Pathogenicity Test of Western Australian isolates of Sclerotinia sclerotiorum in Canola

Baiq Nurul Hidayah PhD Student

School of Veterinary and Life Sciences - Murdoch University – Western Australia **Indonesian Agency for Agricultural Research and Development** Email: B.Hidayah@murdoch.edu.au

Supervisory Panel:

(1) Prof. Bernard Dell (Murdoch University), (2) Dr. Ravjit Khangura (DAFWA), (3) Dr. Treena Burgess (Murdoch University), (4) Dr. Lambert Brau (Deakin University)

> 15th International Sclerotinia Workshop 20 – 24 August 2013 – Wuhan - China

Introduction

Sclerotinia stem rot (SSR), Sclerotinia sclerotiorum, an important disease of canola (Brassica napus L.) production in Australia.

Potential to cause annual losses of up to \$30 million (Murray and Brennan, 2012).

Department of Agriculture and Food

Introduction....cont.

• In WA, SSR has emerged as a serious problem in canola production where crop losses were estimated up to 40% in the worst affected crops in 2011 cropping season (Khangura and MacLeod, 2012).

• Objective \rightarrow Investigate Pathogenic and Genetic Variation of WA Isolates \rightarrow Management of *S.* sclerotiorum in Canola and other Brassica Crops.

Isolation of the pathogen

Sclerotia inside infected canola stem

Sclerotia growth on media (PDA + antibiotic)

- Over 100 isolates were collected from different canola growing regions of WA (Northern and Southern regions).
- Isolates were grown in Potato Dextrose Agar (PDA) medium supplemented with Aureomycin.

Isolate of *S. sclerotiorum*

S. sclerotiorum pathogenicity screening

Isolate of *S. sclerotiorum* (3-4 days old)

Canola seedlings inoculated by S. sclerotiorum

In misting chamber

- Each isolate was tested across four replicates of pots with 6 seedlings each.
- percentage of diseased/dead plants The was determined 2 and 6 days after inoculation.

In Growth room

S. sclerotiorum pathogenicity screening....*cont.*

Control

Isolate with low pathogenicity

Isolate with high pathogenicity

NIVERSIT

Department of Agriculture and Food

EAI

Results so far...

Initial results indicated that:

S. sclerotiorum varies in pathogenicity with disease levels ranging from 0% - 100%

Pathogenic variations exist among isolates.

•

Number of Isolates	Percentage of Isolates
12	10.91
17	15.45
21	19.09
26	23.64
34	30.91
110	100.00
	Number of Isolates1217212634110

- Mycelial Compatibility Groups (MCGs)
- Molecular analysis \bullet
 - **Cluster analysis**
- Will be performed on all isolates to determine the genetic • variations.

On Progress

Thank you very much for your attention

Comments, suggestions, and feedback are more than welcome

