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Abstract
Wepropose a statisticalmodel defined on tetravalent three-dimensional lattices in general and the
three-dimensional diamond network in particular where the splitting of randomly selected nodes
leads to a spatially disordered network, with decreasing degree of connectivity. The terminal state, that
is reachedwhen all nodes have been split, is a dense configuration of self-avoiding walks on the
diamondnetwork. Starting from the crystallographic diamond network, each of the four-coordinated
nodes is replacedwith probability p by a pair of two edges, each connecting a pair of the adjacent
vertices. For all values ⩽ ⩽p0 1 the network percolates, yet the fraction fp of the system that belongs
to a percolating cluster drops sharply at pc=1 to afinite value fp

c. This transition is reminiscent of a

percolation transition yet with distinct differences to standard percolation behaviour, including a
finitemass >f 0p

c of the percolating clusters at the critical point. Application offinite size scaling

approach for standard percolation yields scaling exponents for →p pc that are different from the

critical exponents of the second-order phase transition of standard percolationmodels. This transition
significantly affects themechanical properties of linear-elastic realizations (e.g. as custom-fabricated
models for artificial bone scaffolds), obtained by replacing edges with solid circular struts to give an
effective densityϕ. Finite elementmethods demonstrate that, as a low-density cellular structure, the
bulkmodulusK shows a cross-over from a compression-dominated behaviour, ϕ ϕ∝ κK ( ) with
κ ≈ 1, at p=0 to a bending-dominated behaviourwith κ ≈ 2 at p=1.

Percolation is a fundamentalmodel of statistical physics and probability theory [1], with awealth of scientific and
engineering applications [2]. The fundamental question of percolation theory is the existence of connected
components whose size is of the order of the system size (percolating clusters), in disordered structures that result
from randomly inserting or removing local structural elements. It owes its generality, and hence importance,
partially to the strong universality of the percolation transition. In themajority of lattice and continuummodels,
the transition fromnon-percolating to percolating structures is a continuous second-order phase transition in
the insertion (or deletion) probability p, characterized by the same critical exponents that are independent of
lattice type, symmetry, coordination, particle shape, etc [1]. Exceptions are non-equilibriumdirected
percolationmodels [3, 4] and negative-weight percolation [5], bothwith different critical exponents, and
explosive percolationwhere a bias for the formation of small clusters leads to afirst order transition [6, 7] or at
least to unusual finite size scaling [8].

We propose a simple statisticalmodel, here referred to as vertex split model or linked loopmodel, defined for
the three-dimensional diamond network. (The diamondnetwork is the crystallographic net with cubic
symmetry Fd m3 consisting of a single type of edge and vertex. Four edgesmeet at every vertex, forming
tetrahedral angles [9].) Rather than deleting spatial elements from the diamond network, such as bonds or
vertices, the randomoperation consists of reducing the vertex coordination by replacing, with probability p,
each four-coordinated vertices with pairs of two-coordinated vertices, see figures 1 and 2. This induces a
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transition from a fully coordinated crystalline network at p=0 to a networkfilled densely with self-avoiding
randomwalks. The two names aremotivated by twodifferent perspectives; with reference to the ordered fully-
connected crystalline diamond network at p=0, vertex splitting is the operation that leads to the transition
studied here. From the alternative perspective of the state at p=1, represented by a dense set of self-avoiding
walks, themodelmay be defined as the random insertion of ‘links’ between adjacent, infinite orfinite loopswith
probability − p(1 ).

Each unsevered vertex of the diamondnetwork has four edges connecting the vertex to four distinct
neighbour vertices. Each vertex of the diamond network is split (or severed)with probability p, that is, the four-
coordinated node is replaced by two two-coordinated nodes slightly displaced from the position of the original
four-coordinated node, see figure 2.When splitting a node, the three possible configurations for neighbour pairs
are selectedwith equal probability. Note that the parameter p is the probability to degrade a four-link, opposite to
the conventional use of p in bond/site percolationmodels as the probability to create a bond or site.

Figure 1.Realization of a vertex splitmodel based on theDiamond lattice, custom-fabricated by 3Dprinting of ABS plastic. In the
context of bone scaffold engineering, vertex splitting has been suggested [10] as an efficient way of adjusting stiffness as a key
mechanical property.

Figure 2.Aunit cell of the crystallographic diamond networkwith four-coordinated nodes (top, left) and the network that results
from severing one of the nodes (top, right). Each node remains unchangedwith probability − p(1 ), or is severed (or split) into two
pairs of edges, with the three possible configurations for neighbour pairs selectedwith equal probability p 3 (bottom).
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Connected components define clusters, the size of which ismeasured by the number of constituent edges. A
cluster is considered percolating if it traverses the system in z-direction from top to bottom3. Systemswith both
periodic and open boundary conditions in the lateral x and y directions are considered, but all data in
figures 3–10 are for periodic boundary conditions (a further possibility represented by a fully periodic system

Figure 3. Fraction fp of edges belonging to any of the percolating clusters. The insert is a close-up, demonstrating afinite value fp
c of fp

at pc=1. All data in figures 3–10 is obtainedwith lateral periodic boundary conditions.

Figure 4.Dependence of fp on the linear system size L, forfixed p. ( × L8 3 is the number of vertices.) The insert shows the numberNp

of percolating clusters as function of L. Note that, at =p pc , the difference − = ∞f L f L[ ( ) ( )]p
c

p
c to thefinite value at pc (rather than

the absolute value f L( )p
c ) is commensurate with the functional form − = ∞ ∝ −f L f L L[ ( ) ( )]p

c
p
c 0.9, representing the small deviations

from a constant behaviour for small system sizes.

Figure 5.The averaged pair-connectedness functionG(r), for =p pc , for different linear system size L. The decay follows a power law
with exponent η− − = − ±d( 2 ) 1.07 0.04, significantly different from the site percolation value−0.9318.

3
Note however that the network itself has cubic symmetry and the severing process induces no anisotropy. In fact, in terms of the effective

linear-elastic properties, the systembecomesmore isotropicwith increasing p, such that the difference between the two shearmoduli (in a
systemwith initially cubic symmetry) vanishes for large p, see insert infigure 3(B) in [10]. Thismechanical isotropy relates presumably also
to higher structural isotropy, in a statistical sense.
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was not investigated here); system size ismeasured in the number L3 of unit cells, each comprising eight vertices
of the network, see figure 2.

Figure 3 shows the fraction of percolating edges fp as function of p, for different system sizes L, suggesting a
transition at pc=1.Over the entire interval ∈p [0, 1]wefind the system to represent percolating
configurations.However, pc=1 represents a critical point where the fraction fp of edges belonging to percolating

Figure 6.Power law decay 〈 〉 ∝ τ−n ss at transition =p pc of the vertex splitmodel. Contrary to standard bond or site percolation a
finite size scaling is necessary to find the correct scaling behaviour. ns is the number of clusters of size s obtained from thefinite size
scaling via = + ν−n L n t L( )s s 0 . The exponent τ ≈ ±2.481 0.003 is greater than 2 and hence decays sufficiently fast for ∑ =

∞ sns s0 to
converge to a finite value, but it is different from the value for the site percolation exponent τ ≈ 2.19 [11].

Figure 7.The fractal dimension of the percolating cluster at =p pc is estimated as = ±D 1.97 0.06f . This estimate is obtained by
fitting a straight line +a R b to the values of averagemass of the percolating clustersM(R), see insert for a given system size L. The
fractal dimension is obtained by fitting a straight line to the values of a as function of L1 . Data in the insert is averaged over 100 or
more realizations. The error estimate forDf corresponds to the variations observed for different system sizes =L 10, 20, 40, 80
(L=10 not shown).

Figure 8.Extraction of β and ν fromfinite size scaling of fp: the scaling function is expected to become constant for
= − ≫νx p p L( ) 1c

1 , and to decrease as β−x for ≪x 1. Errormargins represent the half-width of the intervals for β and ν for which
the scaling behaviour is similarly close as for the estimated best values ν = 0.54 and β = 0.001.This plot assumes validity of the
conventional finite size scaling for fp(L) rather than −f L f( )p p

c , an assumption that is complicated by the finite value of fp at =p pc

and by the fact that there is no non-percolating phase.
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clusters sharply drops, to a value >f 0p
c which isfinite; themodel has no non-percolating phase. fp is defined as

the ratio s Sp of the number of all edges that belong to percolating clusters, ≔ ∑ ∈s s j( )p j , where  is the set of

all percolating clusters and s(j) the number of edges in cluster j, to the total number S of edges in the system.
Figure 4 shows fp as function of system size L, for various pnear pc and for periodic boundary conditions.

This demonstrates that for < =p p 1c the percolating fraction fp of the system increases with L; for large systems
and <p 1 a vastmajority of the edges belong to percolating clusters. By contrast, at = =p p 1c , fp varies only

very slightly with L, despite our analysis including very large systemswith up to ×2.7 1010 vertices. Linear
regression yields a slope of f L(1 )p of value 0.002 ± 0.002, which our analysis cannot distinguish from a constant

behaviour, =f L( ) constp (the errormargin combines the statistical variance of the data around theirmean and

systematic variations observedwhen varying the fit interval).When formally interpreting this in the framework
of standard finite size scaling for the second-order percolation transition, this leads to an interpretation of this
slope as β ν = ± ≈0.002 0.002 0 for the power-law ∝ β ν−f Lp , for =p pc and bearing inmind the

discontinuity at pc. This analysis is further support of our claimof a transition at pc=1. The data for open
boundary conditions in the lateral directions (shown in [14]) are qualitatively similar, yet with the absolute
values of fp

c approximately a factor of 10 smaller. Note in particular that this behaviour implies that themass of

the percolating cluster(s) is afinite value = >f p f( ) 0p c p
c , even for infinitely large systems → ∞L , in contrast

to the standard percolationmodels.
The insert offigure 4 shows the number of percolating clusters at = =p p 1c as a function of system size L.

Importantly, in contrast to bond or site percolation, the number of percolating clusters at pc is not 1, but grows
(within the limits of our numerical resolution) linearly with system size, ∝N Lp . The three possible types of

unbranched self-avoiding paths for systemswith lateral periodic boundary conditions are closed loops,
percolating clusters (traversing the system in z-direction) and u-turns, i.e. clusters that return to the same end
(bottomor top) of the network fromwhere they emanated. The probability that a cluster emanating fromone of
the 4L2 sites at z=0 percolates appears to be inversely proportional to the systemheight, ∝ L1 . As any u-turn
cluster occupies two sites at z=0,Npmust be even or zero.

Figures 4–8 support the claim that the transition at pc= 1 is a phase transition with scaling behaviour
given by power-law decay for the characteristic quantities listed in table 1. The scaling exponents are
significantly different from the critical exponents of conventional bond or site percolation, substantiating

Table 1.Thresholds and exponents of the vertex splitmodel and of the site per-
colationmodel, both on the diamond network. The critical exponents for the
site percolationmodel are values from [1, 11, 12], with the percolation threshold
for the diamond network reproduced from [13]. For β and νwe have verified
that our implementation of the site percolationmodel reproduces these results.
Note that we have not been able to obtain consistent estimates for the exponent ν
prescribing the decay of the correlation lengths, for the vertex splitmodel. The
two estimates based on finite size scaling of quantities at =p pc yield values
around 1.0whereas the estimate based onfinite size scaling of quantities at

<p 1 yields ν = 0.54, differing by a factor of very close to 2.We speculate that
this discrepancy is likely due to themultiplicity of the percolating cluster at

=p pc , or to the possibility that the transition is not of second order. Note the
discussion relating to β in item (iii) in themain text. For the scaling exponents of
the vertex splitmodel, error bars combine variances of the data (statistical error
offit) with variationswhen changing fitting ranges and system size. All data is for
periodic boundary conditions in the lateral directions; see [14] for data for open
boundary conditions.

Site Vertex split Figure

Threshold =p 0.569c 1 3 and 4

Edges in infinite cluster(s)

∼ − βf p p( )p c β = 0.41 0.001 ± 0.002 8 and 4

Correlation length

ξ ∼ ∣ − ∣νp pc ν = 0.88 0.54 ± 0.04 4

≈1.0 6

Pair-connectedness function

∼ η− − +G r r( ) d( 2 ) η = −0.068 0.07 ± 0.04 5

Cluster size distribution

〈 〉 ∼ τ−n ss τ = 2.189 2.481 ± 0.003 6

Fractal dimension

=D 2.52f 1.97 ± 0.06 7
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the claim that the transition of the vertex split model is different from the universality class of standard
percolation.

We comment on some aspects of the numerical extraction of these exponents from the numerical data. First,
the observation that for =p pc , =f L( ) constp shows no statistically significant dependence on L is possible

without having to resort tofinite size scaling (figure 4); even for small systems, such as L=100, we observe only
small differences in fp from the value for large systems, at = =p p 1c . Note however the complication that fp
does not drop to 0 but to afinite value >f 0p

c at pc and that a non-percolating phase (characterized by fp= 0)

does not exist; this raises the question if the appropriate order parameter is fp(L) or the difference
− = ∞f L f L( ) ( )p p

c .

Second, the exponent τ, describing the decay of the cluster size distribution 〈 〉n s( )s at =p pc is substantially
harder to determine, requiring the use offinite size scaling, despite large system sizes. The data infigure 6, is
determined by usingfinite size scaling for ns: the system-size independent value ns is extracted from the
simulation data ns(L) for a systemof size L by = + ν−n L n t L( )s s 0

1 , with a bestfit obtained for ν = ±1.0 0.1.
System sizes up to L=1000were simulated for this plot. An additional complication for the determination of τ is
the presence of percolating clusters at =p pc. For the bond/site percolation problem, there are no infinite
percolating clusters in an infinite systems right at the critical point =p pc. Assuming =f L( ) constp at =p pc,

this is not the case in themodel studied here. Therefore, the question of how to treat percolating clusters is in
principle important for the determination of τ. However, wefind that for systemswith the periodic boundary
conditions described here, after the described finite size scaling the value of τ is the same regardless of whether
one takes percolating clusters into account for 〈 〉n L( )s or not. (We note thatwe have not been able to determine
a consistent value of τ from systemswith open boundary conditions; for that case, the determination is
complicated by a cross-over behaviour.)

Several aspects of themodel deserve further scrutiny.

(i) The scaling exponents of the vertex split model do not fulfil the scaling relations − = β
ν

d D f and
η− + = β

ν
d 2 2 , valid for bond or site percolation; their derivation assumes a single unique percolating
cluster, in contrast to themany line-like percolating clusters in thismodel. Similarly, thismay be the cause
for the different estimates for ν from finite size scaling involving (a) only properties at =p pc and (b)
properties also at <p pc, see table 1.

(ii) The corresponding planar model of severing four-coordinated vertices of planar square lattices is closely
related to hull percolation or hull exponents of standard percolation clusters [15–18], alsowith different
critical behaviour from standard percolation; the relationship between the planar and the spatial case
requires further exploration.

(iii) The system-size dependence of the fraction fp(L) of the system that belongs to percolating clusters warrants
further exploration. The L-independence of fp for =p pc and the L-dependent behaviour for <p pc are
commensurate with β = 0, within the quality of the data andwithin the framework offinite size scaling for

second-order phase transitions. This implies that ∝ − βf p p p( ) ( )p c is independent of p, for =p pc . This is

also commensurate with the data, and for → ∞L implies =f p( ) 1p for <p pc with a sharp jump to a

finite <f p( ) 1p c at pc. The sharpness of the change at pc and thefinite value of fp at pc also allude to the

possibility that the transition is afirst-order transition or that the difference −f p f p( ) ( )p p c is the parameter

whose scaling behaviour should be studied.

(iv) The scaling properties—in particular the L-independence of fp at pc—point to the possibility of an effective
description of the system. The perspective of the ‘loop link’model affords the interpretation that, at p=1,
the insertion of random links between adjacent pairs of self-avoiding randomwalks corresponds to a long-
range effect, which induces the sharp (possibly first order) transition described above. This, as well as the
link to Flory-type arguments for the scaling behaviour of polymer systems, requires further investigation,
bymodels that effectively tune the characteristics of the self-consistent randomwalk configuration.

(v) The relationship between the state at p = 1 and random walk configurations deserve further investigation.
Evidently, the configuration at p= 1 represents an assembly of randomwalks subject to a non-overlap
condition. However, the value of the fractal dimension very close to 2 (which is the value expected for a
randomwalk) suggests a relation of the system to randomwalks without the non-overlap constraint. Note
further that the value ofDf is close to 2which is consistent with the value one obtains from the following
argument. Given that L1 percolating clusters emerge from the top and bottomboundaries and that the
fraction of lattice sites belonging to percolating clusters does not depend on L, the size per percolating
cluster is  L( )2 in linewith the estimate ofDf.
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(vi) In analogy to standard percolation, one may expect the critical behaviour to be independent of the type of
underlying network; this expectation should be verified by an analysis of node severing of other four-
coordinated networks, such as the crystallinenbo network [9] or the network of plateau edges in random
isotropic or sheared foams [19, 20].

Mechanical properties

The remainder of this paper addressesmechanical properties of linear-elastic realizations of the networkswith
split (or severed) vertices. In porous or cellular structures, the existence of a solid percolating cluster is a
prerequisite formechanical stability, that is, forfinite values of the effective linear-elasticmoduli. The
relationship between percolation critical behaviour and effective elastic properties (those relevant for sample
sizesmuch larger than themicro-structural length scale) is well-known, leading to a power-law decay of the
effective elasticmoduli near pc [2, 12].We employ a voxel-based finite elementmethod [21, 22] to evaluate the
effective linear-elastic properties of network solids based on the vertex splitmodel (Some preliminary results,
for ≪p pc far from the percolation critical point, have been published in [10]).

Figure 9 shows that near pc, the effective bulkmodulusK (the resistance to hydrostatic compression) is
commensurate with a power-law decay, ∝ ∣ − ∣K p pc

fc, with an exponent ≈f 3.0c , significantly different from
the known exponent fc=3.75 [12] for site percolation (An analysis of site percolationwith the FEM scheme used
yields = ±f 3.6 0.1c ).

The change in network structure that occurs as p varies from0 to 1 is reflected in the density dependence of
the linear elastic bulkmodulus. It is frequently observed that the effective elasticmoduli scale as power-laws in
the solid volume fractionϕ of the cellular structure; specifically, for the limit ϕ → 0 of thin beams, the bulk
modulus follows ϕ∝ κK with κ = 1and the shearmoduli ϕ∝ γG with γ = 2 [23]; note that structures with

Figure 10. Forfixed p, the effective bulkmodulusK and the shearmoduliG1 andG2 obey power-laws as function of solid volume
fractionϕ, see insert. The exponents for the shearmoduli, ϕ∝ γGi i with i=1, 2 are found to be close to the literature value 2, and
constant as function of p. By contrast, the exponent for the bulkmodulus ϕ∝ κK changes from the expected value κ ≈ 1 at p=0 to
κ ≈ 2 for ≈p 1.

Figure 9.BulkmodulusK(p) as a function of p for the network solids obtained by dilating edges to cylinders, with solid volume
fraction ϕ = 0.1. The only relevantmicroscopic linear-elasticmaterial constant is chosen as the Poisson’s ratio ν = 0.5m . Data is
computed for network solids of 43 unit cells (512 vertices), discretized by 2003 voxels and averaged over five independent realizations.
The insert shows that, near pc=1, the data follows a power-lawwith exponent ≈3.0 (determined by straight-linefitting to all data for

∈p [0.1, 0.5]), different from the site percolation value fc=3.75 [12].
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cubic symmetry, such as the crystallographic diamond network, have three independent elasticmoduli, the bulk
modulusK and two shearmoduliG1 andG2. For the vertex splitmodel, figure 10 shows that the effective
exponent κ of the bulkmodulus varies from a value near 1 (as expected) at p=0 to a value close to 2when all
nodes are disconnected at p=1. The exponents of the shearmoduli remain close to the expected value of 2.

This behaviour is somewhat rationalized by the observation that, in ordered cellular structures in the thin
beam limit, linear behaviour of elasticmoduli is associatedwith strut compression being the dominant
deformationmode, whereas quadratic behaviour is associatedwith strut bending or torsion [24–26]. The
network solids corresponding to the vertex splitmodel appear to undergo a transition frombeing compression-
dominatedwhen fully four-coordinated at p=0 to being bending-dominated in the terminal state (at p= 1)
which corresponds to a dense set of self-avoiding polymers.

In conclusion, we have demonstrated that randomly severing the four-coordinated vertices of a diamond
network leads to a transition,manifest in the fraction of clusters that are percolating. The transition, which is
reminiscent of a percolation transition yet with substantially different behaviour to conventional bond/site
percolation, occurs at pc=1when all nodes have been split.While the analysis of this paper has clearly
demonstrated that the transition does not follow the critical behaviour of standard bond/site percolation,more
research is needed to gain a complete understanding of the critical behaviour of thismodel.
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