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Abstract

We propose a statistical model defined on tetravalent three-dimensional lattices in general and the
three-dimensional diamond network in particular where the splitting of randomly selected nodes
leads to a spatially disordered network, with decreasing degree of connectivity. The terminal state, that
is reached when all nodes have been split, is a dense configuration of self-avoiding walks on the
diamond network. Starting from the crystallographic diamond network, each of the four-coordinated
nodes is replaced with probability p by a pair of two edges, each connecting a pair of the adjacent
vertices. For all values 0 < p < 1the network percolates, yet the fraction f, of the system that belongs
to a percolating cluster drops sharply at p. = 1 to a finite value fp‘. This transition is reminiscent of a

percolation transition yet with distinct differences to standard percolation behaviour, including a
finite mass fpc > 0 of the percolating clusters at the critical point. Application of finite size scaling

approach for standard percolation yields scaling exponents for p — p_thatare different from the
critical exponents of the second-order phase transition of standard percolation models. This transition
significantly affects the mechanical properties of linear-elastic realizations (e.g. as custom-fabricated
models for artificial bone scaffolds), obtained by replacing edges with solid circular struts to give an
effective density ¢b. Finite element methods demonstrate that, as alow-density cellular structure, the
bulk modulus K shows a cross-over from a compression-dominated behaviour, K (¢) o« ¢* with

k &~ 1,atp=0toabending-dominated behaviour with x ~ 2atp=1.

Percolation is a fundamental model of statistical physics and probability theory [ 1], with a wealth of scientific and
engineering applications [2]. The fundamental question of percolation theory is the existence of connected
components whose size is of the order of the system size (percolating clusters), in disordered structures that result
from randomly inserting or removing local structural elements. It owes its generality, and hence importance,
partially to the strong universality of the percolation transition. In the majority of lattice and continuum models,
the transition from non-percolating to percolating structures is a continuous second-order phase transition in
the insertion (or deletion) probability p, characterized by the same critical exponents that are independent of
lattice type, symmetry, coordination, particle shape, etc [ 1]. Exceptions are non-equilibrium directed
percolation models [3, 4] and negative-weight percolation [5], both with different critical exponents, and
explosive percolation where a bias for the formation of small clusters leads to a first order transition [6, 7] or at
least to unusual finite size scaling [8].

We propose a simple statistical model, here referred to as vertex split model or linked loop model, defined for
the three-dimensional diamond network. (The diamond network is the crystallographic net with cubic
symmetry Fd3m consisting of a single type of edge and vertex. Four edges meet at every vertex, forming
tetrahedral angles [9].) Rather than deleting spatial elements from the diamond network, such as bonds or
vertices, the random operation consists of reducing the vertex coordination by replacing, with probability p,
each four-coordinated vertices with pairs of two-coordinated vertices, see figures 1 and 2. This induces a

© 2015 IOP Publishing Ltd and Deutsche Physikalische Gesellschaft


http://dx.doi.org/10.1088/1367-2630/17/4/043061
mailto:g.schroeder-turk@murdoch.edu.au
mailto:klaus.mecke@fau.de
http://crossmark.crossref.org/dialog/?doi=10.1088/1367-2630/17/4/043061&domain=pdf&date_stamp=2015-04-29
http://crossmark.crossref.org/dialog/?doi=10.1088/1367-2630/17/4/043061&domain=pdf&date_stamp=2015-04-29
http://creativecommons.org/licenses/by/3.0
http://creativecommons.org/licenses/by/3.0
http://creativecommons.org/licenses/by/3.0

10P Publishing

NewJ. Phys. 17 (2015) 043061 S Nachtrab et al

Figure 1. Realization of a vertex split model based on the Diamond lattice, custom-fabricated by 3D printing of ABS plastic. In the
context of bone scaffold engineering, vertex splitting has been suggested [ 10] as an efficient way of adjusting stiffness as a key
mechanical property.

~

Figure 2. A unit cell of the crystallographic diamond network with four-coordinated nodes (top, left) and the network that results
from severing one of the nodes (top, right). Each node remains unchanged with probability (1 — p), oris severed (or split) into two
pairs of edges, with the three possible configurations for neighbour pairs selected with equal probability p/3 (bottom).

transition from a fully coordinated crystalline network at p = 0 to a network filled densely with self-avoiding
random walks. The two names are motivated by two different perspectives; with reference to the ordered fully-
connected crystalline diamond network at p = 0, vertex splitting is the operation that leads to the transition
studied here. From the alternative perspective of the state at p = 1, represented by a dense set of self-avoiding
walks, the model may be defined as the random insertion of ‘links’ between adjacent, infinite or finite loops with
probability (1 — p).

Each unsevered vertex of the diamond network has four edges connecting the vertex to four distinct
neighbour vertices. Each vertex of the diamond network is split (or severed) with probability p, that is, the four-
coordinated node is replaced by two two-coordinated nodes slightly displaced from the position of the original
four-coordinated node, see figure 2. When splitting a node, the three possible configurations for neighbour pairs
are selected with equal probability. Note that the parameter p is the probability to degrade a four-link, opposite to
the conventional use of p in bond/site percolation models as the probability to create a bond or site.
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Figure 3. Fraction f, of edges belonging to any of the percolating clusters. The insert is a close-up, demonstrating a finite value );f of f,
at p.= 1. All data in figures 3—10 is obtained with lateral periodic boundary conditions.
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Figure 4. Dependence of f, on the linear system size L, for fixed p. (8 X L* is the number of vertices.) The insert shows the number N,,
of percolating clusters as function of L. Note that, at p = p,, the difference [ f; (L) - ];f (L = o0)]tothe finite value at p, (rather than

the absolute value ];C (L)) is commensurate with the functional form [fp‘ (L) — );” (L = 00)] & L™, representing the small deviations
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Figure 5. The averaged pair-connectedness function G(r), for p = p,, for different linear system size L. The decay follows a power law
with exponent (d — 2 — 5) = —1.07 % 0.04, significantly different from the site percolation value —0.9318.

Connected components define clusters, the size of which is measured by the number of constituent edges. A
cluster is considered percolating if it traverses the system in z-direction from top to bottom’. Systems with both
periodic and open boundary conditions in the lateral x and y directions are considered, but all data in
figures 3—10 are for periodic boundary conditions (a further possibility represented by a fully periodic system

Note however that the network itself has cubic symmetry and the severing process induces no anisotropy. In fact, in terms of the effective
linear-elastic properties, the system becomes more isotropic with increasing p, such that the difference between the two shear moduli (ina
system with initially cubic symmetry) vanishes for large p, see insert in figure 3(B) in [ 10]. This mechanical isotropy relates presumably also

to higher structural isotropy, in a statistical sense.
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Figure 6. Power law decay (1) o s~ at transition p = p_of the vertex split model. Contrary to standard bond or site percolation a
finite size scaling is necessary to find the correct scaling behaviour. #;is the number of clusters of size s obtained from the finite size
scaling via 1, (L) = ns + to L. Theexponent 7 ~ 2.481 + 0.003 is greater than 2 and hence decays sufficiently fast for Y0 sn, to
converge to a finite value, but it is different from the value for the site percolation exponent 7 & 2.19 [11].
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Figure 7. The fractal dimension of the percolating cluster at p = p, is estimatedas Dy = 1.97 + 0.06. This estimate is obtained by
fitting a straightline a R + b to the values of average mass of the percolating clusters M(R), see insert for a given system size L. The
fractal dimension is obtained by fitting a straight line to the values of a as function of 1/L. Data in the insert is averaged over 100 or
more realizations. The error estimate for Dy corresponds to the variations observed for different system sizes L = 10, 20, 40, 80
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Figure 8. Extraction of #and v from finite size scaling of f,: the scaling function is expected to become constant for

x = (p — p.)L""” > 1,and to decrease as x for x < 1. Error margins represent the half-width of the intervals for #and v for which
the scaling behaviour is similarly close as for the estimated best values v = 0.54 and # = 0.001.This plot assumes validity of the
conventional finite size scaling for f,(L) rather than f, (L) — ];‘, an assumption that is complicated by the finite value of f,at p = p,

and by the fact that there is no non-percolating phase.

was not investigated here); system size is measured in the number L’ of unit cells, each comprising eight vertices

of the network, see figure 2.

Figure 3 shows the fraction of percolating edges f, as function of p, for different system sizes L, suggesting a

transition at p. = 1. Over the entire interval p € [0, 1] we find the system to represent percolating

configurations. However, p. = 1 represents a critical point where the fraction f, of edges belonging to percolating

4
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Table 1. Thresholds and exponents of the vertex split model and of the site per-
colation model, both on the diamond network. The critical exponents for the
site percolation model are values from [1, 11, 12], with the percolation threshold
for the diamond network reproduced from [ 13]. For # and v we have verified
that our implementation of the site percolation model reproduces these results.
Note that we have not been able to obtain consistent estimates for the exponent v
prescribing the decay of the correlation lengths, for the vertex split model. The
two estimates based on finite size scaling of quantities at p = p,_ yield values
around 1.0 whereas the estimate based on finite size scaling of quantities at

p < lyields v = 0.54, differing by a factor of very close to 2. We speculate that
this discrepancy is likely due to the multiplicity of the percolating cluster at

P = p,,or to the possibility that the transition is not of second order. Note the
discussion relating to #in item (iii) in the main text. For the scaling exponents of
the vertex split model, error bars combine variances of the data (statistical error
of fit) with variations when changing fitting ranges and system size. All data is for
periodic boundary conditions in the lateral directions; see [ 14] for data for open

boundary conditions.
Site Vertex split Figure
Threshold p. = 0.569 1 3and4
Edges in infinite cluster(s)
fy~@=p) p =041 0.001 + 0.002 8and 4
Correlation length
E~lp—pl v =088 0.54 + 0.04 4
~1.0 6
Pair-connectedness function
G(r) ~ rm(a=2tn n = —0.068 0.07 + 0.04 5
Cluster size distribution
(n;) ~ s~ 7 =2.189 2.481 % 0.003 6
Fractal dimension
Df = 2.52 1.97 £ 0.06 7

clusters sharply drops, to a value ]; ¢ > 0 which is finite; the model has no non-percolating phase. f, is defined as

jep $(j), where P is the set of
all percolating clusters and s(j) the number of edges in cluster j, to the total number S of edges in the system.
Figure 4 shows f, as function of system size L, for various p near p.and for periodic boundary conditions.

the ratio s, /S of the number of all edges that belong to percolating clusters, s, == >

This demonstrates that for p < p. = 1 the percolating fraction f, of the system increases with L; for large systems
and p < lavast majority of the edges belong to percolating clusters. By contrast, at p = p. = 1, f, varies only
very slightly with L, despite our analysis including very large systems with up to 2.7 x 10'° vertices. Linear
regression yields aslope of f, (1/L) of value 0.002 + 0.002, which our analysis cannot distinguish from a constant
behaviour, fp (L) = const (the error margin combines the statistical variance of the data around their mean and
systematic variations observed when varying the fit interval). When formally interpreting this in the framework
of standard finite size scaling for the second-order percolation transition, this leads to an interpretation of this
slopeas /v = 0.002 £ 0.002 ~ 0 for the power-law f, o L™, for ps=p, and bearingin mind the
discontinuity at p.. This analysis is further support of our claim of a transition at p. = 1. The data for open
boundary conditions in the lateral directions (shown in [14]) are qualitatively similar, yet with the absolute
values of j; ¢ approximately a factor of 10 smaller. Note in particular that this behaviour implies that the mass of

the percolating cluster(s) is a finite value £, (p,) = ]; ° > 0, even for infinitely large systems L — oo, in contrast
to the standard percolation models.

The insert of figure 4 shows the number of percolating clustersat p = p. = 1asafunction of system size L.
Importantly, in contrast to bond or site percolation, the number of percolating clusters at p_is not 1, but grows
(within the limits of our numerical resolution) linearly with system size, N, o L. The three possible types of
unbranched self-avoiding paths for systems with lateral periodic boundary conditions are closed loops,
percolating clusters (traversing the system in z-direction) and u-turns, i.e. clusters that return to the same end
(bottom or top) of the network from where they emanated. The probability that a cluster emanating from one of
the 417 sites at z = 0 percolates appears to be inversely proportional to the system height, «1/L. As any u-turn
cluster occupies two sitesat z=0, N, must be even or zero.

Figures 4-8 support the claim that the transition at p. = 1 is a phase transition with scaling behaviour
given by power-law decay for the characteristic quantities listed in table 1. The scaling exponents are
significantly different from the critical exponents of conventional bond or site percolation, substantiating
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the claim that the transition of the vertex split model is different from the universality class of standard
percolation.

We comment on some aspects of the numerical extraction of these exponents from the numerical data. First,
the observation that for p = p, f, » (L) = const shows no statistically significant dependence on L is possible

without having to resort to finite size scaling (figure 4); even for small systems, such as L = 100, we observe only
small differences in f, from the value for large systems, at p = p. = 1. Note however the complication that f,,
does not drop to 0 but to a finite value ]; ¢ > 0atp.and that a non-percolating phase (characterized by f, = 0)

does not exist; this raises the question if the appropriate order parameter is f,(L) or the difference
f,(L) = £ (L = o).

Second, the exponent 7, describing the decay of the cluster size distribution () (s) at p = p, is substantially
harder to determine, requiring the use of finite size scaling, despite large system sizes. The data in figure 6, is
determined by using finite size scaling for n,: the system-size independent value r; is extracted from the
simulation data 1,(L) for a system of size L by n, (L) = n + t, L™/%, with a best fit obtained for v = 1.0 + 0.1.
System sizes up to L = 1000 were simulated for this plot. An additional complication for the determination of 7 is
the presence of percolating clusters at p = p_. For the bond/site percolation problem, there are no infinite
percolating clusters in an infinite systems right at the critical point p = p,. Assuming f, (L) = constat p = p,,

this is not the case in the model studied here. Therefore, the question of how to treat percolating clusters is in
principle important for the determination of 7. However, we find that for systems with the periodic boundary
conditions described here, after the described finite size scaling the value of 7 is the same regardless of whether
one takes percolating clusters into account for (11, (L) ) or not. (We note that we have not been able to determine
a consistent value of 7 from systems with open boundary conditions; for that case, the determination is
complicated by a cross-over behaviour.)

Several aspects of the model deserve further scrutiny.

(i) The scaling exponents of the vertex split model do not fulfil the scaling relations d — Dy = b and
d-—2+4n= ? valid for bond or site percolation; their derivation assumes a single unique percolatilulg
cluster, in contrast to the many line-like percolating clusters in this model. Similarly, this may be the cause
for the different estimates for v from finite size scaling involving (a) only properties at p = p_and (b)
propertiesalsoat p < p,, see table 1.

(ii) The corresponding planar model of severing four-coordinated vertices of planar square lattices is closely
related to hull percolation or hull exponents of standard percolation clusters [ 15-18], also with different
critical behaviour from standard percolation; the relationship between the planar and the spatial case
requires further exploration.

(iii) The system-size dependence of the fraction f,(L) of the system that belongs to percolating clusters warrants
further exploration. The L-independence off, for p = p_and the L-dependent behaviour for p < p_are
commensurate with # = 0, within the quality of the data and within the framework of finite size scaling for
second-order phase transitions. This implies that f, (p) o (p — p, )” isindependent of p, for ps=p,. Thisis
also commensurate with the data, and for L — oo implies fp (p) = 1for p < p, withasharpjumptoa
finite fp (p.) < 1at p.. The sharpness of the change at p. and the finite value of f, at p. also allude to the
possibility that the transition is a first-order transition or that the difference fp (p) — fp (p,) is the parameter
whose scaling behaviour should be studied.

(iv) The scaling properties—in particular the L-independence of f, at p—point to the possibility of an effective
description of the system. The perspective of the ‘loop link’ model affords the interpretation that, atp =1,
the insertion of random links between adjacent pairs of self-avoiding random walks corresponds to a long-
range effect, which induces the sharp (possibly first order) transition described above. This, as well as the
link to Flory-type arguments for the scaling behaviour of polymer systems, requires further investigation,
by models that effectively tune the characteristics of the self-consistent random walk configuration.

(v) The relationship between the state at p = 1 and random walk configurations deserve further investigation.
Evidently, the configuration at p = 1 represents an assembly of random walks subject to a non-overlap
condition. However, the value of the fractal dimension very close to 2 (which is the value expected for a
random walk) suggests a relation of the system to random walks without the non-overlap constraint. Note
further that the value of Dy is close to 2 which is consistent with the value one obtains from the following
argument. Given that 1/L percolating clusters emerge from the top and bottom boundaries and that the
fraction of lattice sites belonging to percolating clusters does not depend on L, the size per percolating
cluster is @ (L?) in line with the estimate of Dy

6
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Figure 9. Bulk modulus K(p) as a function of p for the network solids obtained by dilating edges to cylinders, with solid volume
fraction ¢p = 0.1. The only relevant microscopic linear-elastic material constant is chosen as the Poisson’s ratio 4, = 0.5. Datais
computed for network solids of 4> unit cells (512 vertices), discretized by 200” voxels and averaged over five independent realizations.
The insert shows that, near p, = 1, the data follows a power-law with exponent x3.0 (determined by straight-line fitting to all data for
p € 10.1, 0.5]), different from the site percolation value f. = 3.75 [12].
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Figure 10. For fixed p, the effective bulk modulus K and the shear moduli G; and G, obey power-laws as function of solid volume
fraction ¢, see insert. The exponents for the shear moduli, G; « ¢’ with i =1, 2 are found to be close to the literature value 2, and
constant as function of p. By contrast, the exponent for the bulk modulus K « ¢* changes from the expected value k ~ latp=0to
kK~ 2forp~ 1.

(vi) In analogy to standard percolation, one may expect the critical behaviour to be independent of the type of
underlying network; this expectation should be verified by an analysis of node severing of other four-
coordinated networks, such as the crystalline nbo network [9] or the network of plateau edges in random
isotropic or sheared foams [19, 20].

Mechanical properties

The remainder of this paper addresses mechanical properties of linear-elastic realizations of the networks with
split (or severed) vertices. In porous or cellular structures, the existence of a solid percolating cluster is a
prerequisite for mechanical stability, that is, for finite values of the effective linear-elastic moduli. The
relationship between percolation critical behaviour and effective elastic properties (those relevant for sample
sizes much larger than the micro-structural length scale) is well-known, leading to a power-law decay of the
effective elastic moduli near p. [2, 12]. We employ a voxel-based finite element method [21, 22] to evaluate the
effective linear-elastic properties of network solids based on the vertex split model (Some preliminary results,
for p < p,_ far from the percolation critical point, have been published in [10]).

Figure 9 shows that near p,, the effective bulk modulus K (the resistance to hydrostatic compression) is
commensurate with a power-law decay, K « [p — p, |-, with an exponent f. ~ 3.0, significantly different from
the known exponent f, = 3.75 [12] for site percolation (An analysis of site percolation with the FEM scheme used
yields f. = 3.6 + 0.1).

The change in network structure that occurs as p varies from 0 to 1 is reflected in the density dependence of
the linear elastic bulk modulus. It is frequently observed that the effective elastic moduli scale as power-laws in
the solid volume fraction ¢ of the cellular structure; specifically, for the limit ¢¢ — 0 of thin beams, the bulk
modulus follows K & ¢* with k = 1and the shear moduli G « ¢ with y = 2 [23]; note that structures with

7
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cubic symmetry, such as the crystallographic diamond network, have three independent elastic moduli, the bulk
modulus K and two shear moduli G; and G,. For the vertex split model, figure 10 shows that the effective
exponent k of the bulk modulus varies from a value near 1 (as expected) at p = 0 to a value close to 2 when all
nodes are disconnected at p = 1. The exponents of the shear moduli remain close to the expected value of 2.

This behaviour is somewhat rationalized by the observation that, in ordered cellular structures in the thin
beam limit, linear behaviour of elastic moduli is associated with strut compression being the dominant
deformation mode, whereas quadratic behaviour is associated with strut bending or torsion [24-26]. The
network solids corresponding to the vertex split model appear to undergo a transition from being compression-
dominated when fully four-coordinated at p = 0 to being bending-dominated in the terminal state (atp=1)
which corresponds to a dense set of self-avoiding polymers.

In conclusion, we have demonstrated that randomly severing the four-coordinated vertices of a diamond
network leads to a transition, manifest in the fraction of clusters that are percolating. The transition, which is
reminiscent of a percolation transition yet with substantially different behaviour to conventional bond/site
percolation, occurs at p. = 1 when all nodes have been split. While the analysis of this paper has clearly
demonstrated that the transition does not follow the critical behaviour of standard bond/site percolation, more
research is needed to gain a complete understanding of the critical behaviour of this model.
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