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Intermolecular Casimir-Polder forces in water and near surfaces
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The Casimir-Polder force is an important long-range interaction involved in adsorption and desorption of
molecules in fluids. We explore Casimir-Polder interactions between methane molecules in water, and between
a molecule in water near SiO2 and hexane surfaces. Inclusion of the finite molecular size in the expression
for the Casimir-Polder energy leads to estimates of the dispersion contribution to the binding energies between
molecules and between one molecule and a planar surface.
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I. INTRODUCTION

Methane gas extracted from shale-gas systems is emerging
as an important source of energy with a low carbon footprint,
and shale gas may serve as an important transient energy
source in a global transition to a low emission economy.
Shale-gas extraction may pose evironmental challenges—for
example, it has been suggested that methane may seep to
surrounding aquifers during hydraulic fracturing and horizon-
tal drilling [1,2]—but shale-gas systems may also provide
new opportunities to address environmental challenges. In
shale-gas systems methane is found in fractures, dissolved
in fluids or kerogen, adsorbed on mineral and kerogen
surfaces, and stored in nanoporous spaces within the kerogen.
It has been suggested that CO2 injection may be used to
enhance gas production because CO2 binds more strongly
to relevant surfaces than methane, but our understanding
of the related fundamental processes is still lacking. One
important contibution to adsorption forces comes from the
van der Waals and Casimir-Polder interactions. It is therefore
important to study and understand how methane interacts with
different substances and how methane behaves near surfaces
in water, in order to develop efficient methods for enhanced
hydrocarbon production and simultaneous CO2 storage in
shale-gas systems.

In a liquid it is well known that van der Waals interactions
between polarizable particles or surfaces may be either
attractive or repulsive [3–6]. In this work we explore the
Casimir-Polder interaction between methane molecules in
water as well as the interaction of a methane molecule near
different surfaces solved in water, for example SiO2, hexane,
air, etc. Intermolecular dispersion interactions between two
polarizable particles in water that account for finite size have
in the past only been considered within an approximate series
expanded theory [3]. We will demonstrate that the van der
Waals contribution to the binding energy of two molecules in
water is very similar in expanded and nonexpanded theories.
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We find here that methane molecules in water attract to
each other, and a methane molecule in water is attracted to
SiO2 surface while it experiences repulsion near a hexane
surface. The new nonexpanded theory presented for molecule-
molecule dispersion interaction shows that previous work that
used series expansion for the van der Waals contribution to
the binding energy of two molecules was rather accurate. This
motivates us to use the expanded theory for molecule-surface
van der Waals interaction. The theory of Casimir-Polder
interaction between finite-size polarizable molecules is given
in Sec. II. We will furthermore investigate the dispersion
contribution to the binding energy of methane molecules
near different surfaces solved in water. The known theory of
molecule-surface interaction in the presence of a background
medium is briefly described in Sec. III. In Sec. IV we
describe the calculation of the excess polarizability of methane
molecules in water. The correct way to calculate excess
polarizability that is consistent with the Green’s functions
follows from the book by Parsegian [7]. We discuss the
dielectric functions for SiO2, water, and hexane in Sec. V.
We present our main results in Sec. VI and end with some
final conclusions. Details about the Green’s function elements
and some discussions about the multipolar dispersion forces
are presented in the two Appendices.

II. LONG-RANGE CASIMIR-POLDER ENERGY
BETWEEN FINITE-SIZE POLARIZABLE

PARTICLES IN WATER

The Casimir-Polder interaction between two polarizable
particles in a liquid is [3,8–12]

U (ρ) = kBT

∞∑
n=0

′ ln |1̃ − α̃∗
1 (iξn)T̃1α̃

∗
2 (iξn)T̃2|, (1)

where 1̃ is the identity matrix.
For two equal isotropic particles with finite size one obtains

the following Casimir-Polder interaction energy [10]:

U (ρ) = kBT
∑

j=x,y,z

∞∑
n=0

′ ln
[
1 − α∗

i (iξn)2T 2
jj

]
, (2)
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where α∗
i (iξn) is the excess polarizability of particle i at the

Matsubara frequencies ξn = 2πkBT n/� [10,13]. We define kB

as the Boltzmann constant, T the temperature, and the prime
indicates that the n = 0 term shall be divided by 2. When this
expression is series expanded one obtains the textbook result
presented for example in the book by Parsegian [7]

U (ρ) = −kBT
∑

j=x,y,z

∞∑
n=0

′α∗
i (iξn)2T 2

jj , (3)

where only the first term in the logarithmic expansion of Eq. (2)
is considered. In the nonexpanded theory, however, the full
expression is taken into account numerically. We consider, as
an interesting case, a Gaussian function to represent the finite
spread of the polarization cloud of real atom or molecule. We
have derived, following the formalism developed by Mahanty
and Ninham [3,9] (see Appendix A) the Green’s function
elements (Tjj ) that account for retardation, background media,
and finite size,

Txx(ρ|iξn) = Tyy(ρ|iξn)

= −exp
[(

ξn

c

)2( a
2

)2]
2ρ

{[(
ξn

c

)2

+
(

ξn

c

)
1

ρ
+

(
1

ρ

)2] [
1 − erf

(
ξn

c

a

2
− ρ

a

)]
exp

(
−ξn

c
ρ

)

−
[(

ξn

c

)2

−
(

ξn

c

)
1

ρ
+

(
1

ρ

)2] [
1 − erf

(
ξn

c

a

2
+ ρ

a

)]
exp

(
ξn

c
ρ

)

− 4

aρ
√

π
exp

[
−

(
ξn

c

)2(
a

2

)2

−
(

ρ

a

)2]}
, (4)

Tzz(ρ|iξn) = exp
[(

ξn

c

)2( a
2

)2]
ρ

{[(
ξn

c

)
1

ρ
+

(
1

ρ

)2] [
1 − erf

(
ξn

c

a

2
− ρ

a

)]
exp

(
−ξn

c
ρ

)

+
[(

ξn

c

)
1

ρ
−

(
1

ρ

)2] [
1 − erf

(
ξn

c

a

2
+ ρ

a

)]
exp

(
ξn

c
ρ

)

− 4

aρ
√

π

(
1 +

(
ρ

a

)2)
exp

[
−

(
ξn

c

)2(
a

2

)2

−
(

ρ

a

)2]}
. (5)

Here a = 1.505 Å is the Gaussian radius of the methane
molecule, c = c0/

√
ε(ξn); c0 is the velocity of light in vacuum

and ε(iξn) is the dielectric function of water for imaginary
frequencies. The excess polarizability consistent with this
definition of the Green’s function elements is given in Sec. V.
Except when the molecules come so close that their electron
clouds start to overlap, one can ignore finite-size effects, i.e.,
a → 0, and then find [11]

T n
xx(iξn) = T n

yy(iξn) = −
(

ξ 2
n

c2
+ ξn

ρc
+ 1

ρ2

)
e−ξnρ/c

ρ
,

T n
zz(iξn) = 2

(
1

ρ2
+ ξn

ρc

)
e−ξnρ/c

ρ
. (6)

This diagonal form is obtained if the z axis is defined to point
along the line joining the two particles. We will onwards in
this work use both the theory with the size effects and the
corresponding one without the size effects.

III. NONRETARDED VAN DER WAALS ENERGY
OF A MOLECULE NEAR AN INTERFACE

We also consider the nonretarded van der Waals energy
between a finite-size methane molecule and an interface. The
expression for this is given in the work of Ninham and co-
workers [3,14,15]. The dispersion interaction free energy of a
molecule in water at a distance ρ from an interface between

water and a second medium with dielectric function εsurface is

U = Bf (ρ)

ρ3
,

B = kBT

2

∞∑
n=0

′α∗(iξn)
εwater − εsurface

εwater + εsurface
,

f (ρ) = 1 + 2ρ

a
√

π

(
2ρ2

a2
− 1

)
exp

(
−ρ2

a2

)

−
(

1 + 4ρ4

a4

)
erfc

(
ρ

a

)
. (7)

Including the effects of finite size in the formalism enables
us to determine the van der Waals contribution to the binding
energy of the molecule to the interface.

IV. EXCESS POLARIZABILITY OF MOLECULE
SOLVED IN WATER

The excess polarizabilities at Matsubara frequencies and
Gaussian radii for methane solved in water were derived
as in, for instance, papers by Parsons and Ninham [16,17].
The polarizability of methane is to a high degree isotropic.
Dynamic polarizabilities of the considered molecules in
vacuum (see Fig. 1) were calculated using MOLPRO [18] at
a coupled cluster singles and double (CCSD) level of theory.
The excess polarizabilities, α∗(iξ ), in water were obtained
from the polarizabilities, α(iξ ), in vacuum using the relation
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FIG. 1. (Color online) Polarizabilities of methane in units of Å3

in water and in vacuum. Note that the polarizability of methane is to a
large degree isotropic and we show therefore only the mean average.
The polarizabilities corresponding to n = 0 are shown on the y axis.
Also shown are the dielectric functions of hexane and SiO2.

for a dielectric sphere embedded in a dielectric medium [19],
α∗(iξn) = a3(εa − εw)/(εa + 2εw), where εw is the dielectric
function of water. εa is the effective dielectric function
of the molecular sphere, determined from the molecular
polarizability in vacuum as εa(iξn) = 1 + 4πα(iξn)/V , where
V is the volume of the molecular sphere. The polarizabilities of
methane in vacuum and excess polarizabilities of methane in
water are shown in Fig. 1. The polarizabilities corresponding
to n = 0 are shown on the y axis. Due to rapid movements
of the molecules in water we can use the orientation averaged
excess polarizability for methane.

V. DIELECTRIC FUNCTION OF HEXANE,
WATER, AND SiO2

The dielectric function of hexane was calculated using
a model dielectric function as given by Masuda [20]. The
dielectric function of water was based on the extensive
experimental data found in Ref. [21]. The dielectric function on
the imaginary axis was obtained from the imaginary part of the
function using the following version of the Kramers-Kronig
dispersion relation

ε (iξ ) = 1 + 2

π

∫ ∞

0
dω

ωε2 (ω)

ω2 + ξ 2
. (8)

This relation is the result of the analytical properties of the
dielectric function [10]. In the integration we made a cubic
spline interpolation of ln (ε2 (ω)) as a function of ln (ω).

For SiO2 we calculated the dielectric function by means of
first-principles atomistic models. Here the electronic structure
of SiO2 was calculated by employing a partial self-consistent

GW method where the Green functions were updated iter-
atively while the screened Coulomb potential W was fixed
[22–24]. The electron-phonon coupling was initially ne-
glected. From the electronic dispersion, the imaginary part of
the dielectric functions was calculated from the linear response
in the long-wavelength limit (λq = 2π/q → ∞) through
[25]

ε2,j (ω) = lim
q→0

4π2e2

	q2

∑
c,v,k

2wkδ(Ec(k) − Ev(k) − �ω)

×〈uc(k + ej q)|uv(k)〉〈uc(k + ej q)|uv(k)〉∗. (9)

Here, ul(k) is the cell periodic part of the lth wave function,
El(k) are the energies of the corresponding conduction (l =
c) and valence (l = v) band states, and 	 is the volume of
the primitive cell. The function wk is the weight of the k
points and ej is the unit vector in the Cartesian coordinates.
The dielectric function on the imaginary axis was obtained
via the Kramers-Kronig dispersion relation, Eq. (8), for each
Cartesian component.

The dielectric function in polar materials depends on
the electron–optical-phonon coupling. We modeled this con-
tribution employing the Lorentz model and the Kramers-
Heisenberg formula [26,27]

εph(ω) = 1 +
∑

η

(
ω2

LO,η − ω2
TO,η

)
εη

ω2
TO,η − ω2 − iγηω

, (10)

using small phonon damping parameters (i.e., γη → 0). The
parameters ωLO,η and ωTO,η are the phonon frequencies of
the ηth longitudinal optical (LO) and transverse optical (TO)
mode, respectively, and εη is the high-frequency dielectric
constant of the TO phonon mode.

The calculated dielectric functions of SiO2 and hexane on
the imaginary frequency axis are shown in Fig. 1. The static
dielectric constant of SiO2 is 3.9, which is in agreement with
the measured data of 3.9–4.4 [28].

VI. NUMERICAL RESULTS: CASIMIR-POLDER
IN SOLUTIONS AND BINDING ENERGY FOR
MOLECULES NEAR PLANAR INTERFACES

As shown in Fig. 2, we find that two methane molecules
in water attract each other with an estimated van der Waals
binding energy around −0.23 kBT at room temperature. The
value that we provide here corresponds to the separation
distance ρ = 2a, i.e., at the contact distance of the two
molecules before their electron clouds start to overlap. This is
deemed more physical. Good agreement is found up to close
separation distance between the series-expanded and the full
nonexpanded theories when finite-size effects are accounted
for. The presence of the background medium reduces the
coupling between the two molecules, thereby making the series
expansion a valid approximation. In earlier work, we demon-
strated that expanded and nonexpanded theories give very
different results for atom-atom interaction in vacuum. How-
ever, the coupling between two particles in water is weaker
than in vacuum; hence the series-expanded theory is found
to be a useful approximation for van der Waals interaction in
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FIG. 2. (Color online) Comparing the series-expanded and the
nonexpanded theories of interaction of two methane molecules in
water. The interaction energy is in units of kBT .

water. This motivates us to use the series-expanded theory for
interaction between a particle in a medium with a surface.
In Fig. 3, we compare the Casimir-Polder interactions of
zero-sized and finite-sized methane molecule in water near a
large SiO2 surface. Incorporating the effects of finite molecule
size in the calculation makes it possible to estimate the energy
at contact distance, which is, in fact, the contribution of the
van der Waals energy to the binding energy of the molecule
to the surface [3]. In Fig. 4, we estimate the binding energy
contribution of the van der Waals interaction of a methane
molecule in water to different surfaces. Methane molecule in
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FIG. 3. (Color online) Casimir-Polder energy of methane in units
of kBT near water-SiO2 interface with and without finite-size effects.
Note that including the effects of finite size removes the divergence
at zero separation distance.
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FIG. 4. (Color online) Comparing the Casimir-Polder energy of

finite-sized methane in water near different surfaces. SiO2 sur-
face attracts the methane molecule while hexane and air surfaces
repulse it.

water is attracted to the SiO2 surface while it is pushed away
from the hexane and air surfaces. We provide estimates on the
van der Waals contribution to the binding energy (at ρ = a) of
methane molecules in water near different surfaces in Table I.

VII. CONCLUSIONS

We have discussed the finite-size dependent Casimir-Polder
interaction between polarizable particles and one such particle
and a planar surface. This enables us to estimate contributions
from dispersion interactions to the binding energy. These
interactions provide a mechanism for selective adsorption
or desorption of different molecules, near nanosurfaces and
semiplanar surfaces solved in liquids. Our result demonstrates
that the expanded theory often works surprisingly well as an
approximation for proper nonexpanded theories, at least in the
particular case of two finite-sized methane molecules in water.
One shall stress that it is only when finite size is accounted for
that the interaction remains finite at close separation distance
and the expanded theory provides a good estimate for all
separations.

TABLE I. Finite-size van der Waals binding energy of methane
molecules near different interfaces. All energies are in units of kBT .

Background Surface vdW

Water SiO2 −0.79
Water Hexane 0.14
Water Air 1.54
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APPENDIX A: DERIVATION OF THE NONRETARDED
GREEN’S FUNCTIONS WITH FINITE-SIZE EFFECTS

We briefly show how the nonretarded Green’s functions
are derived. The Green’s function obtained from solving the

inhomogeneous Helmholtz equation for a coupled system of
two neutral particles at positions R1 and R2 is [3,5]

T(R1,R2; iξ ) = 1

(2π )3

∫
d3k[(ξ 2/c2)Ĩ + k · k]

[(ξ 2/c2) + k2]

× eik·(R1−R2)
∫

e−ik·R3ααα(R3,ξ )d3R3, (A1)

where ααα(R,ξ ) = Ĩ α(ξ )f (R). As mentioned before in Sec. II,
α(ξ ) is the polarizability at the Matsubara frequencies
ξ and the function f (R) is assumed to be a Gaussian
given by

f (R) = 1

π3/2a3
e−R2/a2

, (A2)

where a is the Gaussian radius of the particle.
In the nonretarded limit (c → ∞), we obtain using the

above equations and the spherical coordinates

Txx(R1,R2) = Tyy(R1,R2) = 1

(2π )3

∫
k2 sin θ dθ dϕ dk

−k2
x

−k2
eikR cos θ e−k2a2/4

= 1

(2π )3

∫
sin θ dθ dϕ dk k2

xe
ikR cos θ e−k2a2/4

= 1

(2π )3

∫
sin θ dθ dϕ dk k2sin2θ cos2ϕ eikR cos θ e−k2a2/4 =

∣∣∣∣cos θ = x

dx = − sin θ dθ

∣∣∣∣
= 1

(2π )2

1

2

∫ 1

−1
dx

∫ ∞

0
dk k2(1 − x2)eikRxe−k2a2/4

= 1

(2π )2

∫ 1

0
dx

∫ ∞

0
dk k2(1 − x2) cos(kRx)e−k2a2/4

= 1

(2π )2

4
√

π

a3

∫ 1

0
dx(1 − x2)

[
1

2
−

(
R

a
x

)2]
exp

[
−

(
R

a
x

)2]

= 1

(2π )2

4
√

π

a3

⎡
⎣1

4

√
π erf

(
R
a

) − 2
(

R
a

)
e
−
(

R
a

)2

(
R
a

)3

⎤
⎦ = 1

(2π )2

√
π

R3

[√
π erf

(
R

a

)
− 2

(
R

a

)
e
−
(

R
a

)2
]

, (A3)

Tzz(R1,R2) = 1

(2π )3

∫
k2 sin θ dθ dϕ dk

−k2
z

−k2
eikR cos θ e−k2a2/4 = 1

(2π )3

∫
sin θ dθ dϕ dk k2

z e
ikR cos θ e−k2a2/4

= 1

(2π )3

∫
sin θ dθ dϕ dk k2cos2θ eikR cos θ e−k2a2/4 =

∣∣∣∣cos θ = x

dx = − sin θ dθ

∣∣∣∣
= 1

(2π )2

∫ 1

−1
dx

∫ ∞

0
dk k2x2eikRxe−k2a2/4 = 1

(2π )2 2
∫ 1

0
dx

∫ ∞

0
dk k2x2 cos(kRx)e−k2a2/4

= 1

(2π )2

8
√

π

a3

∫ 1

0
dx x2

[
1

2
−

(
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a
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)2]
exp

[
−
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−√
π erf

(
R
a
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R
a

)
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(

R
a

)2

+ 2
(
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a

)3
e
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(
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[
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π erf
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R

a
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1 +

(
R

a

)2]
e
−
(

R
a

)2
]
, (A4)

where R = |R1 − R2|. To make it consistent with the definitions in the main text, we have also normalized the Green’s functions
by removing the factor α(iξ ).
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APPENDIX B: MULTIPOLAR DISPERSION INTERACTION
BETWEEN METHANE MOLECULES IN VACUUM

At the zero separation limit, in addition to the dipole-dipole
interaction, effects due to multipole interactions and wave-
function overlap begin to contribute to the total interaction
energy. In Fig. 5, we show the various contributions due to
the dipole-dipole, the dipole-quadrupole, and the quadrupole-
quadrupole interactions between two methane molecules in
vacuum using expanded theory in the nonretarded limit [29].
[The dipole-dipole interaction is a factor of 2 too small
in Ref. [29] and the prefactor in their Eq. (34) should
be 16/9π instead of 8/4π .] As can be observed from
the figure, major contribution comes from the dipole-dipole
interaction at all separations. A recent paper by DiStasio
et al. considers orbital overlap explicitly using the density
functional (quantum mechanical) theory of interaction poten-
tial between finite-sized quantum harmonic oscillators [30].
Their result agrees with ours in that the finite molecule
size renders the interaction finite at zero molecule-molecule
separation.
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FIG. 5. (Color online) Dipole-dipole, dipole-quadrupole, and
quadrupole-quadrupole contributions to the interaction between two
methane molecules in vacuum.

[1] S. G. Osborn, A. Vengosh, N. R. Warner, and R. B. Jackson,
Proc. Natl. Acad. Sci. USA 108, 8172 (2011).

[2] R. D. Vidic, S. L. Brantley, J. M. Vandenbossche, D. Yoxtheimer,
and J. D. Abad, Science 340, 1235009 (2013).

[3] J. Mahanty and B. W. Ninham, Dispersion Forces (Academic
Press, London, 1976).

[4] B. W. Ninham and P. Lo Nostro, Molecular Forces and Self
Assembly in Colloid, Nano Sciences and Biology (Cambridge
University Press, Cambridge, UK, 2010).

[5] S. Y. Buhmann, Dispersion Forces I: Macroscopic Quantum
Electrodynamics and Ground-State Casimir, Casimir-Polder
and van der Waals Forces (Springer, Heidelberg, 2012).

[6] S. Y. Buhmann, Dispersion Forces II: Many-Body Effects,
Excited Atoms, Finite Temperature and Quantum Friction
(Springer, Heidelberg, 2012).

[7] V. A. Parsegian, Van der Waals Forces: A Handbook for
Biologists, Chemists, Engineers, and Physicists (Cambridge
University Press, New York, 2006).

[8] H. Safari, S. Y. Buhmann, D.-G. Welsch, and H. T. Dung,
Phys. Rev. A 74, 042101 (2006).

[9] J. Mahanty and B. W. Ninham, J. Chem. Soc. Faraday Trans. II
71, 119 (1975).

[10] B. E. Sernelius, Surface Modes in Physics (Wiley, Berlin, 2001).
[11] J. Mahanty and B. W. Ninham, J. Phys. A: Gen. Phys. 5, 1447

(1972).
[12] D. J. Mitchell, B. W. Ninham, and P. Richmond, Aust. J. Phys.

25, 33 (1972).
[13] I. E. Dzyaloshinskii, E. M. Lifshitz, and P. P. Pitaevskii,

Adv. Phys. 10, 165 (1961).

[14] D. F. Parsons, M. Boström, P. Lo Nostro, B. W. Ninham,
Phys. Chem. Chem. Phys. 13, 12352 (2011).

[15] M. Boström and B. W. Ninham, Langmuir 20, 7569
(2004).

[16] D. F. Parsons and B. W. Ninham, J. Phys. Chem. A 113, 1141
(2009).

[17] D. F. Parsons and B. W. Ninham, Langmuir 26, 1816 (2010).
[18] H.-J. Werner et al., MOLPRO, version 2008.1, a package of ab

initio programs, 2008.
[19] L. D. Landau and E. M. Lifshitz, Electrodynamics of Continuous

Media (Pergamon Press, Oxford, 1960).
[20] T. Masuda, J. Coll. Int. Sci. 340, 298 (2009).
[21] M. R. Querry, D. M. Wieliczka, and D. J. Segelstein, in

Handbook of Optical Constants of Solids II (Academic Press,
New York, 1991), p. 1059.

[22] G. Kresse and D. Joubert, Phys. Rev. B 59, 1758 (1999).
[23] M. Shishkin and G. Kresse, Phys. Rev. B 74, 035101 (2006).
[24] H. Zhao and C. Persson, Thin Solid Films 519, 7508 (2011).
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