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Surface forces: Surface roughness in theory and experiment
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A method of incorporating surface roughness into theoretical calculations of surface forces is pre-
sented. The model contains two chief elements. First, surface roughness is represented as a proba-
bility distribution of surface heights around an average surface height. A roughness-averaged force
is determined by taking an average of the classic flat-surface force, weighing all possible separation
distances against the probability distributions of surface heights. Second the model adds a repulsive
contact force due to the elastic contact of asperities. We derive a simple analytic expression for the
contact force. The general impact of roughness is to amplify the long range behaviour of noncontact
(DLVO) forces. The impact of the elastic contact force is to provide a repulsive wall which is felt at a
separation between surfaces that scales with the root-mean-square (RMS) roughness of the surfaces.
The model therefore provides a means of distinguishing between “true zero,” where the separation
between the average centres of each surface is zero, and “apparent zero,” defined by the onset of the
repulsive contact wall. A normal distribution may be assumed for the surface probability distribution,
characterised by the RMS roughness measured by atomic force microscopy (AFM). Alternatively the
probability distribution may be defined by the histogram of heights measured by AFM. Both methods
of treating surface roughness are compared against the classic smooth surface calculation and exper-
imental AFM measurement. © 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4871412]

I. INTRODUCTION

The DLVO theory of colloidal stability, developed by
Derjaguin and Landau,1 Verwey and Overbeek,2 has been of
considerable value in understanding surface interactions be-
tween colloidal particles immersed in a liquid. While the lim-
itations of the theory are well known,3–5 the theory has never-
theless provided insight across a vast range of fields, including
agriculture and food science,6–8 mineral and oil extraction,9, 10

and filtration11 and biology.12–14

One limitation of the theory is that it is built upon the
assumption of ideally smooth surfaces. The boundaries be-
tween surfaces and solution are taken to be infinitesimally
sharp, with the separation distance between surfaces uniquely
defined by a single value L. In practice real surfaces are typi-
cally never atomically smooth but are characterised by a cer-
tain roughness, with pits and mounds causing the local sur-
face height to deviate around its average value. Consequently
the surface forces calculated between purely smooth surfaces
by DLVO theory do not in general provide the most accu-
rate estimate of the real surface forces.15–17 As various loca-
tions across the surface rise or fall in accordance with that
surface’s roughness, the local distance between the two sur-
faces becomes greater or smaller, perturbing the force felt be-
tween surfaces. Note here we focus on particles immersed in
a liquid phase and therefore do not consider capillary forces.
The treatment of capillary forces in a similar manner would
require the use of a force law that described how the force
changes with separation of the particles.18–20
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Surface roughness thus alters the noncontact force away
from that predicted for smooth surfaces. At the same time
roughness introduces asperities which come into contact long
before the average positions of the two surfaces make contact
at L = 0. The elastic contact of smooth surfaces is already em-
ployed to describe a repulsive contact wall at L = 0 using the
Hertzian theory of contact of macroscopically curved surfaces
(that is, with radius of curvatures of the order of μm),21–23 or
with enhancements added by Johnson, Kendall, and Roberts
(JKR theory24) or by Derjaguin, Muller, and Toporov (DMT
theory25) to account for adhesive contact.26, 27 We apply elas-
tic contact at a microscopic level, that is, to contact between
asperities. The elastic contact of tall asperities, although cov-
ering only a fraction of the total surface, generates a repulsive
contact force which forms an effectively impenetrable wall at
nonzero separation L > 0.

In this way, our model contains two chief elements, the
roughened noncontact force and the elastic contact of asperi-
ties. We obtain these two quantities by employing a statistical
description of surface roughness, averaging both the noncon-
tact force of conventional smooth-surface theory and asperity
contact force over all statistically possible surface heights.

The procedure is conceptually the same as the Derjaguin
approximation, used routinely in colloid science to estimate
the forces between curved surfaces from the force calcu-
lation (more precisely, the interaction energy) between flat
surfaces.28–30 In the Derjaguin approximation the flat-plate in-
teraction is convolved across a specified geometry (a curved
geometry). In our method, the flat-plate interaction is con-
volved across a probability distribution of surface heights.
This approach has been applied to the undulations or surface
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fluctuations found in soft matter, enabling soft matter surface
forces to be estimated from calculations of their rigid sur-
face counterparts.31 In some studies a description of surface
roughness has been added to DLVO calculations as a modifi-
cation of surface geometry,32–36 as variation of the Derjaguin
approximation35, 37 or as an additional empirical force.38, 39

The effect of regular (non-random) roughness has been con-
sidered through contact of hemispherical asperities.40 Other
studies have introduced a statistical description of rough-
ness into calculation of the van der Waals interaction.41–44

Advanced statistical analysis of asperity contact has been
performed44, 45 but requires detailed knowledge of the surface
roughness, not routinely available, and not in combination
with roughened noncontact forces. Our model of contact re-
quires only a single asperity parameter (the thickness or cur-
vature of asperities) to be determined, and can be described
by explicit analytical formulae. To our knowledge the appli-
cation of a statistical description of roughness containing both
the full noncontact force (e.g., to obtain a roughened DLVO
force including both van der Waals attraction and electrolytic
repulsion) and the elastic contact of asperities with analytic
expressions, has not previously been done.

II. MODELLING ROUGHNESS

We construct our model of roughness in conjunction with
the Derjaguin approximation, which estimates the force F(L)
between curved surfaces from a calculation of the interaction
free energy G(L) between flat, parallel surfaces. For the case
of the atomic force microscope (AFM) geometry of an inter-
action between a sphere of radius r and a flat plane, or the
surface forces apparatus (SFA) geometry of crossed cylinders
of radius r, the Derjaguin approximation is

F (L)/r = 2πG(L). (1)

In the same spirit as the Derjaguin approximation, our
model seeks to estimate the interaction energy G(L) between
two rough but flat (parallel) surfaces, based on the interac-
tion energy Gsmooth(L) between two smooth, flat surfaces. We
then apply the Derjaguin approximation to the rough surface
interaction energy to obtain the force between curved sur-
faces. Our model therefore neglects lateral effects of rough-
ness which might arise due to motion of the surfaces that re-
sults in torsional or lateral forces such as would be evident in
sliding or rolling.46, 47 Lateral effects may provide corrections
of 5% or more at separations less than 200 nm.48

Roughness may be accounted for by taking the probabil-
ity distribution of the height of each surface. Conceptually, the
surface is divided into infinitesimal unit areas, with the height
of the unit surface placed at z1 for the first surface and z2

for the second. These heights vary from one surface element
to another according to the respective roughness probability
distributions of each surface. Each combination of heights z1

and z2 contributes an energy Gsmooth(h), where the surface el-
ements are separated by distance h = z2 − z1. An illustration
of the two rough surfaces is represented in Fig. 1.

We account mathematically for the roughness of surface
1 by considering the probability distribution P1(z1) of the
height of the surface, centred around the average height z̄1.

FIG. 1. Illustration of two rough surfaces at average separation L.

The probability distribution may be characterised by the root-
mean-square (RMS) roughness σ 1 measured by atomic force
microscope. Similarly z̄2 is the average position of the second
surface. The average separation L between the two surfaces
would then be L = z̄2 − z̄1. We may assume without loss of
generality that z̄1 = 0 and z̄2 = L

The total interaction energy G(L) between the rough sur-
faces is then a convolution of the smooth-surface interaction
energy across the two probability distributions. That is, the
total energy is the average over the weighted contributions of
all possible values of z1 and z2,

G(L)
∫ ∞

−∞

∫ ∞

−∞
dz1dz2P1(z1)P2(z2)Gsmooth(z2 − z1). (2)

This roughness-averaged interaction energy may be more
simply treated49 as an average over a single mean height dis-
tribution Pm(h),

G(L)
∫ ∞

−∞
dhPm(h)Gsmooth(h + L), (3)

where the mean probability distribution is defined as

Pm(h) =
∫ ∞

−∞
dz1P1(z1)P2(z1 + L + h). (4)

It is often convenient to assume that the height distri-
butions follow a normal distribution with root mean square
roughnesses σ 1 and σ 2, respectively. In this case, P1(z1)
= exp[−(z1 − z̄1)2/2σ 2

1 ]/(σ1

√
2π ), and similarly for P2(z2).

The mean probability distribution then also follows a normal
distribution

Pm(h) = exp
(−h2

/
2σ 2

m

)
σm

√
2π

, (5)

with mean roughness

σm =
√

σ 2
1 + σ 2

2 . (6)

1. Characterisation of roughness by histogram

A surface with non-normal distribution of heights may
be better represented by a histogram {H1i} of heights {h1i}
measured for instance by AFM, rather than a Gaussian RMS
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roughness. Similarly {H2j} over heights {h2j} defines a his-
togram for the second surface. The mean heights h̄1 and h̄2

generally have an arbitrary value. The roughness formula,
Eq. (2), then becomes

G(L) = 1

N1N2

∑
i

∑
j

H1iH2jGsmooth(h2j − h1i

− h̄2 + h̄1 + L), (7)

where N1 is the normalisation factor N1 = ∑
i H1i, similarly

for N2.
As for a continuous distribution, the two histograms may

be merged into a single mean histogram {Hk} over heights
{hk}. Here each index k corresponds to one ij pair from the
two original histograms, such that hk = h2j − h1i − h̄2 + h̄1

and Hk = H1iH2j. The histogram formula may then be repre-
sented as a sum over the single mean histogram,

G(L) = 1

N

∑
k

Hk Gsmooth(hk + L), (8)

where N = N1N2.
Fast computation of Eq. (3) with a normal distribution

can be attained by approximating the Gaussian function with
a histogram and applying Eq. (8). We find a sufficiently good
approximation can be made with a histogram of 501 points
spread between −10σ m and +10σ m.

A. Asperities in contact: Elastic contact

The classic noncontact smooth surface interaction energy
Gsmooth(l) that we started with (for instance the interaction en-
ergy from DLVO theory) is, strictly speaking, only defined
when the surfaces are separated, i.e., when l > 0 (l being the
separation between flat, smooth surfaces). In the opposite case
where l < 0, the surfaces have moved past the point of contact.
Physically this corresponds to asperities in contact, compress-
ing the surface at those points. A sophisticated analysis of this
situation has been performed using perturbation theory, but is
complicated by the requirement that the second order rough-
ness response function must be known.44 A simpler method is
to treat contact when l < 0 as elastic contact.

The cleanest approach is to include the elastic energy
Gelastic of asperities in contact as an additive term alongside
the usual flat surface noncontact interaction energy for l > 0,
which we denote as Gnoncontact(l). When the surfaces are in
contact at l < 0, we assume that the noncontact energy re-
mains at its contact value G0 = Gnoncontact(0). Similarly when
the surfaces are not in contact at l > 0 then the contact energy
is zero.

We can then write the total interaction energy between
smooth surfaces as

Gsmooth(l) = G∗
noncontact(l) + G∗

contact(l). (9)

The star symbols in G∗
noncontact and G∗

contact here mark the spe-
cial conditions with respect to l < 0 or l > 0. Specifically,

G∗
noncontact(l) =

{
G0 l < 0
Gnoncontact(l) l > 0

, (10)

where Gnoncontact(l) is the conventional interaction energy
(e.g., DLVO energy) between flat, smooth surfaces:

G∗
contact(l) =

{
Welastic(−l) l < 0
0 l > 0

. (11)

Welastic(x) here refers to the elastic work performed by com-
pressing the asperities through a deformation of x = −l.
This approach may be compared to the elastic foundation
model,50 which considers elastic contact between individual
springs distributed evenly across a smooth surface (with equal
heights) interacting only when contact is made. Our model is
similar, but takes the height of each “spring” to be variable,
such that contact of different springs across the surface oc-
curs at different positions.

A physically intuitive model is to consider asperities as
a series of hemispherical peaks, characterised by a radius of
curvature R. The elastic contact of two such curved surfaces
is described by the contact theory of Hertz.21 As mentioned
above, Hertzian compression has been applied in the inter-
pretation of surface force measurements in order to consider
the contact of surfaces at a macroscopic scale after separation
L has passed zero.22, 23 It has also been applied at the micro-
scopic level of asperity contact for the kind of randomly rough
surfaces which we consider here,45 but without consideration
of non-contact (e.g., DLVO) forces. We consider it unneces-
sary to add here the further Hertzian contact enhancements
of JKR theory24 or DMT theory.25 Those enhancements ac-
count for adhesive contact26, 27 and are better included in the
G0 term of Eq. (10).

The hemispherical asperity model of Hertzian contact ap-
plies naturally to relatively smooth surfaces whose asperities
have low aspect ratio (height/base diameter). Under high as-
pect ratios asperities may be considered as a series of columns
extending out perpendicularly from the average surface. In
this context Hertzian contact is understood to mean contact
between hemispherical caps of such columns.

For asperities with particularly high aspect ratio, say
nanowires or stiff polymers with a length scale of a μm,51, 52

asperity bending could be invoked instead of Hertzian com-
pression. The theory of beam bending requires asperities to
be characterised by their average thickness (cross-sectional
area), rather than their radius of curvature at contact. An
“ideal aspect ratio” can be determined, at which Hertzian
compression behaves similarly to simple column compres-
sion. This case is interesting since it requires no additional
asperity parameter (such as the radius of curvature used in
Hertzian compression). But Hertzian compression is suffi-
cient for describing asperity contact between rough surfaces
over a wide range of typical aspect ratios. We therefore do not
consider the other two models in this manuscript, but offer
their details in the supplementary material.66

1. Hertzian compression of asperities

Hertzian compression is illustrated in Fig. 2. Suppose the
hemispherical caps of the asperities of each surface have a ra-
dius of curvature R1 and R2, respectively. When these asperi-
ties are compressed through a distance x, the elastic potential
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FIG. 2. Illustration of two spherical asperities in contact (Hertzian
compression).

energy is21 x5/2(8/15)Er

√
Rr . Here Rr is the reduced radius

1

Rr

= 1

R1
+ 1

R2
(12)

and Er is the reduced Young’s modulus,

1

Er

= 1 − ν2
1

E1
+ 1 − ν2

2

E2
. (13)

This contact energy is spread across a contact area πxRr. The
Hertzian elastic contact work per unit area for a given asperity
contact is therefore

Welastic(x) = 8Er

15π

x3/2

√
Rr

. (14)

We average this elastic contact energy over all asperities by
applying this energy (via Eq. (11) in order to allow only posi-
tive contact) in Eq. (3). With the roughness of the two surfaces
represented by a Gaussian distribution with mean rms rough-

ness σm =
√

σ 2
1 + σ 2

2 , the total interaction energy of Hertzian
elastic contact is

Gcontact(L) = 2Erσm

15π
√

π

√
σm

Rr

exp

(
− L2

4σ 2
m

)
f

(
L

σm

)
. (15)

Here we define f (x) = √
x[(1 + x2)K(1/4)(x2/4) − x2K(3/4)

(x2/4)]. The two Kn(x) functions (n = 1
4 and 3

4 ) are mod-
ified Bessel functions of the second kind, which are com-

monly available (often written as “BesselK”) in computer
programming libraries. If needed, f(x) could be approximated
(with about 0.01% accuracy in the range x ∈ [0, 10]) by f(x)
= exp [p(x)], where p(x) is the fitted polynomial p(x)
= 1.11457 − 1.43361x − 0.0273053x2 − 0.0287054x3

+ 0.00254457x4 − 0.000133057x5 − 3.04366 × 10−6 x6.
The contact interaction energy in Eq. (15) is converted to

a force between a plane and a sphere of radius r (AFM ge-
ometry) using the Derjaguin approximation F(L) = 2πrG(L).
That is, the corresponding force (normalised to r) is

Fcontact(L)/r = 4Erσm

15
√

π

√
σm

Rr

exp

(
− L2

4σ 2
m

)
f

(
L

σm

)
.

(16)

A crude approximation to the Bessel functions can be ob-
tained by taking the asymptote for L � σ m,

Fcontact(L)/r ≈
(

Er2
√

2

5

)
σ 4

m√
Rr

e−L2/2σ 2
m

L2
√

L
. (17)

In the region L > 4σ m, this asymptote is about 80%
accurate,66 underestimating the exact expression by about
20%. In some studies the contact force has been represented
by simple exponential decay.39 But these analytic and asymp-
totic functions indicate that this is not a good approximation.

Fig. 3(a) shows the exact numerical elastic Hertzian con-
tact force between two identically rough titania surfaces over
a range of roughnesses. We observe that the elastic contact
force becomes significant around L ≈ 4σ m, or more broadly
between 3σ m and 5σ m. Fig. 3(b) shows the impact of varying
the asperity radius R with both surfaces having fixed rough-
ness σ = 2 nm. Hertzian asperity contact becomes softer as
the radius of the asperity cap becomes larger, that is, as the tip
becomes more flat.

B. Amplification of exponentially decaying forces

Experimental surface forces are sometimes found to
be well-characterised as an exponentially decaying force.
Debye-Hückel theory predicts such a force (more precisely,
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FIG. 3. Elastic contact force due to Hertzian compression of asperities with hemispherical caps, Eq. (14) between two rough titania surfaces (E = 150 GPa) at
(a) various rms roughnesses (same rms for both surfaces) with the asperity radius of curvature R = 10 nm and (b) for various asperity radii R with roughness σ

= 2 nm. Separations are scaled against mean roughness σm =
√
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2 = √
2σ .
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√
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2 . The quantity in parentheses in the legend in-
dicates the concentration of 1:1 electrolyte which provides a Debye length
equal to λ.

interaction energy) between smooth surfaces, Gsmooth(h)
= G0exp (−h/λ). The decay length λ is commonly given by
the Debye length κ−1 (there may be deviations from this
length due to specific adsorption of ions53).

The classic primary hydration force due to surface in-
duced water structure also has such an exponential form.54

But it should be noted that the physics of a real hydration force
means that its amplitude G0 would be attenuated under rough-
surface conditions, which is not taken into account in this ex-
ample. That is, the roughened hydration force under large rms
roughness should be considered unphysical, since the surface
induced water ordering responsible for the primary hydration
force is disrupted by roughness.

Because of its relevance to DLVO (by way of Debye-
Hückel theory) it is constructive to consider the analytic
form of a roughened exponential interaction. Passing through
Eq. (3), we obtain the approximate roughened interaction
energy

Gexp(L) ≈ G0e
−L/λeσ 2

m/2λ2 = Gsmooth(L) × exp

(
σ 2

m

2λ2

)
.

(18)

(This is the asymptotic expression for L � σ 2
m/λ. The exact

expression is given in the supplementary material66).
We see that the approximate amplification factor of ex-

ponential force between two rough surfaces is exp(σ 2
m/2λ2).

Amplification factors for exponentially decaying forces with
various decay lengths are illustrated in Fig. 4 as a function of
σ r. With surface roughness no greater than 10 nm, the figure
shows that while amplification may be great at high concen-
trations (100 mM and higher, with Debye lengths near 1 nm),
it is negligible at low concentrations below 1 mM (with De-
bye lengths greater than 10 nm). Note however that for the
very short Debye lengths found at high concentrations, the
electrostatic force decays rapidly so the actual magnitude of
the amplified force may still be very small.

III. ILLUSTRATIVE CALCULATIONS

A. Rough titania surface

We compare the performance of the roughness-averaged
force against AFM measurements of the force between two
titania surfaces5 in the standard sphere-plane geometry. For
simplicity, we consider identical surfaces. An AFM surface
image is given in Fig. 5 along with the histogram of surface
heights. The RMS roughness is σ = 9.6 nm. The histogram
shows this surface has a relatively non-Gaussian distribution,
allowing us to illustrate the difference between the two meth-
ods of modelling roughness, by histogram and by a Gaussian
(RMS) model.

AFM force measurements were undertaken at pH 9 in
1 mM NaCl salt solution. For simplicity we use routine
DLVO theory (a nonlinear Poisson-Boltzmann model plus
nonretarded surface van der Waals) with constant surface
charge to generate theoretical smooth surface forces, neglect-
ing additional nonelectrostatic contributions such as ionic
dispersion forces,55 ion size, or surface charge regulation.56

The Hamaker constant for the surface van der Waals force
(non-retarded Casimir-Lifshitz force) was taken to be A
= 14.6kT, calculated from the average dielectric function
of titania57 and water.58 Young’s modulus for titania is5

E = 150 GPa.

FIG. 5. (a) AFM surface images of a titania surface with RMS roughness σ = 9.6 nm. (b) Histogram of surface heights. The solid black curve marks the AFM
measurement, the red dashed curve shows the best Gaussian fit.
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FIG. 6. Conventional experimental AFM force curve for a rough titania sur-
face (rms ≈ 9.67 nm), with the best conventional DLVO fit (surface charge
−0.0007 C m−2, surface potential −35 mV, NaCl concentration 0.18 mM)
“conventional” here means that roughness is not accounted for, and the re-
pulsive contact wall is placed at L = 0.

The conventional experimental force measurement and
DLVO fit,5 without consideration of roughness (such that the
contact wall is placed at L = 0) are shown in Fig. 6. The
probe was a borosilicate sphere coated with an 82 nm layer
of titania, total sphere radius 10.6 μm. The flat substrate was
a boron-doped silicon wafer with a native oxide layer, also
coated with an 82 nm layer of titania.5 The best conventional
DLVO fit corresponded to surface charge −0.0007 C m−2

with a decay length corresponding to an ionic strength of
0.18 mM. The corresponding surface potential is −35 mV,
somewhat lower in magnitude than the −50 or −60 mV one
would expect from zeta potential measurements5). The prob-
lem of roughness is apparent in this figure. The experimental
data are characterised by a force peak of about 0.085 mN/m
located 10 nm out from the contact wall, together with a con-
tact force of 0.068 mM/N. No set of DLVO parameters (sur-
face charge and concentration) is able to capture this contact
force simultaneously with the short range peak while at the
same time fitting the long range decay curve. The best DLVO
fit predicts a higher peak of 0.1 mN/m and predicts that the
force becomes adhesive at surface separations less than 6 nm
(due to the van der Waals interaction), whereas the measured
force remains repulsive at contact.

In Fig. 7 we compare the experimental force curve
present against theoretical roughened force curve, applying
Eq. (7) (using the AFM histogram of surface heights) to
both the DLVO noncontact interaction and the contact inter-
action of Hertzian sphere compression Eq. (14). Very good
agreement is found, obtained by fitting both the DLVO sur-
face charge to −0.0025 C m−2 (potential −64 mV, consistent
with zeta potential measurements5) with NaCl concentration
0.18 mM together with asperity tip radius R = 3400 μm. This
very large radius indicates that the tips of asperities are nearly
flat. The long range decay rate of the force remains constant,
as anticipated by Eq. (18). The fitting procedure involves re-
alignment of the raw experimental data to adjust compliance
against the elastic contact force. That is both theory and ex-
periment depend on one another and the fitted parameters are
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N
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FIG. 7. Roughened theoretical force curve (including elastic contact) fitted
against experimental AFM measurement of the force between two rough ti-
tania surfaces in 0.18 mM NaCl at pH 9. DLVO calculations are taken with
constant surface charge. Hertzian radius of asperity tips is R = 3400 μm. Sur-
face charge −0.0025 C m−2 (surface potential −64 mV on isolated surfaces).

adjusted iteratively until a sufficiently self-consistent match is
obtained.

In the supplementary material66 we present an alternative
model of elastic contact invoking elastic bending of asperities,
controlled by the average cross-sectional area of asperities.
This model can provide a fit equivalent to the one we obtained
with Hertzian contact if the cross-sectional area is taken to be
44 Å2. This implies asperities of very high aspect ratio (tall
height relative to a small diameter). But the AFM image in
Fig. 5 suggests that asperities on this surface do not have such
high aspect ratio. It is more reasonable to adopt our Hertzian
model of asperities with relatively flat tips.

B. General effects of roughness

We use the final DLVO parameters established for the
rough titania surface above to explore the general effect that
roughness exerts, compared to the conventional DLVO force.
The salt solution is 0.18 mM NaCl (Debye length 22.6 nm),
titania surface charge is −0.0025 C m−2 (yielding a surface
potential of −64 mV on isolated surfaces).

We first consider the effect of varying the RMS rough-
ness on the noncontact forces (without elastic contact) which
comprise DLVO forces, that is the attractive Hamaker-van der
Waals force and the repulsive force due to formation of the
electrolytic diffuse layer. The effect of roughness on these
two DLVO components is shown in Fig. 8. Since a Debye
length of 22.6 nm is quite large, amplification of electrolytic
repulsion, Fig. 8(a) is relatively mild until roughness becomes
greater than 10 nm (cf. Fig. 4). The amplification by rough-
ness of the shorter range attractive Hamaker force, Fig. 8(b),
is however large and significant even with roughness as low
as 1.5 nm. This observation is consistent with the effect of
roughness on the Casimir force calculated using the proxim-
ity force approximation.59

The total DLVO force is shown in Fig. 9(a). The effect
of roughness becomes apparent once the rms roughness ex-
ceeds 1 nm. The long range behaviour appears unperturbed
by roughness. But amplification of the short range attractive
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FIG. 8. Roughened force curves derived from the component DLVO force curves of titania in 0.18 mM NaCl with constant surface charge −0.0025 C m−2

(surface potential −64 mV on isolated surfaces). (a) electrolytic (non van der Waals) and (b) van der Waals component.

Hamaker force means that the repulsive peak in the total force
is progressively lost as roughness increases.

The contact wall will move outwards as roughness in-
creases, but its strength also depends on the curvature of as-
perity tips (see Fig. 3). The combination of the contact force
with the amplified short-range van der Waals attraction will in
general form a primary attractive well. When the contact wall
is sufficiently strong (high rms roughness or low radius of cur-
vature of asperity tips), it cuts off the stronger van der Waals
interaction found at shortest separations, such that the mag-
nitude of the attractive well becomes shallower as roughness
increases. The overall observed force between rough surfaces
might be interpreted as “loss” of van der Waals attraction.
In fact van der Waals attraction is strengthened by roughness
(Figs. 8(b) and 9(a)). The loss of overall attraction occurs due
to an increase in the repulsive elastic contact force.

C. Histogram vs Gaussian RMS

The calculations made for the rough surface in
Sec. III A above were made using the experimental AFM his-
togram. The difference between this histogram and a Gaus-
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FIG. 9. Roughened noncontact force curves derived from the DLVO
force curve of titania in 0.18 mM NaCl with constant surface charge
−0.0025 C m−2 (surface potential −64 mV on isolated surfaces), for a range
of rms roughnesses.

sian distribution with the same rms roughness, σ = 9.67 nm,
can be seen in Fig. 5(b). In Fig. 10 we compare the full rough-
ened force calculated by histogram and by Gaussian rms, us-
ing the same surface charge and asperity curvature established
in Sec. III A. The non-normal distribution found in this his-
togram provides a greater proportion of asperities which are
longer than average. Consequently the histogram qualitatively
behaves like a system with a larger rms value. The elastic con-
tact wall is stronger and pushed outwards, and the short range
van der Waals attraction is more greatly amplified, such that
the peak near L = 60 nm is reduced in height.

Significantly, since the Gaussian distribution loses the
bias towards longer asperities, the magnitude of the contact
wall is reduced (with the same Hertzian radius retained in
both cases). The contact wall of the Gaussian distribution is
located at L = 23 nm and is nearly vertical, compared to the
softer contact wall near L = 45 nm for the non-normal his-
togram. The interaction exhibits strong adhesion at the contact
wall under the Gaussian distribution. We conclude that where
the surface follows a non-normal distribution of heights, this
property must not be neglected.
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FIG. 10. Comparison of roughness described by an experimental histogram
(solid black curve) and by the corresponding Gaussian RMS 9.6 nm (dotted
red curve). Roughened force curves derived from the DLVO force curve of ti-
tania in 0.18 mM NaCl with constant surface charge −0.0025 C m−2 (surface
potential −64 mV on isolated surfaces). Elastic contact is given by Hertzian
contact of asperity tips with radius of curvature R = 3400 μm.
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FIG. 11. Experimental AFM and theoretical force curves between titania surfaces in 0.38 mM NaCl. The black curve indicates experimental data.
(a) The dotted red curve indicates the traditional analysis with contact wall at L = 0 and classic DLVO theory (surface charge −0.0012 C m−2, surface
potential −26 mV). (b) The dotted red curve indicates the roughened model (surface charge −0.0014 C m−2, surface potential −30 mV) with Hertzian asperity
contact (R = 4 nm). The dashed blue curve adds an hydration force (F0 = 20 N/m, λ = 0.3 nm), smooth in (a), roughened in (b).

D. Smooth titania surface

In Fig. 11 we present experimental and theoretical forces
for a smooth titania surface similar to that reported in Ref. 5.
The probe was a borosilicate sphere coated with a 102 nm
layer of titania, total sphere radius 10.3 μm. The flat sub-
strate was a boron-doped silicon wafer with a native oxide
layer, also coated with a 102 nm layer of titania.5 The two
surfaces in contact have a slightly asymmetric roughness, rms
0.83 nm (sphere) and 0.62 nm (flat), giving a combined rough-
ness σ m = 1.04 nm. The traditional unroughened DLVO fit
of the data, placing the contact wall at L = 0, is shown in
Fig. 11(a) (surface charge −0.0012 C m−2, surface potential
−26 mV). At small separations below 1 nm a typical van der
Waals turnaround leading to attraction at contact is found in
the DLVO curve. No such short range peak is seen in the ex-
perimental data, which is repulsive at all separations.

Invoking the elastic contact model with asperity curva-
ture R = 4 nm, we improve the discrepancy by pulling the
contact forward to 5 nm, Fig. 11(b). Contact adhesion is
thereby removed by the asperity contact wall, though a short
range repulsive peak remains. The match between theory and
experiment can be improved further by adding other noncon-
tact forces missing from basic DLVO theory such as the hy-
dration force due to surface-induced water structure.54 The
theoretical roughened curve, enhanced with a typical expo-
nentially decaying hydration force with amplitude 20 N/m
and decay length 0.3 nm, is also shown in Fig. 11(b). The
hydration force is added to the smooth noncontact force and
is therefore amplified by roughening. We find it helps close
the gap between the repulsive wall and the short range peak.

The rms roughness could potentially be treated as a fit-
ting parameter, in which case the experimental curve could be
fitted precisely with a larger rms roughness. But we are in-
clined to consider the AFM measurement of rms roughness to
be reliable, such that the original smooth surface roughnesses
of 0.62 and 0.83 nm should be trusted. We therefore interpret
the remaining discrepancy between theory and experiment in
Fig. 11(b) as a question of how accurately the noncontact
force between smooth surfaces has been described. We have
already shown that a primary hydration force helps close the

gap. Further short range repulsion could also be added by tak-
ing a van der Waals attraction with a finite value at contact,60

or via nonelectrostatic ion interactions in combination with
surface-induced water structure (secondary hydration force)61

or in combination with surface charge regulation.56

IV. DISCUSSION

A. Elastic contact wall and apparent zero

Our elastic contact model typically showed a repulsive
barrier exceeding a force of 1 mN/m at a separation L0

= 3–5σ m, see Fig. 3. We interpret this contact location as the
“apparent zero” found by AFM force measurement. The stan-
dard atomic force microscope is unable to measure absolute
distances between surfaces, and the question of the “apparent
zero” has been a vexing one.

The proportion p(L0) of surface asperities in contact at
the apparent zero may be given by the cumulative probability
function, p(L0) = ∫ ∞

L0
dhP (h). Assuming a Gaussian distri-

bution of heights, this is given by the standard normal cumu-
lative distribution function. If L0 = 4σ , then the proportion of
the surface in contact is as low as 0.003%.

B. Elastic contact as apparent hydration force

Aside from relocating the “apparent zero” to L0 = 3–5σ ,
we see, for instance in Fig. 3, that the elastic contact force is
not vertical. That is, the contact wall at L0 is a soft wall, not a
hard wall, and some contact repulsion extends out beyond L0

due to a small number of very long asperities. If one were to
model contact with a simple hard wall at L0, then one would
find a short range repulsive force not modelled by DLVO the-
ory, due to the soft toe of the elastic contact force. This soft
contact force extends out from L0 over a distance of around
σm

√
2, the Gaussian decay length seen in the asymptotic for-

mula, Eq. (17).
This scenario is reminiscent of repulsive non-DLVO

forces often described as “hydration forces.”39, 62–65 In the
case of molecularly smooth surfaces such as mica, the short-
range repulsion may well be a true hydration force.54 Short
range repulsion found in soft membranes could be attributed
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to height fluctuations in the membrane surface, a dynamic
cousin of roughness.31 In other cases, though, it may prove
more appropriate to interpret such non-DLVO forces not as
a hydration force but as a soft contact force due to the con-
tact of asperities of rough surfaces. The hydration force has
been employed as an exponentially decaying force39, 54, 63 and
roughness has been modelled in the same fashion.39 Our ana-
lytical formula in Eq. (16) provides an alternative form which
should prove more successful at modelling roughness than
an exponential form. Our contact forces could be crudely ap-
proximated by an exponential with decay length σ /4, but the
combination of Gaussian and L−5/2 decay means the real elas-
tic contact forces decay more quickly than an exponential
function.

C. Scheme for exploitation

A simple, approximate implementation to account for
roughness in force versus separation data or for a theoretical
force would involve the following steps.

1. Determine the roughness of the surfaces by atomic force
microscopy expressed either as RMS values σ 1, σ 2 or as
histograms.

2. Implement the effect of roughness in the contact region
with σ 2

m = σ 2
1 + σ 2

2 using Eq. (16) for the contact force.
This determines how the separation changes with ap-
plied force during contact (the compliance). Rr ≈ 4σ m

may serve as an initial guess for the reduced curvature
of asperity tips.

3. Over the appropriate loading, equate the compliance of
the experimental data to the compliance calculated in
Step 2. This also inherently corrects the experimental
data for the offset in separation due to roughness.

4. Include the roughened noncontact interaction for a given
surface charge (or surface potential) by implementing
Eq. (8). The noncontact force is capped at its contact
value F(0), see Eq. (10). If mean surface roughness is
characterised by σ m then a satisfactory histogram can
be constructed from the Gaussian distribution using 501
points spread between −10σ m and 10σ m.

5. Iteratively adjust the compliance and surface separa-
tion together with the surface charge or potential as the
non-contact force will influence the zero of separation
through changes in the compliance.

For smoother surfaces the basic contact force with Rr

= 4σ m in Step 2 may be too soft. Increase the strength of the
contact force by decreasing Rr. Rougher surfaces may require
a softer contact force, achieved by increasing Rr.

V. CONCLUSIONS

Our model of surface roughness combines two chief ele-
ments. First, a flat-surface force is convoluted (averaged) over
the distribution of surface heights (which can be represented
either by a histogram or by a normal Gaussian distribution
with a given rms roughness). Second we add a force due to
the elastic contact of surface asperities.

The general impact of averaging a noncontact (DLVO)
force over a roughness profile is to amplify the short-range

behaviour of the force. For instance, any van der Waals force
which provides adhesion at short range will be amplified,
which may have the consequence of eroding any repulsive
peak that lies between the short-range adhesive and mid-range
repulsive regimes. Roughness is found to preserve the decay
rate of exponentially decaying forces, amplifying them by a
factor of exp (σ 2/λ2) per surface.

We represent elastic contact as Hertzian compression of
hemispherical caps of asperities. This requires the average
radius of curvature of asperity tips to be determined. We
obtained an explicit expression for the elastic contact mod-
els, scaling against the mean roughness σ 2

m = σ 2
1 + σ 2

2 . We
found a real rough titania surface (rms ≈ 9.67 nm) to be
best modelled by asperity tip curvatures of R = 3400 μm,
indicating the tips of asperities are nearly flat. A smooth
titania surface (rms ≈ 0.7 nm) was best modelled by
Hertzian spherical asperity compression with asperity radius
R = 4 nm.

The elastic contact force provides a repulsive force which
has the general impact of pushing the repulsive contact wall
detected in surface force measurements out from the average
contact position L = 0 to a position that scales with the RMS
roughness of the surfaces (L ≈ 4σ m).
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