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Abstract 

Despite the importance of cyanide and of metal-cyanide complexes in gold hydrometallurgy, and the need 

for reliable thermodynamic data for modelling gold solution chemistry, no comprehensive critical overview 

of the thermodynamics of hydrogen/cyanide and metal/cyanide complex formation has appeared in the 

literature since that of Beck in 1987.  In particular there has been little consideration of the values of the 

equilibrium constants (and related thermodynamic parameters) at the higher ionic strengths and non-standard 

temperatures more typical of hydrometallurgical processing. The copper(I)/cyanide system is of particular 

importance in gold hydrometallurgy as gold is often associated with copper sulfide minerals such as 

chalcopyrite, chalcocite, covellite and bornite, all of which except chalcopyrite are reasonably soluble in 

cyanide solutions due to the formation of copper(I)/cyanide complexes. This paper reviews the available 

thermodynamic data for the hydrogen/cyanide and copper(I)/cyanide systems in aqueous solution with 

special emphasis on measurements made at elevated ionic strengths and as a function of temperature. It has 

been found that, while reliable data are available at 25 
o
C and very low ionic strengths, the data for higher 

ionic strengths and temperatures are limited. An attempt has been made to rationalize the available data, and 

to point out areas where further careful measurements are desirable. 

Keywords 

Cyanide, copper(I), protonation, enthalpy, equilibrium constant, gold, hydrometallurgy, thermodynamics 
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1. Introduction 

Gold associated with sulfidic copper occurs in many ore bodies. When such ores are processed by flotation 

the gold generally reports to the flotation concentrate, with only minor amounts of copper and gold 

remaining in the flotation tailings.  The gold in the latter, however, is often sufficient to warrant treatment 

with cyanide to recover the precious metal value that would otherwise be lost.  This poses a problem because 

residual copper minerals in the flotation tailings, generally at concentrations well in excess of the remnant 

gold, can also be dissolved by the cyanide.  Such copper species compete with gold for the cyanide ions in 

solution and also for adsorption sites on the activated carbon used to recover the gold from solution. In 

addition, there is usually an environmental requirement for copper to be removed from tailings water prior to 

disposal or recycling (Marsden and House, 2006).  This leads to significant additional processing costs 

because of increased cyanide consumption and the subsequent need to destroy cyanide in the tailings water 

(Johnson, 2014).  

Copper is in the same Group (1B) of the periodic table as silver and gold and, although less noble, has a 

similar chemistry. Early work (Leaver and Woolf, 1931; Hedley and Tabachnick, 1958; Shantz and Fisher, 

1977) established that most commercially-important copper minerals, except chalcopyrite, are reasonably 

soluble in cyanide solutions.  A range of copper(I)-cyanide complexes, chiefly: Cu(CN)2

, Cu(CN)3

2
 and 

Cu(CN)4
3

,
 
are formed, with the higher-order complexes dominating in alkaline solutions, especially at 

higher cyanide concentrations (Botz et al., 2011, Dai et al., 2012).  A typical speciation diagram is shown in 

Figure 1. As well as consuming significant amounts of cyanide through the formation of these complexes, 

the oxidative dissolution of copper sulfide minerals in cyanide solutions also results in losses due to the 

irreversible conversion of cyanide to thiocyanate (SCN
–
) and cyanate (OCN

–
). Furthermore, a decrease in the 

concentration of dissolved oxygen in solution occurs due to the oxidation of sulfide ions to sulfite and 

thiosulfate resulting in lower rates of gold dissolution (Breuer et al., 2007).  
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Moreover, as noted above, Cu(CN)2

 and Cu(CN)3

2
 compete with gold for adsorption sites on activated 

carbon resulting in lower gold recoveries (Ibrado and Fuerstenau, 1989; Dai et al., 2012). Dai et al. (2010) 

have developed a mechanistic model to better understand the competitive adsorption of gold(I)- and 

copper(I)-cyanide complexes onto activated carbon. They found that reported standard state (infinite 

dilution) equilibrium constants were unable to account satisfactorily for their observations whereas constants 

determined at higher ionic strength (I) could. In addition, Lukey et al. (1999) have shown qualitatively, using 

Raman spectroscopy, that the speciation among the Cu(I)-CN
–
 complexes in solution can vary significantly 

with changes in ionic strength. However, current knowledge of the equilibrium constants for the Cu(I)-CN
–
  

complexes at high ionic strengths is limited and inadequate for modelling this behaviour. 

Another significant concern in processing copper-containing gold ores is the discharge of Cu(I)-CN
–
 

complexes to tailings storage facilities. This is because such complexes, like most metal cyanide species, are 

highly toxic to most forms of animal life. Deaths of birds, fish and other animals, occurring as a result of 

cyanide discharges from gold mines are well-documented (Donato et al., 2007). High profile examples 

include the cyanide spills due to the collapse of tailings dams at Omai in Guyana and Baia Mare in Romania. 

The Romanian disaster serves to highlight this problem as Cu(I)-CN
–
 complexes were traced for some 2000 

km through many countries to the mouth of the Danube River (Korte et al., 2000; Kovács et al., 2014).  

The increasing restrictions on the discharge of Cu(I)-CN
–
 complexes to tailings dams has lead to the 

development of various processes to economically treat copper-containing gold ores by recovering the 

copper and recycling the cyanide.  Two procedures that have been in commercial use are the acidification-

volatilisation-regeneration (AVR) process (Riveros et al. 1993; Stevenson et al., 1998) and the sulfidisation–

acidification-recycle-thickening (SART) process (Barter et al., 2001; Fleming, 2005).  Neither of these 

processes is straightforward due to the need for solid-liquid separation so as to obtain a clear solution prior to 

treatment, and the difficulty in effectively lowering cyanide to acceptable levels by acidification.  An 

alternative method for the recovery of Cu(I)-CN
–
 complexes from waste solutions using ion exchange resins 
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has also received considerable attention due to the strong affinity of certain resins for metal-cyanide 

complexes (van Deventer et al., 2014; Silva et al., 2003; Leao and Ciminelli, 2002; Fernando et al., 2002; 

Leao et al., 2001; Lukey et al., 1999; 2000). However, economically-viable elution and recovery of both the 

copper and the cyanide has proven to be problematic. Direct electrowinning of copper from waste streams 

has also been investigated (Lemos et al., 2006, Dutra et al., 2008; Lu et al., 2002a) but generally has a low 

current efficiency, due to the low copper concentrations, with a resultant high energy consumption. 

Moreover, the cyanide can be partially destroyed by oxidation at the anode. 

 The importance of Cu(I)-CN
–
 complexes in the treatment of copper-gold ores, and the increasing need for 

reliable modelling of such processes so as to better optimize them, means that reliable knowledge of the 

thermodynamics of the Cu(I)-CN
–
 system under hydrometallurgically-relevant conditions has become 

crucial. In particular, there is a need for reliable equilibrium constants measured (or calculated using 

appropriate thermodynamic relationships) at different temperatures, ionic strengths and solution (background 

electrolyte) composition.  A recent review of the thermodynamics of the aqueous Cu(I)-CN
–
 system 

compiled by Lu et al. (2002b) from the plethora of often conflicting information in the literature presents 

only a list of recommended equilibrium constants at zero ionic strength (infinite dilution) and mostly at 25 

o
C. As already noted, such constants do not accurately describe observed behaviour under working 

conditions.  

Given these issues, it is clear that accurate knowledge of the equilibrium constants for the Cu(I)-CN
–
 

complexes under cyanide-leaching, carbon-adsorption (low temperature and high or low ionic strength) and 

carbon-desorption (high temperature and high ionic strength) conditions is of great importance in modelling 

and understanding these processes. Accordingly, this paper presents a critical review of the available 

thermodynamic data for the Cu(I)-CN
–
 system with special emphasis on measurements made under more 

practical conditions of temperature and ionic strength, as is required for the modelling of actual gold 

extraction procedures. 
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 However, before such a review can be undertaken it is necessary to consider two other equilibria that are 

always present in Cu(I)-CN
–
 solutions: the self-ionization of water and the dissociation of hydrogen cyanide 

(hydrocyanic acid). 

2. Dissociation Constants for Water and Hydrogen Cyanide 

In any study of the formation of Cu(I)-CN
–
 complexes under varying conditions of pH, solution 

composition, temperature and pressure, precise knowledge of the dissociation of water and of hydrogen 

cyanide (HCN) under the same conditions is also required. This is because both of these equilibria occur to 

some extent in all metal-cyanide solutions and therefore must be included in any meaningful quantitative 

treatment of the chemical speciation in such solutions.  

A detailed review of the vast body of data for the dissociation of water: 

H2O    H
+
  +  OH


       

 is beyond the scope of this paper. An excellent (if by now a little old) coverage of the data available for this 

important equilibrium over a wide range of conditions is given in the book of Baes and Mesmer (1976). It is 

also worth noting some more recent data obtained under conditions of interest to the present study: glass-

electrode potentiometric values, at high ionic strengths in various salt solutions (Kron et al., 1995), of the 

ionic product of water, pKw, = –log (Kw = [H
+
][OH

–
]), corresponding to eq. (1) where the square brackets 

denote concentrations; and the calorimetric determination of the corresponding enthalpy of ionization of 

water in concentrated NaCl(aq) and NaClO4(aq) by Solis et al. (1996a).    

The dissociation of hydrogen cyanide in aqueous solution: 

HCN    H
+
  +  CN


       

for which the equilibrium constant can be written: 

Ka = [H
+
][CN

–
]/[HCN]      (3) 
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has been well studied (Table 1). Comprehensive (non-critical) listings of the data available to the end of 

1974 are provided in the successive compilations of Sillén and Martell (1964, 1971) and Högfeldt (1982), 

while a few additional values are given in the data selected by Smith and Martell (1976, 1982, 1989). 

Subsequent investigations were collected from the literature and from the Joint Expert Speciation System 

(JESS) database of May and Murray (2000). As many of the earlier studies are now only of historic interest, 

Table 1 lists only those values obtained at or close to 25 
o
C that are thought to be reliable by the present 

authors.  

Of the numerous results reported at infinite dilution (Table 1) the most recent independent estimate of 

pKa
o
(HCN) at 25 

o
C appears to be that of Finch et al. (1993), who calculated a value of 9.24 (without 

providing uncertainty limits) from the standard molar Gibbs energies of formation, fG
o

m (Wagman et al., 

1982), for CN

(aq), H2O(l), HCN(aq) and OH


(aq). However, it should be noted that such calorimetrically 

derived data are not generally considered to be the most precise way of determining equilibrium constants 

(Cabani and Gianni, 1972; Hedwig and Powell, 1973; Powell et al., 2007). The JESS software package (May 

and Murray, 2000) can also be used to calculate a weighted-average value of pKa
o
(HCN) at 25 

o
C using a 

specific interaction theory (SIT)-like equation (May, 2000), its own database (which includes most, but not 

all, of the data in Table 1) and subjective weights assigned by the database compilers. This procedure gives 

pKa
o
 = 9.19 at 25 

o
C. Because of their inclusive nature (no data are omitted) and the subjectivity of the 

assigned weightings, no error limits are assigned to JESS-derived values.  

It is noteworthy that these two most recent values of pKa
o
(HCN) = 9.19 and 9.24 closely straddle the zero 

ionic strength value of pKa
o
(HCN) = 9.21  0.02 at 25 

o
C selected by Beck (1987) in his critical review for 

IUPAC . Beck’s estimate was based on three independent studies (Ang, 1959; Izatt et al., 1962; Boughton 

and Keller, 1966) that used extrapolations or calculations employing extended Debye-Hückel equations and 

which are in quantitative agreement with each other, within their stated error limits. It should be noted that 

this value has been accepted in many subsequent studies (see for example, Banyai et al., 1992; Verhoeven et 
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al., 1992; Solis et al., 1996; Lu et al., 2002b) and by Smith and Martell (1976, 1982). Given this acceptance 

and its consistency with the more recent data (as discussed above), Beck’s recommendation of pKa
o
(HCN) = 

9.21  0.02 at 25 
o
C will be retained as the best available estimate at the present time, pending further high 

quality studies. 

2.1 Effects of Ionic Strength on pKa 

The effects of ionic strength (I) on the dissociation of HCN
0
(aq) have been studied in lithium and sodium 

perchlorate (Banyai et al., 1992), sodium chloride (Verhoeven et al., 1990a,b), sodium perchlorate (Gáspár 

and Beck, 1982; Verhoeven et al., 1990b; Solis et al., 1996a) and sodium nitrate media (listed in Beck, 

1987). These data are summarized in Table 1. Note, however, that most of the values of Gáspár and 

Beck(1982) at high I in NaClO4, endorsed by Beck in his 1987 review, have been shown to be erroneous 

(Banyai, et al., 1992; Solis et al., 1996a) and so have been omitted.  

The most comprehensive data to date on the effects of I on pKa(HCN) are the determinations by glass-

electrode potentiometry at 0.1  I/M  5 in NaClO4 (Solis et al., 1996a) and NaCl (Verhoeven, 1989; 

Verhoeven et al., 1990a) media at 25 
o
C. The variation of pKa(HCN) with increasing I in these two media 

(Figure 2) is as expected from electrolyte solution theory: an initial decrease followed by a larger increase at 

higher I. That said, the magnitude of the changes in pKa differs considerably between the two electrolytes, 

particularly at I > 1 M. This reflects the specific short-range interactions of the background electrolyte with 

the interacting species of eq. (2). It is apparent from Table 1 that very few of the values of pKa(HCN) at 

finite I have been confirmed by independent measurements in any of the studied media. The only exceptions 

(Figure 2) are at I = 3, 1 and 0.1 M(NaClO4) where the respective results of Persson (1971), Banyai et al. 

(1992) and (surprisingly; see above) Gáspár and Beck(1982), mostly obtained by glass-electrode 

potentiometry, are in excellent agreement with those of Solis et al. (1996a). 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT
9 

 

It is clear from even the relatively few data currently available that there is significant variation in the 

dissociation constant for hydrogen cyanide with ionic strength (Table 1, Figure 2).  There is also a 

significant dependence on the nature of the background electrolyte employed, especially at concentrations 

above 1 M. While Banyai et al. (1992) have had some success in predicting values of pKa(HCN) in various 

media using the semi-empirical specific interaction theory (SIT), fundamental electrolyte solution theory 

(i.e., without empirical parameters) is unable to estimate accurate dissociation constants in this region 

(Grenthe and Puigdomenech, 1997). This means that further determinations of pKa(HCN) at high ionic 

strengths are desirable for a range of added electrolytes to better identify the most appropriate values for use 

in practical applications.  

2.2 Enthalpies and Entropies of Dissociation  

The enthalpies (Ha) and entropies (Sa) for the dissociation of hydrogen cyanide in aqueous solution, eq. 

(2), have been determined in very dilute solutions (Christensen et al., 1970; Izatt et al., 1962) and at higher I 

in NaCl and NaClO4 media (Solis et al., 1996a). The results are compiled in Table 2 and show the significant 

dependence of Ha and Sa for the ionization of HCN on temperature (at infinite dilution) and on the 

medium (at 25 
o
C).  

At infinite dilution, Ga
o
 ( = RTlnKa

o
), the standard Gibbs energy change for the ionization of HCN

0
(aq), eq 

(2), remains relatively constant with rising temperature (Table 2) but this is only because the independent 

variables Ha
o
 and Sa

o
 both become much less positive/more negative (Christensen et al., 1970). This so-

called enthalpy/entropy compensation (EEC) effect can be rationalized in terms of increased hydration and 

solvent ordering around the highly polar hydrogen and cyanide ions as the extent of dissociation increases. 

Such effects are quite common in solution equilibria (Hefter et al., 2002). 

As the ionic strength is increased at 25 
o
C in NaClO4 media, the Ga, Ha and Sa values initially remain 

relatively constant (Table 2). However, between 3 M and 5 M, Ga becomes more positive by 3.2 kJ/mol. 
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This corresponds to Ha becoming less positive by 4.6 kJ/mol, but being more than compensated by Sa 

becoming much more negative.  It is apparent that significant changes in the hydration and solvent ordering 

around the dissolved species occur in this region. In NaCl media the situation is different, with Ga 

essentially tracking Ha, both becoming more positive with increasing I. Clearly the solvation of Cl
–
 and 

ClO4
–
 ions are quite different at high I. The use of dielectric relaxation spectroscopy to better understand the 

exact nature of the species present and their levels of hydration (Buchner and Hefter, 2009) would be 

particularly useful with regard to understanding these effects. 

2.3 Effect of Temperature on pKa  

There have been a number of studies on the variation of pKa(HCN) with temperature (Bek et al., 1972; 

Boughton and Keller, 1966; Broderius, 1981; Christensen et al., 1970; Izatt et al., 1962; Tsonopoulos et 

al.,1976). There is general agreement (Verhoeven et al., 1990a) between the directly measured values 

(Boughton and Keller, 1966; Izatt et al., 1962) and those obtained by calorimetry (Christensen et al., 1970).  

These results are preferred to those of Broderius (1981), who used a non-equilibrium method to determine 

HCN concentrations in the vapour phase.   

The variation of the standard dissociation constant of HCN in the near-ambient temperature range of (0 to 

50) 
o
C can be satisfactorily described using the simple van’t Hoff thermodynamic relationship: 

pKa
o
(T) = pKa

o
(Tr) + 

H
o  

2.303R 

1 

T 

1 

Tr 
4(a) 

 

where T denotes the temperature in Kelvin and Tr is the reference temperature of 298.15 K. This relationship 

is based on the usually-reasonable assumption that Cp,a
o
, the heat capacity change for the dissociation 

reaction, is zero, meaning that  H
o
 is a constant and independent of temperature, over the normal liquid 

range of water (Kotrlý and Šůcha, 1985).   
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Adopting the calorimetrically-derived value of Ha
o
 = 43.6 kJ/mol (Christensen et al., 1970), eq. (4a) 

produces a straight line plot of pKa
o
(T) vs. 1/T (Figure 3)  that provides a reasonable fit of the experimental 

data (Boughton and Keller, 1966; Broderius, 1981; Izatt et al., 1962) over this limited temperature range. 

Nevertheless, some curvature in the pKa
o
 results (particularly the averaged values) as a function of 

temperature is apparent even in Figure 3.   For wider ranges of temperature (Table 2) it is essential to use the 

more accurate equation employed by Verhoeven et al. (1990a) in which the non-zero value of Cp,a
o
 is taken 

into account (note that there is a typographical error in the published equation of Verhoeven et al. (1990a): 

the third term on the rhs of their eq. (3) is missing a minus sign in front of the ln(T/Tr) term. This error is 

repeated in eq. (3) of Solis et al. (1996a)).  

The correct form of the equation is:  

pKa
o
(T) = pKa

o
(Tr) + 

H
o 
(Tr)

 

2.303R 

1 

T 

1 

Tr 
+ 

Cp,a
o 

2.303R 
1- 

Tr 

T 
- ln 

T 

Tr 
4(b) 

 

Using this equation 4(b) with Cp,a
o
 = 251 J K

–1
 mol

–1
 (Christensen et al., 1970),  gives  pKa

o
(T) values that 

are in good agreement with the limited data at higher temperatures (Table 2), although there is some 

suggestion (Tsonopoulos et al., 1976) that Cp,a
o
 may be slightly temperature dependent.  

Unfortunately, all of the preceding discussion is limited to (near) infinite dilution. Further information on the 

variation of pKa, a and Cp,a with ionic strength and temperature will be required to permit more accurate 

calculation of pKa(T) under all conditions of practical interest. 

To summarize, even though the dissociation constant for hydrogen cyanide, eq. (2), has been well studied at 

25 
o
C and at low ionic strengths, there are few data on how pKa(HCN) varies with ionic strength, solution 

composition and temperature. Verhoeven et al. (1990a) and Solis et al. (1996a) have made significant 
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contributions to measuring the variations of pKa and Ha with ionic strength and medium, but almost no 

further information on the effect of temperature on pKa has been published since the work of Izatt et al. 

(1962), Boughton and Keller (1966) and Tsonopoulos et al. (1976) some 40 to 50 years ago. Further accurate 

studies in this area (and the alternative of calorimetric determinations of the corresponding enthalpies and 

heat capacities) are desirable. 

3. Aqueous Chemistry of Copper(I)-Cyanide Complexes 

The documented coordination chemistry of copper(I) is rather limited (see for example, Greenwood and 

Earnshaw, 1997), particularly with regard to changes in equilibrium constants with ionic strength (Hefter et 

al., 1993). This is mostly because Cu(I) is generally unstable in aqueous solutions being readily oxidised to 

Cu(II) (E
o 

= 0.168 V) and having a tendency to disproportionate to Cu(II) and Cu
0
 (Kdisp ~10

5
, Greenwood 

and Earnshaw, 1997).  However, Cu(I) can be stabilised in aqueous solution by the addition of certain 

ligands such as cyanide, or by changes in the electrolyte medium, e.g., by using chloride (Hefter et al., 

1993).  

At relatively low cyanide concentrations, Cu(I) forms the sparingly soluble cuprous cyanide, CuCN(s) 

(Vladimirova and Kakovskii, 1950; van Deventer et al., 2014). In excess cyanide, CuCN(s) dissolves to form 

di-, tri- and tetra-cyanocuprate(I) species (Chantry and Plane, 1960; Solis, 1995). These complexes are also 

formed when potassium tetracyanocuprate, K3Cu(CN)4, is dissolved in aqueous solutions (Baxendale and 

Westcott, 1959; Izatt et al., 1967; Kappenstein and Hugel, 1974; Penneman and Jones, 1956; Simpson and 

Waind, 1958). Copper(I)-cyanide complexes can also be formed by mixing aqueous solutions of Cu(I), 

stabilised in 1 M(NaCl(aq)), and sodium or potassium cyanide (Hefter et al., 1993).  Note that, consistent 

with the stepwise formation of metal-ligand complexes (Greenwood and Earnshaw, 1997), most authors 

have assumed the existence of the monocyanocuprate(I) species, CuCN
0
(aq). However, this species is 

extremely difficult to detect, let alone quantify (Hefter et al., 1993; Solis, 1995), although a reasonable 

estimate has been achieved using solubility data (Akilan et al., 2015).   
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Depending on the total concentrations of Cu(I) and CN
–
, pH, ionic strength and temperature, Cu(I)-CN

–
 

solutions will typically contain a mixture of (suspended) CuCN(s) and the aquated species CuCN
0
, 

Cu(CN)2

, Cu(CN)3

2
and Cu(CN)4

3
 in dynamic equilibrium with each other, along with free CN

–
 and 

undissociated HCN
0
. A typical species distribution diagram for the Cu(I)-CN

–
 complexes in aqueous 

solution as 25 
o
C is presented in Figure 1. Of course free OH

–
 and possibly Cu(I)-OH

–
 and ternary Cu(I)-

OH
–
-CN

–
 complexes may also be present under some conditions, although the latter species have never been 

reported in the literature. Accordingly, such species will not be considered in the following discussion.  

Thus in addition to equilibria (1) and (2), the following equilibria (with all species taken to be aquated unless 

otherwise specified) and their corresponding overall (n) or stepwise (n) formation constants must be 

accurately characterised under relevant conditions for the quantitative  modelling of Cu(I)/CN
–
 mixtures: 

CuCN(s)    Cu
+
  +  CN


    Ks0  =  [Cu

+
][ CN


 

Cu
+
  +  CN


    CuCN

0
;  1  =  K1  =  [CuCN

0
]/ [Cu

+
][ CN


 

Cu
+
  +  2CN


   Cu(CN)2


  2  =  [Cu(CN)2


[Cu

+
][ CN




   

Cu
+
  +  3CN


    Cu(CN)3

2
  3  =  [Cu(CN)3

2
[Cu

+
][ CN




   

Cu
+
  +  4CN


    Cu(CN)4

3
  4  =  [Cu(CN)4

3
[Cu

+
][ CN




   

Alternatively, the last three equilibria can be written in their mathematically equivalent ‘stepwise’ form: 

CuCN
0
  +  CN


  Cu(CN)2


 K2  =  [Cu(CN)2


]/[CuCN

0
][ CN


 

Cu(CN)2

 +  CN


    Cu(CN)3

2
 K3  =  [Cu(CN)3

2
]/[Cu(CN)2


][ CN


 

Cu(CN)3
2

 +  CN

    Cu(CN)4

3
 K4  =  [Cu(CN)4

3
]/[Cu(CN)3

2
][ CN


 
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The most reliable values for the solubility product, Ks0, for CuCN(s) are given below (Section 3.1) and, for a 

related solubility constant, in Table 3. The formation constants for the Cu(I)/CN
–
 complexes (log n and log 

Kn) are given in Table 4, together with details of the medium used in their determination. Data deemed to be 

less reliable by the present reviewers are not listed in the tables but where appropriate are discussed in the 

text that follows. 

The equilibrium constants for the Cu(I)/CN
–
 complexes have been measured using a range of techniques 

under widely differing experimental conditions (Table 4). This situation, along with different methods of 

processing the data so obtained, has produced a number of discrepancies in the reported values.  

Nevertheless, the data have tended to become more consistent over time, especially under standard 

conditions (I = 0, 25 
o
C). This is due in large part to the availability of better quality stepwise formation 

constants and the other thermodynamic data on which they depend, i.e., the dissociation constants for 

hydrogen cyanide and water under equivalent conditions. 

3.1 Solubility of Copper(I) Cyanide 

At low cyanide concentrations, Cu(I) will be mostly present as the sparingly soluble white cuprous cyanide 

solid, CuCN(s). The solubility product for CuCN(s) at 25 
o
C and infinite dilution was determined after an 

extensive study by Vladimirova and Kakovskii (1950) to correspond to pKs0
o
 = 19.50. This equates to a 

solubility of CuCN in pure water of 2  10
8

 M. This value was endorsed by Fritz and Königsberger (1996) 

in their critical review as being more reliable than the solubility of 2.6  10
3

 M at 15 
o
C reported by Ragg 

(1950).  The value of Vladimirova and Kakovskii (1950) was corrected to 19.74 by Lu et al. (2002b) using 

Beck’s (1987) recommended value of pKa
o
(HCN) = 9.21. Akilan et al. (2015) have estimated pKs0 = 19.49  

0.02 at I = 1 M(NaCl) and 25 
o
C  using the solubility data of Königsberger et al. (1994). 

In aqueous HCN solutions, the solubility of CuCN(s) varies with the square root of the HCN concentration, 

which has been interpreted in terms of the following reaction (Vladimirova and Kakovskii, 1950): 
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CuCN(s) + HCN  Cu(CN)2

 + H

+
     (5) 

with the corresponding solubility constant   

*
Ks2 = [Cu(CN)2


][H

+
]/[HCN] = 1.22  10

5
 M. 

This equilibrium is much more easily characterized than the solubility product because of the greater 

stabilization of Cu(I). Indeed, the value obtained by Vladimirova and Kakovskii (1950), p
*
Ks2

o 
= 4.91, has 

been quantitatively confirmed by Königsberger et al. (1994) who studied the solubility of CuCN(s) in HCN-

NaCN solutions at 25 
o
C and 0.15 M  I/M  1.0 in NaCl media (see also Solis, 1995; Akilan et al., 2015). 

Taking Cu(I) speciation into account by using appropriate Cu(I)/CN
–
 formation constants (Hefter et al., 

1993) values of p
*
Ks2

o 
= 4.9 ± 0.1 at I = 0 and 4.50  0.01 at I = 1.0 M (NaCl) have been derived from these 

data (Königsberger et al. 1994; Akilan et al., 2015). 

3.2 Formation of Cyanocuprate(I) 

As mentioned earlier, the species CuCN
0
(aq) cannot usually be detected using the common methods of 

equilibrium constant determination. This is because its formation overlaps with the precipitation of CuCN(s). 

The value of log 1 = 16.33 at 25 
o
C and I = 1 M (NaCl) given in Table 4 was estimated by Hefter et al. 

(1993). A recent re-processing (Akilan et al., 2015) of the solubility measurements of Königsberger et al. 

(1994) indicated a value of log 1 = 15.80  0.15 gave the best fit of the data. It can be noted that while it is 

necessary to include 1 in any modelling scheme, so as to anchor the numerical values of the formation 

constants of the higher order species (Hefter et al., 1993), the value chosen does not have much effect on 

those constants. 

3.3 Formation of Dicyanocuprate(I) 

Apart from CuCN
0
(aq), the dicyanocuprate(I) complex, Cu(CN)2


aqis the most difficult of the Cu(I)/CN

–
 

species to detect and quantify due to its relatively low concentrations under most experimental conditions 
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(Figure 1). The most reliable infinite dilution value of its formation constant is probably that obtained by 

Vladimirova and Kakovskii (1950). These authors used potential measurements with Cu and Cu(Hg) 

electrodes in solutions formed by dissolving ~10
–3

 M CuCN(s) in acidic (pH = 4.2) HCN solutions, which 

maximised the concentration of Cu(CN)2

.  Their reported value of log 2

o
 = 24.3 at I = 0 was later corrected 

to 23.9 by Izatt et al. (1967) using pKa
o
(HCN) = 9.21 and an extended Debye-Hückel equation.  

Subsequently, Bek et al. (1972) obtained a similar value of log 2
o
 = 23.8 at 25 

o
C, also corrected to I = 0 

using an extended Debye-Hückel equation, by measuring Cu electrode potentials in 0.15 M Cu(I) solutions 

at 0.84  I/M  1.21 in Na
+
/Cu

+
/CN

–
 media. More recently, Hefter et al. (1993) used glass electrode 

potentiometry with Cu(I) stabilised in 1 M (NaCl) solution and obtained log 2 = 23.97  0.01 at 25 
o
C. An 

almost identical result (albeit from the same laboratory and using the same technique) has recently been 

determined by Akilan et al. (2015). 

A significantly lower value of log 2 = 21.7 ± 1.0 from solubility measurements of CuCN(s) dissolved in 

solutions containing up to 4 M KCN at 20 
o
C, was reported by Rothbaum (1957) but without considering 

activity coefficients. Hancock et al. (1972) similarly found log 2 = 21.7 ± 0.2 from Cu-electrode potentials 

measured at CN
–
/Cu(I) ratios from 2.5 to 10 and an ionic strength of 0.01 M at 25 

o
C,  again without 

considering activity coefficients. The UV spectrophotometric measurements of Kappenstein and Hugel 

(1974) at low CN
–
/Cu(I) ratios and low pH gave an even lower value of log 2 = 16.26 at 25 

o
C. However, 

this result is thought to be unreliable because Cu(CN)2



is more readily oxidized than the higher-order 

complexes (Cooper and Plane, 1966). None of the foregoing values were considered to be sufficiently 

reliable to be included in Table 4. 

The values of log 2 at 25 
o
C that are listed in Table 4 are remarkably similar given that they were measured 

in different electrolytes and at different I. Collectively, they suggest that log 2 does not vary much with 

ionic strength or medium at least at I < ca. 1 M, so until more detailed studies are made it seems best to 
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assume log 2 = 24.0 at I  1 M in all background electrolytes at 25 
o
C. It may also be noted that this value is 

consistent with the solubility data of Königsberger et al. (1994). At higher I only the data of Akilan et al. 

(2015) in NaCl media are available (Table 4); they show that log 2 increases smoothly with increasing I. 

3.4 Formation of Tricyanocuprate(I)  

The tricyanocuprate complex, Cu(CN)3
2

 is formed to a greater extent in more alkaline (pH > 5) solutions 

and at CN
–
/Cu(I) ratios >3, where Cu(CN)2


 is present in only minor amounts.  This can be seen from the 

species distribution (Figure 1) which shows that Cu(CN)3
2

 is the dominant complex over much of the pH 

range.  The stepwise equilibrium between the two species:  

Cu(CN)2

  +  CN


    Cu(CN)3

2
       (6) 

quantified by the constant K3 has been much investigated. A range of values has been reported, the more 

reliable of which are presented in Table 4 and discussed in the following paragraphs. 

At I = 0, Izatt et al. (1967) obtained by extrapolation a value of log K3
o
 = 5.30  0.01 at 25 

o
C using pH-

potentiometric titrations at 1  [Cu(I)]T/mM  10.  Similar values of log K3 = 5.34 at 25 
o
C in 0.01 M KOH 

and log K3 = 5.39  0.03 in 0.01 M KClO4 were obtained respectively by Baxendale and Westcott (1959) 

and by Kappenstein and Hugel (1974), both using UV spectrophotometry. In the latter case, the use of very 

dilute solutions (~10 M) may have introduced significant errors. Hefter et al. (1993) reported log K3 = 5.43 

± 0.04 at I = 1.0 M (NaCl) and 25 
o
C using glass electrode potentiometry; a similar result (Table 4) was 

obtained by Akilan et al. (2015) using the same technique. Akilan et al. (2015) also determined log K3 at I = 

3 and 5 M in saline media and found that it decreased smoothly with increasing I. 

The value of log K3 = 5. 0 obtained calorimetrically by Brenner (1965) has been omitted from Table 4 as it 

appears to be too low and insufficient experimental detail was provided to enable a proper assessment of the 

work to be made.  Similarly, the even lower value of log K3 = 4.61 ± 0.07 in 0.8–1.2 M K(Na)CN at 29 
o
C 
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obtained by Penneman and Jones (1956) using IR spectroscopy has been rejected, as they used an 

improbably high value of  pKa(HCN) = 9.29 (cf. Table 2).  

 On the basis of the data available (Table 4), it seems that at 25 
o
C log K3, like log 2 (see above), changes 

only slightly with ionic strength at I < ca. 1 M. The values thought to be the most reliable for log K3 are 5.30 

 0.01 at I = 0 (Izatt et al., 1962) and 5.53  0.10  at I =1.0 M in NaCl, which is the average of the values 

reported by Hefter et al. (1993) and Akilan et al. (2015). The range for the latter is undoubtedly a reflection 

of the real uncertainties inherent in the measurement of the Cu(I)-CN
–
 system.  At higher I, qualitative 

changes in the distribution of the di- and tri-cyano complexes with increasing salinity (up to 4 M NaCl) have 

been noted by Lukey et al. (1999) and quantified by Akilan et al. (2015).  

3.5 Formation of Tetracyanocuprate(I) 

The tetracyanocuprate complex, Cu(CN)4
3

, is formed most readily at high pH (>10) and high CN
–
/Cu(I)  

ratios. Under most conditions it is in equilibrium with the tricyano complex:   

Cu(CN)3
2

 +  CN


    Cu(CN)4
3

        (7) 

The stepwise formation constant K4, corresponding to equilibrium (7), has been the subject of much 

investigation (Table 4), mostly by authors investigating the di- and tri-cyanocuprate(I)  equilibria under the 

conditions described above.  Thus, Izatt et al. (1967) obtained a value of log K4
o
 = 1.5 ± 0.2 at 25 

o
C while 

Baxendale and Westcott (1959) reported log K4 = 1.74 at 25 
o
C in 0.01 M KOH by using UV 

spectrophotometry with very dilute solutions (3 to 36 M) of Cu(I). Penneman and Jones (1956) using IR 

spectroscopy reported log K4 = 1.6 in 0.2 M Cu(I) at Cu/CN  3 ratios after adjustment to 25 
o
C.  

Values of log K4 measured at higher I (Table 4) are much larger than that of Izatt et al. (1967) at I = 0, which 

indicates that log K4, unlike log K2 and log K3, increases significantly with increasing I. Thus, Bek et al. 

(1972) obtained a value of log K4 = 1.84 in 0.84 to 1.21 M (Na)CuCN while Hefter et al. (1993) and Akilan 
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et al. (2015) reported log K4 = 2.38 ± 0.04 and 2.51 ± 0.04 respectively in 1.0 M (NaCl).  Brenner’s (1965) 

calorimetric value of log K4 = 2.64 has been rejected as lacking in experimental detail (Beck, 1987). 

The increase of log K4 with increasing I has been observed qualitatively by Raman spectroscopy on Cu(I)-

CN
–
 solutions of varying salinity (Lukey et al., 1999) and quantified by Akilan et al. (2015). It should also 

be noted that the higher log K4 value of Hefter et al. (1993), confirmed by Akilan et al. (2015), fitted the data 

obtained in a modelling study of the adsorption onto activated carbon of Cu(I)-CN
–
 complexes in 1.0 M 

NaCl solutions (Dai et al., 2010) significantly better than the infinite dilution value of Izatt et al. (1967). The 

higher value of log K4 at high I is also consistent with the solubility data of Königsberger et al. (1994). 

Pending further investigation, the preferred values of log K4 at 25 
o
C are the potentiometric results of Izatt et 

al. (1967) corrected to infinite dilution (log K4
o
 = 1.5 ± 0.2) and at higher I the values of Hefter et al. (1993) 

and Akilan et al. (2015) in NaCl media listed in Table 4, although further work is required at intermediate I 

to harmonize all of these results. 

3.6 Effect of Temperature on Log n  

The most extensive study to date of the variation of the formation constants of Cu(I)-CN
–
 complexes with 

temperature was that by Bek and co-workers (1972) whose data are presented in Table 4. From their results, 

Bek et al. produced straight line relationships between log n (for n = 2, 3 and 4) and 1/T (Figure 4). These 

data can be used to calculate, via eq. (4a), the enthalpy changes associated with the overall formation 

reactions in solution of the dicyano-, tricyano- and tetracyano- complexes. The values so calculated are listed 

in Table 5 along with the available calorimetric data. The corresponding values for G
 
and S were 

calculated using the usual thermodynamic relationships: G = RTlnK =H – S. 
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3.7 Enthalpies and Entropies of Complex Formation  

Compared with the formation constants of the Cu(I)-CN
–
 complexes, rather little is known of the 

corresponding enthalpies and entropies (Table 5).  Only three calorimetric studies appear to have been 

undertaken in the last fifty years: by Brenner (1965), Izatt et al. (1967) and Solis et al. (1996b). 

Unfortunately, the study of Brenner (1965) lacks key experimental information, which has led us to reject his 

calorimetrically-derived stability constants. Similar considerations apply to his enthalpy data, which also 

appear to have the wrong sign. The remaining studies of Izatt et al. (1967) and Solis et al. (1996b) can only 

be compared for the (overall) formation reaction of Cu(CN)4
3–

 and were made at markedly different I . 

Despite the difference in media, the values reported are in reasonable agreement (Table 5). Also included in 

Table 5 are the H and S values calculated from the potentiometric (log n(T) vs. 1/T) data of Bek et al. 

(1972) at 0.84  I/M  1.21 in Na
+
/Cu

+
/CN

–
  media (Figure 4). While the H and S values obtained from 

the data of Bek et al. for the overall formation reaction for Cu(CN)2
–
 are in fair agreement with the 

calorimetric results of Izatt et al., those for Cu(CN)3
2–

 and Cu(CN)4
3–

 are not (Table 5). In general, enthalpies 

and entropies obtained from the variation of log n with T are less reliable than those obtained 

calorimetrically (Hefter et al., 2002) so where large differences occur, the calorimetric values are preferred. 

The G and H values corresponding to the overall reactions for the formation of Cu(I)-CN
–
 complexes in 

solution are all markedly negative (Table 5). This shows that the high stability of these complexes (i.e., their 

large formation constants and strongly negative G values) is due predominantly to their highly favourable 

(i.e., strongly negative) H values. These in turn reflect the great strength of the Cu(I)–CN
–
  bonds relative 

to the Cu(I)–OH2 bonds in the aquo complex that they replace during the complex formation process. The 

former is often attributed to strong d–p* (metal-to-ligand) ‘back-bonding’ which is apparently highly 

favourable for the d
10

 Cu
+
 ion bonded to CN

–
 . Using the infinite dilution results of Izatt et al. (1967), the 

corresponding S
o
 values also become more negative (increasingly less favourable) as the number of 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT
21 

 

cyanide ligands attached to the Cu(I) increases. This can be attributed to the increased ordering around the 

central Cu(I) ion (Solis et al., 1996b). 

The overall enthalpy change for the formation of the tetracyanocuprate(I) complex in solution 

(corresponding to 4) is much larger (more negative, by ~100 kJ/mol) than for the formation of the 

isoelectronic zinc(II)- and the analogous cadmium(II)-complexes measured under similar conditions (Table 

5). The greater (negative) magnitude of H is responsible for the much larger overall formation constant (4) 

for Cu(CN)4
3–

 compared with Zn(CN)4
2–

 and Cd(CN)4
2–

. This difference in H occurs because the enthalpies 

of hydration of the zinc(II) and cadmium(II) ions (–2052 and –1815 kJ/mol respectively) are much more 

negative than for the copper(I) ion (–576 kJ/mol) and also because of the back bonding referred to above, 

which appears to be particularly favourable for the Cu(I)-CN
–
 complexes. The negative entropy change for 

the overall formation of Cu(CN)4
3–

 in solution, is more unfavourable (more negative) than those for the 

corresponding Zn(II) and Cd(II) complexes. This has been attributed to the decrease in the coordination 

number of the central metal atom from six (in the aquo ions) to four (in the complexes), which appears to be 

less important for the latter two species (Solis et al., 1996b).   

4. Conclusions 

When copper minerals are present in gold cyanidation systems, especially those where remnant gold is 

recovered from copper sulfide flotation tailings, the cyanide-soluble copper is generally present in much 

higher concentrations than the gold, and can therefore compete with the gold for both available cyanide and 

for adsorption sites on activated carbon. This can cause significant processing problems both from excessive 

cyanide consumption and reduced gold adsorption onto carbon, thereby increasing overall treatment costs 

and reducing recoveries. The equilibria between Cu(I) and CN
–
 in aqueous solutions are thus of critical 

importance in the study and modelling of real copper-gold-cyanide processes. The formation constants for 

Cu(I)-CN
–
 complexes, except for the difficult-to-detect CuCN

0
(aq), are well documented at 25 

o
C and at low 

ionic strengths. However, there is limited systematic knowledge on how these formation constants vary with 
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ionic strength, solution composition and temperature. Further careful measurements of these effects are 

highly desirable because such constants are essential for modelling a variety of observed effects under actual 

hydrometallurgical conditions. A similar case can be made with regard to the corresponding enthalpies and 

entropies of reaction. The solubility of CuCN(s) in NaCN/NaCl solutions at varying ionic strengths has been 

studied at 25 
o
C (Königsberger et al., 1994) but that work needs to be extended to other background 

electrolytes and temperatures.  
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Table 1  

Dissociation constants of hydrogen cyanide at 25 
o
C in different media at various ionic strengths 

Ionic 

Strength 

(M) 

Medium Method pKa
a
 Reference 

0
b 

 Spectrophotometry 

Potentiometry 

Potentiometry 

Spectrophotometry 

Diffusion/Evaporation 

Potentiometry 

Critical survey 

Gibbs energy  

JESS calculation 

9.22±0.02 

9.21±0.01 

9.21±0.02
c 

9.21±0.11 

9.22±0.02
d
  

9.21 

9.21±0.02 

9.24 

9.19 

Ang, 1959 

Izatt et al., 1962 

Boughton & Keller, 1966 

Tsonopoulos et al., 1976 

Broderius, 1981 

Gáspár and Beck, 1982 

Beck, 1987 

Finch et al., 1993 

This review 

1.0 

3.0 

LiClO4 

 

Potentiometry, 

C
13

 NMR 

9.09±0.02 

10.11±0.02 

Banyai et al., 1992 

 

0.1 

0.1 

0.5 

1.0 

1.0 

1.0 

3.0 

3.0 

5.0 

NaClO4 

 

 

 

 

 

 

 

 

Potentiometry  

Potentiometry 

Potentiometry 

Potentiometry 

Potentiometry 

C
13

 NMR 

Potentiometry 

Potentiometry 

Potentiometry 

9.06±0.03 

9.03±0.01
d
 

9.01±0.01
d 

9.04±0.01
d 

9.01±0.01
d
 

9.09±0.02 

9.48±0.01 

9.45±0.01
d
 

10.01±0.01
d 

Gáspár and Beck, 1982 

Solis et al., 1996a 

Solis et al., 1996a 

Solis, 1995 

Solis et al., 1996a 

Banyai et al., 1992 

Persson, 1971 

Solis et al., 1996a 

Solis et al., 1996a 

0.1 

0.5 

1.0 

1.0 

1.0 

3.0 

3.0 

5.0 

5.0 

NaCl Potentiometry 

Potentiometry 

Potentiometry 

Potentiometry 

Potentiometry 

Potentiometry 

Potentiometry 

Potentiometry 

Potentiometry 

9.04±0.01
d 

8.95±0.01
d
 

8.95±0.01
d
 

8.97±0.01
d
 

8.94±0.01
d
 

9.22±0.01
d
 

9.21±0.01
d
 

9.66±0.01
d
 

9.65±0.01
d
 

Verhoeven et al., 1990a; Solis et al., 1996a 

Verhoeven et al., 1990a; Solis et al., 1996a 

Verhoeven et al., 1990a; Solis et al., 1996a 

Hefter et al., 1993; Solis, 1995 

Akilan et al., 2015 

Verhoeven et al., 1990a,b; Solis et al., 1996a 

Akilan et al., 2015 

Verhoeven et al., 1990a; Solis et al., 1996a 

Akilan et al., 2015  

0.1 

2.0 

NaNO3 Potentiometry 

Polarography 

9.01±0.01
c 

(8.65±0.03)
c 

Anderegg, 1957 

Beck, 1987  

a
 Uncertainties as stated in the original publication, where available. 

b
 Values of pKa

o
 at infinite dilution were mostly 

obtained by extrapolation or correction for activity coefficients. 
c
 Corrected to 25 

o
C assuming Ha = 43.6 kJ/mol and 

Cp,a = 0 (see Table 2). 
d
 Reported pKa values and their uncertainties have been rounded up.  
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Table 2 

Thermodynamic parameters for the dissociation of hydrogen cyanide
a
 in different media at various 

temperatures and ionic strengths  

Medium 

I / M 
 Method 

Temp 
o
C 

pKa 

 

Ga              

kJ/mol 

Ha              

kJ/mol 

Sa              

J/K.mol 
Reference 

 0
b 

 

Calorimetry 

 

Calorimetry 

 

 

K(T) 

(spectro-

photometry) 

 

 

 

K(T) 

(diffusion/ 

evaporation) 

 

 

8 

25 

10 

25 

40 

25 

50 

75 

100 

125 

150 

5 

10 

14.9 

20.1 

25 

30 

9.76 (calc) 

9.21±0.01 

9.63 (calc) 

9.22 (calc) 

8.84 (calc) 

9.21±0.08 

8.59±0.08 

8.18±0.08 

7.89±0.08 

7.74±0.08 

7.64±0.08 

9.629±0.014 

9.533±0.005 

9.421±0.007 

9.337±0.004 

9.220±0.015 

9.145±0.011 

52.5 

52.2 

52.2 

52.6 

53.2 

52.6 

53.1 

54.5 

56.4 

59.0 

61.9 

51.3 

51.7 

51.95
 

52.4 

52.6 

53.1 

47.3±0.8 

43.5±0.8 

47.40±0.16 

43.64±0.13 

40.04±0.13 

-31 

-16 

-16.9 

-30.1 

-42.9 

Izatt et al., 1962 

 

Christensen et al., 

1970  

 

Tsonopoulos et al., 

1976 

 

 

 

 

Broderius, 1981 

NaClO4        

  0.0
 b
 

0.1 

0.5 

1.0 

3.0 

5.0 

Calorimetry  25 

 

9.21
 c
 

9.03 

9.01 

9.01 

9.45 

10.01 

52.6 

51.5 

51.4 

51.4 

53.9 

57.1 

43.8 

43.95±0.51  

44.20±0.38  

43.92±0.14  

43.13±0.35  

38.53±0.07  

-30 

-25 

-24 

-25 

-36 

-62 

Solis et al., 1996a 

NaCl        

  0.0
 b
 

0.5 

1.0 

3.0 

5.0 

Calorimetry  25 

 

9.21
 c
 

8.949±0.004
d 

8.946±0.005
 d
 

9.220±0.005
 d
 

9.660±0.004
 d
 

52.6 

51.1 

51.1 

52.6 

55.1 

43.4 

44.57±1.58 

47.55±1.45 

50.95±0.79 

53.15±0.41 

-30 

-22 

-12 

-5 

-6 

Solis et al., 1996a  

 

a 
Corresponding to eq. (2). 

 b
 Values at infinite dilution were obtained by extrapolation or by correction for activity 

coefficients. 
c
 From Beck (1987). 

d
 Original data and standard deviations from Verhoeven, 1989. 
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Table 3 

Solubility constant (log 
*
Ks2) for CuCN(s) at 25 

o
C, obtained from measurements in different media 

Ionic Strength 

(M) 

Medium Method Log 
*
Ks2

o 
Reference 

0 

0 

1.0 

HCN 

NaCl 

NaCl 

Solubility 

Solubility 

Solubility 

–4.91 

–4.9±0.1 

–4.50±0.01 

Vladimirova & Kakovskii, 1950 

Königsberger et al., 1994 

Akilan et al., 2015 
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Table 4  

Overall (n) and stepwise (n) formation constants of copper(I)-cyanide complexes in different aqueous 

media at various ionic strengths and temperatures 

Ionic 

Strength 

(M) 

Medium 
Temp.  

o
C 

Method Log n Log n References & Comments 

CuCN
0
 

1.0 

1.0 

 

NaCl 

NaCl 

 

25 

25 

 

Estimated 

Solubility 

n = 1  

16.33
a
 

15.800.15 

  

Hefter et al., 1993 

Akilan et al., 2015 

Cu(CN)2


0 

 

0.84-1.21 

 

 

 

 

 

 

1.0 

1.0 

3.0 

5.0 

 

 

 

NaCu(CN) 

 

 

 

 

 

 

NaCl 

NaCl 

NaCl 

NaCl 

 

25 

25 

25 

10 

15 

20 

25 

30 

40 

25 

25 

25 

25 

 

JESS estimate 

Potentiometry 

Potentiometry 

 

 

 

 

 

 

Potentiometry 

Potentiometry 

Potentiometry 

Potentiometry 

n = 2 

23.7 

23.9
b
 

24.9±1.3 

24.5±1.3 

24.2±1.3 

23.8±1.3 

23.4±1.3 

22.7±1.2 

22.1±1.2 

23.95±0.01 

23.76±0.01 

23.93±0.01 

24.01±0.01 

 

 

 

 

 

 

 

 

 

This paper 

Vladimirova & Kakovskii, 1950 

Bek et al., 1972; 

(T) values calculated from line 

of best fit to data (Figure 3). 

 

 

 

 

Hefter et al.,1993; Solis, 1995 

Akilan et al., 2015 

Akilan et al., 2015 

Akilan et al., 2015 

Cu(CN)3


 

0 

0 

0.01 

0.01 

0.84-1.21 

 

 

 

 

 

 

1.0 

1.0 

3.0 

5.0 

 

 

 

KOH 

KClO4 

NaCu(CN) 

 

 

 

 

 

 

NaCl 

NaCl 

NaCl 

NaCl 

 

25 

25 

29 

25 

25 

10 

15 

20 

25 

30 

40 

25 

25 

25 

25 

 

JESS estimate 

Potentiometry
c
  

UV Spectrometry 

UV Spectrometry 

Potentiometry 

 

 

 

 

 

 

Potentiometry 

Potentiometry 

Potentiometry 

Potentiometry 

n = 3 

 

28.5 

 

 

29.4±1.6 

28.9±1.6 

28.5±1.6 

28.4±1.6 

27.6±1.5 

26.9±1.5 

26.1±1.5 

29.38±0.04 

29.38±0.04 

29.33±0.04 

29.26±0.04 

n = 3 

5.14 

5.30 

 

5.34 

5.39 

4.54±0.3 

 

 

 

 

 

5.43±0.04 

5.63±0.04 

5.40±0.04 

5.25±0.04 

 

This paper 

Izatt et al., 1967 

Baxendale & Westcott,1959  

Kappenstein & Hugel, 1974 

Bek et al.,1972; 

(T) values calculated from line 

of best fit to data (Figure 4). 

 

 

 

 

Hefter et al., 1993; Solis, 1995 

Akilan et al., 2015 

Akilan et al., 2015 

Akilan et al., 2015 

Cu(CN)4


    n = 4 n = 4  
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0 

0 

0.01 

0.8-1.2 

0.84-1.21 

 

 

 

 

 

 

1.0 

1.0 

3.0 

5.0 

  

 

KOH 

K(Na)CN 

NaCu(CN) 

 

 

 

 

 

 

NaCl 

NaCl 

NaCl 

NaCl 

25 

25 

29 

25 

25 

10 

15 

20 

25 

30 

40 

25 

25 

25 

25 

JESS estimate 

Potentiometry
c
 

UV Spectrometry 

IR Spectroscopy 

Potentiometry 

 

 

 

 

 

 

Potentiometry 

Potentiometry 

Potentiometry 

Potentiometry 

30.6 

 

 

 

30.8±1.7 

30.3±1.7 

29.8±1.7 

29.3±1.7 

28.8±1.7 

27.9±1.6 

27.1±1.6 

31.78±0.02 

31.89±0.02 

32.25±0.02 

32.52±0.02 

1.6 

1.5±0.2 

1.74 

1.6 

1.84±0.1 

 

 

 

 

 

 

2.38±0.04 

2.51±0.04 

2.92±0.04 

3.26±0.04 

This paper 

Izatt et al., 1967 

Baxendale & Westcott,1959 

Penneman & Jones, 1956 

Bek et al., 1972; 

(T) values calculated from line 

of best fit to data (see Figure 4). 

 

 

 

 

Hefter et al., 1993; Solis, 1995 

Akilan et al., 2015 

Akilan et al., 2015 

Akilan et al., 2015 

a
 Slightly different values have been estimated for I = 3 & 5 M (NaCl) media by Akilan et al. (2015).

 b
 Corrected by 

Izatt et al. (1967) using pKa
o
(HCN ) = 9.21 and an extended Debye-Hückel equation. 

c
 Combined with calorimetry. 
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Table 5 

Thermodynamic parameters for the overall formation reactions for di-, tri- and tetra-cyanocuprate(I) 

complexes in different media at 25 
o
C, with analogous data for tetracyano-Zn and -Cd complexes 

Ionic 

Strength 

(M) 

Medium 
Method Complex Log n 

G              

kJ/mol 

H              

kJ/mol 

S             

J/K.mol 
Reference 

 0
a 

 

0.84-1.21 

 

 

Na(Cu)CN 

Calorimetry 

 

Potentiometry 

Cu(CN)2

 23.94 

 

23.9 

137 

 

136±7 

122±1 

 

125±3 

12±0.5 

 

[38±60]
b 

Izatt et al., 1967  

 

Calculated from 

Bek et al., 1972 

0
 a
 

 

0.84-1.21 

 

 

Na(Cu)CN 

Calorimetry 

 

Potentiometry 

Cu(CN)3
2

 29.24 

 

28.4 

167 

 

162±9 

168±1 

 

[142±4]
b
 

–1.4±0.7 

 

[69±60]
b 

Izatt et al., 1967  

 

Calculated from 

Bek et al., 1972 

  0
 a
 

 

0.84-1.21 

 

1.0 

 

 

Na(Cu)CN 

 

NaCl 

Calorimetry 

 

Potentiometry 

 

Calorimetry 

Cu(CN)4
3

 

 

 

30.74 

 

 

 

31.77
c
 

175 

 

173±9 

 

181.2 

215±2 

 

[165±4]
b 

 

237.9±1.7 

–136±9 

 

[26±60]
b 

 

–190.3 

Izatt et al., 1967  

 

Calculated from 

Bek et al., 1972 

Solis et al., 1996b 

 

1.0 NaCl Calorimetry  Zn(CN)4
2

 

18.62
d
 106.2 118.2±0.7 

 

–40.3 Solis et al., 1996b 

 

1.0 NaCl Calorimetry  

 

Cd(CN)4
2

 

18.62
d
 82.4 113.9±0.6 

 

–105.6 Solis et al., 1996b 

 

a
 Values at infinite dilution were obtained by extrapolation or by correction for activity coefficients. 

b
 Values in square 

brackets are thought to be less reliable than other listed results. 
c
 Value from Hefter et al. (1993). 

d
 Value in 3 M NaCl, 

from Verhoeven et al. (1990b). 
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Figure 1 

Species distribution for the Cu(I)/CN
–
 system as a function of pH in 1 M (NaCl) at 25 

o
C with [Cu(I)]T 

= 5 mM and [CN
–
]T = 35 mM. Note that solutions at pH < ca. 4.5 are likely to be supersaturated with 

respect to CuCN(s). 
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Figure 2 

Ionic Strength dependence of pKa(HCN) at 25 
o
C in NaCl ( Verhoeven et al., 1990a) and NaClO4 (■ 

Solis et al., 1996a; oGáspár & Beck, 1982; Banyai et al., 1992; + Persson, 1971). 
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Figure 3 

Temperature dependence of pKa(HCN) at I  0 and temperatures from (0 to 50) 
o
C. The line 

corresponds to eq. (4) with pKa
o
 = 9.21 (Beck, 1987) and Ha

o
 = 43.6 kJ/mol (Christensen et al., 1970).  
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Figure 4 

Temperature dependence of log n (n = 2, 3, 4) for cyanocuprate(I) complexes ( data from Bek et 

al., 1972). 
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Highlights 

 

 Review of formation and equilibrium constants for aqueous copper cyanide complexes. 

 Includes measured dissociation constants for hydrogen cyanide and water. 

 Also reviews equilibrium constants measured under non-standard conditions. 

 The corresponding enthalpies and entropies of reaction are also reviewed. 

 Gaps in available information determined and recommendations for further research. 
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