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1. Introduction

   Molecular biomarkers are rarely passive and specific 
end-products of a single tissue but are more often potent 
compounds involved in a range of biological processes. 
Pregnancy-associated plasma protein-A (PAPP-A) is a good 
example of such a biomarker in reproductive medicine, and 
it is now known to be a protease specific for the cleavage of 
insulin-like growth factor binding proteins[1]. Having been 

described in normal pregnancy [2, 3], PAPP-A is useful as a 
biomarker in a combined test with free 毬-hCG and fetal 
nuchal translucency in the identification of increased risk 
of Down’s syndrome[4] and miscarriage[5]. Although most 
of the research surrounding PAPP-A has been performed 
during pregnancy[6-12], there are recent studies which indicate 
differences in PAPP-A concentrations during ART treatment 
cycles[13-16]. Furthermore, PAPP-A is produced by granulosa 
cells, having a role in follicle selection through its effect 
upon IGF availability[17]. 
   PAPP-A is not the only enzyme whose name is 
misleading: prostate specific antigen (PSA) was originally 
thought to be produced exclusively by prostatic tissue and 
was therefore used to monitor prostate cancer[18]. PSA is 
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actually a serine protease that is also known as kallikrein-3 
(KLK3)[19], and has been associated with a number of tissues 
and biological events in women[20] such as in the breast[21], 
during the ovarian cycle[22, 23], and in pregnancy[24]. 
   Another tumour biomarker, CA15-3, is a mucin-like 
glycoprotein encoded by the MUC1 gene and has a clear 
association with reproduction. MUC1 is heterogeneously 
expressed on the surface of epithelial cells, including those 
in the breast and upper reproductive tract and is thought 
to prevent embryo implantation[25]. In addition, expression 
of MUC1 has been shown to be progesterone dependent 
and is up-regulated in endometrial epithelial cells in the 
luteal phase of the menstrual cycle[26, 27]. However, the main 
clinical use of the assay is in the monitoring of women with 
breast cancer[28-30]. CA125, a high molecular mass mucin-type 
molecule, is a tumour biomarker that is used extensively to 
monitor epithelial ovarian cancer [31], but it also is expressed 
elsewhere such as during the ovarian cycle[32], in association 
with endometriosis[33], in pregnancies that are destined to 
miscarry[34], and with pelvic inflammatory disease[35]. 
   CA72-4 was once described as a useful tumour marker 
for all epithelial derived tumours and gastric carcinomas[36]. 
This research demonstrated that the sensitivity of CA72-4 
for gastric carcinoma was 38%, which is greater than the 
tumour markers CA19-9 which is 33%, CEA at 31% and 
CA125 at 21%[36, 37]. However, CA72-4 has also been proposed 
as a complimentary biomarker to CA125 in the screening of 
ovarian cancer, where it was found that by combining the 
biomarkers the sensitivity for detecting early stage disease 
increased from 45% to 70%[38].
   The aim of the present study was to measure five serum 
biomarkers (PAPP-A, tPSA, CA15-3, CA125 and CA72-4) in 
women during periods of ovarian and endometrial activity, 
namely in natural ovarian cycles and stimulated cycles. 
Results were analysed to (i) compare the concentrations 
between the two reproductive situations, and (ii) identify 
any temporal changes that may have occurred relating to 
follicular development.

2. Materials and methods

   Patient information and consents were approved by both 
the Joondalup Health Campus Research Ethics Committee 
and the Edith Cowan University Human Research Ethics 
Committee. All blood samples were taken as part of the 
routine management of the women at Fertility North, 
but consent was obtained for the analysis of additional 
compounds not indicated medically.

2.1. Patients

   Women were recruited during their routine clinical 
management, and none of the women had evidence of 
cancer or endometriosis. Blood samples collected during 

natural cycles were from women (n=10) who were undergoing 
assessment of their natural cycle prior to commencing 
fertility treatment. These women were on no medications 
that affect ovarian and uterine function such as the oral 
contraceptive pill or hormone replacement therapy. Cycle 
length was normalised for the purpose of statistical analysis 
according to Hadlow et al[39] using the following formula to 
calculate the day of the cycle: 
   Adjusted day = Actual day 伊 (14/Actual day of ovulation)
The cycle was also divided into phases using the adjusted 
day of the cycle[40]. Women providing blood in stimulated 
cycles (n=11) were undergoing IVF using standard clinical 
protocols[41]. 

2.2. Sample processing and analysis

   Blood was collected using syringes and transferred into 5 
mL Vacutainer SST™ tubes (Becton Dickinson, UK) before 
delivery to the laboratory. The blood was allowed to clot 
at room temperature and then centrifuged at 1 300 g for 4 
minutes, with the tubes then being ready for loading directly 
onto the automated analyser upon removal of the lids. Serum 
oestradiol, luteinising hormone, progesterone, and human 
chorionic gonadotrophin (hCG) were measured on a Siemens 
Centaur CP automated analyser (Siemens, Bayswater, 
Victoria 3053, Australia) within 1 hour of the blood being 
collected, and all between-run coefficients of variation were 
<5%. The serum was then stored in secondary tubes at -80 曟 
before being analysed in one batch on a Roche Cobas e411 
automated analyser (Roche Diagnostics, Germany) for the 
biomarkers PAPP-A, CA125, CA15-3, CA72-4 and total PSA 
(tPSA). Assay variability for the biomarkers was determined 
by analysing pooled patient serum in the analytical range 
for this study, sometimes close to the limit of detection, and 
the within-run variability at these concentrations for the 
biomarkers (CA125 <3%; CA15-3 <2%; CA72-4 <5%; PAPP-A 
<3%; tPSA <13%) was invariably less than the between-run 
variability (CA125 <5%; CA15-3 <7%; CA72-4 <24%; PAPP-A 
<27%; tPSA <39%). Assay sensitivity for CA125, CA15-3, 
CA72-4, PAPP-A, and tPSA were 0.6 U/mL, 1.00 U/mL, 0.2 
U/mL, 4.00 mIU/L, and 0.003 ng/mL respectively.

2.3. Statistical analysis

   The ovarian cycle data were analysed with a linear mixed 
effects model to compare the marker concentrations in 
stimulated and natural cycles across the cycle phases. For 
each model, the response variable (CA125, tPSA, CA15-3, 
CA72-4 and PAPP-A) was log transformed before analysis. 
Group (“natural” and “stimulated”) and cycle phase were 
included as fixed effect factors and ‘Subject’ and ‘Time’  
were modelled as random effects as in some subjects there 
were multiple time points measured within phases. The 
interaction between group and phase was also modelled. 
The analyses were performed using the R version 3.0.0 
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computing software[42].

3. Results

3.1. Ovulation and reproductive hormones

   The day of ovulation for the 10 natural cycles is shown in 
Figure 1 (a). It was extremely variable, ranging from day 10 
to day 25. The day of ovulation in the 11 cycles stimulated 
with exogenous gonadotrophin is shown in Figure 1 (b), 
and was less variable than the natural cycles ranging 

between day 12 and day 15 of the cycle. The reproductive 
hormones oestradiol and progesterone that were measured 
as part of routine patient management are shown in Table 
1. They follow classical patterns of change throughout the 
natural cycle, confirming that the modelling and expression 
of results according to the stage of cycle is appropriate. 
Differences between the natural cycles and stimulated cycles 
were noted and include higher oestradiol values in the mid-
follicular and late follicular phases of the stimulated cycles, 
and higher progesterone in the luteal phase of the stimulated 
cycles as a consequence of multiple corpora lutea and the 
continued administration of progesterone luteal support. 
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Figure 1. The distribution of the day of ovulation for women during (a) natural cycles (n=10), and (b) stimulated cycles (n=11).

Table 1
Reproductive hormone concentrations (mean依sem) in natural (n=10) 
and stimulated (n=11) ovarian cycles. 

Stage
Oestradiol (pmol/L) Progesterone (nmol/L)

Natural Stimulated Natural Stimulated
EF 165.6依11.8 156.0依6.6 1.9依0.3 2.3依0.6
MF 265.0依43.0 1 133.7依241.1 1.4依0.2 -
LF 528.0依51.2 3 980.0依435.8 1.3依0.2 -
ML 484.8依68.4 2 187.0依301.1 36.5依4.6 197.2依30.0

The stage of the cycle was classified as early follicular (EF), mid-
follicular (MF), late follicular (LF) and mid-luteal (ML).

3.2. Biomarkers during ovarian cycles

   The concentrations of the serum biomarkers CA125, 
CA15-3 and CA72-4 during natural and stimulated cycles 

are shown in Table 2. CA125 concentrations showed no 
significant difference between natural and stimulated ovarian 
cycles (P=0.5989) but results were significantly influenced 
by the stage of the cycle (P<0.0001). Concentrations of CA125 
were on average highest during the early follicular phase of 
the cycle which is concurrent with menstruation (25.92±4.45) 
U/mL and lowest in the late-follicular phase before 
ovulation (16.76±2.38) U/mL in natural menstrual cycles. In 
stimulated ovarian cycles, concentrations of CA125 were 
highest during the mid-luteal phase (22.89±13.45) U/mL 
and lowest at the mid-follicular phase (13.41±1.90) U/mL. 
All samples in the ovarian cycles had detectable levels of 
CA15-3. There was no overall significant difference in the 
concentration of CA15-3  between the natural and stimulated 
ovarian cycles (P=0.8694). However there was an overall 
significant difference within each cycle between phases, 
suggesting CA15-3 levels significantly change between 
phases (P<0.0001). There were 6/10 (60%) of the individuals 

Table 2
The concentrations (mean依sem) of the serum biomarkers CA125, CA15-3 and CA72-4 measured during natural (10 women) and stimulated (11 
women) ovarian cycles. 

Stage of cycle
CA125 (U/mL) CA15-3 (U/mL) CA72-4 (U/mL)

Natural Stimulated Natural Stimulated Naturala Stimulatedb

EF 25.92依4.45 17.06依2.37 15.59依1.67 15.10依2.00 1.86依0.92 2.33依1.12

MF 21.36依3.21 13.41依1.90 17.52依2.31 14.18依2.09 1.21依0.50 1.13依0.39

LF 16.76依2.38 13.62依1.64 15.91依1.69 14.60依1.90 1.10依0.33 0.98依0.27

ML 20.39依1.83 22.89依13.45 16.85依1.94 16.99依2.15 1.04依0.3 1.72依0.88

The stages of the cycles were early follicular (EF), mid-follicular (MF), late follicular (LF), and mid-luteal (ML).aDetectable concentrations were 
only seen in 6/10 women; bDetectable concentrations were seen in 10/11 women.
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in natural menstrual cycles and 6/11 (54.5%) of individuals in 
the stimulated cycles that had detectable levels of CA72-4 
for at least one of the samples. When detectable, CA72-4 
concentrations were overall on average (1.47±0.31) U/mL in 
natural cycles and (1.58±0.35) U/mL in stimulated ovarian 
cycles. There was a larger degree of variation between the 
individuals than there was at different phases of the cycles.
   The concentrations of the serum biomarkers tPSA and 
PAPP-A are shown in Table 3. Detectable levels of tPSA 
were measured in at least one point in the cycle in 6/10 
of women in the natural cycle and 10/11 of women in 
stimulated cycles. Concentrations of tPSA were low during 
natural and stimulated cycles and there was no significant 
difference either between natural cycles and stimulated 
cycles (P=0.9193), or between different stages of the cycle 
(P=0.8769). On average the mean PAPP-A of the natural 
group was (2.41±0.58) mIU/L higher than the stimulated 
group (t=4.10, P<0.001). For PAPP-A, there was no evidence 
for an interaction effect between PAPP-A concentrations 
and the phase of the cycle (t=-0.08, P=0.93), or for a change 
in PAPP-A within natural and stimulated ovarian cycles 
across the phases of the cycle (t= -0.44, P=0.65).

Table 3
The concentrations (mean依sem) of the serum biomarkers tPSA and 
PAPP-A measured during natural (10 women) and stimulated (11 
women) ovarian cycles. 

Stage of cycle
tPSA (ng/mL) PAPP-A (mIU/L)

Naturala Stimulatedb Natural Stimulated
EF 0.012依0.009 0.004依0.004 8.97依0.79 6.24依0.54

MF 0.007依0.004 0.009依0.002 8.91依1.04 6.73依0.59

LF 0.009依0.006 0.004依0.003 8.59依0.64 6.57依0.35

ML 0.004依0.002 0.015依0.001 8.40依0.81 6.19依0.53

The stages of the cycles were early follicular (EF), mid-follicular (MF), 
late follicular (LF), and mid-luteal (ML); aDetectable concentrations 
were only seen in 6/10 women; bDetectable concentrations were seen in 
10/11 women.

4. Discussion

4.1. Assays

   The use of immunoassays allows precise quantitative 
measurements to be made when measuring analytes. 
However, different assays often have different characteristics 
due to the choice of reagents or their calibration, resulting 
in different numerical values. This is important when 
comparing work from various laboratories or over a range of 
time frames. For example, the expression of PAPP-A results in 

mIU/mL in the present study compared to 毺g/L elsewhere[43] 
reflects the change in methodology and the move to a 
different standardisation. Between-assay differences have 
been reported when measuring CA15-3 with commercial 
kits from different companies, resulting from differences in 
calibration rather than specificity[44]. This is perhaps not too 
surprising as many of the companies used similar capture 
and signal antibodies in their sandwich immunometric assays. 
CA125 can also show between-supplier variability, and large 
differences have been reported between assays supplied by 
Siemens and Panomics [45].  

4.2. Changes during ovarian cycle

   There were cycle dependent changes seen in CA125 
concentrations for both natural and stimulated ovarian cycles. 
This study showed that ovarian stimulation had no effect on 
CA125 levels and that both natural and stimulated ovarian 
cycles showed similar changing patterns. The results from the 
natural group agreed with the literature in that the highest 
CA125 levels were found during menstruation [46-50]. The 
stimulated group results also agreed with the literature 
where the highest CA125 levels were found in the luteal 
phase of the cycle[51]. It is thought that the endometrium is 
responsible for the cyclical changes in CA125 concentrations 
and it is the disruption of the endometrium during menses 
that allows increased amounts of CA125 to enter the 
blood stream[46, 52, 53]. It was also proposed that pregnancy 
outcomes following ART treatment could be predicted by 
measuring CA125 on the day of oocyte retrieval and that 
levels >10IU/mL were correlated with an 86.6% positive 
pregnancy rate based on a prospective study of 75 ART 
cycles[54]. Of the 8 participants in this study that had a 
CA125 of >10 U/mL before oocyte retrieval, only 3 of those 
became pregnant (37.5%) which was markedly lower 
than the literature had suggested. There was also one 
participant who had a CA125 level <10 U/mL that did 
become pregnant. Although our results seem to suggest 
that CA125 levels >10 IU/mL are not as strongly correlated 
to positive pregnancy rate as the previous study, they are 
limited by the relatively small sample size. Nonetheless the 
results of this study do warrant further investigation.
   Serum concentrations of CA15-3 in natural menstrual 
cycles were not statistically different to those found in 
stimulated cycles. This suggests that ovarian stimulation per 
se for the purposes of IVF and ICSI procedures does not affect 
circulating serum CA15-3 levels. The CA15-3 concentration 
did however show some interaction with the phases of the 
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cycles which is in agreement with the literature[55]. The MUC1 
gene, which encodes the CA15-3 glycoprotein, is expressed in 
the upper female reproductive tract and its function has been 
suggested to be to prevent ectopic embryo implantation[25]. 
Other studies have shown that MUC1 expression is progesterone 
dependent whereby it is up regulated in the luteal phase of the 
menstrual cycle [26, 27]. These findings are significant because 
if MUC1 is up-regulated by progesterone in the luteal phase, 
it would suggest that it is a part of the body’s mechanisms to 
avoid ectopic pregnancy. This current study has shown that 
serum concentrations of CA15-3 are at their highest in the 
mid-follicular phase of the natural menstrual cycle, which is 
at a time that progesterone is at its lowest levels, suggesting 
that although CA15-3 is encoded by the MUC1 gene, it does 
not appear to be progesterone dependent. This being said, 
the previous research on MUC1 expression was carried 
out on tissue samples whereas this is an analysis of serum 
concentrations so the ‘lag’ in peak CA15-3 concentrations 
may not reflect activity at a local level.
   Ohuchi et al[36] described CA72-4 as a useful tumour 
marker for all tumours derived from epithelial cells 
highlighting the tumour markers increased sensitivity to 
gastric carcinoma compared to other tumour markers such 
as CA19-9, CEA and CA125.  It was also proposed that when 
CA72-4 is used as a complimentary biomarker to CA125, the 
sensitivity for detecting early stage ovarian cancer increased 
from 45% to 70%[38]. The CA72-4 assay used in this research 
failed to register any results above the assays lower limit of 
detection in 40.0%-45.5% of individuals from both natural 
and stimulated ovarian cycles. Of those individuals that 
did have detectable levels of CA72-4, the results showed 
an extremely high degree of variability both within each 
individual (whereby each sample from the same cycle was 
vastly different to the others) and between patients where the 
difference was so large that there were no obvious patterns 
of change. It was for these reasons that statistical analysis 
was not carried out and it was concluded that the assay was 
too unreliable for use as a diagnostic measure in the clinical 
setting. 
   Total prostate-specific antigen (tPSA) was detectable in 
60% of women in natural cycles and 91% of women during 
stimulated ovarian cycles. The range of mean results 
from each phase was between 0.004 毺g/L-0.012 毺g/L for 
both natural and stimulated ovarian cycles. There was no 
significant relationship between tPSA concentration and 
phase of the cycle, nor was there any significant difference 
between tPSA concentrations in natural and stimulated 

cycles. Zarghami et al. [56] has indicated that tPSA in the 
menstrual cycle followed the progesterone concentration 
peak with a 10-12 day delay. This finding is suggestive 
of tPSA concentrations changing in a cyclical manner. In 
our present study, we found that tPSA concentrations were 
highest in the early follicular and late luteal phase, which 
is relative to menstruation, although this did not reach 
statistical significance. Total prostate specific antigen 
concentrations are very low in female serum and it is not 
known why some women have measurable levels of tPSA and 
others do not. The physiological function of tPSA in females 
is yet to be determined.
   Finally, we found a significant difference in the mean 
concentration of PAPP-A between natural and stimulated 
ovarian cycles, where stimulated ovarian cycles were on 
average (2.41±0.58) mIU/L lower than natural cycles. The 
present study also showed that throughout each of the two 
types of cycles there were no significant changes in PAPP-A 
levels. Findings of lower serum PAPP-A concentrations in 
women during stimulated ovarian cycles confirms previous 
work where women were shown to have lower serum PAPP-A 
levels with higher oocyte number after oocyte retrieval, leading 
to the proposal that differences in PAPP-A concentrations may 
be due to the presence of multiple follicles in the ovaries[16]. 
Amor et al. [13] found that PAPP-A levels were reduced 
in both fresh and frozen-thawed embryo transfers when 
compared to naturally conceived pregnancies. However, 
fresh transfers did have significantly lower PAPP-A levels 
than frozen-thawed transfers, providing evidence for the 
multiple follicle theory where the ovaries in frozen-thawed 
embryo transfer cycles are not hyperstimulated to create 
multiple follicle development like those of fresh cycles. 
   In summary, batch analysis of all samples from each of the 
participants was conducted to maximise the possibility that 
any changes seen in biomarker concentrations were due to 
biological fluctuations and not because of assay variability. 
Ovarian stimulation reduced serum PAPP‐A levels, whilst 
CA125 and CA15‐3 were generally unaffected by ovarian 
stimulation but did have cyclical changes throughout both 
natural and stimulated cycles. 
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