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ABSTRACT 1 

The purpose of this study was to assess maximal isokinetic leg extension force in response to 2 

glucose ingestion and to determine whether any performance changes occur in a time-3 

dependent manner.  Seventeen young (22.1±3.9 years), lean (%BF: 14.3±8.0; %BF Males: 4 

9.7±4.2; %BF Females: 23.7±4.2) and recreationally active (>150min/week of physical 5 

activity) male (n=11) and female participants completed the trials. Using a double-blinded 6 

cross-over design, participants performed sets of 3 maximum isokinetic efforts on a 7 

dynamometer (HumacNorm) before and after (5-, 15-, 30-, 45-, 60-, 75- and 90-min post) 8 

ingesting either a carbohydrate (75 g glucose) or isovolumic placebo (saccharin-flavored) 9 

drink. Blood glucose and EMG were recorded concurrent with force output (max peak force; 10 

mean peak force). Despite a significant rise in blood glucose (mean glycemic excursion = 11 

4.01±1.18 mmol/L), there were no significant interactions in any (absolute or percentage) 12 

force (mean peak force: p≥0.683; max peak force: p≥0.567) or EMG (mean peak EMG: 13 

p≥0.119; max peak EMG: p≥0.247) parameters measured. The ingestion of glucose resulted 14 

in a 3.4% reduction in mean force across subsequent time points (highest: +2.1% at 15min; 15 

lowest: -8.6% at 90min post ingestion), however this effect was small (d<0.1). The ingestion 16 

of glucose does not alter performance of maximal isokinetic efforts in recreationally active 17 

young individuals. Additionally, there were no differences in force when assessed as a 18 

function of time following glucose ingestion. Consequently, in the absence of fatigue, 19 

carbohydrate ingestion is unlikely to present any ergogenic benefits to athletes performing 20 

resistance-based exercise.   21 

 22 

Keywords: Carbohydrate; MVC; Strength; dynamic; contraction  23 
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INTRODUCTION 24 

The ergogenic effects of glucose ingestion either prior to (29) or during (21) sustained (>60 25 

min) bouts of exercise are well documented (26). However, the effect of glucose 26 

supplementation on performance of shorter duration (<60 min) is inconsistent, with only a 27 

limited number of studies reporting some improvements in performance (1, 13, 15, 27, 28); 28 

wherein two of these studies had a duration greater than 50 min (1, 15).  Additionally, while 29 

the study by Lee et al (13) demonstrated improved performance during multiple short-30 

duration (2 x 30 sec efforts interspersed with 10 x 10 sec efforts) cycling bouts following 31 

ingestion of carbohydrate, this benefit was ascribed to improved performance in the first 30 32 

sec effort only.  33 

    34 

With respect to the role of carbohydrate supplementation in resistance training and force 35 

output, the literature is equally conflicting. Some studies have reported a benefit in time to 36 

exhaustion tasks (~16 min vs 29 min, placebo vs. carbohydrate; 50% MVC (27, 28)) and 37 

performance over multiple resistance training sessions (8), while others observed no 38 

improvements in either performance (12, 14, 25) or perceived exertion (24) with dietary 39 

carbohydrate manipulation or acute carbohydrate ingestion. Given the ingestion of 40 

carbohydrate has other potential benefits (e.g. promoting an anabolic environment (23)) and 41 

has not previously been associated with decrements in performance, the ingestion of 42 

carbohydrate is still generally recommended for resistance training (7, 19). 43 

  44 

More recently, studies have demonstrated that a carbohydrate mouth rinse at regular intervals 45 

can stimulate central motor drive and reduce perceived exertion during exercise (4, 6). 46 

Specifically, the presence of carbohydrate in the mouth was shown to facilitate corticomotor 47 
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output and increase maximal voluntary force (6). This provides an additional previously 48 

unrecognised mechanism by which endogenous glucose may improve exercise performance. 49 

Based on the current knowledge, we would anticipate the ergogenic effects of endogenous 50 

glucose to occur either: (i) shortly following the ingestion of glucose in response to 51 

stimulation of glucose-sensitive receptors in the oral cavity (6, 10); or (ii) when blood 52 

glucose concentration peaks, thereby increasing total availability of glycolytic substrate (21) 53 

and/or regulating muscle activity, specifically by altering electrical properties of the muscle 54 

membrane (5, 11) which is associated with increased maximum dynamic force (11). To our 55 

knowledge no previous research has assessed changes in force output following glucose 56 

ingestion with respect to time. Since multiple potential mechanisms explaining the ergogenic 57 

role of glucose exists and time to peak blood glucose concentration following ingestion of 58 

glucose varies between individuals, it seems prudent to establish whether force output may 59 

alter as a function of time following glucose intake. Thus, the purpose of this study was to 60 

determine whether the ingestion of glucose was associated with greater force output during 61 

maximal isokinetic contractions, and whether this is altered with time from ingestion. We 62 

hypothesised that there would be a moderate, albeit significant increase in force output in 63 

response to glucose ingestion, and this would coincide with peak blood glucose 64 

concentration.65 
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 66 

METHODS 67 

Experimental Approach to the Problem 68 

Following the initial visit and familiarisation session, the experimental trials were completed 69 

using a cross-over, double blind experimental design. Allocation to treatment (CHO or PL) 70 

occurred by assigning de-identified participant codes to a computer generated randomized 71 

number list (consisting of 1’s and 2’s; counterbalanced) by an individual not involved in the 72 

testing session (TJF). Participants were instructed to consume their regular diet on each day 73 

prior to participation and to avoid physical activity. All testing was conducted in the morning 74 

(0700-1000 hr) following an overnight fast (>12 hours) and was kept consistent between 75 

trials. 76 

 77 

Subjects 78 

Participants (11 males, 6 females; Height: 175.2 ± 8.1 cm; Weight: 69.5 ± 9.6kg) were young 79 

(22.1 ± 3.9 years), lean (BMI: 22.5 ± 2.0 kg.m-2; %BF: 14.3 ± 8.0) and recreationally active 80 

(>150min/week of physical activity). All participants had resistance training experience in the 81 

prior 6 months and were free from illness at the time of testing. The exclusion criteria for 82 

study participation were: Existing diabetes mellitus (Type 1 or 2); Pregnancy; BMI>30; 83 

medications known to alter glucose concentration; Previous or current injuries and conditions 84 

which may be exacerbated as a result of study participation (assessed via the Exercise and 85 

Sports Science Association Pre-Exercise Screening Tool). Participants were recruited to this 86 

study through local advertisement. All aspects of the study were approved by the University’s 87 

Human Research Ethics Committee in accordance with National Statement on Ethical 88 

Conduct in Human Research, 2007.   89 
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  90 

Procedures 91 

At least three days prior to the first testing session, participants attended a familiarization 92 

session which also included collection of anthropometric data including height, weight and 93 

percentage of body fat (%BF; 3-site skinfold method (17)). For the familiarization, 94 

participants were then fitted to the isokinetic dynamometer (HUMAC NORM, CSMi) in 95 

accordance to manufacturer instructions and provided some practice trials (≥5 sets of 96 

3repetitions, with ≥2 sets at maximum effort) using the participants’ perceived dominant leg. 97 

The back rest was adjusted to create a hip joint angle of 100 degrees from flexion and all 98 

trials were performed at a knee angle speed of 60°•sec-1. The range of motion was set at 10 99 

degrees from anatomical extension to 100 degrees from anatomical extension while the 100 

contralateral limb was secured at 90 degrees. These settings were recorded and kept 101 

consistent between trials.  102 

 103 

Bipolar adhesive surface electrodes (Ag-AgCl, Duo-Trode, Kent, WA, USA) were placed 104 

over the muscle bellies of the Vastus Medialis and Vastus Lateralis for assessment of motor 105 

recruitment using surface EMG TelemyoDTS (Noraxon, Scotsdale, AZ, USA).  Participants 106 

then completed a standardised warm-up (2 sets of 3 repetitions at 50% and 75% maximum 107 

effort); all repetitions during the warm-up and subsequent trials were performed at 60°•sec-1.  108 

A finger-stick blood sample was then taken for assessment of blood glucose (Accu-Chek 109 

glucometer) concentration. All measures were performed in duplicate; where these values 110 

differed by more than 20% a third sample was taken. Participants then performed a 3RM 111 

followed by ingestion of either the PL or CHO drink. The CHO drink consisted of 75g 112 

glucose (Glucodin powder) dissolved in 280ml of water and 20ml of a green-coloured 113 

ACCEPTED

Copyright  � Lippincott Williams & Wilkins. All rights reserved.



 

6 

 

artificially sweetened (predominantly sucralose; 4kJ•10ml-1 undiluted solution) cordial. The 114 

PL drink consisted of 260ml of water and 40ml of the same green-coloured artificially 115 

sweetened cordial. The drinks were prepared by an individual not directly involved in the 116 

data collection, with those conducting data collection remaining naïve to the condition.  The 117 

drinks were provided in non-transparent drinking containers and participants asked to ingest 118 

the solution in 2min. Blood glucose, EMG and isokinetic force were then recorded at 5-min, 119 

15-min, 30-min, 45-min-60-min, 75-min and 90-min from ingestion of the solution. Blood 120 

glucose was consistently recorded 1-min prior to the force and EMG recordings. Participants 121 

were then asked to recall their dietary intake the day prior to the first testing session (24 h 122 

recall) and asked to replicate this diet on the day preceding the next testing session. 123 

 124 

After seven days, participants then returned to the laboratory and performed the identical 125 

study protocol with the exception of ingestion the alternative drink (CHO or PL). Compliance 126 

to a similar diet and restriction of physical activity for the 24 hour period preceding the 127 

testing was determined through verbal report from participants.   128 

 129 

Force was calculated in two ways; (i) as the maximum peak-force attained during the 3 130 

repetitions (MaxPeak); and (ii) the average force produced during the single repetition which 131 

resulted in the greatest peak-force (MeanRep). The raw EMG signal was processed using a 132 

custom MATLAB (The Mathworks, USA).  Initially the signal was band pass filtered using a 133 

4th order Butterworth filter at 20 and 500Hz.  Subsequently the signal was full wave rectified 134 

and a linear envelope created using a 6Hz low pass 4th order Butterworth filter.  Finally the 135 

data was normalised to the maximum EMG recorded in the baseline trial.  The mean 136 

normalised EMG was then calculated for each of the concentric phases of the isokinetic 137 
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exercise. Finally these values were average to provide as estimate of the muscle activation 138 

across the three phases.  139 

 140 

Statistical Analysis 141 

Data are presented as means ± SD unless otherwise noted. Treatment effects were estimated 142 

using separate, random-intercept linear mixed models for each outcome variable (glucose 143 

concentration; force output; EMG data). Condition (CHO, PLA) and time (pre, 0, 5, 15, 30, 144 

45, 60, 75, 90 min) were modelled as fixed effects. The hypothesis of interest was the 145 

condition by time interaction which we examined with pairwise comparisons of the estimated 146 

marginal means. To explore whether MaxPeak or MeanRep force output was different at 147 

either the 5-min or at the time-point corresponding to peak glucose concentration, separate 148 

repeated measures (Time: pre, 5min; Time: pre, force at peak glucose concentration) 149 

ANOVA’s were conducted. The glycaemic excursion was calculated as the absolute 150 

difference between peak glucose concentration and the blood glucose concentration measured 151 

at baseline. Effect size (Cohen’s d) calculations were performed to assess the magnitude of 152 

difference within experimental trials (d ≤ 0.2, small; 0.5 - 0.79, moderate; ≥ 0.8, strong). All 153 

data analysis was performed using IBM SPSS package (ver 21).  Significance was set at 154 

α≤0.05. 155 
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 156 

RESULTS 157 

Ingestion of glucose resulted in a rapid and significant increase in blood glucose 158 

concentration, which remained significant until the completion of the 90 min testing period 159 

(Figure 1). The mean glycaemic excursion in response to glucose ingestion was 4.01 ± 1.18 160 

mmol/L (95% CI pre-glucose [4.83 – 5.25]; 95% CI peak-glucose [8.51 – 9.59]) indicating a 161 

very strong effect (d: 5.03) of ingestion on blood glucose.   The time to peak glucose 162 

concentration varied between participants, ranging from 30 to 60 min (30 min: n=11; 45 min: 163 

n=5; 60 min: n=1) following the ingestion of glucose.  164 

 165 

There were no significant differences in force when compared as either MaxPeak (p=0.567) 166 

or MeanRep (p=0.843). When force output was adjusted for respective baseline values there 167 

was no significant interaction, but a significant main effect of condition (Figure 2). The force 168 

data corresponding to the glucose condition was extracted and explored further using 169 

univariate analysis (Figure 3). There was no difference in either the MaxPeak (p=0.252; 170 

d=0.076) or the MeanRep (p=0.217; d =0.095) 5-min following ingestion of glucose. 171 

Likewise, there were no differences in MaxPeak (p=0.337; d =0.084) or MeanRep (p=0.703; 172 

d=0.037) when the time-point corresponding to the maximum glucose concentration was 173 

compared to baseline force data. 174 

 175 

In agreement with the force data, there were no significant differences in the EMG data 176 

corresponding to either the MaxPeak or MeanRep (both p>0.955), although there was a 177 

significant main effect of condition (Figure 2). No significant differences were observed 178 

when the EMG was expressed relative to the force output during MeanRep (p=0.948).  179 
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 180 

DISCUSSION 181 

The purpose of this study was to determine whether the ingestion of glucose would enhance 182 

force output during maximal isokinetic contractions, and whether this would occur in a time-183 

dependent manner. The main finding of this study was that ingestion of carbohydrate 184 

provided no clear benefits to force output during an isokinetic 3RM performance, despite a 185 

significant increase in blood glucose concentration. Indeed, when assessing the effect of 186 

condition on force output (Figure 2), participants performed better during placebo than 187 

glucose ingestion; which may be explained by a slight increase in force output over time 188 

during the placebo condition, while force output slightly declined over time during the 189 

glucose condition. Similar changes were observed in the EMG (Figure 2) and as a 190 

consequence, there was no difference in the Force:EMG ratio response to glucose ingestion.  191 

 192 

While the findings of the current study are contrary to the stated hypothesis, closer inspection 193 

of the available literature casts some light on these findings. The studies by Wax et al. (27, 194 

28) which demonstrated significant improvements in performance with carbohydrate 195 

consumption during a time to exhaustion task used a very different protocol to the one 196 

adopted in the current study. Their protocol consisted of repeated 20 sec isometric 197 

contractions at 50% MVC followed by 40 sec of rest until exhaustion. As a consequence, the 198 

average exercise duration was 16.0 ± 8.1 min and 29.0 ± 13.1 min during the placebo and 199 

carbohydrate trials respectively (27); demonstrating a very large effect of the carbohydrate 200 

ingestion (d=1.2). Another study investigating the role of carbohydrate ingestion during a 201 

time to fatigue task found no significant difference (carbohydrate vs. placebo) in either the 202 

number of successful sets (3.5 ± 3.2 vs. 3.5 ± 2.7), repetitions (20.4 ± 14.9 vs. 19.7 ± 13.1), or 203 
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total work (29.9 ± 22.3 kJ vs. 28.6 ± 19.5 kJ) performed in the squat exercise (5 repetitions 204 

per set) at an intensity of 85% 1RM (12). Possible explanations for the differences observed 205 

between the studies of Wax et al. (27, 28) and Kulik et al. (12) may stem from the type of 206 

muscular contractions adopted. In particular, isometric contractions at 50% of MVC are 207 

expected to partially occlude blood supply (2) and therefore increase the reliance on 208 

anaerobic metabolism, specifically via glycolysis. As such, glucose availability may have 209 

become a limiting factor to performance in the study of Wax et al. Additionally, participants 210 

in the study of Kulik et al ingested the carbohydrate supplement immediately preceding the 211 

exercise and then every other successful set of squats; while in the study of Wax et al. 212 

participants ingested the carbohydrate every 6 min during exercise. Whether the timing of 213 

carbohydrate ingestion may have contributed to the differences observed between studies, or 214 

whether altering the timing or pattern of ingestion (i.e. minimum of 15 min pre-exercise to 215 

ensure endogenous glucose appearance in blood) influenced results within studies, has not 216 

previously been investigated and is therefore unknown.   217 

 218 

To examine whether a time-dependent change in force output in response to glucose 219 

ingestion occurs, we assessed force output at 5-min post-glucose ingestion and at the time-220 

point corresponding with peak glucose concentration. The 5-min post glucose ingestion time-221 

point was based on a study demonstrating increased corticomotor excitability and maximal 222 

voluntary force with the presence of carbohydrate in the mouth (6).  This research builds on 223 

previous work demonstrating reduced perceived exertion and improved exercise performance 224 

(3, 10, 18, 20) in endurance events when carbohydrate (typically in the form of glucose or 225 

maltodextrin) was rinsed in the mouth.  In contrast to our hypothesis, we observed no 226 

difference in maximal voluntary force at 5-min post glucose ingestion, despite the liberal 227 

statistical approach (within-condition univariate analysis). Indeed, the calculated effects 228 
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(d<0.1 for all) were interpreted as small within the context of the current study design. This 229 

finding being similar to what was observed by Painelli et al. (16), where no differences in 1-230 

RM was observed after a carbohydrate mouth rinse. Likewise, in contrast to our a priori 231 

hypothesis, there were no differences in any force parameters measured at the time-point 232 

corresponding to the maximum glucose concentration (Figure 3). 233 

    234 

The rationale for inclusion of EMG in the current study relates to the potential mechanisms 235 

for the expected increase in performance with glucose ingestion. Research on the ergogenic 236 

effects of glucose during a range of exercise tasks have now extended beyond simply acting 237 

as an energy substrate. Indeed, a number of studies now suggest that glucose may alter the 238 

electrical properties of the muscle fibre membrane (5, 11, 22) and that this is independent of 239 

entry into the glycolytic pathway. Based on these previous findings, the authors of the current 240 

study speculated that the Force:EMG ratio would be altered at the time-point corresponding 241 

with peak-glucose concentration. However, there were no changes in the EMG either when 242 

assessed in isolation (Figure 2) or as a ratio (Force:EMG ratio).             243 

 244 

Previous research identified improved performance during isometric time to exhaustion tasks 245 

with glucose supplementation (27, 28), although this benefit of glucose did not translate to 246 

improved performance during dynamic contractions (12). Moreover, exercise-induced 247 

glycogen depletion of muscle fibres has been associated with a decrement in maximal 248 

muscular strength during a single dynamic contraction (9). Here, we sought to determine 249 

whether previous inconsistencies in findings are a result of a time-dependent effect of glucose 250 

supplementation; with a potential benefit of glucose only occurring at the corresponding peak 251 

in blood glucose concentration. Results in the current study however, have demonstrated no 252 
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benefit for carbohydrate ingestion during performance of maximal force efforts. This is likely 253 

due to an adequate supply of additional energetic substrates (e.g. muscle glycogen, ATP/PC) 254 

to meet the energetic demands of a maximal effort, and the other proposed ergogenic 255 

mechanisms of glucose supplementation not playing a significant role during this type of 256 

task. This is the first study, to the authors’ knowledge, to examine maximal force output in 257 

response to glucose ingestion over time. While the current study adopted an isokinetic testing 258 

protocol to appropriately address the study’s aims, the findings from this study are expected 259 

to be transferable to other modes of strength training and testing; although this may be the 260 

focus of future studies.        261 

 262 

PRACTICAL APPLICATIONS 263 

There is limited research assessing the role of glucose supplementation on maximal force 264 

output. Although some research supports the ingestion of glucose prior to resistance-based 265 

exercise, these studies have typically focussed on delaying the onset of fatigue during 266 

sustained submaximal efforts, as opposed to enhancing maximal voluntary force capacity. 267 

The results of this current study clearly demonstrate that ingestion of glucose does not 268 

improve performance of maximal voluntary force during isokinetic leg extensions. In 269 

addition, the results of the current study demonstrate that force output did not change at any 270 

time-point after glucose ingestion, despite a significant increase in blood glucose 271 

concentration. The ingestion of glucose is therefore not expected to provide any immediate 272 

performance benefits to resistance-based exercise training.     273 
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 364 

Figures 365 

Figure 1 Mean blood glucose response to ingestion of glucose (open circles) or placebo 366 

(closed circles) over time. Error bars represent 95% CI. arepresents significant difference 367 

from 0 min; brepresents significant difference from 5 min; crepresents significant difference 368 

from 15 min; *represents significant difference between conditions.   369 

 370 

Figure 2 Percent of initial MeanRep Force (top left panel) and MaxPeak Force (bottom left 371 

panel); where initial represents the pre-drink ingestion (0 min). Percent of initial MeanRep 372 

EMG (top right panel) and MaxPeak EMG (bottom right panel). Error bars represent 95% CI. 373 

 374 

Figure 3 Individual (thin lines) and mean (bold line) force output recorded prior to ingestion 375 

of the drink (pre) and 5-min post-ingestion (top panels), and the corresponding force output 376 

when peak blood glucose concentration occurred (lower panels; time from ingestion varied)). 377 

MaxPeak force is presented in the two left panels, while MeanRep force is presented in the 378 

two right panels. 379 
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