
Abstract

${ }^{7}$ R. W. Fessenden and R. H. Schuler, "ESR Spectra of Fluorinated Ethyl Radicals" (to be published). Presented (in part) at the 151st American Chemical Society Meeting, Pittsburgh, Pa., March 1966. ${ }^{7}$ R. W. Fessenden and R. H. Schuler (to be published). Presented (in part) at the 151st American Chemical Society Meeting, Pittsburgh, Pa., March 1966. ${ }_{8}$ R. W. Fessenden and R. H. Schuler, J. Chem. Phys. 43, 2704 (1965). ${ }^{9}$ W. M. Talles and W. D. Gwinn, J. Chem. Phys. 36, 1119 (1962). In SF_{4}, two fluorines are located approximately axially with the other two and the line electron pair each occupying a (trigonal) equatorial position.

Error Bounds for Expectation Values* \dagger

Philip Jennings and E. Bright Wilson, Jr.
Mallinckrodt Chemical Laboratories, Harvard University Cambridge, Massachusetts

(Received 8 June 1966)

EXPECTATION values $\langle\phi B \phi\rangle$ for an unbounded operator B calculated from an approximate wavefunction ϕ obviously have little value without some estimate of the limits of error. Bazley and Fox ${ }^{1,2}$ used Schwarz's inequality to obtain the bounds

$$
\begin{align*}
\Delta= & |\langle\psi| B| \psi\rangle-\langle\phi| B|\phi\rangle \mid \\
= & |\langle\psi| B| \psi\rangle-\langle\psi| B|\phi\rangle+\langle\psi| B|\phi\rangle-\langle\phi| B|\phi\rangle \mid \\
= & |\langle\psi| B|(\psi-\phi)\rangle+\langle(\psi-\phi)| B|\phi\rangle \mid \\
& \quad \leq \epsilon\left(\langle\psi| B^{2}|\psi\rangle^{\frac{1}{2}}+\langle\phi| B^{2}|\phi\rangle^{\frac{1}{2}}\right), \quad \text { (1) } \tag{1}
\end{align*}
$$

where

$$
\epsilon^{2}=\langle(\psi-\phi) \mid(\psi-\phi)\rangle \leq\left(\langle\phi| H|\phi\rangle-E_{0}\right) /\left(E_{1}-E_{0}\right)
$$

is Eckart's relation ${ }^{3}$ involving the true Hamiltonian H and the correct energies E_{0} and E_{1} of the two lowest states (of given symmetry). Since experimental data are often available for energies, an upper bound to ϵ can frequently be calculated.

When a very good wavefunction is available, but a simpler trial function is used to calculate expectation values as a matter of computational convenience, then ϵ maybe estimated from the overlap with the good wavefunction; i.e., $\epsilon=[2(1-\langle\phi \mid \psi\rangle)]^{3}$. This could give a
much better value than does the Eckart condition, which can be quite inefficient.

With very good functions ϕ, a satisfactory approximation to replace $\langle\psi| B^{2}|\psi\rangle^{\frac{1}{2}}$ in Eq. (1) is obviously $\langle\phi| B^{2}|\phi\rangle^{\frac{1}{2}}$. However, it is desirable to have a test for the adequacy of this approximation and one can be obtained by applying Eq. (1) again by replacing B everywhere by B^{2}. If then $\langle\psi| B^{4}|\psi\rangle$ is replaced by $\langle\phi| B^{4}|\phi\rangle$ and the whole expression expanded in powers of ϵ, the result is, to order ϵ^{2},

$$
\begin{equation*}
\Delta \widetilde{z_{2}} 2 \epsilon\langle\phi| B^{2}|\phi\rangle^{\frac{1}{4}}+\epsilon^{2}\langle\phi| B^{4}|\phi\rangle^{\frac{1}{2}} /\langle\phi| B^{2}|\phi\rangle^{\frac{1}{2}} . \tag{2}
\end{equation*}
$$

Although this expression is not claimed to be a mathematically rigorous ${ }^{4}$ set of bounds, it seems clear that when ϵ is sufficiently small and $\langle\phi| B^{4}|\phi\rangle^{\frac{1}{2}} /\langle\phi| B^{2}|\phi\rangle$ is near unity, it should be practically useful.
By repetition of the use of Eq. (1), the series in ϵ can be extended, but, at least in the cases so far tested, interestingly close bounds are obtained only for rather small ϵ, for which cases the term in ϵ^{2} has not been very important.
If B is replaced by B plus a constant, Δ is unchanged but $\langle\phi| B^{2}|\phi\rangle$ is altered and can be minimized by a proper choice. To first order in ϵ, this gives

$$
\begin{equation*}
\Delta_{1} \leq 2 \epsilon\left(\langle\phi| B^{2}|\phi\rangle-\langle\phi| B|\phi\rangle^{2}\right)^{\frac{1}{2}} . \tag{3}
\end{equation*}
$$

Table I shows the numerical application of Eq. (3) to the ground state of helium, with several approximate variation functions. The fifth column is the contribution of the terms in ϵ^{2}. The error limits calculated are seen to be considerably too large, except perhaps for the very best variation functions. Note, however, that the value of $\left\langle r_{12}\right\rangle$ calculated by Knight and Scherr lies outside the error bounds for Pekeris' value.

It should be noted that special forms for ϕ may permit much narrower bounds to be determined than those given by this method. ${ }^{5}$ Thus, it has been argued that Hartree-Fock wavefunctions give much better expectation values for one-electron operators than would be indicated by Eqs. (1) or (2).
It is obvious that Eq. (3) provides a variational principle for expectation values since ϕ can be varied to minimize the error bounds. However, with the oper-

Table I. Expectation-value bounds for He (atomic units).

Wavefunction	ϵ	$\left\langle r_{12}\right\rangle$	Δ_{1}	Δ_{2}	$\left\langle\left(r_{1}+r_{2}\right) / r_{12}\right\rangle$	Δ_{1}	$\left\langle r_{1} r_{2} \cos \theta_{12}\right\rangle$	Δ_{1}
Unscreened	0.448	1.094	0.50	0.22	1.563	0.85	0.0	0.24
Screened ${ }^{\text {a }}$	0.266	1.296	0.35	0.08	1.563	0.49	0.0	0.20
Two-term Hylleraas ${ }^{\text {a }}$	0.128	1.373	0.18	0.02	1.451	0.19	-0.0875	0.11
Three-term Hylleraas ${ }^{\text {a }}$	0.042	1.410	0.064	0.002	1.4485	0.06	-0.0629	0.035
Knight and Scherr ${ }^{\text {b }}$	2.5×10^{-4}	1.4217	4×10^{-4}	7×10^{-8}	1.4489	4×10^{-4}	-0.06475	2×10^{-4}
Pekeris ${ }^{\text {c }}$	5.5×10^{-5}	1.4221	1×10^{-4}	4×10^{-8}	\cdots	\cdots	-0.06474	5×10^{-5}

[^0]${ }^{\text {b }}$ R. E. Knight and C. W. Scherr, J. Chem. Phys. 40, 3034 (1964) (sixth-order

[^1]ators in the table, the error bounds thus determined do not seem to differ much from those obtained with the ϕ given by energy minimization.

[^2]
Notes

Solubility and Thermodynamics of Solution of Argon in Mixtures of $\mathrm{H}_{2} \mathrm{O}$ and $\mathrm{D}_{2} \mathrm{O}$

A. Ben-Naim*
Department of Physical Chemistry, Hebrew University Jerusalem, Israel

(Received 28 March 1966)

IN this note we report measurements of the solubility (Table I) of argon in three mixtures of $\mathrm{D}_{2} \mathrm{O}$ and $\mathrm{H}_{2} \mathrm{O}$. The question posed for this work was the following: The thermodynamic functions associated with the dissolution of inert gases in water give a rough indication of the structural state of the solvent. ${ }^{1-3}$ There is some evidence ${ }^{4}$ that liquid $\mathrm{D}_{2} \mathrm{O}$ has a higher "degree of crystallinity" which means that the average cluster size is larger in $\mathrm{D}_{2} \mathrm{O}$ than in $\mathrm{H}_{2} \mathrm{O}$. On the other hand some theoretical considerations, based on a very simplified model ${ }^{1,2}$ indicate that the thermodynamic functions of solution of gases in water are strongly dependent on the average cluster size. The question now arises, does the addition of increasing amounts of $\mathrm{D}_{2} \mathrm{O}$ to water increase or decrease the degree of crystallinity of the solvent. We know that addition of different solutes to water causes different effects on the struc-

Table I. Ostwald coefficient ($\gamma \cdot 10^{3}$) for argon in mixtures of $\mathrm{H}_{2} \mathrm{O}$ and $\mathrm{D}_{2} \mathrm{O}$ (X is mole fraction of $\mathrm{D}_{2} \mathrm{O}$).

$t^{\circ} \mathrm{C}$	5	10	15	20	25
$x=0.03$	48.60	43.70	39.81	36.85	34.15
$x=0.5$	51.15	45.66	41.27	38.18	35.28
$x=0.9$	53.56	47.66	43.18	39.38	36.46

Table II. Thermodynamic functions for the transfer of argon from $\mathrm{H}_{2} \mathrm{O}$ into mixtures of $\mathrm{H}_{2} \mathrm{O}$ and $\mathrm{D}_{2} \mathrm{O}$ at $20^{\circ} \mathrm{C}$ (X is mole fraction of $\mathrm{D}_{2} \mathrm{O}$).

	$X=0.03$	$X=0.5$	$X=0.9$	$X=1$
$\Delta \mu^{\circ}($ cal $/ \mathrm{mole})$	-3.5	-24.0	-42.0	-49.8
$\Delta \bar{S}_{i}^{\circ}(\mathrm{eu})$	-0.25	-0.5	-0.8	-0.77
$\Delta \bar{H}_{i}^{\circ}(\mathrm{cal} / \mathrm{mole})$	-77	-170	-276	-275

tural state of water, ${ }^{5}$ some nonionic solutes, at very low concentration, may increase the degree of crystallinity, while others decrease it. $\mathrm{D}_{2} \mathrm{O}$, considered as a solute in $\mathrm{H}_{2} \mathrm{O}$, has a peculiar place in this respect: It is not an inert solute so we do not expect a "stabilizing effect" of the kind revealed by some nonelectrolytes. ${ }^{1,2}$ Hence there remain two possibilities: one of which is that the $\mathrm{D}_{2} \mathrm{O}$ molecule fits in the framework of the clusters of $\mathrm{H}_{2} \mathrm{O}$ molecules. (Note that for the present argument it is not essential to know the amount of HDO formed. The determining factor is the $\mathrm{O}-\mathrm{O}$ distance in the cluster and not the relative proximity of H or D to a particular oxygen atom.) In this case owing to the higher energy of the hydrogen bond $\mathrm{O} \cdots \mathrm{D}-\mathrm{O}$ we might expect that the average cluster size will increase. On the other hand if it does not fit into the framework of the cluster, it should cause a breakdown of the cluster size since its presence dilutes the $\mathrm{H}_{2} \mathrm{O}$ molecules and hence reduces the probability of their coming together to form a cluster. In the latter case we would expect that both the entropy and the enthalpy of transfer of argon from pure $\mathrm{H}_{2} \mathrm{O}$ into mixtures of $\mathrm{H}_{2} \mathrm{O} / \mathrm{D}_{2} \mathrm{O}$ will be positive for the same reasons as in the case of the effect of a solute which causes a destabilizing effect. ${ }^{5}$
The thermodynamic functions ${ }^{6} \Delta \mu_{t}{ }^{\circ}, \Delta \bar{S}_{t}{ }^{\circ}$, and $\Delta \bar{H}_{t}{ }^{\circ}$ which were calculated for the transfer of argon from pure water into mixtures of $\mathrm{D}_{2} \mathrm{O}$ and $\mathrm{H}_{2} \mathrm{O}$ show a monotonic (nearly linear) change when changing the solvent from pure water to pure $\mathrm{D}_{2} \mathrm{O}$ (Table II and Fig. 1). This might indicate that the $0 \cdots$ D bonds not only fit into the framework of the clusters of $\mathrm{O} \cdots \mathrm{H}$ bonds, but also increase gradually the average cluster

Fig. 1. $\Delta \mu_{t}{ }^{\circ}$ for the transfer of argon from $\mathrm{H}_{2} \mathrm{O}$ to mixtures of $\mathrm{H}_{2} \mathrm{O}$ and $\mathrm{D}_{2} \mathrm{O}$ at different mole fraction X of $\mathrm{D}_{2} \mathrm{O}$.

[^0]: ${ }^{\text {a }}$ Taken from L. C. Pauling and E. B. Wilson, Jr., Introduction to Quantum Mechanics (McGraw-Hill Book Co., Inc., New York, 1934), p. 224. These are, respectively, Functions 2, 7, 8 of that reference.

[^1]: perturbation-theory result). Actually, Knight and Scherr's 13th-order energy is not exactly the same as ($\phi H \phi$) for their sixth-order ϕ, but the difference should not be great.
 e C. L. Pekeris, Phys. Rev. 115, 1216 (1959) (1078-term function).

[^2]: * This work was supported in part by a grant extended Har vard University by the Office of Naval Research, Contract Nonr-1866(14).
 \dagger Research usage of the Harvard Computing Center facilities was supported by National Science Foundation Grant GP-2723.
 ${ }^{1}$ N. W. Bazley and D. W. Fox, Rev. Mod. Phys. 35, 712 (1963).
 ${ }^{2}$ N. W. Bazley and D. W. Fox, J. Math. Phys. 7, 413 (1966).
 ${ }^{8}$ C. Eckart, Phys. Rev. 36, 878 (1930).
 ${ }^{4}$ In some cases Eq. (2) obviously diverges. Thus, for an s electron and $B=1 / r^{2}$, the whole approach of Eq. (1) fails because $\left\langle B^{2}\right\rangle$ diverges. For $B=1 / r$, Eq. (1) is all right but the ϵ^{2} term in Eq. (2) diverges. It is likely, however, that the terms before divergence occurs are still useful as practical bounds if ϕ is a sufficiently good approximation.
 ${ }^{5}$ W. A. Klemperer and J. Goodisman, J. Chem. Phys. 38, 721 (1963).

