every distinct vertex pair u and
v of V � �u� v� � E if and only if there exists a vertex w � V whose label
L�w� � L�u� � L�v�� For a given subgraph G� the sum number � � ��G�
is de�ned to be the least number r for which Gr is a sum graph� in
particular� if G� � G �K� is a sum graph� then the subgraph G is called
a unit graph� In this paper it is shown that there exist graphs of every
order n and size m whose sum number is O�n�� Further� it is shown that
for every integer m satisfying bn���c � m � �

n
�

�
there exists no unit graph�

while for each m such that n � � � m � bn���c there exists at least one
unit graph� Methods of proof are constructive�

� INTRODUCTION

Sum graphs �de�ned in the Abstract� were introduced by Harary
	Har

�Har
��� Hao 	Hao
�� showed that a graph of order n is a sum
graph if and only if its size m � �

�
n
�

� � bn�	c��	� for a given graph G� he
also established a lower bound on ��G� in terms of the degree sequence
of G� Gould and Rodl 	GR
�� derived complex upper and lower bounds
on ��G�� expressed in terms of the order n and size m of G� In particular�
their results show that there exist classes G of graphs such that over all
G � G� ��G� � 
�n��� However� they provide no method for the construc�
tion of such graphs� and the available constructive results all relate to
special graphs G of small sum number� that is� such that ��G� � O�n�� In
particular� Ellingham 	E
�� has shown that for every non�trivial tree T �
��T � � �� Bergstrand et al� 	BHHJKW
�� that for every complete graph
Kn� n � �� ��Kn� � 	n � �� Harts�eld and Smyth 	HS
�� that for every
complete bipartite graph Kp�q� 	 � p � q� ��Kp�q� � d��p� q � ���	e�
In this paper new results for graphs of small sum number are es�

tablished� these results make some progress toward resolving an open
problem posed by Harary 	Har

�� the characterization of unit graphs�
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Section � uses methods similar to those of Gould and Rodl� but which
are however constructive� to show that there exists a connected graph
G of given order n and size m �n � � � m �

�
n
�

� � �� such that ��G� �
��Kn� � 	n� �� In Section � unit graphs of order n are considered� It is
shown that for m � bn���c no unit graph exists� while for every integer
m satisfying n � � � m � bn���c� there exists a unit graph G of order n
and size m�

Generally� in order to simplify notation� and where no ambiguity re�
sults� vertices of sum graphs will be referenced by their label under L�

� CONSTRUCTING GRAPHS OF SMALL SUM NUMBER

In this section we show how to construct connected graphs G of given
order n and size m for which ��G� � O�n��

For a sum graph Gr � �V�E�� denote by fv�� v�� ���� vrg the labels of the
vertices of Kr� where v� � v� � ��� � vr� For each vj � � � j � r� let �j denote
the number of edges �x� y� � E such that x� y � vj� Then �j is called the

multiplicity of vj� Now consider the special case in which Gr � Kn�K�n���
for some integer n � �� Then� as shown in 	BHHJKW
��� a correct
labelling of Gr is achieved by assigning labels to the vertices of Kn as
follows�

xi � �i� �� � � i � n�

Hence the corresponding labels vj of K�n�� are

vj � �j � 	� � � j � 	n� ��

Let us call this the standard labelling of Kn �K�n��� It is then straightfor�
ward to establish the following result�

Lemma ��� For every integer n � �� and for every positive integer j � n� �� the
standard labelling of Kn �K�n�� yields multiplicities

�j � ��n�j�� � dj�	e� �

It is worth noting that in fact the result of Lemma ��� holds for any

correct labelling of Kn � K�n�� 	AHS���� Multiplicity patterns for the
�rst few values of n are shown in Table ����

Multiplicities of K�n��� � � n � �

n �j� � � j � 	n� �

� f�� �� 	� �� �g
� f�� �� 	� 	� 	� �� �g
� f�� �� 	� 	� �� 	� 	� �� �g
� f�� �� 	� 	� �� �� �� 	� 	� �� �g

 f�� �� 	� 	� �� �� �� �� �� 	� 	� �� �g

Table ���



�

Observe that if a vertex labelled vj is removed from K�n��� and if at
the same time every edge �x� y� for which x� y � vj is removed from Kn�

the resulting graph �a subgraph of Kn �K�n��� will still be a sum graph�
This process �removal of a single vertex vj and all corresponding edges�
applied to an arbitrary sum graph Gr � �V�E� is called a reduction and
written

	j � Gr � Gr���

where Gr�� � �V � fvjg� E�� and jE�j � jEj � �j� We shall show that for

every nonnegative integer m � �
n��
�

�
� exactly m edges can be removed

from the sum graph G�
�n�� � Kn � K�n�� by a sequence of reductions�

yielding a graph which consists of a single connected component together
with isolated vertices� and which is therefore a sum graph of small sum
number�

First consider the case m �
�
n��
�

�
� so that the reduced graph contains�

n
�

� � �
n��
�

�
� n � � edges� Suppose that the vertices v�� v�� ���� vn�� and

vn��� vn��� ���� v�n�� and their corresponding edges are removed� leaving
only vn�� and vn from among the original isolated vertices� Since by
Lemma ����

�n�� � �n � dn��
� e� dn��

� e � n� ��

the reduced graph G�
� certainly contains the prescribed number of edges�

Further� let En�� and En denote the edges of G�
� corresponding to vn��

and vn� respectively� then both En�� and En are matchings of Kn� and in
fact En�� is a maximum matching while jEnj � jEn��j��� Since moreover
En�� � En � 	� it must be true that G�

� � fvn��� vng is connected� and we
have

Lemma ��� Suppose that the sum graph G�
�n�� is repeatedly reduced by the reduc�

tions 	j for every integer j � �� 	� ���� n�	� n��� n�	� ���� 	n��� Then
the reduced graph G�

� consists of a path Pn on n vertices together with

two isolated vertices vn�� and vn� �

It follows from Lemma ��� that� provided vn�� and vn are not removed�
any repeated reduction of G�

�n�� will always yield a single connected

component together with a subset of the original set K�n�� of isolated
vertices� We therefore consider a reduction strategy which leaves vn��

and vn intact�

In general� we seek reductions which transform the sum graph G�
�n��

into another sum graph G�
�n���k by removing k vertices and m edges�

Each such transformation can be characterized by a set M of multiplic�
ities removed from the original set f��� ��� ���� ��n��g� For such a set M �
k � jM j is called the vertex remove and m �

P
��M � is called the edge re�

move� For example� M � f�g would indicate the removal of k � � vertex
and m � � corresponding edge� M � f�� �� �� 	g would indicate the removal



�

of k � � vertices and m �  corresponding edges�

In order to uniquely identify the sets M of removed multiplicities�
they are subscripted according to �class� and by an ordinal within each
class� For example� the sets corresponding to m � �� 	� ���� � are written
as follows�

M��� � f�g�
M��� � f�� �g� M��� � f�� �� �g�
M��� � f�� �� �� �g� M��� � f�� �� �� �� 	g� M��� � f�� �� �� �� 	g�

In general� the hth class will contain h�	 sets Mh���Mh��� ����Mh�h��� where
for Mh�h���

mh�h�� �
P

��Mh�h��
� �

�
h��
�

�

is the largest number of edges which can be removed from Kh without
necessarily disconnecting it� We state a formal procedure for the iter�
ative computation of the sets in each class based upon the sets in the
previous class�

Procedure CONSTRUCT�MULTIPLICITY�SETS

Step � fInitialize�gM��� � f�g�
Step � fIterate�g For h � �� � ���� n do

Step ��� h� � dh�	e � ��

Step ��� If h is even� then
for i � �� 	� ���� h� do

Mh�i �Mh���h��i�� � fh�g�
Mh�h��i �Mh�i � fh�g�

Step ��� If h is odd� then
Mh�h� �Mh���h�� � fh�g�
for i � �� 	� ���� h� � � do

Mh�i �Mh���h��i�� � fh� � �g�
Mh�h��i �Mh�i � fh�g�

This procedure generates a sequence M of
�
n��
�

�
sets

M����M����M����M���� ����Mn���Mn��� ����Mn�n��

in strictly increasing order of edge remove from m � � �M���� to m �
�
n��
�

�

�Mn�n���� It is not di�cult to see that every set of M is without loss of
generality a subset of the multiplicities

f��� ��� ���� �n��� �n��� �n��� ���� ��n��g�
Thus by Lemma ��� the sum graph associated with every element of M
has a connected component of order n and a set of isolated vertices of
cardinality less than 	n��� Indeed� the exact number of isolated vertices
may be computed for each element of M as a function of the number of
removed edges�



�

Theorem ��� For every integer n � � and every positive integer m � �
n��
�

�
� let

Knnm denote the set of all graphs formed by removing exactly m
edges from Kn� Then there exists G � Knnm such that

��G� � 	n� �� 	i� bm�ic�
where i is the least integer such that m � �

�i��
�

�
�

Proof The proof is by induction on n� based on the multiplicity sets
generated by Procedure CONSTRUCT�MULTIPLICITY�SETS�
The demonstration is laborious but straightforward� and is omit�
ted� �

The condition on i in Theorem ��� may be expressed algebraically as

i � d�p�m� �� ����e�
Zn�am 	Z��� has discovered an interesting alternative formulation of this

result� Let i be the greatest integer such that m � �
�
i
�

�
� let j be the

greatest non�negative integer such that m � �
�
i
�

�
� ij� Then there exists

G � Knnm such that

��G� � 	n� �� �i� j�

� UNIT GRAPHS

In this section we use the properties of unit graphs to improve upon
Theorem ��� � to show� in fact� that for every integer n � 	 and every
integer m satisfying n�� � m � bn���c� there exists a unit graph of order
n and size m�

Lemma ��� Let G � �V�E� denote a unit graph� and let G� � G �K� denote the

corresponding sum graph� Suppose that G� is correctly labelled� Then

the vertex of V of greatest label u has degree one�

Proof Suppose u has degree at least two� Then u is adjacent to two
distinct vertices which we suppose to be labelled x� and x�� Hence
there must exist vertices of G� labelled v� � x� � u � u and v� �
x� � u � u� Since neither of these vertices can belong to V � they
must both be isolated� contradicting the assumption that G is a
unit graph� Hence u must have degree one� �

Lemma ��� Let di� � � i � n� denote the degrees of the vertices of a unit graph

G� where d� � d� � ��� � dn� Then di � i�

Proof A consequence of a result of Hao 	Hao
�� that

��G� � max��i�n�di � i�� �

Lemma ��� There exists a unit graph of order n containing a clique on 
 vertices

if and only if 
 � bn�	c� ��



�

Proof Since K� contains 
 vertices of degree 
��� it is easy to see that if
the graph G of order n contains K�� then the vertex of �n�
���th

largest degree must have degree at least 
 � �� That is� in the
symbolism of Lemma ����

dn���� � 
 � ��

If moreover 
 � bn�	c� �� then

dn���� � 
 � � � n� 
 � ��

and Lemma ��� implies that G cannot be a unit graph�

To prove the converse� consider the sum graph Gr generated by
vertices labelled consecutively �� 	� ���� n� �� The subgraph G 	 G�

induced by V � f�� 	� ���� ng is then in fact a unit graph� and G
contains a clique of order bn�	c� �� �

Theorem ��� No unit graph of order n has size m � bn���c�
Proof The unit graph on vertices V � f�� 	� ���� ng� together with isolated

vertex n� �� forms a sum graph of size

m �
�
bn��c��

�

�
�
�
n�bn��c

�

�
�

which after some manipulation becomes

m � bn���c�
By Lemmas ��� and ���� there exists no unit graph of order n of
larger size� �

Theorem ��� may also be deduced from Hao�s result� quoted in the
Introduction� giving an upper bound on the size of a sum graph�

Theorem ��� For every integer n � 	 and for every integer m satisfying n� � �
m � bn���c� there exists a unit graph of order n and size m�

Proof Consider a sum graph G� � �V�E� generated by V � f�� 	� ���� n��g�
G� contains a unit graph G��	 of order n and size m � bn���c�
We show �rst that by relabelling some of the vertices of V � unit
graphs G�i	 of order n and size m� i can be constructed� for every
positive integer i � bn�	c�
Let k � bn�	c and recall that G��	 contains Kk�� as a subgraph�
Hence separate V into subsets V� � f�� 	� ���� k � �g and V� � fk �
	� k��� ���� n��g� Observe that the edges represented by any vertex
label v � V� may be counted in two classes� m� � m��v� edges of
Kk�� and m� � m��v� edges �x� y� which join x � V� to y � V��

Suppose that k is even� Then labels v � V� correspond to these
two classes of edge as shown in the following table �the last line
occurs only in the case that n � 	k � ���



	

v m� m�

k � 	 k�	 �
k � � k�	 �
k � � k

� � � 	
� � �
� � �
� � �
	k � k � 	

	k � � � k � �
	k � 	 � k

Observe that replacing V� by another set V �
� � fv�� v�� ���� vn�k��g

of distinct positive integers� where k � � � v� � v� � ��� � vn�k�
will not a�ect the total number of edges counted by m�� provided
vn�k � v� � k � �� But the total number of edges counted by m�

can be reduced by exactly i if label k � 	i of V� is replaced by
	k��� � � i � k�	� while all other labels are unchanged� Then this
relabelling yields unit graphs G�i	 of order n and size m � i� for
every positive integer i � k�	� If now label k � 	 of V� is replaced
by 	k � �� and if in addition label k � 	i� � is replaced by 	k � ��
then the total number of edges counted by m� will be reduced
by i � k�	� where � � i � k�	� We see then that unit graphs G�i	

of order n and size m � i can be constructed for every positive
integer i � k � bn�	c� But since

bn���c � b�n� �����c � bn�	c�
it follows that unit graphs of order n and size m can be formed�
for every integer m satisfying

b�n� �����c � m � bn���c�
The same conclusion is reached� by an almost identical argument�
when k is odd�

To complete the proof� observe now that by the above result a
single vertex and a path of length one can be added to a unit
graph of order n� � and size

b�n� 	����c � m � b�n� �����c�
thus yielding a unit graph of order n and size m � �� More gen�
erally� s � n� � vertices and a path of length s can be added to a
unit graph of order n� s and size m satisfying

b�n� s� �����c � m � b�n� s����c�
thus yielding a unit graph of order n and size m�s� If we consider
consecutive values s � �� 	� ���� n� � and observe that for s � n� ��

n� � � b�n� s����c� �n� s��

if follows that unit graphs of order n and every size m satisfying

n� � � m � bn���c






can be constructed� as required� �

It should be noted that Lemma ��� and Theorem ��� give rise to no
converse� That is� there exist graphs whose degree sequence satis�es
the conditions of Lemma ��� and whose size satis�es the condition of
Theorem ���� but which are not unit graphs� An example is the star on
six vertices with three additional edges joining four of the points of the
star� V � fv�� v�� ���� v
g and E � fv�vi� 	 � i � �� v�v�� v�v�� v�v�g�
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