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ABSTRACT 

 

This thesis proposes methodologies to analyze and establish interpretable fuzzy systems 

for monthly rainfall spatial interpolation and time series prediction. A fuzzy system has 

been selected due to its capability of handling the uncertainty in the data and due to its 

interpretability characteristic.  

In the first part, this thesis proposes a methodology to analyze and establish interpretable 

fuzzy models for monthly rainfall spatial interpolation using global and local methods. 

In the global method, the proposed methodology begins with clustering analysis to de-

termine the appropriate number of clusters, and fuzzy modeling and a genetic algorithm 

are then used to establish the fuzzy interpretation model. In the local method, the modu-

lar technique has been applied to improve the accuracy of the global models while the 

interpretability capability of the model is maintained. 

In the second part, this thesis proposes a methodology to establish single and modular 

interpretable fuzzy models for monthly rainfall time series predictions. In the single 

model, the cooperative neuro-fuzzy technique and a genetic algorithm have been used. 

In the modular model, the modular technique has been applied to simplify the complexi-

ty of the single model. The whole system is decomposed into twelve sub-modules ac-

cording to the calendar months. The proposed modular model consists of two function-

ally consecutive layers, the prediction layer and the aggregation layer. In the aggregation 

layer, Bayesian reasoning has been applied. 
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The case study used in this thesis is located in the northeast region of Thailand. The 

proposed models were compared with commonly-used conventional and intelligent 

methods in the hydrological discipline. The experimental results showed that, in the 

quantitative aspect, the proposed models can provide good prediction accuracy and, in 

the qualitative aspect, the proposed models can also meet the criteria used for model in-

terpretability assessment. 
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CHAPTER 1 

INTRODUCTION 

1.1. Rainfall Prediction  

Prediction of hydrological variables is one of the important tasks in water management 

systems and planning (Araghinejad et al., 2011). In agricultural countries, such as Thai-

land, rainfall plays a vital role in the countries' economic development. The effective-

ness of rainfall prediction is an important factor for allowing sustainable agricultural de-

velopment, as well as flood and drought prevention (Wu et al., 2010). To accomplish 

this task, efficient rainfall prediction techniques as well as computational tools are es-

sential.  

In general, strategies used in the prediction of rainfall, including other climate variables, 

are based on spatial and temporal perspectives. In the former, the prediction is per-

formed for any location by means of the spatial relationships (Isaaks & Srivastava, 

1989), while in the latter the relationships along the time dimension are used for future 

prediction (Montgomery et al., 2008). In this thesis, the term "spatial interpolation" and 

"time series prediction" are adopted for both perspectives, respectively. As a result, rain-

fall prediction in this thesis is separated into two challenging issues.   

Spatial interpolation is a method that estimates the values at unsampled points by using 

the values from neighbouring sampled points (Li & Heap, 2008). In geographic infor-

mation systems (GIS), such a method is commonly used to create continuous surfaces 

from sampled points (Chang, 2006). This is important for water and agricultural man-
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agement because such information is necessary in decision making, for example, irriga-

tion planning, water flood way planning, assessment of dam and reservoir installation, 

and selection of agricultural products in a certain area (Sharma & Irmak, 2012).  

Rainfall time series prediction is used to predict the value of rainfall in the near future. 

The prediction models are generated from the time series historical records (Wu et al., 

2010). This is necessary in water management because it provides the lead-time exten-

sion to assess the amount of water coming into the basin. An accurate future rainfall 

prediction can have an impact on flood and drought prevention, reservoir operation, con-

tract negotiation, and irrigation scheduling (Araghinejad et al., 2011). 

Regardless of whether spatial interpolation or time series prediction is used, the com-

mon objective is to create an accurate rainfall prediction model. However, with respect 

to the rainfall data, creating an accurate rainfall prediction model is not an easy task be-

cause rainfall data collected can contain uncertainty and noisy information. They are 

also highly non-linear in nature. Compared to other climate variables such as humidity 

or temperature, prediction of rainfall is relatively more difficult due to various influen-

tial factors such as topology of the area (Kim & Pachepsky, 2010).  

For decades, Box-Jenkins models have been commonly adopted in hydrological time 

series prediction. However, due to the complexity in rainfall data, the accuracy of the 

prediction models depends on the linearity and prior assumptions used. In the same 

manner, this problem has also been observed in the kriging methods when performing 
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spatial interpolation on rainfall data. Consequently, the need of a better rainfall predic-

tion model still exists.  

Recently, with the advancement of modern computational modeling, many computa-

tional intelligent techniques have been proposed (Negnevitsky, 2011; Karray & Silva, 

2004). These techniques have been applied to rainfall prediction.  In most cases, compu-

tational intelligent techniques are able to provide considerable prediction accuracy when 

used to construct rainfall prediction models (Wu & Chau, 2013; Piazza et al., 2011; Wu 

et al., 2010; Hu & Zhang, 2008; Zhang & Wang, 2008; Somvanshi et al., 2006; Lee et 

al, 1998). 

1.2. Understand the Rainfall Prediction Models  

System identification involves the use of mathematical tools and algorithms to build dy-

namic models describing the behavior of the real-world systems from measured data 

(Zhou & Gan, 2008). One of the issues in system modeling is interpretability (or trans-

parency) of the models. Model interpretability is defined as a property that enables users 

to understand and analyze the influence of each system parameter on the system output 

(Harris et al., 2002; Setnes et al., 1998; Brown & Harris, 1994). In general, there are 

three different strategies for system modeling addressing interpretability of the model: 

the white-box, black-box and grey-box models.  

In the white-box model (e.g. Newton’s laws), parameters are clearly presented and the 

model can be interpretable. However, when the problem becomes complex, the white-

box model tends to be impractical due to the limitation of mathematic representation. 
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Contrastingly, the black-box model does not provide clear information on how the mod-

el performs the determination. The user normally has minimal options in understanding 

how the model works. However, this type of model can provide prediction without using 

prior knowledge. An example of the black-box model is an artificial neural network 

(ANN). The structure and parameters of the model may not reflect the behavior of the 

system to be modeled and sometimes provides questionable results (Abonyi et al., 

2000).  

The white-box model normally provides high interpretability with sometimes lower ac-

curacy, whereas the black-box model may offer higher accuracy but poor interpretabil-

ity. As a result, the grey-box model is deemed to be in between these two extremes 

when it comes to accuracy and interpretability, as prior knowledge of the system is con-

sidered, but it leaves the unknown parts of the system to be represented by the black-box 

modeling approach (Zhou & Gan, 2008). Interpretability is an important issue in a data-

driven model because human analysts can gain insight into the complex real-world sys-

tem to be modeled.  

With respect to the hydrological area, no matter what rainfall or other hydrological vari-

ables are used, the established models usually try to achieve higher prediction accuracy, 

and most of the time the model transparency issue is overlooked (Wu & Chau, 2013; 

Wu et al., 2010). The trend is also observed with the large number of ANN techniques 

used to establish the hydrological prediction models (Singh & Imtiyaz, 2013; See et al., 

2004; ASCE Task Committee on Application of Artificial Neural Networks in Hydrolo-

gy [ASCE-TCAANNH], 2000a; ASCE-TCAANNH, 2000b).  
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ANN may provide considerable prediction accuracy and such a technique is easy to use 

and needs no prior knowledge of the system to establish the models. With these ad-

vantages, it is reasonable to understand why ANN has gained momentum and interest 

from many researchers in hydrological prediction in recent decades. On the other hand, 

fuzzy logic (FL), which is categorized as the interpretable grey-box model, formulates 

the system knowledge with rules in a transparent way to interpretation and analysis, and 

leaves the inference mechanism as the opaque part. For this reason, researchers have 

started to look at the use of FL to handle the issue of accuracy and interpretability of the 

rainfall prediction models (Asklany et al., 2011; Wong et al., 2003; Huang et al., 1998).   

The aim of this thesis is to establish a rainfall prediction model that addresses the issues 

of accuracy and interpretability. This is important in the field of rainfall prediction be-

cause an understanding of rainfall behaviors is necessary for water management and 

planning. The interpretable rainfall prediction model can allow human analysts to prac-

tically enhance the model and, if possible, to gain insight into the rainfall data to be 

modeled. 

1.3. Case Study Area and Monthly Rainfall Data 

The case study area used in this thesis is located in the northeast region of Thailand 

(Figure 1.1), within the area of latitude between 14.11°N to 18.45°N and longitude be-

tween 100.83°E to 105.63°E. The total area size is 168,854 km
2
 and it is a large plateau. 

The minimum and maximum altitudes are 17 m and 1799 m, respectively, above sea 

level.  
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The topology of the study area (the Khorat Plateau) tilts up toward the west region, the 

Phetchabun mountain range, down toward the east. The plateau consists of two main 

plains, the southern Khorat plain and the northern Sakon Nakhon plain, which are sepa-

rated by the Phu Phan mountain range.  

In general, there are three seasons a year, that is, hot, cool and rainy seasons. The rainy 

period gradually starts from March, reaches the highest level in between June and Au-

gust, and then usually reduces by November. The average annual rainfall varies from 

1270 to 2000 mm.  

 

 

 

 

 

Figure 1.1. Case study area is located in the northeast region of Thailand. 

According to the information reported by the Land Development Department of Thai-

land (n.d.), this area has experienced severe drought for many decades. The cultivation 

in this area is mainly subject to irrigation systems. Inefficient irrigation systems can re-

sult in poor agricultural produce. In comparison with other parts of Thailand, this area 

has to be further developed, and thus provides the motivation for this study.  

Thailand 

N 

Southern Khorat plain 

Northern Sakon Nakhon plain 

Phu Phan mountain range 

Phetchabun mountain range 
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The rainfall data used in this thesis are monthly rainfall data collected from rain gauge 

stations within the study area (Remote Sensing & GIS, n.d.). The number of rain gauge 

stations is approximately 295. The rainfall data ranges from 1981 to 2001. Some neces-

sary information about the data will be presented in detail in the subsequent chapters.  

1.4. Aim and Objectives of the Thesis  

As aforementioned, the aim of this thesis is to propose a rainfall prediction model which 

is capable of handling the interpretability issue with considerable prediction accuracy to 

monthly rainfall spatial interpolation and time series prediction. A fuzzy system is there-

fore selected as a suitable technique to handle the complex rainfall data and to provide 

an interpretable mechanism at the same time. However, achieving high accuracy and 

high interpretability simultaneously is not an easy task; hybrid and modular techniques 

are therefore applied to achieve these goals.  

1.4.1. Objectives for Spatial Interpolation 

The main objective of the thesis is to develop a methodology to analyze and establish an 

interpretable fuzzy model for monthly rainfall spatial interpolation. In order to address 

this problem, two important issues should be taken into consideration. The first issue is 

how to localize a global area into local areas. The second issue is how to create a fuzzy 

model which is capable of providing good estimation accuracy and good model inter-

pretability. However, a single fuzzy model may have limitations in achieving a high ac-

curacy for a large area and maintaining the interpretability of the model. Therefore, a 
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subsequent issue is how to increase the accuracy of the model while maintaining or en-

hancing the interpretability of the model. Solutions to all these issues are the key objec-

tives of this study. 

1.4.2. Objectives for Time Series Prediction 

Another main objective of the thesis is to develop a methodology to create an interpreta-

ble fuzzy model for monthly rainfall time series prediction. The idiosyncrasy of this 

problem is different from spatial interpolation in that the input to the time series predic-

tion model is not known in advance. As a result, the modeling process depends on the 

defined input, and this may complicate the modeling process. Furthermore, once an in-

terpretable fuzzy model is established, such a model should provide an approach to ena-

ble human analysts to analyze into monthly time series data.  In summary, all these is-

sues will be addressed and they form the key objectives of this part of the study. 

1.5. Overview of the Thesis 

Chapter 1 provides an introduction to this thesis. In Chapter 2, related works about spa-

tial interpolation and time series prediction in hydrological and related areas are present-

ed. The problem of interpretability in hydrological models will be addressed. Further-

more, concepts of fuzzy systems and their interpretability features are discussed. 

This thesis can also be considered in two parts. First, the thesis contributes towards the 

problem of monthly rainfall spatial interpolation as covered in Chapter 3 and Chapter 4. 

In Chapter 3, cluster analysis and global spatial interpolation methods are presented, 
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whereas in Chapter 4 modular techniques used to improve the interpolation accuracy 

and model interpretability of the global method are described. 

In the second part, the thesis contributes to the problem of monthly rainfall time series 

prediction as described in Chapters 5 and 6. In Chapter 5, a single model for monthly 

time series prediction is introduced, and in Chapter 6 modular techniques are used to 

simplify the complexity of the single model. These single and modular models are alter-

native solutions and each model has its own advantages. Finally, the conclusion is pro-

vided in Chapter 7.  
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CHAPTER 2 

THE PROBLEM OF INTERPRETABILITY IN HYDROLOGICAL MODELS 

AND INTERPRETABLE FUZZY SYSTEMS 

2.1. Introduction 

Spatial interpolation and time series prediction of the rainfall play significant roles in 

water management and planning. Spatial interpolation provides the information of spa-

tial distribution of the rainfall over a study area, while time series prediction provides 

the information for future projection used for flow forecasting. However, due to the 

complex nature of the rainfall, these tasks face many challenges.  

Hydrological processes such as rainfall depend on many complex factors that are not 

clearly understood, and the conditions change from area to area. In this case, data-driven 

based models have been used to create the prediction models. Recently, many intelligent 

methods have been adopted to establish the hydrological models, due to the considerable 

ease of use and accuracy from these methods. Although most of these intelligent meth-

ods can provide satisfactory outcomes in terms of accuracy, such methods seem to dis-

regard the interpretability capability. 

Model interpretability is an important issue in data-driven modeling because interpreta-

ble models allow human analysts to understand the models. Furthermore, if the inter-

pretable models are presented in an appropriate way, human analysts can gain insights 

of the data to be modeled. This thesis therefore focuses on how to create interpretable 

models for monthly rainfall spatial interpolation and time series prediction.  
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This chapter begins with literature reviews of spatial interpolation and time series pre-

diction in hydrological and related areas. Next, the problem of interpretability will be 

examined and the importance of such systems will be highlighted. After that, back-

grounds of fuzzy systems will be introduced, followed by the interpretability criteria of 

fuzzy modeling.  

2.2. Spatial Interpolation in Hydrological and Related Areas 

Spatial interpolation is a method that estimates the values at unsampled points by using 

the values from neighbouring sampled points (Li & Heap, 2008). In the discipline of ge-

ographic information systems (GIS), Burrough and McDonnell (1998) have classified 

spatial interpolation methods into global and local methods. The global methods use all 

sampled data points from the entire study area to establish spatial interpolation models, 

whereas the local methods use only a certain number of sampled data points to perform 

interpolation.  

In turn, the local methods themselves can be classified into deterministic and stochastic 

(or geostatistic) methods (Li & Heap, 2008). The former does not provide the assess-

ment of error with the estimated value. The latter, on the other hand, offers the assess-

ment of errors with estimated variances. Spatial interpolation methods can also be 

grouped into exact and inexact methods. The interpolated values are the same as sam-

pled values in the exact method whereas the interpolated values are different from sam-

pled values in the inexact methods (Chang, 2006). 



12 
 

To date, many spatial interpolation methods have been proposed. However, none of the 

spatial interpolation methods are suitable to be applied to all spatial data in different lo-

cations and conditions. The success of a spatial interpolation method to provide reason-

able interpolation of a spatial variable depends on several factors (Li & Heap, 2008) and 

sometimes a comparison study is necessary for most case studies (Li et al., 2011; Piazza 

et al., 2011). One recommended guideline of spatial interpolation methods for environ-

mental variables is found in the work of Li and Heap (2008). Their guideline introduces 

a variety of commonly-used spatial interpolation methods and recommends methods for 

specific requirements.  

According to the guideline, some of commonly-used spatial interpolation methods are 

adopted in this thesis for comparison purposes. These methods include trend surface 

analysis (TSA), inverse distance weighing (IDW), thin plate splines (TPS), ordinary 

kriging (OK), universal kriging (UK) and ordinary co-kriging (CK).  

TSA is a global inexact spatial interpolation method that estimates values at unsampled 

points by using a polynomial equation. In practice, a third order polynomial equation is 

normally used because this order is appropriate for real-world data, which have both hill 

and valley surfaces (Chang, 2006). TSA has been applied to many environmental varia-

bles, for example, rainfall (Kajornrit et al., 2011), wind speed (Luo et al., 2008), and 

temperature (Collins & Bolstad, 1996). However, the accuracies of TSA reported in this 

literature are relatively poor in comparison with other methods. 
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IDW is an exact local spatial interpolation method that estimates the values at unsam-

pled points by using a linear combination of values from nearby sampled points 

weighted by an inverse distance function (Li & Heap, 2008). IDW is the most common-

ly-used method and usually used as a control method (or standard method) for compari-

son (Li et al., 2011). IDW has been applied to many environmental variables, for exam-

ple, precipitation (Luo et al., 2011; Goovaerts, 2000; Hartkamp et al., 1999; Nalder & 

Wein, 1998), wind speed (Cellura et al., 2008; Luo et al., 2008), solar irradiation (Sen & 

Sahin, 2001), seabed mud content (Li et al., 2011), depth of groundwater (Sun et al., 

2009) and soil properties (Robinson & Metternicht, 2006).   

Beside the standard IDW, some literature proposed additional techniques to IDW to en-

hance the interpolation accuracy. Some examples of these techniques are the clustering-

assisted gradient plus inverse distance square (Tang et al., 2012), incorporation of fuzzy 

concept with a genetic algorithm (GA) (Chang et al., 2005), a classic weighting method 

with a cumulative semivariogram (Sen & Sahin, 2001) and the gradient plus inverse dis-

tance squared (Nalder & Wein, 1998).  

TPS is an exact local spatial method that creates a surface passing through the sampled 

points with minimum curvature. Conceptually, TPS works as a flexible sheet of rubber 

passing through the sampled points (Chang, 2006). It was originally developed for cli-

matic data analysis by Wahba and Wendelberger (1980). This technique has been ap-

plied to problems such as precipitation (Piazza et al., 2011; Hong et al., 2005; Hartkamp 

et al., 1999), temperature (Hancock & Hutchinson, 2006; Hong et al., 2005; Jeffrey et al. 

2001), and wind speed (Luo et al., 2008).  
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Based on the literature, IDW and TPS have provided more accurate results than TSA in 

general. However, the accuracy between IDW and TPS cannot be clearly differentiated. 

This is because their accuracy is subject to many factors such as the topology of the 

study areas.  

In addition to the deterministic methods, stochastic methods perform interpolation like 

IDW, except that such methods use spatially dependent variance of data instead of spa-

tial distance. Kriging methods, developed by Matheron (1965) and based on the work of 

Krige (1951), are stochastic methods. Kriging does not only estimate data at unsampled 

points, but also assesses the quality of estimation.  

The assumption of kriging methods is that the spatial variation of data is neither totally 

random nor deterministic. Instead, the spatial variation consists of three components, 

namely, a spatial correlation component that represents the variation of the regionalized 

variable, a drift or structure which represents a trend, and a random error term.  

As far as kriging methods are concerned, one indispensable issue that has to be men-

tioned is the semivariogram. A semivariogram is the model representing the spatial cor-

relation and is presented as: 

 ( )   
 

  
 ∑ , (  )    (     )-  

                (2.1) 

where γ(h) is the average semivariance between sampled points separated by lag h, n is 

the number of pairs of sample points, and z is the attribute value. In other words, a semi-

variogram is the relationship between lag distance and semivariance. A general model of 

a semivariogram is depicted in Figure 2.1.  
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Figure 2.1. A general model of a semivariogram. 

According to the figure, some important features are displayed: the nugget is the semi-

variance at the distance of zero, representing the sampling error and/or spatial variance 

at a shorter distance than the minimum sample space; the range is the distance at which 

the semivariance starts to level off and beyond the range the semi-variance becomes a 

relatively constant value; and the sill is the semivariance at which the leveling takes 

place. The sill, in turn, consists of the partial sill (C1) and the nugget (C0). In practice, an 

experimental semivariogram will be fitted by a mathematical model mainly for compu-

tational purposes. Usually, four types of mathematical models are preferred: spherical, 

exponential, Gaussian and linear models. 

Presently, there are many kriging techniques proposed (Li & Heap, 2008). However, 

three commonly-used kriging methods are OK, UK and CK as mentioned before. OK 

interpolates data by using a fitted semivariogram and focuses only on the spatial correla-

tion and absence drift, while UK interpolates data in the same way as OK except the 

drift of data is taken into account. CK performs similarly to OK except that a secondary 
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variable is allowed. In practice, the most commonly-used second variable is the altitude 

for rainfall variable (Goovaerts, 2000). 

Much work has contributed to the use of kriging methods to many hydrological and cli-

matic variables such as: precipitation (Piazza et al., 2011; Luo et al., 2011; Bargaoui & 

Chebbi, 2009; Haberlandt, 2007; Yue et al., 2003; Jeffrey et al., 2001; Goovaerts, 2000; 

Hartkamp et al., 1999; Nalder & Wein, 1998), temperature (Hartkamp et al., 1999; 

Nalder & Wein, 1998), evaporation (Yue et al., 2003), wind speed (Cellura et al., 2008; 

Luo et al., 2008), and depth of groundwater (Sun et al., 2009). In addition to standard 

methods, some advanced kriging techniques such as kriging with external drift and indi-

cator kriging with external drift may include secondary information from radars if they 

are available (Haberlandt, 2007). 

One difficult task of using kriging methods is the modeling of the semivariogram. Fit-

ting the experimental semivariogram with the mathematical model is rather subjective to 

users' experiences (Nalder & Wein, 1998; Huang et al., 1998). Besides, kriging methods 

also require the stationary condition of spatial data (Li et al., 2011). In other words, the 

success of kriging methods depends on the appropriate selection of a semivariogram and 

the stationary condition of spatial data. Furthermore, in comparison with deterministic 

methods, more computation is normally required, such as solving simultaneous equa-

tions being needed for every interpolated point (Huang et al., 1998).  

With the advent of intelligent techniques such as ANN, much literature has adopted the-

se techniques to perform spatial interpolation and has showed a common agreement that 
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these techniques are promising approaches. In comparison with GIS-based methods (de-

terministic and stochastic), applications of these intelligent techniques are relatively new 

to those methods that have been discussed so far.  

One of the commonly-used intelligent methods is the back-propagation neural network 

(BPNN). BPNN has been successfully applied to rainfall spatial interpolation (Piazza et 

al., 2011; Hu & Zang, 2008; Zhang & Wang, 2008) and wind speed spatial interpolation 

(Cellura et al., 2008). BPNN needs no prior knowledge or stationary condition to gener-

alize the relationships of the spatial data. Also, it can easily incorporate the altitude vari-

able to the model for rainfall spatial interpolation (Piazza et al., 2011; Kajornrit et al., 

2011).  

In addition to BPNN, radial basis function network (RBFN) is another ANN that is 

widely used for spatial interpolation. The architecture of RBFN is more interpretable 

and the training algorithm is faster than BPNN (Lin & Chen, 2004).  The works of Liu 

et al. (2011), Luo et al. (2011), Lin and Chen (2004) and Lee et al. (1998) are successful 

examples of the applications of RBFN to spatial interpolation problems. Lee et al. 

(1998) mentioned in their study that RBFN showed superior results than BPNN. How-

ever, a comparison between these ANNs is difficult to justify due to different conditions 

of the study area and the available spatial data.  

Another advantage of ANN is its flexibility as ANN can be efficiently integrated to oth-

er techniques. For example, in the case of RBFN, Liu et al. (2011) used RBFN with the 

bagging ensemble technique for soil content spatial interpolation. Luo et al. (2010) inte-
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grated RBFN to IDW for interpolating spatial precipitation data. Lin and Chen (2004) 

improved the original RBFN by combining it with semivariogram. In the case of BPNN, 

it was applied to the kriging method, in which BPNN was first used to capture the trend 

component of the spatial data and its residual was captured by the kriging method. This 

technique is commonly known as the neural kriging method and it has been applied to 

wind speed data (Cellura et al., 2008) and climatic data (Demyanov et al., 1998).  

Fuzzy systems are the other approaches that have been applied to spatial interpolation. 

Huang et al. (1998) applied a dynamic fuzzy-reasoning-based function estimator to rain-

fall spatial interpolation, whereas Wong et al. (2001) used conservative fuzzy reasoning. 

Even though these fuzzy systems have showed promising results, the lack of a learning 

algorithm in the fuzzy systems makes it difficult to establish the prediction model.  

Lately, hybrid techniques have also been adopted. Tutmez and Hatipoglu (2010) applied 

an adaptive neuro-fuzzy inference system (ANFIS) to spatial interpolation of nitrate in 

the groundwater and Wong et al. (2003) used a cooperative neuro-fuzzy inference sys-

tem (CNFIS) for spatial interpolation of rainfall. Their results suggested that ANFIS and 

CNFIS are not only able to provide accurate results, but are also capable of providing 

the model interpretability for human analysts. These studies suggested that model inter-

pretability is another issue that is equally important to the estimation accuracy. 

Some other intelligent techniques have also been applied to spatial interpolation in the 

hydrological area. The support vector machine (SVM) (Li et al., 2011; Gilardi & Ben-

gio, 2000), and the geographically weighted regression (GWR) (Piazza et al., 2011; Yu, 
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2009) are such examples. However, the number of applications from these techniques is 

still limited and more comparative studies are required to assess their performance.   

As can be observed from the trend of research in this field, intelligent techniques have 

shown that they can be good alternative approaches from the conventional GIS-based 

methods. Such techniques also decrease the requirement of prior assumptions in the es-

tablishment process of stochastic methods and they provide relatively good prediction 

accuracy. In the next section, literature review in the area of time series prediction in 

hydrological and related areas is provided. 

2.3. Time Series Prediction in Hydrological and Related Areas  

In hydrological time series prediction, multiple linear regression (MLR) and conven-

tional Box-Jenkins time series models (Box & Jenkins, 1970) have been widely adopted 

for decades. Applications of MLR, for example, can be found in the works of Wu et al. 

(2010) to predict daily and monthly rainfall time series; and in the works of Sudheer et 

al. (2002) to predict daily flow time series. The model was also applied to the monthly 

rainfall variable for drought forecasting in the work of Bacanli et al. (2009). Conven-

tional Box-Jenkins time series models, that is, auto-regressive (AR) and autoregressive 

moving average (ARMA) have been applied to many hydrological variables for com-

parative purposes in the following literature. 

The AR model was used to predict the daily streamflow time series in the works of 

Zounemat-Kermani and Teshnehlab (2008), and Firat and Güngör (2008), and it was 
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also used to predict the monthly streamflow time series in the works of Firat and Turan 

(2009), Jain and Kumar (2007), and Raman and Sunilkumar (1995). The ARMA model 

was used in the work of Sudheer et al. (2002) and Nayak et al. (2004) to predict the dai-

ly streamflow time series, and was used in the work of Wu and Chau (2010) to predict 

the monthly streamflow time series. Wang et al. (2009) applied the ARMA model to the 

monthly discharge flow time series and Somvanshi et al. (2006) applied this model to 

predict the mean annual rainfall time series. Furthermore, Lohani et al. (2010) applied 

the Box-Jenkins linear transfer function for the daily rainfall-runoff model. 

The methods reviewed so far have a common agreement between the researchers. From 

their experiments, the prediction accuracy of these models has been limited due to the 

linearity of the models. Such models suffer from the assumption of stationary (Mont-

gomery et al., 2008), linearity (Jain & Kumar, 2007) and normal distribution conditions 

(Wang et al., 2009). These conditions prevent the models from representing the non-

linear dynamic inherent in hydrological processes (Tokar & Johnson, 1999). Conse-

quently, contemporary non-linear models such as ANN have been utilized in hydrologi-

cal time series prediction.  

ANN has been widely used in hydrological time series prediction, especially the one 

hidden layer BPNN. (Wu & Chau, 2013; Guo et al., 2011; Lohani et al., 2010; Wu et al., 

2010; Wu & Chau, 2010; Wang et al., 2009; Firat & Turan, 2009; Bacanli et al., 2009; 

Firat & Güngör, 2008; Jain & Kumar, 2007; Somvanshi et al., 2006; Nayak et al., 2004; 

Sudheer et al., 2002; Raman & Sunilkumar, 1995). Based on the literature, ANN has 

proven to be an efficient technique and has provided more accurate results than those 
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linear models in general. Furthermore, the ANN models are easier to establish and need 

no prior assumptions when compared to those linear models.  

However, one comment about ANN is that such a model falls in the group of "Atheoret-

ical model" (Sudheer et al., 2002). In other words, there is no consistent theory to define 

an appropriate input vector to the models for time series prediction. In the case of Box-

Jenkins models, the establishment method employs the statistical theory to define the 

appropriate input to the model, that is, the autocorrelation function (ACF) and the partial 

auto-correlation function (PACF).  

Sudheer et al. (2002) investigated the application of ACF and PACF to define an appro-

priate input vector to ANN. They suggested that ACF and PACF can be used as general 

criteria to define an appropriate input vector. This suggestion has been adopted later in 

some recent literature (Wu & Chau, 2013; Monira et al., 2011; Wu et al., 2010; Wu & 

Chau, 2010; Wang et al., 2009; Somvanshi et al., 2006).   

Much literature has been dedicated to improve the prediction accuracy of ANN models. 

One approach is to apply pre-processing techniques to the time series data before feed-

ing to ANN models. For example, Raman and Sunilkumar (1995) applied statistical 

normalization to the monthly flow time series whereas Jain and Kumar (2007) applied 

de-trended and de-seasonalized techniques. It seemed that these techniques can adjust 

the kurtosis and skewness of time series data to be more normally distributed (Wu & 

Chau, 2013; Jain & Kumar, 2007), and this resulted in improved accuracy. The smooth-

ing techniques such as moving average (MA), principal component analysis (PCA), sin-
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gular spectrum analysis (SSA) and wavelet analysis (WA) have recently been investi-

gated in the work of Wu and Chau (2013), Wu et al. (2010) and Guo et al. (2011). These 

techniques have successfully improved the prediction accuracy of ANN by removing 

noise from time series data. 

Besides pre-processing techniques, the adaptation in the architecture of the models is 

another approach to improve prediction accuracy of ANN. One common limitation of 

ANN is that the trained model may fall in the local minima and cannot efficiently gener-

alize the training data. Modular and ensemble techniques have been applied to single 

ANNs to address this problem. The work of Wu and Chau (2013), Wu et al. (2010) and 

Raman and Sunilkumar (1995) are examples of the modular technique. An ensemble 

technique has been applied to ANN in the work of Monira et al. (2011) and applied to 

SVM in the work of Lu and Wang (2011) for rainfall time series prediction.  

The fuzzy inference system (FIS) is another technique that has been adopted in the hy-

drological area (Asklany et al, 2011; Lohani et al., 2010; Toprak et al., 2009). In gen-

eral, two commonly-used FISs are the Mamdani-type FIS (MFIS) and the Sugeno-type 

FIS (SFIS). In the case of time series, it seems that MFIS is not as popular as the SFIS 

model. MFIS was used as a method to predict water consumption time series by Firat et 

al. (2009) for comparison purposes. Based on their experiment, MFIS provided lower 

prediction accuracy when compared to the SFIS model.  

An advantage of SFIS over MFIS is that such a model is capable of integrating with the 

back-propagation learning technique. ANFIS is an example of this capability. ANFIS 
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has been applied to many hydrological time series variables, for example, streamflow 

(Firat & Turan, 2009; Wang et al., 2009; Firat & Gungor, 2008; Zounemat-Kermani & 

Teshnehlab, 2008; Keskin et al., 2006; Nayak et al., 2004), water consumption (Firat et 

al., 2009), drought index (Bacanli et al., 2009), and rainfall (Afshin et al., 2011). In the-

se application examples, ANFIS has combined the learning ability of BPNN and FIS in 

achieving improved results.  

From the literature reviewed, ANFIS provided more accurate results than BPNN and 

those linear models in their experiments. Furthermore, such a model is more interpreta-

ble than BPNN or Box-Jenkins models. ANFIS represents the model by fuzzy sets and 

fuzzy rules that are close to the nature of human linguistics. Fuzzy sets are close to hu-

man linguistic properties and fuzzy rules are close to logical inferences. Besides ANFIS, 

another method of combining BPNN and FIS is the fuzzy neural network, in which the 

fuzzy system is represented in the nodes of the BPNN to handle the uncertainty of data. 

The use of this technique in a hydrological study was reported in Alvisi and Franchini 

(2011). However, this technique was not intentionally applied to address the interpreta-

bility issue. 

Recently, some other intelligent techniques have been used in hydrological time series 

prediction. SVM and support vector regression (SVR) are examples of these techniques. 

Some studies have shown that these techniques can be good alternative techniques (Wu 

& Chau, 2013; Guo et al., 2011; Lu & Wang, 2011). Singular spectrum analysis (SSA) 

was another technique that has been used for hydrological time series prediction 

(Marques et al., 2006). However, the SSA technique was applied to the time series data 
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in order to decompose time series components for further analysis purposes, instead of 

enhancing prediction accuracy.  

In summary, a number of techniques used in hydrological time series prediction have 

been reviewed. It is observed that the intelligent techniques such as ANN and its vari-

ants have gained much attention from researchers recently. Due to flexibility of model 

establishment as well as considerable prediction accuracy, the linear Box-Jenkins mod-

els have gradually been overtaken by the intelligent techniques as described in contem-

porary literature. 

2.4. The Problem of Interpretability in Hydrological Models  

Up to this point, some of literature concerning spatial interpolation and time series pre-

diction in hydrological and related areas have been discussed. It is noted that intelligent 

techniques have gained attention from researchers and hydrologists, and these intelligent 

techniques have been widely adopted as alternative approaches over conventional meth-

ods. However, most of these intelligent techniques aim at achieving only the accuracy of 

the models and disregard the model interpretability issue.  

As aforementioned, the interpretability of models is important because human analysts 

can gain insight into the data to be modeled when prior knowledge is unknown or un-

clear. For example, in cases when the data comes from natural phenomena, there is little 

knowledge available. Consequently, establishing an interpretable data-driven model for 

those natural phenomena is necessary.  
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As the need of interpretable models have been illustrated and emphasized, the objectives 

of this thesis can be formulated as follows. The main objective of this thesis is to devel-

op a framework to establish interpretable data-driven models for spatial interpolation 

and time series prediction. From the literature review, it was suggested that fuzzy sys-

tems can be a promising solution to deal with the interpretability of the models as well 

as the complexity in the rainfall data. However, there are still many challenges that need 

to be addressed in order to create an accurate and interpretable fuzzy system, especially 

for hydrological application, and this thesis aims to address them. 

2.4.1. Issues in Spatial Interpolation  

One of the aims of many researchers in the field is to develop techniques that can im-

prove global interpolation accuracy. Although the interpolator itself is in the form of a 

unified model, which is convenient for further analysis, such methods provide relatively 

lower accuracy than the local methods. Therefore, establishing an accurate interpretable 

fuzzy system for global spatial interpolation is one of the challenges that needs to be in-

vestigated. 

Although intelligent techniques such as ANN can work well as global methods, the ac-

curacy of these techniques can be improved by cooperating with the concept of divide 

and conquer as suggested in many research works (Wong et al., 2003; Huang et al., 

1998; Lee et al., 1998). However, the procedure to localize (divide) the global area into 

local areas is still subjective (Huang et al., 1998; Lee et al., 1998). Although some clus-

tering techniques such as the self-organizing maps (SOM) may cluster data automatical-
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ly, it is sometimes difficult to interpret the results when applied to noisy spatial data. 

There is a need to investigate more systematic localization procedures.  

For local deterministic and geostatistic interpolation methods, the accuracy can be im-

proved from the global method, as reported in many studies (Luo et al., 2008; Collins & 

Bolstad, 1996). However, considerable computation is required (Huang et al., 1998). 

Furthermore, in the case of geostatistic methods such as the kriging method, fitting a 

semivariogram is rather subjectivity (Nalder & Wein 1998; Huang et al., 1998). Expert 

knowledge may be needed to examine and establish the appropriate semivariogram 

model. It would be helpful if intelligent techniques can enable human analysts to miti-

gate some of the subjectivity in the model establishment process.  

2.4.2. Issues in Time Series Prediction  

One problem of intelligent methods used for time series prediction is there is no con-

sistent procedure to select appropriate inputs to the systems (Wang et al., 2009; Sudheer, 

et al., 2002). Although ACF and PACF can be used as a recommended criterion, it may 

affect the interpretability problem if the selected inputs are considerably large, especial-

ly for the FIS model. Feeding high dimensional inputs to the model results in the reada-

bility problem (Zhou & Gan, 2008) in the antecedent part of the FIS model. Thus, in this 

case, the first problem that needs to be considered is how to select appropriate and rea-

sonable inputs for the monthly time series data.   

Although the interpretability issue of the hydrological time series prediction model is 

not new, such an issue has been ignored by many researchers. That is because most of 
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the recent literature aimed only to enhance the quantitative prediction results. Thus, the 

amount of literature related to this issue is rather limited. The interpretability issue of the 

hydrological prediction model can have a significant impact on time series data analysis. 

That is because the interpretable advantage of the model can provide a new approach to 

analyze the time series data, and this thesis aims to address this issue. 

2.5. Solving the Issue of Interpretability with Fuzzy Systems 

This thesis selects the fuzzy system to address the interpretability problem mentioned. 

The selection not only considers the interpretability of the fuzzy system, but also the ca-

pability of handling uncertainty in the data. The fuzzy system is an efficient approach to 

handle the uncertainty and complexity in rainfall data. To facilitate further discussion, 

this section provides the background on fuzzy systems.  

The FIS processes a mapping of given inputs to outputs by using the fuzzy sets theory 

(Zadeh, 1965). FIS is an appropriate approach to be applied to the real-world problems 

because FIS allows for the variables “partial true” and/or “partial false”, which reflect 

the uncertainty nature in physical processes (Negnevitsky, 2011).  

In general, FIS consists of five basic components as shown in Figure 2.2 (Córdon, 2011; 

Nayak et al., 2004). These components include Rule Base, Database, Fuzzy Inference 

Engine, Fuzzification and Defuzzification Interfaces. The Rule Base and Database com-

ponent are also termed as the Knowledge Base of the fuzzy inference systems. 
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Figure 2.2. Five basic components of fuzzy inference systems. 

Functions of these components are as follows: Rule Base involves IF-THEN rules for 

mapping the relationships between inputs and outputs of the system in the form of "IF 

antecedent proposition THEN consequent proposition". The Database is a collection of 

the fuzzy parameters or membership functions (MFs) for the input and output variables. 

The Fuzzification Interface component fuzzifies crisp inputs to fuzzy inputs and, on the 

other hand, the Defuzzification Interface component defuzzifies fuzzy outputs to crisp 

outputs. Finally, the Fuzzy Inference Engine derives a logical decision by using IF-

THEN rules and handles the uncertainty by using MFs from the knowledge base.  

In general, two typical approaches of FIS are used. They are the Mamdani-type FIS 

(MFIS) (Mamdani & Assilian, 1975) and the Sugeno-type FIS (SFIS) (Sugeno & Ya-

sukawa, 1993). The difference between these FISs is the consequent part of fuzzy rules 

and how to defuzzify fuzzy sets outputs to crisp outputs. In MFIS, the fuzzy model is 

represented by linguistic rules with the following structure: 
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  Rulei : IF x1 is Ai,1 and  · · ·  xn is Ai,n 

THEN y is Bi (i = 1, . . . , L)     (2.2) 

where Rulei denotes the i
th

 rule; L is the number of rules in the rule base; x = (x1, . . . , 

xn)
T
 and y are the inputs and output linguistic variables respectively; and, Ai, j and Bi are 

the linguistic labels expressed as fuzzy sets that are specific to the system’s behaviour. 

The MFIS defuzzifies output fuzzy sets by finding the centroid of a two-dimensional 

shape by integrating across a continuous variation function (see Appendix C). 

In the SFIS, the consequent part of the fuzzy model is a linear equation and is represent-

ed in the following structure:  

  Rulei : IF x1 is Ai,1 and · · · xn is Ai,n  

THEN yi = a0i + a1i x1 +· · ·+ ani xn (i = 1, . . . , L)  (2.3) 

where x and y are input and output variables respectively. Specifically, y is the local 

output set that determines local linear relationships by means of coefficients aji. The 

output of SFIS is in a form of singleton, a fuzzy set with unity membership grade at a 

singleton point and zero elsewhere on the universe of discourse. The output centroid is 

calculated by the weighted average method (see Appendix C).  

In general, the MFIS is more intuitive and more well suited to human understanding 

than the SFIS, whereas SFIS works well with adaptive techniques and also guaranteed 

continuity of the output surface (Negnevitsky, 2011). The choice of the selected model 

is subject to the application's objectives. For example, in the case of system control or 

engineering applications, the SFIS seems to be more appropriate because such a model 
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can provide smooth and continuous output. However, if the interpretability issue is taken 

into account, the MFIS seems to be more preferred than the SFIS model.  

As mentioned, this thesis puts an emphasis on the interpretability of fuzzy systems (with 

acceptable accuracy). The MFIS is therefore selected as the base model in this thesis. 

Such a model will be applied to spatial interpolation and time series prediction as a solu-

tion to the interpretability problem.  

One difficulty in establishing an interpretable fuzzy model is that accuracy and inter-

pretability of the model can be contrasting objectives as presented in Figure 2.3 (Ishibu-

chi, 2007). To achieve higher accuracy, the fuzzy models can compromise the interpret-

ability capability due to the increasing number of parameters in the models. On the other 

hand, in order to achieve higher interpretability, a fuzzy model may have reduced accu-

racy due to a decreased number of essential parameters in the models. 

 

    

 

 

 

Figure 2.3. Contrasting problem in the interpretable fuzzy modeling (Ishibuchi, 2007) 
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Although establishing an interpretable fuzzy system is a difficult task, it can be seen as a 

challenging task as well. Figure 2.4 shows the conceptual relationship between the con-

trasting goals and the aim of this thesis. While this thesis aims to develop FIS models 

that are as close to the objective area as possible, criteria used for interpretability as-

sessment have to be examined and established. 

  

 

 

 

Figure 2.4. Contrasting problem area and the goal of this thesis.  

2.6. Interpretability Criteria of Fuzzy Modeling  

Interpretability of fuzzy systems has gained increased attention over the years (Córdon, 

2011; Alcalá et al., 2006; Mikut et al., 2005; Casillas et al., 2003a, 2003b; Guillaume, 

2001; Oliveira, 1999; Setnes et al., 1998a, 1998b). However, the semantic context of 

interpretability of fuzzy modeling has not been well defined. Consequently, qualitative 

justification of the interpretability of fuzzy modeling is rather arbitrary. Zhou and Gan 

(2008) proposed a unified framework to describe the interpretability of fuzzy modeling. 

This framework is re-presented here in Figure 2.5.  
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Figure 2.5. A taxonomy of interpretability of fuzzy systems.  

Their proposed framework categorizes fuzzy model interpretability into low-level and 

high-level criteria. The former criteria are defined on the fuzzy sets level, whereas the 

latter focus on the fuzzy rules level. As the framework distinguishes the interpretability 

of fuzzy systems into two levels, assessing the interpretability of the whole fuzzy sys-

tems can be possible (Alonso & Magdalena, 2011; Córdon, 2011; Alonso et al., 2009). 

This thesis therefore adopts this framework to assess the interpretable quality of fuzzy 

models established. The following are the brief contexts of these criteria. 

2.6.1. Low-level Interpretability  

 Distinguishability: In input space partitioning, fuzzy sets should be clearly defined in 

the distinctive ranges in the universe of discourse of variables. Each MF should be 
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distinct enough from each other in representing a linguistic term with a clear seman-

tic meaning. 

 Moderate number of MFs: The number of MFs of a variable should not be selected 

arbitrarily, but they should be compatible with the number of conceptual entities a 

human can efficiently handle during the inferential activities. According to a popular 

suggestion in cognitive psychology, the number of different entities efficiently 

stored at the short-term memory should not exceed the limit of 7 ± 2 (Oliveira, 1999; 

Pedrycz et al., 1998).   

 Coverage or completeness of fuzzy partitioning: The entire universe of discourse of a 

variable should be covered by the MFs generated, and every data point should be-

long to at least one of the fuzzy sets and have a linguistic representation. In other 

words, the membership value should not be zero for at least one of the linguistic la-

bels. 

 Normalization: Each MF of a variable is expected to represent a linguistic label with 

a clear semantic meaning. Thus, at least one data point in the universe of discourse 

should have a membership value equal to one, that is, MFs of a variable should be 

normal. 

 Complementary (optional): For each element of the universe of discourse, the sum 

of all its membership values should be equal to one. This guarantees uniform distri-

bution of meaning among the elements. However, this requirement is only suitable 
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for probability fuzzy systems. The possibility fuzzy systems do not consider this re-

quirement. 

2.6.2. High-level Interpretability 

 Rule base parsimony and simplicity: The set of fuzzy rules must be as small as pos-

sible under the condition that the model performance is preserved at a satisfactory 

level. A large rule base would lead to a lack of global understanding of the system. 

 Readability of single rules: The number of conditions in the premising part of the 

rule should not exceed the limit of 7 ± 2 distinct conditions, which is the number of 

conceptual entities a human can efficiently handle (Pena-Reyes & Sipper, 2003). 

 Consistency: Rule base consistency means the absence of contradictory rules in the 

rule base in the sense that rules with similar promising parts should have similar 

consequent parts (Guillaume, 2001; Dubois et al., 1997). 

 Completeness: For any possible input vector, at least one rule should be fired to pre-

vent the fuzzy system from breaking inference (Guillaume, 2001).  

 Transparency of rule structure: A fuzzy rule should characterize human knowledge 

or system behaviors in a clear way.  

These low-level and high-level criteria suggest how the feature of interpretability in 

fuzzy systems can be assessed. However, to achieve all these criteria at the same time is 

not an easy task. Although some established fuzzy systems can satisfy all these criteria, 
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it may not ensure that the accuracy of the established models is acceptable. This thesis 

aims to satisfy most of the criteria listed in Figure 2.5 and at the same time provides 

compatible results to other popular methods.   

2.7. Conclusion  

This chapter began with a review of the spatial interpolation and time series prediction 

techniques used in hydrological and related areas. The problems about the interpretabil-

ity in hydrological models are highlighted in order to provide the background to the 

aims of this thesis. Next, the concepts of fuzzy systems have been introduced as a solu-

tion to the problems. This chapter also presented the interpretability criteria of fuzzy 

modeling to be used as a guideline to assess the interpretability quality of the established 

hydrological models in this thesis. Following this chapter, the next two chapters focus 

on the development of the interpretable fuzzy systems used for monthly rainfall spatial 

interpolation. 

 

 

 

 

 

 

 



36 
 

CHAPTER 3 

AN INTERPRETABLE FUZZY SYSTEM FOR  

MONTHLY RAINFALL SPATIAL INTERPOLATION 

3.1. Introduction 

Interpretable data-driven models can enable human analysts to understand the nature of 

the data to be modeled. In the case of monthly rainfall spatial interpolation, interpretable 

models can provide human analysts with the understanding of the spatial distribution of 

rainfall data in a particular month. If interpretable data-driven models have been estab-

lished in an appropriate way, the established models should be able to represent the spa-

tial distribution of monthly rainfall data effectively via the interpretability advantage of 

the models.  

Fuzzy systems have demonstrated their ability as an effective system identification tool 

(Ross, 2004). For an established fuzzy model, human analysts can interpret the nature of 

the data to be modeled through fuzzy sets and fuzzy rules, and this allows human ana-

lysts to enhance the model. The objective of this chapter is to propose a methodology to 

analyze and establish an interpretable fuzzy model for monthly rainfall spatial interpola-

tion.  

This chapter is organized as follows: Section 2 describes the case study area and datasets 

used in the chapter. Section 3 presents the proposed methodology to analyze and estab-

lish an interpretable fuzzy model for spatial interpolation of the monthly rainfall varia-

ble. Evaluation of the proposed methodology will be presented in Section 4.  Finally, 

Section 5 is the conclusion for this chapter. 
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3.2. Case Study Area and Datasets  

The case study area is located in the northeast region of Thailand. The distribution of 

rain gauge stations is shown in Figure 3.1. Eight months of spatial rainfall data are se-

lected for eight case studies, that is, August 1998, September 1998, May 1999, Septem-

ber 1999, May 2000, August 2000, June 2001 and August 2001. These selected months 

are the months with relatively high rainfall for the year, and they also have a small 

amount of missing data. General information of the datasets (rainfall feature) is shown 

in Table 3.1. 

  

Figure 3.1. Case study area and the distribution of rain gauge stations.  

In each case, 80 rain gauge stations (or approximately 30%) are randomly removed and 

are used to evaluate the established models. The dataset features comprise of infor-

mation on the longitude (x), latitude (y), altitude (v) and the amount of monthly rainfall 

(z). The datasets are normalized by linear transformation for computational purposes. 

(Notice that the altitude feature is purposely used only in artificial neural network mod-

els in order to investigate the orographic effects of the study area.) 

N 
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Table 3.1. General information (rainfall feature) of the eight case studies. 

Statistics Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7 Case 8 

Mean (mm.) 2325 2016 2448 2487 2669 2766 2397 3647 

Standard Deviation 889 992 1213 1044 1175 1110 1369 1826 

Kurtosis 1.529 2.548 0.983 2.835 0.162 1.261 1.902 0.332 

Skewness 0.851 1.202 0.895 1.244 0.624 0.733 1.017 0.733 

Minimum 380 184 60 455 48 368 90 341 

Maximum 6118 7003 6912 7215 5956 7450 8207 10784 

Training Data 198 195 200 197 200 197 188 178 

Testing Data 80 80 80 80 80 80 80 80 

Correlation -0.047 -0.118 -0.001 0.007 -0.059 -0.241 -0.237 -0.046 

Rx 0.121 0.235 0.229 0.134 0.396 0.323 0.638 0.408 

Ry 0.033 0.032 0.563 0.309 0.127 -0.290 0.162 0.496 

Note: Rx (and Ry) are correlation coefficients between the amount of rainfall and longitude (and latitude).  

In Table 3.1, the row Correlation indicates the correlation coefficient between the 

amount of rainfall and the altitude of rain gauge stations. Since the correlation values are 

close to zero, it can be hypothesized that orographic effects are not strong in the study 

area (Goovaerts, 2000). Figure 3.2 shows an example of the scatter plot between the alti-

tude and the amount of rainfall for Case 6, which has the highest magnitude of the corre-

lation value. One can see that no linear relationship appears evident in the data. Thus, 

the altitude feature will not be used in the proposed models. 

 

Figure 3.2. An example of the scatter plot between the altitude and amount of rainfall. 
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3.3. Establishing an Interpretable Fuzzy System  

In general, several techniques have been proposed to establish interpretable fuzzy mod-

els. However, according to the recommendations by Zhou and Gan (2008), the "proto-

type-based fuzzy modeling" technique seems to be a good convenient approach to au-

tomatically construct both low-level and high-level interpretable fuzzy models in one 

model structure.  

Such a technique makes use of a clustering method to partition data into important ho-

mogeneous regions (i.e. prototypes) that are characterized by multidimensional fuzzy 

sets. A rule is associated with each region (i.e. the premise part of each rule is a multi-

dimensional fuzzy set). The MFs on individual variables can be obtained by projecting 

the multidimensional fuzzy set onto the corresponding antecedent individual variables. 

This technique has been adopted in the proposed methodology due to its capability to 

effectively construct an interpretable fuzzy model in one process. Moreover, the struc-

ture of the fuzzy model constructed by this method is simple and flexible for further en-

hancement. However, a couple of  prerequisite issues should be considered, that is, the 

type of clustering technique and how many clusters are required by the selected cluster-

ing technique.  

3.3.1. Overview of the Proposed Methodology 

The proposed methodology consists of four steps. Figure 3.3 illustrates an overview of 

the proposed methodology. The first step is to define the minimum number of clusters. 
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The second step is to determine the optimal number of clusters. The minimum number 

of clusters requires to localize the study area effectively. Once the optimal number of 

clusters is selected, a prototype-based MFIS model is created in step three by identifying 

the input-output mapping for each cluster. In the final step, the parameters of the created 

MFIS model are optimized. Overall, step one and step two can be considered as the 

clustering analysis, whereas step three and step four are the model establishment and 

optimization stages. The clustering analysis is necessary to determine the optimal num-

ber of cluster for the prototype-based fuzzy modeling. And the model’s parameters (e.g. 

MFs) need to be optimized to provide better generalization of the model. 

 

 

 

 

 

 

Figure 3.3. An overview of the proposed methodology. 

3.3.2. Fuzzy C-Means Clustering Analysis for Spatial Data 

Clustering analysis for spatial data (or localization) is a step to partition a heterogonous 

global area into a group of homogenous local areas. In the case of spatial rainfall data, 

localization can be achieved by analyzing the rainfall pattern and the topography of the 

study area (Lee et al., 1998). However, if prior information about the study area is not 
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known or difficult to analyze, clustering techniques are normally used (Wong et al., 

2003).  

Fuzzy c-means (FCM) clustering (Bezdek et al., 1984) are normally used to partition 

spatial data if there is uncertainty in determining the cluster boundaries (Hu et al., 2008). 

In many clustering algorithms, including FCM, first there is a need to know the number 

of clusters. However, there is no prior information about the number of clusters in gen-

eral (Erilli et al., 2011). 

To determine the optimal number of clusters, cluster validation indices are used. Some 

examples are: partition index (SC) (Bezdek, 1981), separation index (S) (Rezaee et al., 

1998), Xie and Beni's index (XB) (Xie & Beni, 1991), Dunn's index (DI) (Dunn, 1973) 

and alternative Dunn's index (ADI) (Halkidi et al., 2001). However, these commonly-

used FCM indices were developed for general purposes and were not specific to spatial 

data.  

For spatial data, these indices do not take the characteristics of spatial data into account. 

Moreover, these indices sometimes show conflicting results, which makes it difficult to 

decide on what is the best number of clusters. As the proposed methodology adopts the 

FCM technique to localized global spatial data, a FCM validation method to determine 

the number of clusters for spatial data is firstly needed. Therefore, this thesis proposes 

two concurrent FCM cluster validation methods for spatial rainfall data. Assuming no 

prior knowledge of the number of clusters is available, using the two cooperative valida-

tion methods can make the decision more consistent. 
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The first method is based on statistical analysis whereas the second method is based on 

simulation. By using the cooperative method, the statistics-based method is proposed as 

the major criterion for determining the range of possible numbers of clusters. The simu-

lation-based method is proposed as the decision support criterion to determine the best 

number of clusters.  

3.3.2.1. The Statistics-Based Method 

To analyze the spatial data, standard deviation (SD) is necessary to be used to estimate 

the variation of spatial data in the study area. Tutmez et al. (2007) suggested that the op-

timal number of clusters for FCM can be determined by:  

Minimize nc under, Std[z(x)] ≈ Std[z(c)]     (3.1) 

where nc is the optimal number of cluster, Std is the standard deviation, z(x) are the ob-

served values of the dataset and z(c) are the observed values at the cluster centers (the 

computed central z values from all cluster centers). In this criterion the numbers of clus-

ters are plotted against Std[z(c)]. The number of clusters satisfying constraint (3.1) is 

retained as the optimal number. 

However, this method may not be appropriate if it is applied directly to the data using 

the global scale because the optimal cluster number identified can be too small. There-

fore, a pre-conditional criterion to determine the minimum number of clusters before 

using Tutmez's method is added. This criterion analyzes the proportion between the 

mean of standard deviation of rainfall value (z) in all clusters and the number of clusters. 

The steps to determine the optimal number of clusters are listed as follows: 
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Step 1. Use FCM to partition data into n clusters. n starts from 2 to Cmax, where 

Cmax is the user-defined maximum number of clusters. Cmax can range from 

2 to any appropriate number as far as the model interpretability is con-

cerned. 

Step 2. For each number of cluster n: 

Step 2a. For each cluster i, calculate SDi, SD of rainfall values (z) in clus-

ter i, and then calculate the proportion, Pn, between the mean of 

all SDi and the number of clusters by 

Pn = E(SDi) / n            (3.2) 

Step 2b. Calculate the difference, Dn, between Pn-1 and Pn by 

                                                 Dn = Pn-1 - Pn                       (3.3) 

Plot Dn against the number of clusters; the minimum number of clusters 

can be retained from the point that Dn becomes stable. 

Step 3. For each n, calculate SD of z(x) and z(c) and plot it against n. Under the 

defined range, the appropriate number of clusters can be retained by con-

straint (3.1). 

3.3.2.2. The Simulation-Based Method 

The work of Erilli et al. (2011) proposed the use of ANN to determine the number of 

clusters for FCM by investigating the training performance (training error) when the 

network’s inputs are the input-output pairs and network’s output is the assigned cluster 

number. They showed that at the point when training performance leap up, this is an in-

dication of the appropriate number of clusters. However, they did not clearly specify the 
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architecture of the ANN used, and varying parameter values can affect the performance 

of the ANNs. Consequently, the leap up point may change if those parameters are 

changed. 

However, the idea of using ANN to determine the number of clusters can be further in-

vestigated. In this thesis, another way of employing ANN to investigate the appropriate 

number of clusters will be proposed. In this method, one hidden layer BPNN is used. 

The steps of the proposed methods to determine the optimal number of clusters are listed 

as follows: 

Step 1. Prepare the data matrix, input-output pairs. Use FCM to partition data into 

n clusters. n starts from 2 to Cmax. 

Step 2. For each number of cluster n: 

Step 2a. Prepare the training data where the network’s inputs are data ma-

trix and the network’s output is assigned a cluster number. 

Step 2b. For j = Nmin to Nmax, train BPNN with j hidden nodes, then evalu-

ate the training performance of each BPNN.  

Step 2c. Calculate the average value of the training performance of all 

trained BPNN, Perfn. 

Step 3. For each number of cluster n: calculate the performance proportion of the 

number of cluster n by 

En = Perfn / n                      (3.4) 
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where En is the performance proportion of cluster n. The lower En indicates the more 

appropriate number of clusters. 

The statistics-based method and the simulation-based method have been presented so 

far and cooperation of these two methods should alleviate the difficulty in the deci-

sion making stage. In practice, the lack of prior knowledge about the data on hand 

can make the modeling process difficult. Human analysts have to make the decision 

based on their own experiences. In the spatial interpolation method, fitting experi-

mental semivariograms in kriging methods is an example of this subjectivity. 

In clustering analysis, selection of the number of the clusters is a rather subjective 

task. Sometimes, using only the statistics-based method may not be enough to pro-

vide a confident selection. With the assistance of the intelligent technique of the sim-

ulation-based method, the selection can be improved and the optimal number of clus-

ters is selected more confidently. This is the reason why two validation methods are 

used cooperatively in this thesis. 

3.3.3. Model Establishment and Optimization 

Once the number of clusters is determined, a prototype-based MFIS will be generated 

from the training data by using FCM. The clustering analysis in the previous two steps 

are important because if an appropriate clustering validation index for determining the 

number of prototypes is applied, FCM can generate a parsimonious rule base (Zhou & 

Gan, 2008). As two proposed validation indices are specifically developed for the spatial 

data, the MFIS generated should be related to a parsimonious rule base.  
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The MFs used are a Gaussian function because it provides smooth surfaces and has a 

low degree of freedom (Hameed, 2011). After the MFIS has been generated, it is then 

optimized by the GA (Holland, 1975) to improve interpolation accuracy. The chromo-

some of the GA consists of the sequence of input 1, input 2 and output, respectively. In 

turn, the inputs and output are the sequence of MFs which consist of two parameters 

(sigma and center).  

The fitness function to be minimized is the sum square error (SSE) between the ob-

served value (z) and the interpolated value (z') of the training data and it is given as 

    ∑ (  
     )

  
                                           (3.5) 

An important point of optimization is how to control the diversity of individuals.  In this 

process, the MFIS parameters are allowed to vary in certain controlled regions in order 

to preserve the structure of the prototypes of the generated MFIS.  

Let α and β be user-defined control parameters, the center (c) parameters are allowed to 

vary in the range of [c - α, c + α] and the sigma (σ) parameters are allowed to vary with-

in the range of [σ - β, σ + β] (Cordón et al., 2001; Ishibuchi et al., 1994). One benefit of 

these small controlled regions is that the structures of the prototypes for the optimized 

fuzzy systems will not be distorted too much from the original ones.  

So far, the proposed methodology has been presented. In summary, such methodology 

consists of (i) the clustering analysis process and (ii) the model establishment process. In 

the next section, the proposed methodology will be evaluated in eight case studies. 
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3.4. Evaluation of the Proposed Methodology 

In this section, the proposed methodology will be evaluated. In terms of the quantitative 

aspect (accuracy), as the established model works as the global method it will be com-

pared to the commonly-used global spatial interpolation methods, that is, TSA, BPNN 

and RBFN. The orographic effects will also be tested with BPNN and RBFN. Besides 

this, the established model will be compared with ANFIS. The ANFIS model herein is 

an adaptive SFIS model generated by FCM with the same number of clusters from the 

established model. In terms of the qualitative aspect (interpretability), the interpretability 

criteria as mentioned in Chapter 2 will be used for the assessment. 

3.4.1. Models Establishment  

In the establishment process, the third order polynomial equation was adopted for TSA 

because it has both hill and valley surfaces which are suitable for most real world data 

(Chang, 2006). The one hidden layer network was adopted for BPNN (Piazza et al., 

2011; Kajornrit et al., 2011) and the number of hidden nodes in RBFN was aligned with 

the number of training data (Lee et al., 1998).  

BPNN and RBFN were divided into two groups according to the inputs fed into the 

models. The first group (i.e. BPNN2 and RBFN2) used only spatial coordinates (x, y) as 

the inputs to the models. The second group (i.e. BPNN3 and RBFN3) used spatial coor-

dinates (x, y) and altitude (v) as the model's inputs. This was to test the orographic ef-

fects of the study area.  
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The appropriate number of parameters for BPNN and RBFN were selected from the K-

folds cross-validation method (Gilardi & Bengio, 2000). Briefly, the calibration data are 

divided into five partitions (or about 20%). For each partition n, 1 ≤ n ≤ 5, a model is 

trained with other partitions and partition n is used for validation. The lowest average 

error from all n is used to indicate the appropriateness of the model's parameters.  

Figure 3.4 shows an example of the K-folds cross validation process. The numbers in 

Figure 3.4(a) and Figure 3.4(b) are the numbers of hidden nodes of BPNNs. For BPNN, 

the parameter is the number of hidden nodes and training epochs. For RBFN the param-

eter is the span value (Beale et al., 2011). In Figure 3.4(a), for example, BPNN2 showed 

the minimum error when the number of hidden node is 8 and the epoch is 20. And in 

Figure 3.4(c), the error of RBFN2 becomes stable after span is 5.5. These values were 

selected as the models’ parameters and there are shown in Table 3.2. 

 Figure 3.5 shows the results of the clustering analysis. The results of Case 1 to Case 8 

are arranged from top to bottom, respectively. Graphs in the left-hand side are the results 

from the statistics-based method and graphs in the right-hand side are the results from 

the simulation-based method. Notice that, for graphs in Figure 3.5, Pn and Dn use the 

left-hand side axis for reference, whereas std(z(c)) and std(z(x)) use the right-hand side 

axis for reference. In addition, the results from the commonly-used FCM validation in-

dices aforementioned are shown in the table in Appendix A. 

In the experiments, Cmax was set to 10. Cmax was set to 10 in order to preserve the inter-

pretability of the established fuzzy models. For the simulation-based method, Nmin was 
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set to 4 and Nmax was set to 12. Nmax was set to 12 because at the Nmax greater than 12, the 

variations of training performance are too small to be observed. Some examples of clus-

tering analysis are shown as follows. 

  
   (a)         (b) 

 

  
          (c)                      (d) 

Note: (a) BPNN2, (b) BPNN3, (c) RBFN2 and (d) RBFN3. 

Figure 3.4. An example of K-folds cross-validation method (Case 1). 

Table 3.2. Summary of the number of parameters used in ANNs for each case study. 

Case BPNN2 BPNN3 RBFN2 RBFN3 Case BPNN2 BPNN3 RBFN2 RBFN3 

1 8 / 20 2 / 15 5.5 8.0 5 9 / 15 10 / 15 4.5 4.5 

2 5 / 15 2 / 50 5.5 6.0 6 10 / 15 2 / 50 6.0 6.0 

3 7 / 20 9 / 15 5.0 6.0 7 8 / 15 2 / 35 4.5 6.0 

4 9 / 25 8 / 20 5.0 5.0 8 8 / 15 2 / 40 2.5 5.5 

Note: BPNN = hidden nodes epoch, RBFN = span  
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(a)      (b) 

  
(c)      (d) 

  
(e)      (f) 

  
(g)      (h) 

 

Figure 3.5. The results from the clustering analysis (Case 1 to Case 4). 
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(i)      (j) 

  
(k)      (l) 

  
(m)      (n) 

  
(o)      (p) 

 

Figure 3.5. (cont.) The results from the clustering analysis (Case 5 to Case 8). 
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In Case 1, Figure 3.5(a), Dn becomes stable at n = 7 and the difference between std(z(x)) 

and std(z(c)) continues to decrease until n = 6, and small variations are shown after that. 

Therefore, n = 7 is selected as the cluster number. In Fig 3.5(b), n = 7 and 9 shows rela-

tively low En. It can be seen that n = 7 indicates the appropriate number of the clusters 

from both methods.  

According to the table in Appendix A, the numbers of clusters determined from SC to 

ADI are 5, 5, 7, 8 and 8, respectively. At n = 5, SC becomes stable and S is the mini-

mum. XB and ADI become stable at n = 7 and 8, respectively. DI is the maximum at n = 

8. In this case, XB gives the same results to the proposed methods. 

In Case 2, Figure 3.5(c), since Dn becomes stable at n = 7, the minimum number of clus-

ters should be considered after this number. The difference between std(z(c)) and 

std(z(x)) shows small variation after n = 6 and has a minimum value at n = 7. Therefore, 

n = 7 is selected as the appropriate number of clusters. In Figure 3.5(d), after n = 7, En 

shows relatively small values. To keep the model from being too complex, n = 7 is se-

lected for this case study.  

According to the table in Appendix A, the numbers of clusters determined from SC to 

ADI are 7, 4, 8, 8 and 5, respectively. The SC value decreases and becomes stable at n = 

7 and S value shows the minimum value at n = 4. At n = 8, XB shows the minimum val-

ue and DI shows the maximum value. ADI decreases and becomes stable at n = 5. The 

selected n in this case study is the same number as the SC index. 
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Table 3.3 summarizes the results from the clustering analysis. The selected numbers of 

clusters from Case 1 to Case 8 are 7, 7, 7, 9, 7, 8, 7 and 8, respectively. The last column 

of Table 3.3 shows the commonly-used FCM indices that provide the equivalent results 

to the selected number of clusters (see Appendix A). 

Table 3.3. Summary of the results from the clustering analysis. 

Case 
Defined 

Range 

Statistics-based 

method 

Simulation-

based method 

Selected 

n 

Commonly-used 

FCM indices 

1 n ≥ 7 n ≥ 7 n = 7  7 XB 

2 n ≥ 7 n ≥ 7 n ≥ 7 7 SC 

3 n ≥ 6 n ≥ 6 or n = 7 n = 7 or n = 9 7 DI, ADI 

4 n ≥ 8 n = 9 n = 9 9 SC, S, DI 

5 n ≥ 7 n = 7 n = 7 7 SC, S 

6 n ≥ 8 n ≥ 8 n = 8 8 S, XB  

7 n ≥ 7 n ≥ 7 n = 7  7 SC 

8 n ≥ 7 n ≥ 7 or n = 8 n = 8 8 S, SC 

Note: commonly-used FCM indices are SC, S, XB, DI and ADI, respectively. 

In addition, the results from Case 7 and Case 8 point to the drawbacks of Tutmez’s 

method if it is used directly. In Figure 3.5(m) and Figure 3.5(o), as the variation of the 

differences between std(z(c)) and std(z(x)) are small, the selected number of clusters can 

be too small for the global data (i.e. n = 2). 

Once the number of clusters was determined, the prototype MFIS was generated from 

the FCM. The number of fuzzy rules and fuzzy sets were aligned with the number of 

clusters. In the optimization process, the parameters α and β were set to 0.1 and 0.05 re-

spectively. These values are approximately 10 percent of the universe of discourse. As 

stated, the MFIS parameters were allowed to vary in certain controlled ranges. These 

controlled ranges are defined based on the reason that cluster centers should be varying 

inside its cluster in order to prevent indistinguishability of the optimized MFIS. 
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In this experiment, the number of the population of the GA was set to 200 (or about four 

times the number of genes in the chromosome) to ensure that there are at least four indi-

viduals for each parameter. The number of generations was set to 150, where the SSE 

became stable and did not show any considerable improvement. At this number of gen-

erations the best fitness value and average fitness values were met. From now on, the 

proposed model is called Genetic algorithm with fuzzy inference system (GAFIS). 

In addition to GAFIS, the SFIS model is also generated with the same number of clus-

ters using the FCM method. This SFIS will be used as the initial model for the ANFIS 

algorithm. The number of training epochs for ANFIS is approximately observed from 

the K-fold validation method in similar manner as the BPNN and RBFN. The approxi-

mate training epochs from Case 1 to Case 8 are 30, 15, 20, 10, 45, 25, 15 and 30, respec-

tively, and are shown in Figure 3.6.  

 

 

Figure 3.6.  Results from the K-fold validation method for ANFIS models. 
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3.4.2. Quantitative Results 

To evaluate the quantitative results, four quantitative measures have been adopted, that 

is, mean error (ME) or bias error, mean absolute error (MAE), root mean square error 

(RMSE) and correlation coefficient (R). These error measures are normalized by the 

mean values of the datasets for comparison purposes. These quantitative results are 

shown in Tables 3.4 to 3.7.   

The Average rows in these tables are the average values from all cases. The Improve-

ment rows in these tables are the improvement percentage based on TSA. These two 

values are also presented in Figure 3.7. Notice that the average values in the figures use 

the left axis for reference and the improvement values in the figures use the right axis 

for reference. 

 

Table 3.4. Normalized mean error (bias error).  

Case TSA BPNN2 BPNN3 RBFN2 RBFN3 ANFIS GAFIS 

1 0.026 0.000 0.028 0.023 0.045 -0.012 0.013 

2 -0.018 -0.054 -0.057 -0.033 -0.053 -0.052 -0.049 

3 0.077 0.049 0.014 0.060 0.069 0.056 0.049 

4 0.074 0.082 0.070 0.059 0.110 0.075 0.054 

5 0.013 0.024 0.022 -0.003 0.015 0.011 -0.007 

6 -0.008 -0.011 -0.004 -0.001 -0.023 -0.022 -0.013 

7 -0.002 0.004 0.009 0.005 0.020 0.008 0.007 

8 -0.032 -0.028 -0.028 -0.019 0.000 -0.019 -0.023 

Average 0.0313 0.0315 0.0290 0.0256 0.0419 0.0319 0.0268 

Improvement - -0.89 7.20 18.12 -34.04 -1.92 14.10 
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Table 3.5. Normalized mean absolute error.  

Case TSA BPNN2 BPNN3 RBFN2 RBFN3 ANFIS GAFIS 

1 0.279 0.300 0.307 0.286 0.313 0.286 0.284 

2 0.330 0.336 0.354 0.336 0.368 0.333 0.322 

3 0.253 0.236 0.258 0.227 0.280 0.223 0.224 

4 0.301 0.315 0.303 0.314 0.325 0.307 0.284 

5 0.286 0.277 0.283 0.267 0.287 0.269 0.266 

6 0.282 0.276 0.287 0.266 0.288 0.290 0.267 

7 0.270 0.275 0.300 0.266 0.286 0.263 0.256 

8 0.256 0.254 0.250 0.260 0.306 0.242 0.233 

Average 0.282 0.284 0.293 0.278 0.307 0.277 0.267 

Improvement 0.00 -0.51 -3.77 1.54 -8.76 1.88 5.35 

 

Table 3.6. Normalized root mean square error. 

Case TSA BPNN2 BPNN3 RBFN2 RBFN3 ANFIS GAFIS 

1 0.368 0.368 0.395 0.361 0.388 0.352 0.366 

2 0.419 0.421 0.440 0.420 0.481 0.414 0.403 

3 0.327 0.318 0.329 0.309 0.373 0.296 0.290 

4 0.408 0.416 0.398 0.421 0.532 0.419 0.396 

5 0.370 0.365 0.359 0.347 0.382 0.359 0.348 

6 0.367 0.365 0.371 0.353 0.379 0.372 0.353 

7 0.398 0.393 0.407 0.388 0.454 0.393 0.369 

8 0.353 0.349 0.345 0.345 0.432 0.333 0.326 

Average 0.376 0.374 0.381 0.368 0.428 0.367 0.356 

Improvement 0.00 0.49 -1.18 2.28 -13.64 2.43 5.31 

 

Table 3.7. Correlation coefficient. 

Case TSA BPNN2 BPNN3 RBFN2 RBFN3 ANFIS GAFIS 

1 0.357 0.383 0.067 0.404 0.382 0.472 0.370 

2 0.628 0.612 0.542 0.616 0.409 0.611 0.657 

3 0.674 0.691 0.692 0.712 0.650 0.734 0.749 

4 0.262 0.298 0.343 0.245 0.195 0.245 0.315 

5 0.427 0.474 0.467 0.534 0.433 0.516 0.537 

6 0.461 0.478 0.428 0.515 0.449 0.470 0.513 

7 0.720 0.730 0.703 0.736 0.648 0.729 0.769 

8 0.712 0.720 0.728 0.725 0.554 0.749 0.760 

Average 0.530 0.548 0.496 0.561 0.465 0.566 0.584 

Improvement 0.00 3.38 -6.41 5.79 -12.31 6.70 10.08 
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(a)      (b) 

(c)      (d) 

Note: (a) normalized mean error, (b) normalized mean absolute error, (c) normalized root mean square 

error, and (d) correlation coefficient. 

Figure 3.7. Plots of the average and improvement values. 
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In terms of ME, in Table 3.4 Cases 2, 3, 4, 6 and 8 show a similar bias direction. In Case 

1, ANFIS tends to provide a negative bias whereas the others give a positive bias. In 

Case 5, RBFN2 and GAFIS show a small negative bias whereas the others show a posi-

tive bias. In Case 7, only TSA shows a small negative sign value. However, these bias 

values do not show any uncommon conditions in general. 

In the row Average, the average values of the absolute ME are calculated from all cases. 

The interpolation quality is better if the bias is close to zero. Therefore, interpolation 

quality can be ordered as RBFN2 > GAFIS > TSA > BPNN2 > ANFIS. However, these 

measures are not sufficient enough to justify the interpolation accuracy. It mainly tends 

to point out the tendencies of bias error.  

In terms of MAE, in Table 3.5 GAFIS provides the best interpolation accuracy in five 

cases (2, 4, 5, 7 and 8). TSA gives the best accuracy in Case 1. ANFIS provides the best 

accuracy in Case 3 and RBFN2 provides the best accuracy in Case 6. However, GAFIS 

also provides compatible accuracy at the best models in these two cases. Overall, the 

interpolation accuracy can be ordered as GAFIS > ANFIS > RBFN2 > TSA > BPNN2. 

In terms of RMSE, in Table 3.4 GAFIS provides the best interpolation accuracy in five 

cases (i.e. 2, 3, 4, 7 and 8). ANFIS provides the best accuracy in Case 1, whereas 

RBFN2 provides the best accuracy in Cases 5 and 6. However, GAFIS provides compat-

ible accuracy to RBFN2 in Case 6 as well. Overall, based on average results, the interpo-

lation accuracy can be ordered as GAFIS > ANFIS > RBFN2 > BPNN2 > TSA.  
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In terms of R, in Table 3.5 the best interpolator comes from GAFIS in six cases (i.e. 2, 

3, 4, 5, 7 and 8). RBFN2 provides the best accuracy in Case 6 and ANFIS provides the 

best accuracy in Case 1. Based on average values, the interpolation accuracy can be or-

dered as GAFIS >ANFIS > RBFN2 > BPNN2 > TSA. In summary, based on these quan-

titative measures, GAFIS can provide satisfactory interpolation accuracy when com-

pared with commonly-used global methods.  

3.4.3. Qualitative Results 

Figure 3.8 shows an example of the fuzzy rules of GAFIS models. One fuzzy rule is as-

sociated with one prototype. Figure 3.9 shows the optimized fuzzy parameters (MFs) of 

GAFIS models from Case 1 to Case 8.  In each figure, MFs of input 1 (longitude), input 

2 (latitude) and output (rainfall) have been presented.  

 

IF longitude (x) = cls1 AND latitude (y) = cls1 THEN rainfall (z) = cls1 

IF longitude (x) = cls2 AND latitude (y) = cls2 THEN rainfall (z) = cls2 

IF longitude (x) = cls3 AND latitude (y) = cls3 THEN rainfall (z) = cls3 

IF longitude (x) = cls4 AND latitude (y) = cls4 THEN rainfall (z) = cls4 

IF longitude (x) = cls5 AND latitude (y) = cls5 THEN rainfall (z) = cls5 

IF longitude (x) = cls6 AND latitude (y) = cls6 THEN rainfall (z) = cls6 

IF longitude (x) = cls7 AND latitude (y) = cls7 THEN rainfall (z) = cls7 

Figure 3.8. An example of fuzzy rules of the GAFIS model (Case 1). 
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(Case 1) 

 
 (Case 2) 

Figure 3.9. Optimized membership functions of the GAFIS models. 
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 (Case 3) 

 
(Case 4) 

Figure 3.9. (cont.) Optimized membership functions of the GAFIS models. 
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 (Case 5) 

 
 (Case 6) 

Figure 3.9. (cont.) Optimized membership functions of the GAFIS models. 
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(Case 7) 

 
(Case 8) 

Figure 3.9. (cont.) Optimized membership functions of the GAFIS models. 
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In terms of low-level interpretability (fuzzy sets level), MFs of GAFIS mostly satisfied 

distinguishability criterion. The ranges between two consecutive MFs are generally dis-

tinct enough to represent linguistic terms of the MFs. Actually the inputs of the models 

represent the spatial locations of the study area (i.e. longitude and latitude). Two inputs 

must be considered together to specify the locations. Although, the ranges of MFs in one 

input are not distinct enough, it does not mean that those MFs are not able to represent 

the spatial locations. For example, in Case 8 some MFs in the input 1 are not distinct but 

most MFs in the input 2 are distinct; thus, these two-dimensional MFs can represent the 

different spatial locations. 

GAFIS models satisfied the moderate number of MFs criterion. The maximum numbers 

of MFs should not exceed 7 ± 2 (Oliveira, 1999; Pedrycz et al., 1998) in each input di-

mension. GAFIS models also satisfied normalization criterion, in which each MF has at 

least one point that has a membership value equal to one. GAFIS models showed satis-

factory coverage of fuzzy partitioning criterion. The entire input space of the models has 

been covered by at least one MF. In the output space, four models satisfied this criteri-

on; however, the other models appeared to be lacking MFs in the high rainfall. This sit-

uation can occur if few peak rainfall values appear in the rainfall data. These few values 

can be considered as outliers and can cause FCM to disregard these values in the estab-

lishment process. 

In terms of high-level interpretability (fuzzy rule level), GAFIS models satisfy the rule 

base parsimonious and simplicity criterion. The global understanding of the models can 

be achieved in seven to nine fuzzy rules. The readability of single rules is considerably 
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high since there are only two antecedent conditions in each rule. Since the GAFIS mod-

els are generated from the prototype-based method, so the completeness and consistency 

of fuzzy rule are qualified. No contradictory fuzzy rule appears in the system. As one 

fuzzy rule is aligned with one cluster, so at least one fuzzy rule will be fired. In sum-

mary, GAFIS models have provided good interpolation accuracy in comparison with 

commonly-used spatial interpolation methods and have also provided satisfactory model 

interpretability under the adopted criteria. Thus, the objective of this chapter has been 

achieved. 

3.5. Conclusion  

In this chapter, the methodology to analyze and establish an interpretable fuzzy model 

for global spatial interpolation has been proposed. Such methodology has been applied 

to monthly spatial rainfall data in the northeast region of Thailand. The proposed meth-

odology begins with FCM clustering analysis to determine the optimal number of clus-

ters. Next, a prototype-based MFIS is generated and is then optimized by using GA. The 

proposed methodology has been evaluated by eight case studies.  

The established fuzzy models are evaluated from quantitative and qualitative aspects. 

Interpolation accuracy has been compared with commonly-used global spatial interpola-

tion methods. Model interpretability has been assessed by using the fuzzy interpretabil-

ity criteria. The experimental results demonstrated that the established models are capa-

ble of providing acceptable interpolation accuracy and interpretable models to human 

analysts. 
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CHAPTER 4 

A MODULAR FUZZY SYSTEM FOR  

MONTHLY RAINFALL SPATIAL INTERPOLATION 

4.1. Introduction 

In the previous chapter, a methodology to analyze and establish interpretable fuzzy sys-

tems for global monthly rainfall spatial interpolation has been proposed. The experi-

mental results showed that the established fuzzy models provided satisfactory interpola-

tion accuracy in comparison with other global spatial interpolation methods. Further-

more, such models can also satisfy the model interpretability criteria presented by Zhou 

and Gan (2008).  

However, the global spatial interpolation methods presented in the previous chapter 

normally provided lower accuracy when compared to local methods (Kajornrit et al., 

2011; Luo et al., 2008; Collins & Bolstad, 1996). That is because the capability of a sin-

gle model (under a certain constraint) may not be enough to capture the high complexity 

of spatial rainfall data of a global area. As a result, the focus of this chapter is to present 

local methods that can improve the overall accuracy. 

On the issue of interpretability, if we suppose that the number of parameters of a fuzzy 

model is increased until the model is complicated enough to achieve better accuracy, the 

interpretability of the model may deteriorate (see Figure 2.3). The higher number of pro-

totypes in the model can affect the indistinguishability issues. Furthermore, when the 

number of parameters increases, the training data may not be enough to efficiently opti-

mize the model (Jang et al., 1997).  
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Due to this contradictory issue, the subsequent issue is how to increase a model's accu-

racy with minimum effects to the model's interpretability. This chapter will address this 

issue by using a modular technique. This chapter is organized as follows: Section 2 re-

visits the background information of the datasets; Section 3 presents the proposed meth-

odology and in Section 4 the proposed methodology will be evaluated; finally, Section 5 

provides a conclusion for this chapter. 

4.2. Case Study Area and Datasets 

The case study area and datasets used in this chapter are the same as in the previous 

chapter. General information about the eight case studies was shown in Table 3.1. Fea-

tures of the data consist of longitude (x), latitude (y), altitude (v), and amount of monthly 

rainfall (z). The training data and testing data are also the same as in the previous chap-

ter for comparison purposes. As mentioned, the low correlation between altitude and the 

amount of monthly rainfall indicates the weak orographic effects. However, it is worth-

while investigating the local methods again. 

4.3. Establishing a Modular Fuzzy System  

The conceptual architecture of the modular model adopted is similar to the multiple ex-

pert systems (Chris-Tseng & Almogahed, 2009), as shown in Figure 4.1. Such a model 

consists of a set of local modules and one gating module. Input data are fed into all the 

local modules and the gating module. The function of the local modules is to interpolate 
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rainfall values, while the gating module combines the results from the selected local 

modules into the final result.  

 

 

 

 

 

Figure 4.1. Conceptual architecture of the multiple expert systems. 

However, to simplify the interpretability of this modular model, only one local module 

is selected to provide the final output. Therefore, this model can also be considered as a 

decision tree because the gating module works as a decision node and the local modules 

work as leaves of the decision tree. The proposed methodology consists of (i) localize 

the global area into local areas, (ii) establish local modules, and (iii) establish a gating 

module.   

An overview of the establishment process is depicted in Figure 4.2. Global training data 

are first divided into local training data by FCM clustering. Each local training data is 

used to create one local module. Global training data and information gained from FCM 

clustering are then used to create the gating module. 
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Figure 4.2. An overview of the establishment process. 

4.3.1. Localize the Global Area  

In the first step, the FCM clustering technique is applied to perform global localization. 

FCM is not only capable of dealing with uncertainty in the boundary, but it also pro-

vides the degree of membership values of the data that belong to other clusters. Global 

training data (x, y, z) are clustered into n clusters (i.e. n local areas). The number of n is 

determined by the validation methods proposed in Chapter 3, which is specifically de-

veloped for spatial data. 
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As mentioned, the selected number of clusters in the prototype-based fuzzy modeling is 

important to the interpretability of fuzzy models. If an appropriate clustering validation 

index for determining the number of clusters is applied, FCM can generate a parsimoni-

ous rule base (Zhou & Gan, 2008). In this chapter, the same method is used to determine 

the appropriate number of local modules for the modular approach.  

4.3.2. Establish the Local Modules 

The second step is to establish the local modules, using the training data in each cluster 

to determine the MFIS models. One concern is that using the modular model may intro-

duce the problem of extrapolation between local areas when the boundaries are discrete, 

especially when rain gauge stations are sparse and/or have irregular distribution. There-

fore, to prevent the problem of extrapolation between boundaries of local areas, small 

overlaps between local areas are needed.  

Matrix U is an m x n matrix, the additional information from FCM, where m is the num-

ber of clusters and n is the number of data. Let μij, the members of matrix U, be the de-

gree of membership values of the data j to the cluster i and ∑       
   . Given xj is the 

training data number j, xj belongs to cluster i if (i) μij in column j is maximum and (ii) μij 

≥ 0.5 of the maximum value of μ in column j. With this criterion, the overlap local data 

are created for the local modules. 

To establish a local module, a prototype-based MFIS is created from FCM. The mem-

bership functions (MFs) used are the Gaussian function. The number of clusters is de-

termined from Tutmez's criterion (Tutmez et al., 2007), which is determined by:  
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Minimize nc under, Std[z(x)] ≈ Std[z(c)]     (4.1) 

where nc is the optimal number of clusters, Std is the standard deviation, z(x) are the 

rainfall values of the data and z(c) are the rainfall values at the cluster centers. The num-

bers of clusters are plotted against Std[z(c)]. The number of clusters that shows mini-

mum distance between Std[z(x)] and Std[z(c)] is selected as the optimal number.  

One constraint of this criterion is that Std[z(c)] ≤ Std[z(x)]. Rarely it is possible that 

Std[z(c)] > Std[z(x)] for all numbers of clusters. Consequently, all numbers of clusters 

do not satisfy this criterion. In this case, a default value must be defined. The proposed 

methodology sets the default values, ndf, as:  

ndf = Floor( (nmax+ nmin) / 2 )                  (4.2) 

The default values of nmin and nmax are 2 and 4, respectively. The proposed methodology 

selects the number of clusters as small as possible because the number of training data 

for each local module may not be enough to optimize the MFIS's parameters efficiently. 

Furthermore, as one local module represents one local area, the maximum number of 

fuzzy parameters should be at least less than the maximum number of fuzzy parameters 

recommended in the interpretability fuzzy criteria (Zhou & Gan, 2008). 

Once the initial MFIS is created, the MFIS's parameters (sigma and center) are then op-

timized by GA. The chromosome of the algorithm consists of the sequence of input 1, 

input 2 and output respectively. In turn, the input and output are the sequence of MFs 

which consists of sigma and center parameters. The fitness function to be minimized is 
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the sum square error between the observed value (z) and the interpolated value (z') of 

local training data and it is given as:  

    ∑ (  
     )

  
                   (4.3) 

In this process, the MFIS’s parameters are allowed to be searched in a certain range in 

order to prevent indistinguishability of the MFs. Again, let α and β be user-defined con-

trol parameters, the center parameters (c) are allowed to be searched within [c - α, c + α] 

and the sigma parameters (σ) are allowed to be searched within [σ - β, σ + β]. 

4.3.3. Establish the Gating Module  

In the proposed methodology, the function of the gating module is to activate the most 

appropriate local module to derive an interpolated value (z') from an input value (x, y). 

In other words, the final output of the system will be generated from one selected local 

module.  

Normally, for a modular model, a few local modules may be activated at the same time. 

In this case, the final result comes from an aggregation of those activated local modules. 

However, at this point, to keep the established model simple and to maintain the inter-

pretability of the model, only one local module will be activated. In this thesis, two 

methods of gating are proposed. 

In the first method of gating, the generic gating module, the gating module selects one 

local module by determining the Euclidean distance between the input data and the clus-
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ter centers. The local module that gives the minimum distance is activated and is used to 

derive the final output. The formal expression of this method is:  

    ∑     
  

                      (4.4) 

where    is the final output,   
  is the output of the local module i, and wi is the weight 

associated with the local module i, which is evaluated by 

    {
                                

                                              
             (4.5) 

In other words, the gating module uses a lookup table to calculate the geographic dis-

tances between the interpolated point (xi, yi) and the cluster centers of the local modules. 

In the second method of gating, the fuzzy gating module, the decision is made by means 

of the antecedent part of the fuzzy system. The functional mechanism of the fuzzy gat-

ing module is the same as the general FIS, except the consequent part is not used (Figure 

4.3). The number of fuzzy rules is associated with the number of local modules and, in 

turn, each fuzzy rule is associated with one MF in each input dimension.  

For example, if there are seven local modules, the number of MFs of input 1, input 2 and 

the number of fuzzy rules are seven. Fuzzy rule1 is associated with MF1 in input 1 and 

input 2. When the input data is fed into the fuzzy gating module, the fuzzy inference 

process evaluates the firing strength of each rule i. The firing strength is the algebraic 

product of ai and bi, (or ai * bi = ri), where ai and bi are the degree of membership values 

of input 1 and input 2 of rule i, respectively. The local module activated is associated 

with the rule that has the maximum firing strength. 
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IF longitude (x) = cls1 AND latitude (y) = cls1 THEN local module1 is activated 

IF longitude (x) = cls2 AND latitude (y) = cls2 THEN local module2 is activated 

IF longitude (x) = cls3 AND latitude (y) = cls3 THEN local module3 is activated 

.... 

IF longitude (x) = clsn AND latitude (y) = clsn THEN local modulen is activated 

Figure 4.3. Conceptual function of the fuzzy gating method. 

The formal expression of this method is:  

    ∑     
  

              (4.6) 

where    is the final output,   
  is the output of local module i, and wi is the weight asso-

ciated with the local module i, which is evaluated by  

    {
                              

                                            
            (4.7) 

Establishing a fuzzy gating module consists of two steps, that is, (i) create and initialize 

the module, and (ii) optimize parameters of the module as shown in Figure 4.4. The cen-
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ter (xc, yc), minimum (xmin, ymin) and maximum (xmax, ymax) values of all local training 

data are used to create and initialize the MFs. The type of MF used is a Gaussian func-

tion. However, the triangle function is also used for comparison purposes.   

 

 

 

 

 

 

Figure 4.4. Steps to create the fuzzy gating module. 

To initialize Gaussian MFs, the centers of MFs are set based on the centers of the clus-

ters. For example, suppose that the first cluster center (xc, yc) is (0.3, 0.7), the center of 

the first MF of input 1 is set to 0.3 and the center of the first MF of input 2 is set to 0.7. 

The sigma parameter of the first MF of input 1 and input 2 are set to 0.1424 × (xmax – 

xmin) and 0.1424 × (ymax – ymin), respectively. The constant value of 0.1424 was derived 

from a preliminary testing. The constant value of 0.1424 makes the width of the MF ap-

proximately close to the width of the data.  

To initialize a triangle MF, such a MF consists of three parameters a, b and c, in which a 

≤ b ≤ c. The b values of MFs are set based on the cluster center. For example, if the first 
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cluster center (xc, yc) is (0.3, 0.7), the b value of the first MF of input 1 is set to 0.3 and 

the b value of the first MF of input 2 is set to 0.7. Similarly, the a value is set to the min-

imum value of the cluster and the c value is set to the maximum value of the cluster for 

all input dimensions. For both types of MFs, the number of fuzzy rules is associated 

with the number of clusters. 

In the optimization step, parameters of the fuzzy gating module are optimized by GA. 

The chromosome consists of the MFs' parameters of input 1 and input 2. For the Gaussi-

an MF, again, the α and β parameters are used to control the search space in the optimi-

zation process. Generally, the centroid of the cluster is not at the geometric center of the 

cluster. Thus, the parameter α allows a small space for the center of the MF to move 

closer to the geometric center of the cluster in order to let the MF cover the entire clus-

ter.  

For the triangle MF, the βin and βout parameters are used to control the search space of 

the a and c parameters. βin is used to control the minimum search space toward the clus-

ter centers and βout is used to control the maximum search space toward the cluster cen-

ters (Figure 4.5). As the triangle MF is asymmetric, the b parameter is not required to be 

optimized. The fitness function used is to minimize sum square error between the ob-

served values (z) and the interpolated values (z') of the global training data. 

In summary, the proposed methodology begins with localizing the global area into local 

areas by FCM clustering. Next, one MFIS module is created for each local area to per-

form interpolation. After that, a gating module is created to perform the decision. Two 
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gating methods are proposed. The first method is based on geographic distance and the 

second method used the concept of the fuzzy system. In the next section, the proposed 

methods will be evaluated.   

 

 

 

Figure 4.5. The search space of the βin and βout control parameters. 

4.4. Evaluation of the Proposed Methodology  

In order to evaluate the proposed methods, some commonly-used local spatial interpola-

tion methods are adopted for comparison purposes. Those methods include inverse dis-

tance weighting (IDW), local polynomial (LP), thin plate splines (TPS), ordinary kriging 

(OK), universal kriging (UK) and ordinary co-kriging (CK). However, to simplify this 

comparison task, these methods will be firstly compared. After that, the best method of 

each case study will be selected to compare with the proposed methods.    

IDW, LP and TPS are considered as deterministic methods, whereas OK, UK and CK 

are known as geostatistic methods. Among these methods, CK uses the altitude feature 

as the auxiliary variable to perform interpolation. The experiments of these methods are 

performed on ArcGIS application software (ESRI, n.d.), which is widely used in the GIS 

area. 
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4.4.1. Models Establishment  

From now on, the local deterministic and geostatistic methods described above are 

called the GIS methods. The number of data points included to perform interpolation for 

the GIS methods are six, which was suggested by Zimmerman et al. (1999). The anisot-

ropy feature is disabled in these experiments for the proposed methods used in the com-

parison.  

For IDW, the k parameter was automatically optimized by ArcGIS (Luo et al., 2008) and 

it was used as the control method (Li et al., 2011), or standard benchmark. For LP, as 

the number of data points included was six, only the first and second orders are availa-

ble. However, the second order provided large error; therefore, the first order is adopted 

instead.  

TPS with tension is selected rather than regular TPS because it provided more accurate 

results. A spherical semivariogram is used for OK, UK and CK and the number of lags 

is twelve, which is automatically generated by the software. A first order polynomial is 

used for UK for representing the drift component. A higher order polynomial can re-

move some necessary spatial relationships (Chang, 2006). 

To establish local modules, the α and β parameters are both set to 0.05. The α parameter 

is set to about 5 percent of the universe of discourse (UoD). This is set to a half of α pa-

rameter in GAFIS because the size of data in local modules decreases approximately 

more than a half in each dimension. The value of 0.05 should be large enough for the 
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search space. For the β parameter, this setting allows the search space of MF's flank to 

be approximately 15 to 20 percent of UoD.  

To establish the fuzzy gating module, for a Gaussian MF, the α and β parameters are set 

to 0.05 and 0.025 respectively. As mentioned, the α parameter allows a small space for 

the centroid of the cluster to move closer to the geometric center of the cluster in order 

to enable MFs to cover entire the cluster. The β parameter is set to a half of the setting in 

local modules because it allows the flank of MFs to vary in the smaller search space on 

the overlap area between clusters. For the triangle MF, the βin and βout parameters are 

both set to 0.1, which allows a search space approximately equal to the β parameter of 

the Gaussian MF.  

In general, if α and β parameters are set too small, especially the β parameter, the opti-

mal solution may not be met since the fuzzy models cannot handle the uncertainty in 

rainfall data efficiently under these constrained conditions. This is one reason that in 

these experiments the β parameter was set to a little bit larger search space than the α 

parameter. In the GA optimization process, the GA's population is set to 150 and the 

GA's generation is set to 30, where the best and average fitness values are met. 

4.4.2. Quantitative Results  

Similar to the previous chapter, four quantitative measures have been used to evaluate 

the interpolation accuracy, that is, mean error (ME) or bias error, mean absolute error 

(MAE), root mean square error (RMSE) and correlation coefficient (R). These measures 

are normalized by the mean values of the datasets for comparison purposes.  
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The experimental results of GIS methods are shown in Table 4.1 to 4.4. The Average 

rows in the tables are the average values from the eight case studies. The Improvement 

rows in the tables are the improvement percentage based on the IDW method. These two 

values are depicted in Figure 4.6. (Notice that for the graphs in Figure 4.6, the Average 

values refer to the left axis and the Improvement values refer to the right axis.) 

According to the results, the best GIS method of each case is selected to compare with 

the proposed methods. From Case 1 to Case 8, the best methods are TPS, UK, IDW, 

OK, OK, TPS, UK and UK, respectively. From now on, Mod FIS, Mod FIS–FSG and 

Mod FIS–FST are the proposed models with the generic gating module, the Gaussian-

MF fuzzy gating module and the triangle MF fuzzy gating module, respectively. Moreo-

ver, the results of the GAFIS model are also included in this comparison. Tables 4.5 to 

4.8 show the experimental results of the proposed methods. The Average and Improve-

ment values are depicted in Figure 4.7. 

 

Table 4.1. Normalized mean error (GIS methods). 

Case Study IDW LP TPS OK UK CK 

1 0.005 0.027 0.004 0.015 0.001 0.015 

2 -0.012 -0.018 -0.006 -0.030 -0.048 -0.030 

3 0.035 0.039 0.040 0.041 0.042 0.041 

4 0.079 0.058 0.082 0.059 0.044 0.059 

5 -0.017 0.021 -0.011 0.000 -0.003 0.000 

6 -0.018 -0.012 -0.016 -0.012 -0.012 -0.012 

7 0.016 -0.012 0.013 0.014 0.005 0.014 

8 -0.008 -0.038 -0.009 -0.025 -0.012 -0.024 

Average 0.024 0.028 0.023 0.024 0.021 0.024 

Improvement 0.00 -17.96 5.09 -3.14 11.69 -2.71 
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Table 4.2. Normalized mean absolute error (GIS methods). 

Case Study IDW LP TPS OK UK CK 

1 0.287 0.293 0.283 0.290 0.290 0.290 

2 0.337 0.364 0.331 0.331 0.327 0.333 

3 0.201 0.231 0.200 0.205 0.217 0.205 

4 0.299 0.319 0.291 0.281 0.289 0.281 

5 0.269 0.286 0.271 0.259 0.257 0.260 

6 0.270 0.291 0.271 0.275 0.272 0.275 

7 0.271 0.270 0.272 0.264 0.258 0.266 

8 0.229 0.213 0.211 0.222 0.203 0.222 

Average 0.270 0.283 0.266 0.266 0.264 0.266 

Improvement 0.00 -4.73 1.60 1.66 2.44 1.49 

 

 

Table 4.3. Normalized root mean square error (GIS methods). 

Case Study IDW LP TPS OK UK CK 

1 0.357 0.361 0.355 0.372 0.360 0.372 

2 0.431 0.478 0.423 0.422 0.409 0.425 

3 0.275 0.330 0.277 0.279 0.289 0.279 

4 0.402 0.439 0.397 0.384 0.393 0.384 

5 0.360 0.386 0.360 0.336 0.341 0.337 

6 0.358 0.372 0.357 0.358 0.358 0.358 

7 0.387 0.396 0.387 0.378 0.375 0.380 

8 0.320 0.300 0.297 0.309 0.284 0.308 

Average 0.361 0.383 0.357 0.355 0.351 0.355 

Improvement 0.00 -5.93 1.33 1.81 2.83 1.62 

 

 

Table 4.4. Correlation coefficient (GIS methods). 

Case Study IDW LP TPS OK UK CK 

1 0.425 0.443 0.436 0.343 0.400 0.345 

2 0.553 0.437 0.578 0.650 0.656 0.643 

3 0.770 0.706 0.765 0.756 0.742 0.757 

4 0.308 0.273 0.320 0.317 0.308 0.317 

5 0.532 0.469 0.534 0.553 0.555 0.550 

6 0.508 0.484 0.508 0.493 0.493 0.492 

7 0.738 0.725 0.738 0.752 0.756 0.750 

8 0.768 0.804 0.805 0.794 0.826 0.794 

Average 0.575 0.543 0.585 0.582 0.592 0.581 

Improvement 0.00 -5.70 1.74 1.22 2.87 0.96 
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(a)      (b) 

 
(c)      (d) 

Note: (a) normalized mean error, (b) normalized mean absolute error, (c) normalized root mean square 

error and (d) correlation coefficient. 

Figure 4.6. Plot of the average and improvement values from GIS methods. 

In terms of ME, Mod FIS–FSG provided a small negative bias in Case 1 while the oth-

ers showed a positive bias. Mod FIS showed the same result in Case 7. In Case 8, Mod 

FIS–FST provided positive bias while the other showed negative bias. However, these 

bias errors are too small to be counted as suspicious condition. The Average values in 

Table 4.6 are calculated from the absolute value of ME. Based on this value, the quality 

of bias error can be ranked as GIS > Mod FIS–FSG = Mod FIS–FST > Mod FIS > 

GAFIS.  
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In terms of MAE, Mod FIS–FSG provided the best accuracy in Cases 1, 3 and 5, where-

as Mod FIS–FST provided the best accuracy in Cases 4, 7 and 8. In Case 6, both of them 

showed compatible results at the best accuracy. Mod FIS provided the best accuracy in 

Case 2 and showed compatible results to Mod FIS–FSG in Case 3. Based on the aver-

age, the efficiency of all interpolators can be ranked as Mod FIS–FSG = Mod FIS–FST 

> Mod FIS > GIS > GAFIS. 

In terms of RMSE, Mod FIS–FSG showed the best accuracy in Case 1 and Case 3, 

whereas Mod FIS–FST showed the best accuracy in Cases 5, 6 and 7. In Case 4, both of 

them provided compatible results for the best accuracy. Mod FIS showed the best accu-

racy in Case 2 and GIS showed the best accuracy in Case 8. In Case 3, however, Mod 

FIS–FST provided unsatisfactory results, which also occurred in MAE. Based on the 

average, the efficiency of all interpolators can be ranked as Mod FIS–FSG > Mod FIS–

FST > Mod FIS > GIS > GAFIS. 

 

Table 4.5. Normalized mean error (the proposed methods). 

Case Study GIS GAFIS Mod FIS Mod FIS–FSG Mod FIS–FST 

1 0.004 0.013 0.024 - 0.009 0.012 

2 - 0.048 - 0.049 - 0.034 - 0.024 - 0.033 

3 0.035 0.049 0.002 0.020 0.016 

4 0.059 0.054 0.070 0.083 0.060 

5 0.000 - 0.007 - 0.068 - 0.021 - 0.040 

6 - 0.016 - 0.013 - 0.012 - 0.004 - 0.010 

7 0.005 0.007 - 0.005 0.000 0.016 

8 - 0.012 - 0.023 - 0.034 - 0.032 0.007 

Average 0.023 0.027 0.031 0.024 0.024 

Improvement 0.00 -19.35 -38.43 -7.10  -7.77 
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Table 4.6. Normalized mean absolute error (the proposed methods). 

Case Study GIS GAFIS Mod FIS Mod FIS–FSG Mod FIS–FST 

1 0.283 0.284 0.258 0.248 0.251 

2 0.327 0.322 0.283 0.290 0.294 

3 0.201 0.224 0.198 0.198 0.203 

4 0.281 0.285 0.255 0.254 0.251 

5 0.259 0.266 0.241 0.227 0.232 

6 0.271 0.267 0.260 0.249 0.249 

7 0.258 0.256 0.249 0.238 0.237 

8 0.203 0.233 0.205 0.204 0.192 

Average 0.260 0.267 0.244 0.239 0.239 

Improvement 0.00 -2.66 6.34 8.28 8.28 

 

 

Table 4.7. Normalized root mean square error (the proposed methods). 

Case Study GIS GAFIS Mod FIS Mod FIS–FSG Mod FIS–FST 

1 0.355 0.366 0.335 0.318 0.332 

2 0.409 0.403 0.378 0.385 0.383 

3 0.275 0.290 0.270 0.261 0.279 

4 0.384 0.396 0.358 0.357 0.357 

5 0.336 0.348 0.332 0.307 0.306 

6 0.357 0.353 0.353 0.334 0.330 

7 0.375 0.369 0.367 0.363 0.361 

8 0.284 0.326 0.295 0.289 0.289 

Average 0.347 0.356 0.336 0.327 0.329 

Improvement 0.00 -2.71 3.16 5.83 5.02 

 

 

Table 4.8. Correlation coefficient (the proposed methods). 

Case Study GIS GAFIS Mod FIS Mod FIS–FSG Mod FIS–FST 

1 0.436 0.370 0.528 0.591 0.540 

2 0.656 0.657 0.703 0.679 0.697 

3 0.770 0.749 0.783 0.804 0.783 

4 0.317 0.315 0.452 0.467 0.454 

5 0.553 0.537 0.621 0.662 0.669 

6 0.508 0.513 0.515 0.581 0.595 

7 0.756 0.769 0.771 0.778 0.782 

8 0.826 0.760 0.811 0.820 0.820 

Average 0.603 0.584 0.648 0.673 0.668 

Improvement 0.00 -3.16 7.48 11.58 10.75 
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(a)      (b) 

 
(c)      (d) 

Note: (a) normalized mean error, (b) normalized mean absolute error, (c) normalized root mean square 

error and (d) correlation coefficient. 

Figure 4.7. Plot of the average and improvement values from the proposed methods. 

In terms of R, Mod FIS–FSG showed the best in Cases 1, 3 and 4, whereas Mod FIS–

FST showed the best in Cases 5, 6 and 7. Mod FIS provided the best accuracy in Case 2 

and GIS showed the best accuracy in Case 8. The results from R and RMSE measure are 

rather compatible.  Base on the average, interpolation accuracy are ranked as Mod FIS–

FSG > Mod FIS–FST > Mod FIS > GIS > GAFIS. 

-45.00

-40.00

-35.00

-30.00

-25.00

-20.00

-15.00

-10.00

-5.00

0.00

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

GIS GAFIS Mod FIS Mod FIS-

FSG

Mod FIS-

FST

Average Improve

-4.00

-2.00

0.00

2.00

4.00

6.00

8.00

10.00

0.000

0.050

0.100

0.150

0.200

0.250

0.300

GIS GAFIS Mod FIS Mod FIS-

FSG

Mod FIS-

FST

Average Improve

-4.00

-3.00

-2.00

-1.00

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

0.000

0.050

0.100

0.150

0.200

0.250

0.300

0.350

0.400

GIS GAFIS Mod FIS Mod FIS-

FSG

Mod FIS-

FST

Average Improve

-4.00

-2.00

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

0.000

0.100

0.200

0.300

0.400

0.500

0.600

0.700

0.800

GIS GAFIS Mod FIS Mod FIS-

FSG

Mod FIS-

FST

Average Improve



86 
 

Based on overall results, it can be concluded that the modular technique can improve the 

interpolation accuracy of GAFIS significantly. Furthermore, such a technique can pro-

vide satisfactory accuracy in comparison with the GIS methods. Among the modular 

models, Mod FIS–FSG and Mod-FIS–FST showed superior results to Mod FIS. This 

shows that the fuzzy gating module can improve accuracy compared with the generic 

gating module. 

4.4.3. Qualitative Results 

Table 4.9 shows the number of local modules and the number of prototypes created in 

the local modules of eight case studies. (Notice that the number of prototypes is associ-

ated with the number of fuzzy rules and the number of MFs of the inputs and the output 

of the fuzzy models.) 

Table 4.9. Numbers of the local modules and the prototypes in the local modules. 

Case Study Number of Local Modules Number of Prototypes in Local Modules 

1 7 2, 3, 4, 4, 4, 4, 2 

2 7 3, 4, 3, 3, 3, 2, 4 

3 7 2, 4, 2, 4, 4, 4, 3 

4 9 4, ,4, 3, 4, 4, 3, 2, 3, 3 

5 7 3, 4, 4, 4, 4, 4, 3 

6 8 2, 2, 2, 4, 4, 3, 4, 4 

7 7 4, 3, 4, 4, 4, 3, 3 

8 8 3, 4, 3, 4, 3, 4, 4, 3 

 

Figures 4.8 and 4.9 show an example of the optimized Gaussian and the triangle MFs in 

the fuzzy gating module and the associated fuzzy rules. Figures 4.10 to 4.12 show an 

example of the optimized MFs and the associated fuzzy rules of the local modules with 

two, three, and four prototypes.    
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For local modules, in terms of low-level interpretability, the selected number of MFs is 

considered from standard deviation analysis. The maximum number of MFs varies from 

two to four in local modules. This satisfies the moderate number of MFs criterion. Fur-

thermore, when the number of MFs is small, the distinguishability of MFs is also good. 

MFs of inputs directly refer to locations in the study area and MFs of the output directly 

explain the amount of monthly rainfall.  

By using the prototyped-based fuzzy modeling, the normalization criterion of local 

modules is met, which at least one data point in the UoD having a membership value 

equal to one. Although one local module cannot satisfy the coverage of fuzzy partition-

ing criterion, whole local modules in the system can satisfy this criterion. All local mod-

ules are created from overlap data. Therefore, it should be enough to ensure that the en-

tire UoD of variables is covered by the MFs generated. 

In terms of high-level interpretability, the rule base parsimony and simplicity criterion is 

met since the number of rules in local modules does not exceed four. The readability of 

single rules criterion is also satisfied; however, that is because the input to the system is 

already readable. The consistency and completeness criteria can also be achieved. Under 

prototype-based fuzzy modeling, there is no conflicting rule and at least one rule has 

been fired. The transparency of rule structure is also clear to human analysts.     

For the gating module, the interpretability of the generic gating module is simple and 

clear in itself. The mechanism to select the local module is not complicated. The select-

ed local module is derived from the geometric distance between the interpolated point 
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and the cluster centers. For the fuzzy gating module, on the other hand, such a module 

can be explained by the interpretability of GAFIS model. The mechanism of fuzzy gat-

ing is similar to the mechanism of GAFIS except for the derivation of the output. This 

difference does not affect the interpretability of the system in both the low-level and 

high-level, in general. 

So far, the qualitative results have been presented. One can see that the interpretability 

of the local modules and the gating module is generally satisfactory. Although the num-

ber of fuzzy sets (MFs) and fuzzy rules of the whole system increases, the interpretabil-

ity of the whole model is still satisfied, at least, in the modular approach. The entire sys-

tem is clearly structured and well established. By using the modular concept, the accura-

cy of the system can be improved with less effect on the model interpretability.     

 

Figure 4.8. An example of Gaussian MFs in the fuzzy gating module (Case 1).  
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Figure 4.9. An example of the triangle MFs in the fuzzy gating module (Case 1).  

 

 

Figure 4.10. An example of MFs in the local module with two fuzzy rules (Case 1). 
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Figure 4.11. An example of MFs in the local module with three fuzzy rules (Case 1). 

 

 

Figure 4.12. An example of MFs in the local module with four fuzzy rules (Case 1). 
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4.5. Conclusion  

This chapter proposes the use of a modular technique to improve the interpolation accu-

racy of GAFIS with small effect on the model’s interpretability. The proposed method-

ology localizes the global area into several local areas by FCM clustering. The degree of 

membership values generated from FCM clustering is used to create overlap in local da-

ta. For each local area, a prototype-based fuzzy model is created by FCM and is then 

optimized by GA.  

The fuzzy systems, again, are used to perform a gating function to activate the appropri-

ate local modules. The established models are compared with commonly-used local spa-

tial interpolation methods from GIS. The results have shown that the proposed model 

can provide accurate results when compared with those GIS methods. In addition, with 

the fuzzy gating module, the interpretable objective can be met at the global level and 

the local level in the modular way.  

 

 

 

 

 

 



92 
 

CHAPTER 5 

AN INTERPRETABLE FUZZY SYSTEM FOR  

MONTHLY RAINFALL TIME SERIES PREDICTION 

5.1. Introduction 

As aforementioned, accurate time series prediction models of the rainfall variable are 

necessary for flow forecasting in river basins. In the same way, interpretable time series 

prediction models of the rainfall variable are also necessary for human analysts to un-

derstand the established models, so that the human analysts can gain an insight into the 

model, as well as adding any prior knowledge. Establishing an interpretable fuzzy sys-

tem for monthly rainfall time series is therefore the aim of this part of the study. 

Conceptually, at least two issues should be considered. Firstly, the inputs to the system 

should be readable and should clearly characterize human knowledge. In spatial interpo-

lation, the inputs to the system have low dimensions and are directly related to the loca-

tion. However, in time series prediction the inputs can be high dimensional vectors of 

historical information, and high complexity of the inputs most likely increases the com-

plexity of the model.  

The second issue is how to represent the system in a meaningful approach. Similar to 

what has been discussed before in the preceding chapters, the interpretability issue needs 

to be taken care of. The fuzzy models that satisfy interpretability fuzzy criteria are capa-

ble of providing a meaningful representation of the models. In this part of the thesis, 

these two issues will be taken into account as the key objectives.  
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This chapter is organized as follows: Section 2 is referenced to the case study and gen-

eral information of the datasets; Section 3 presents the proposed methodology; evalua-

tion of the proposed model will be presented in Section 4; and, finally, Section 5 is the 

conclusion.  

5.2. Case Study Area and Datasets 

The case study area is located in the northeast region of Thailand. This is the same area 

used in the case studies in Chapters 3 and 4; however, only the time series data will be 

used here. Eight monthly rainfall time series data collected throughout the study area are 

used in this chapter. Figure 5.1 shows the locations of the eight rain gauge stations.  

 

 

 

 

 

 

 

Figure 5.1. Locations of the eight rain gauge stations in the study area.  

Figure 5.2 shows the rainfall time series graphs of the eight datasets. Although the 

monthly rainfall time series data are complex and noisy, there is no suspicious event 

such as dramatic shifts of trend appearing. Thus, all periods of the time series data will 

 

Thailand 

N 

1 2 

3 4 

5 6 

7 
8 



94 
 

be used. The data from 1981 to 1998 are used to calibrate the models, and the data from 

1999 to 2001 are used to validate the established models. The statistics and locations of 

the eight datasets are shown in Table 5.1. The data are normalized by linear transfor-

mation for computational purposes. 

Table 5.1. Statistics and locations of the eight rainfall time series. 

Statistics Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7 Case 8 

Mean (mm.) 929 1303 889 1286 1319 981 1296 1124 

SD 867 1382 922 1425 1346 976 1289 1153 

Kurtosis -0.045 -0.100 0.808 0.532 -0.224 1.229 1.590 1.725 

Skewness 1.655 0.952 1.080 1.131 0.825 1.154 1.276 0.961 

Minimum 0 0 0 0 0 0 0 0 

Maximum 3527 5099 4704 6117 5519 4770 6558 6778 

         

Latitude 17.25N 17.15N 16.66N 16.65N 15.50N 15.40N 14.63N 15.40N 

Longitude 101.80E 104.13E 102.88E 104.05E 104.75E 102.35E 101.30E 103.40E 

Altitude 283 176 164 155 129 152 476 152 

 

5.3. Establishing an Interpretable Fuzzy System   

An overview of the proposed methodology is depicted in Figure 5.3. The methodology 

consists of five steps. First, appropriate inputs to the system are selected. Second, a 

Mamdani-type FIS model and MFs are generated. Fuzzy rules are generated in the third 

step. The fourth and fifth steps are the optimization process. Actually, the optimization 

steps can be grouped into one step. In order to control the number of parameters in the 

optimization stage, and the fact that the objectives of these two steps are different, sepa-

rating the optimization into two steps is more suitable. 
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   (Case 1)                    (Case 2) 

 
   (Case 3)                    (Case 4) 

 
   (Case 5)                    (Case 6) 

 
   (Case 7)                    (Case 8) 

Figure 5.2. The eight monthly rainfall time series graphs.  
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Figure 5.3. An overview of the proposed methodology. 

5.3.1. Input Identification 

The objective of predicting rainfall using antecedent values is to generalize the relation-

ships of the following form  

   (  )      (5.1) 

where    is an m-dimensional input vector representing rainfall values with different 

time lags and y is a one-dimensional output representing predicted rainfall value. Former-

ly, one difficulty of using non-linear models was that    was not known before and there 

was no consistence theory to define appropriate    (Wang et al., 2009).  

Recently, two statistical methods, autocorrelation function (ACF) and partial autocorrela-

tion function (PACF), have been employed to determine the dimension m of input vec-
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tors for non-linear models (Wu & Chau, 2013; Wu et al, 2010; Wang et al., 2009). In 

general, ACF and PACF are used to diagnose the order of the autoregressive process. 

Figure 5.4 shows an example of ACF and PACF of the monthly rainfall time series data 

of Case 1 (notice that ACF and PACF of all cases are shown in Appendix B). ACF ex-

hibits the peak value at lag 12 and PACF shows a significant correlation at 95% confi-

dence level interval up to lag 12. Therefore, this suggests that twelve antecedent rainfall 

values contain sufficient information to predict future rainfall. 

 
(a)      (b) 

Figure 5.4. ACF (a) and PACF (b) of monthly rainfall time series data (Case 1). 

However, for an FIS model, selecting 12 lags can result in an increase of complexity in 

fuzzy rules and will cause problems with readability, especially, in the antecedent part 

(Zhou & Gan, 2008). Furthermore, due to the issue of the curse of dimensionality, the 

number of fuzzy parameters can increase tremendously depending on the number of 

membership functions selected. Even using the phase space reconstruction to identify 

input may not be a good solution to this problem. However, as the monthly time series is 
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periodic in nature, adding a time coefficient as a supplementary feature is a promising 

approach (Toprak et al., 2009; Keskin et al., 2006). 

Time coefficient (Ct) is used to assist the model to scope prediction into a specific period. 

It may be Ct = 2 (wet and dry period) or Ct = 12 (calendar months). This study adopted Ct 

= 12 as a supplementary feature. Once the Ct is added into the system, using 12-lag ante-

cedence as the model's inputs may be redundant. This study proposed the use of the first 

lag that crosses the confidence interval line as the minimum information for the model. 

Therefore, two first lags of rainfalls and Ct are considered as the model input. This selec-

tion conforms to the suggestion in the work of Keskin (2006) and Raman and Sunilkumar 

(1995) that 2-lag antecedence contains sufficient information for monthly hydrological 

time series prediction. 

5.3.2. Generate Fuzzy Membership Functions 

In order to create fuzzy MFs for the proposed methodology, two aspects need to be con-

sidered simultaneously. The created MFs should be distinguished enough and should 

reflect the characteristics of the time series data. Huarng (2001) suggested that the ap-

propriate interval length between two consecutive MFs for time series data should be at 

least half of the average of fluctuations in the time series. The fluctuation, herein, is the 

absolute value of the first difference of any two consecutive data. This concept is adopt-

ed in this methodology. However, it has been adapted to fit to the characteristics of the 

monthly rainfall data.  
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In this methodology, the absolute values of the first difference of time series are calcu-

lated. The percentile at 25, 50 and 75 of these values are adopted to explain the fluctua-

tion of the rainfall at low, medium and high periods. The low period of the rainfall is 

defined as zero to percentile 50 of the rainfall values; the medium period is defined as 

percentile 50 to 75; and above percentile 75 are defined as the high period. This proce-

dure is applied to the 1
st
 lag input, the 2

nd
 lag input and the output of the fuzzy model.  

The MFs of Ct are simple, that is, twelve MFs for twelve calendar months. A triangle 

MF is preferred to a Gaussian MF because the asymmetric characteristic of a triangle 

MF is more flexible. An example of the generated MFs is shown in Figure 5.5.  

 

Figure 5.5. An example of the generated MFs of Ct and rainfall (Case 1). 

5.3.3. Generate Fuzzy Rules 

One drawback of fuzzy systems is the lack of self-learning ability to generalize the in-

put-output relationships from the training data. In fact, many algorithms have been pro-

posed for fuzzy systems to learn from training data. However, those algorithms are not 
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suitable to be used for this method. Until now, the MFs have already been created and 

the next step is to construct the fuzzy rules.  

The cooperative neuro-fuzzy inference system (CNFIS) (Wong et al., 2003) is a tech-

nique that combines the advantages of both ANN and FL. This technique uses the learn-

ing ability from ANN to learn from the training data and then it is used to extract the 

fuzzy rules. This approach is adopted to create the fuzzy rules. The procedure to create 

fuzzy rules is as follows: 

Step 1. Use a one hidden layer BPNN to learn from the training data. The number 

of input nodes is three according to the system inputs, that is, Ct, 1
st
-lag and 2

nd
-

lag inputs. The number of the output node is one corresponding to the system out-

put, predicted rainfall. The number of hidden nodes is selected by trial and error. 

Step 2. Prepare the set of input data. The set of input data is all the points in the 

input space where the degree of membership values is 1 in all dimensions. (This 

input data is the antecedent part of the fuzzy rules). 

Step 3. Feed the input data into the BPNN, the output of BPNN are then mapped 

to the nearest MF in the output dimension of the fuzzy model. (This output data is 

the consequence part of the fuzzy rules).  

The constructed readability fuzzy rules are generated in the form:  

IF month=M1 AND 1
st
 lag=A1 AND 2

nd
 lag=B1 THEN rainfall=C1. 

IF month=M2 AND 1
st
 lag=A2 AND 2

nd
 lag=B2 THEN rainfall=C2. 

... 
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5.3.4. Optimize Fuzzy Membership Functions  

In Figure 5.3, this process consists of the optimization of rainfall's MFs and time's MFs. 

The first step is to optimize MFs of the 1
st
 lag input, the 2

nd
 lag input and the output, 

whereas the second step is to optimize MFs of Ct. Actually, these processes can be done 

in a single process. However, to control the number of parameters in each optimization 

process, separating the optimization process into two processes is more appropriate. 

Moreover, the objectives of the optimizations are also different. 

The objective of the first optimization is to fit the fuzzy rules and fuzzy MFs of the rain-

fall variable. As these two parameters come from two methods, they may not fit well. 

The objective of the second optimization is to capture the uncertainty in time dimension. 

The proposed methodology hypothesizes that the substantial uncertainty in time dimen-

sion will be well extracted when rainfall parameters are already fitted.  

In the first optimization, the GA chromosome consists of the sequence of the 1
st
 lag in-

put, the 2
nd

 lag input and the output respectively. In turn, the inputs and output are the 

sequence of MFs which consists of the three parameters of the triangle MF (a, b, c). The 

parameters are allowed to search in a small space (Cordon et al., 2001; Ishibuchi et al., 

1994).  

Let a, b and c be the initial values of the parameters of the triangle MF to be optimized, 

and let x be a parameter to be optimized (i.e. the parameters a, b or c), the search space 

of x is [x - α, x + α] and α is defined as 

    
 

 
(   )                     (5.2) 
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where σ is the user's control parameter with the range of [0,1]. In other words, the search 

space α is dependent on the size of the initial MF. 

In the second optimization process, the GA chromosome is the sequence of triangle MFs 

of the Ct. The search space is set in a different way. Figure 5.6 demonstrates a conceptu-

al example of how to set the search space of parameters a, b and c.   

 

 

 

 

 

 

Figure 5.6. Search space of the triangle MFs of the input Ct. 

Search space of parameters a and c are set in this manner in order to allow the FIS mod-

el to capture the uncertainty in time between months. The search space of parameter b is 

set in this manner in order to allow the FIS model to reduce some firing strength of that 

month. Due to these settings, the established model is capable of preventing the MFs of 

Ct from exhibiting the issue of indistinguishability.  

In this approach, the search space for parameters a and c is equal to the intersect area 

between the two MFs and the search space for parameter b is equal to a half of that in-

tersect area. However, this search space can be changed in accordance with the user's 

requirements. For both optimizations, the fitness function is to minimize sum square er-
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ror between observed values (O) and predicted values (P) of the training data and it is 

given as 

    ∑ (      )
  

        (5.3) 

where S is the number of training data. 

5.4. Evaluation of the Proposed Methodology  

In order to evaluate prediction accuracy, the established models will be compared to 

commonly-used time series prediction models in hydrological study, that is, ARMA 

(Wu et al., 2010; Wang et al., 2009), BPNN (Wu & Chau, 2013; Wu et al., 2010; Jain & 

Kumar, 2007; Somvanshi et al., 2006) and ANFIS (Nayak et al., 2004; Zounemat-

Kermani & Teshnehlab, 2008; Wang et al., 2009). Furthermore, the final models will 

also be compared to the BPNN models that are used to create the fuzzy rules as well as 

the established models before the first and the second optimization. This study uses the 

models to predict rainfall one step ahead (or one month). 

5.4.1. Models Establishment 

In order to select the optimal parameters for ARMA models, the Akaike information cri-

terion (AIC) is adopted (Wu et al., 2010; Wang et al., 2009). This approach generated 

the ARMA models from the training data by replacing parameters p and q of the ARMA 

models from 0 to 12. The parameters that provide the lowest AIC value are used for the 

ARMA models. Table 5.2 shows the optimal parameters and the lowest AIC values for 

the ARMA models of the eight datasets.  
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Table 5.2. The selected parameters and the lowest AIC values. 

Case (p, q) AIC Case (p, q) AIC 

1 (4,4) 13.417 5 (5,3) 13.751 

2 (10,9) 13.982 6 (12,1) 13.536 

3 (6,3) 13.379 7 (12,0) 14.334 

4 (8,11) 14.182 8 (11,2) 13.850 

 

For BPNN and ANFIS, unlike Box-Jenkins models, there is no consistent theory to se-

lect the appropriate inputs. However, the work of Wu et al. (2010), Wu and Chau 

(2013), and Wang et al. (2009) recommended that ACF and PACF can be applied to se-

lect the appropriate inputs for these non-linear models. Considering ACF and PACF in 

Figure 5.4 (and also in Appendix B), they suggest that in general monthly rainfall time 

series in this study area show autoregressive process up to lag twelve. Therefore, 12-lag 

antecedence inputs should provide sufficient information for the models. 

The architecture of BPNN and ANFIS are twelve inputs and one output. The optimal 

numbers of parameters were selected by a trial and error procedure. To investigate the 

optimal numbers of parameters, the training data are separated into two parts. The first 

part is used to train the models and the second part is used to test the models.  

In the case of BPNN, the experiments varied the numbers of hidden nodes from two to 

six. An example of the results for BPNN is shown above (a) in Figure 5.7. From the ex-

periment, the number of two or three hidden nodes can provide minimum error. Table 

5.3 summarizes the number of hidden nodes (hn) of BPNN of the eight datasets. Fur-

thermore, when the number of training epochs is larger than 15, error from the testing 

data started to increase. Therefore, the number of epochs is limited to 15.  
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   (a)      (b) 

Figure 5.7. An example of trial and error processes to determine the optimal number of 

parameters of BPNN (a) and ANFIS (b). 

In the case of ANFIS, the prototype-based fuzzy modeling was used. The Sugeno-type 

FIS was generated from FCM and was then optimized by the ANFIS procedure. An ex-

ample of the results for ANFIS is shown above (b) in Figure 5.7. The experiments 

pointed out that a small number of clusters provided better prediction results. The effects 

of the number of epochs to the prediction error were more sensitive than for BPNN. On-

ly two or three epochs were enough to generalize data. The number of selected cluster 

(cls) of ANFIS is presented in Table 5.3. 

Table 5.3. The selected number of parameters of BPNN and ANFIS. 

Case hn / cls Case hn / cls 

1 3 / 2 5 2 / 2 

2 2 / 2 6 3 / 3 

3 3 / 3 7 2 / 2 

4 3 / 2 8 3 / 2 

 

In the case of the proposed model, BPNN used to create fuzzy rules were selected in the 

same manner. The value of σ in the first optimization was set to 0.25 so as to preserve 
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the shape of MFs after the first optimization. The number of population was set to 100 

for both optimizations and the number of generations was set to 30 and 15 for the first 

and second optimization respectively, where the best and average fitness values were 

met. The reproduction scheme elite count was set to 2 and the crossover fraction was set 

to 0.8. 

5.4.2. Quantitative Results 

From now on, BPNN12 refers to BPNN with twelve antecedence lags input, BPNN3 re-

fers to BPNN with Ct and two antecedence lags input, MFIS–ORG is the proposed mod-

el before optimization, MFIS–OPT1 and MFIS–OPT2 are the proposed models after the 

first and the second optimization, respectively. Tables 5.4, 5.5 and 5.6 show the experi-

mental results. The MAE and RMSE of each case are normalized by its mean of the da-

taset for comparison purposes. 

The row Average in the tables refers to the average values from all cases and the row 

Improvement in the tables refers to the percentage improvement of the average values in 

comparison with the ARMA models. Figure 5.8 shows the average values (use the left 

axis for reference) and the improvement percentage (use the right axis for reference) of 

all models. 
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Table 5.4. Normalized mean absolute errors. 

Case Study ARMA BPNN12 ANFIS BPNN3 
MFIS–

ORG 

MFIS–

OPT1 

MFIS–

OPT2 

1 0.740 0.566 0.555 0.512 0.530 0.486 0.483 

2 0.480 0.484 0.387 0.393 0.390 0.386 0.381 

3 0.595 0.620 0.580 0.498 0.531 0.499 0.420 

4 0.549 0.616 0.522 0.490 0.529 0.477 0.472 

5 0.623 0.611 0.518 0.547 0.515 0.502 0.464 

6 0.570 0.660 0.595 0.527 0.540 0.525 0.515 

7 0.518 0.567 0.510 0.493 0.448 0.443 0.440 

8 0.419 0.526 0.420 0.432 0.486 0.436 0.410 

Average 0.562 0.581 0.511 0.487 0.496 0.469 0.448 

Improvement 0 -3.48 9.07 13.37 11.67 16.46 20.22 

 

Table 5.5. Normalized root mean square errors. 

Case Study ARMA BPNN12 ANFIS BPNN3 
MFIS–

ORG 

MFIS–

OPT1 

MFIS–

OPT2 

1 0.956 0.773 0.769 0.764 0.780 0.730 0.729 

2 0.677 0.710 0.593 0.634 0.651 0.625 0.616 

3 0.867 0.974 0.845 0.788 0.803 0.776 0.672 

4 0.799 0.966 0.764 0.761 0.792 0.740 0.709 

5 0.880 0.874 0.771 0.822 0.773 0.752 0.708 

6 0.851 1.013 0.845 0.766 0.795 0.764 0.754 

7 0.651 0.743 0.667 0.631 0.586 0.584 0.575 

8 0.574 0.757 0.603 0.623 0.703 0.632 0.598 

Average 0.782 0.851 0.732 0.724 0.735 0.700 0.670 

Improvement 0 -8.87 6.37 7.42 5.95 10.43 14.32 

 

Table 5.6. Correlation coefficient. 

Case Study ARMA BPNN12 ANFIS BPNN3 
MFIS–

ORG 

MFIS–

OPT1 

MFIS–

OPT2 

1 0.539 0.731 0.764 0.749 0.748 0.794 0.800 

2 0.787 0.761 0.844 0.822 0.824 0.838 0.844 

3 0.543 0.572 0.583 0.632 0.623 0.645 0.732 

4 0.797 0.740 0.835 0.846 0.809 0.837 0.855 

5 0.666 0.656 0.738 0.703 0.741 0.755 0.781 

6 0.587 0.465 0.613 0.695 0.663 0.704 0.718 

7 0.466 0.371 0.468 0.570 0.612 0.630 0.634 

8 0.776 0.664 0.772 0.757 0.691 0.750 0.767 

Average 0.645 0.620 0.702 0.722 0.714 0.744 0.766 

Improvement 0 -3.90 8.83 11.87 10.64 15.35 18.76 
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(a) 

 
(b) 

 
(c) 

Figure 5.8.  Average values and improvement of models. 
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In terms of MAE, the best accuracy comes from MFIS–OPT2 in all cases. In contrast, 

the lowest accuracy appears in BPNN12 in six cases and in ARMA in two cases. ANFIS 

shows relatively good accuracy in comparison with ARMA and BPNN12. BPNN3 pro-

vides better accuracy than ANFIS and MFIS–ORG in five cases. The accuracy of 

MFIS–ORG2 is slightly better than MFIS–ORG1 in general. 

In terms of RMSE, the best accuracy comes from MFIS–OPT2 in six cases, ANFIS and 

ARMA show the best accuracy in Case two and Case eight respectively. Again, BPNN12 

shows unsatisfactory prediction accuracy. Overall, ANFIS and BPNN3 provide rather 

compatible results and prove slightly superior than MFIS–ORG. The accuracy of MFIS–

OTP2 has been improved from MFIS–OPT1 in general. 

In terms of R, the best accuracy comes from MFIS–OPT2 in six cases. ANFIS shows the 

best on Case 8 and ARMA shows the best on Case 2. Overall, the results gained from 

the R measure corresponded to the RMSE measure. Overall the prediction accuracy can 

be ordered as MFIS–OPT2 > MFIS–OPT1 > BPNN3 > ANFIS ≈ MFIS–ORG > ARMA 

> BPNN12. 

5.4.3. Qualitative results  

Figure 5.9 shows an example of optimized fuzzy MFs and Figure 5.10 shows some parts 

of the generated fuzzy rules from MFIS–OPT2. At the level of fuzzy set, the criteria of 

distinguishability, normality and completeness of partition in input space of MFs are 

preserved after optimization. Optimized MFs are well structured and clearly represented.  
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The number of fuzzy sets in each input dimension ranges from 9 to 13 depending on the 

fluctuation in the time series data. Although these numbers are higher than those rec-

ommended by Zhou and Gan (2008), an appropriate number of MFs in each input 

should not exceed 7 ± 2. These slightly higher numbers are necessary because they are a 

good explanation to the fluctuation in the time series data. 

At the level of fuzzy rules, the proposed model provides good readability of single rules 

with only three conditions in antecedent part while ANFIS has twelve conditions. Since 

the fuzzy rules are extracted from generalized BPNN3 by using a mapping procedure, 

the consistence and completeness of fuzzy rules are met. In the case of the transparency 

of the rules structure, as the proposed model presents the month feature as an input to 

the systems the fuzzy rule "IF month = M AND 1
st 

lag = A AND 2
nd

 lag = B THEN rain-

fall = C" can characterize or explain the monthly rainfall time series data in a clear way. 

However, although many interpretable fuzzy criteria have been met, the number of gen-

erated fuzzy rules is still the problem because the proposed model has a large number of 

fuzzy rules. For example, if the number of MFs in the model is 9, the number of fuzzy 

rules generated is 972. This problem needs to be addressed. 

For the monthly rainfall time series data, the number of redundant fuzzy rules (i.e. high 

rainfall in the dry period and vice versa) can be removed later by human analysts. This 

can be done by using expert knowledge or by observations from historical records. Due 

to the good readability structure of the fuzzy rules, the task of removal will be easier. 

Table 5.7 summarizes the qualitative results of the proposed models.  
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Table 5.7. Summary of qualitative results. 

Level Criterion Weak Fair Good Strong 

L
o

w
-L

ev
el

 Distinguishability    x 

Moderate number of MFs  x   
Coverage or completeness of partition of input 

variable 
  x  

Normalization    x 

      

H
ig

h
-L

ev
el

 Rule-base parsimony and simplicity x    

Readability of single rule   x  

Consistency of rules    x 

Completeness of rules    x 

Transparency of rule structure   x  

 

Figure 5.11 represents the uncertainty in time dimension of the monthly rainfall time 

series data via fuzzy parameters. This interpretability characteristic is an advantage of 

the proposed model. These fuzzy MFs allow human analysts to investigate the uncer-

tainty of rainfall data between months. As a consequence, further analysis into the 

monthly time series data can be enhanced. 

Up to this point, the experimental results have been presented in terms of the quantita-

tive and qualitative aspects. The results showed that the proposed model provided satis-

factory prediction accuracy and acceptable model interpretability. These experimental 

results have suggested the following: 

 Although BPNN12 did not provide superior results than ARMA in this experiment, it 

does not mean that BPNN12 is not an appropriate method. The dataset used is rela-

tively small. The number of training data may not be enough for large inputs of 

BPNN12. 
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      (a) 

 
      (b) 

 
      (c) 

 
      (d) 

Figure 5.9. An example of optimized fuzzy MFs (Case 1). 
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167. If (month is mar) and (lag1 is A1) and (lag2 is B5) then (rainfall is C3)   
168. If (month is mar) and (lag1 is A1) and (lag2 is B6) then (rainfall is C3)   

169. If (month is mar) and (lag1 is A1) and (lag2 is B7) then (rainfall is C2)   

170. If (month is mar) and (lag1 is A1) and (lag2 is B8) then (rainfall is C1)   
171. If (month is mar) and (lag1 is A1) and (lag2 is B9) then (rainfall is C2)   

172. If (month is mar) and (lag1 is A2) and (lag2 is B1) then (rainfall is C4)   

173. If (month is mar) and (lag1 is A2) and (lag2 is B2) then (rainfall is C4)   
174. If (month is mar) and (lag1 is A2) and (lag2 is B3) then (rainfall is C4)   

175. If (month is mar) and (lag1 is A2) and (lag2 is B4) then (rainfall is C4)   

176. If (month is mar) and (lag1 is A2) and (lag2 is B5) then (rainfall is C3)   
177. If (month is mar) and (lag1 is A2) and (lag2 is B6) then (rainfall is C3)   

178. If (month is mar) and (lag1 is A2) and (lag2 is B7) then (rainfall is C2)   

179. If (month is mar) and (lag1 is A2) and (lag2 is B8) then (rainfall is C2)   
180. If (month is mar) and (lag1 is A2) and (lag2 is B9) then (rainfall is C2)   

181. If (month is mar) and (lag1 is A3) and (lag2 is B1) then (rainfall is C4)   

182. If (month is mar) and (lag1 is A3) and (lag2 is B2) then (rainfall is C4)   
183. If (month is mar) and (lag1 is A3) and (lag2 is B3) then (rainfall is C4)   

184. If (month is mar) and (lag1 is A3) and (lag2 is B4) then (rainfall is C3)   

185. If (month is mar) and (lag1 is A3) and (lag2 is B5) then (rainfall is C3)   
186. If (month is mar) and (lag1 is A3) and (lag2 is B6) then (rainfall is C3)   

187. If (month is mar) and (lag1 is A3) and (lag2 is B7) then (rainfall is C2)   

188. If (month is mar) and (lag1 is A3) and (lag2 is B8) then (rainfall is C2)   
189. If (month is mar) and (lag1 is A3) and (lag2 is B9) then (rainfall is C2)   

190. If (month is mar) and (lag1 is A4) and (lag2 is B1) then (rainfall is C4)   

191. If (month is mar) and (lag1 is A4) and (lag2 is B2) then (rainfall is C4)   
192. If (month is mar) and (lag1 is A4) and (lag2 is B3) then (rainfall is C4)   

193. If (month is mar) and (lag1 is A4) and (lag2 is B4) then (rainfall is C3)   

194. If (month is mar) and (lag1 is A4) and (lag2 is B5) then (rainfall is C3)   
195. If (month is mar) and (lag1 is A4) and (lag2 is B6) then (rainfall is C3)   

196. If (month is mar) and (lag1 is A4) and (lag2 is B7) then (rainfall is C2)   

197. If (month is mar) and (lag1 is A4) and (lag2 is B8) then (rainfall is C2)   
198. If (month is mar) and (lag1 is A4) and (lag2 is B9) then (rainfall is C2)   

199. If (month is mar) and (lag1 is A5) and (lag2 is B1) then (rainfall is C4)   

200. If (month is mar) and (lag1 is A5) and (lag2 is B2) then (rainfall is C4)   
201. If (month is mar) and (lag1 is A5) and (lag2 is B3) then (rainfall is C4)   

202. If (month is mar) and (lag1 is A5) and (lag2 is B4) then (rainfall is C3)   

203. If (month is mar) and (lag1 is A5) and (lag2 is B5) then (rainfall is C3)   
204. If (month is mar) and (lag1 is A5) and (lag2 is B6) then (rainfall is C3)   

205. If (month is mar) and (lag1 is A5) and (lag2 is B7) then (rainfall is C2)   
206. If (month is mar) and (lag1 is A5) and (lag2 is B8) then (rainfall is C2)   

207. If (month is mar) and (lag1 is A5) and (lag2 is B9) then (rainfall is C1)   

208. If (month is mar) and (lag1 is A6) and (lag2 is B1) then (rainfall is C4)   
209. If (month is mar) and (lag1 is A6) and (lag2 is B2) then (rainfall is C4)   

210. If (month is mar) and (lag1 is A6) and (lag2 is B3) then (rainfall is C4)   

211. If (month is mar) and (lag1 is A6) and (lag2 is B4) then (rainfall is C3)   
212. If (month is mar) and (lag1 is A6) and (lag2 is B5) then (rainfall is C3)   

213. If (month is mar) and (lag1 is A6) and (lag2 is B6) then (rainfall is C2)   

214. If (month is mar) and (lag1 is A6) and (lag2 is B7) then (rainfall is C2)   
215. If (month is mar) and (lag1 is A6) and (lag2 is B8) then (rainfall is C3)   

216. If (month is mar) and (lag1 is A6) and (lag2 is B9) then (rainfall is C1)   

217. If (month is mar) and (lag1 is A7) and (lag2 is B1) then (rainfall is C4)   
218. If (month is mar) and (lag1 is A7) and (lag2 is B2) then (rainfall is C4)   

219. If (month is mar) and (lag1 is A7) and (lag2 is B3) then (rainfall is C3)   

220. If (month is mar) and (lag1 is A7) and (lag2 is B4) then (rainfall is C3)   

221. If (month is mar) and (lag1 is A7) and (lag2 is B5) then (rainfall is C3)   

222. If (month is mar) and (lag1 is A7) and (lag2 is B6) then (rainfall is C2)   

223. If (month is mar) and (lag1 is A7) and (lag2 is B7) then (rainfall is C2)   
224. If (month is mar) and (lag1 is A7) and (lag2 is B8) then (rainfall is C2)   

225. If (month is mar) and (lag1 is A7) and (lag2 is B9) then (rainfall is C1)   

226. If (month is mar) and (lag1 is A8) and (lag2 is B1) then (rainfall is C4)   
227. If (month is mar) and (lag1 is A8) and (lag2 is B2) then (rainfall is C4)   

 
  

Figure 5.10. Samples of the generated fuzzy rules (Case 1). 
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Note: Case 1 to Case 4 are presented from the second graph to the  bottom. 

Figure 5.11. A presentation of uncertainty in time dimension through fuzzy MFs  
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Note: Case 5 to Case 8 are presented from the second graph to the bottom. 

Figure 5.11. (cont.) A presentation of uncertainty in time dimension through fuzzy 

MFs.  
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 ANFIS is capable of capturing the uncertainty in the data because it provided better 

results than BPNN12 and ARMA. However, the use of ANFIS should be handled with 

care because such a model showed higher sensitivity than BPNN12. As can be seen in 

Figure. 5.7, ANFIS (b) tends to lose generalization in only a few epochs. This is one 

reason that BPNN was used instead of ANFIS to generate fuzzy rules in the proposed 

method.  

 Using the time coefficient, Ct, as the supplementary feature for the periodic time se-

ries data is an effective way to improve the prediction accuracy. As shown in the re-

sults, BPNN3 provided considerable improvement from BPNN12 and ANFIS. How-

ever, the use of the time coefficient feature is limited to only periodic time series da-

ta. 

 The conversion from BPNN3 to MFIS–ORG inevitably decreases some prediction 

accuracy. However, this issue can be addressed by the optimization process. One can 

see that the prediction accuracy of MFIS–ORG was improved when fuzzy rules and 

fuzzy MFs were optimized (MFIS–OPT1).   

 The uncertainty in the time dimension has significant impact on the prediction accu-

racy of the proposed models. Once the MFs in the time dimension were optimized 

(MFIS–OPT2), the prediction accuracy of the proposed models improved. 

However, all these observation are based on the average results. In the details of con-

verting from BPNN3 to MFIS–OPT2, the results showed that not all cases provided sig-

nificant improvement. Cases 3, 5 and 7 provided large improvement, up to 10 percent. 
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Cases 1, 4 and 8 provided moderate improvement, about 3.5 to 5.5 percent. Cases 2 and 

6 showed small improvement, approximately 2.5 percent. This difference is subject to 

the following:  

 If the uncertainty in time series data is not strong, the prediction accuracy between 

those two models may not be different because BPNN is capable of handling weak 

uncertainty. 

 In order to preserve the interpretability of the proposed model, search space is lim-

ited to a small region. GA may not be able to find a better optimal solution in the 

constrained search space. 

5.5. Conclusion 

This chapter proposed an integration of intelligent techniques, namely, fuzzy logic, an 

artificial neural network and a genetic algorithm to create interpretable fuzzy models for 

the monthly rainfall time series prediction. The proposed models were evaluated by 

eight monthly rainfall time series data in the northeast region of Thailand. 

The experimental results illustrated that, in terms of the quantitative aspect, the proposed 

models provided satisfactory prediction accuracy in comparison with commonly-used 

time series prediction models in hydrology. In terms of the qualitative aspect, the pro-

posed models can mostly satisfy the interpretability fuzzy criteria. Furthermore, the un-

certainty in the time dimension of the data can be represented through fuzzy MFs.  
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However, one disadvantage of the proposed models is the large number of fuzzy rules 

generated. The high number of generated fuzzy rules will cause the interpretability of 

the proposed models to deteriorate. Although, in practice a number of redundant fuzzy 

rules can be removed subsequently by human analysts, it would be better if this problem 

is addressed. In the next chapter, one solution to this problem is presented. 
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CHAPTER 6 

A MODULAR FUZZY SYSTEM FOR  

MONTHLY RAINFALL TIME SERIES PREDICTION 

6.1. Introduction 

In the previous chapter, a methodology to establish an interpretable fuzzy model for 

time series prediction has been proposed. The proposed methodology presented in Chap-

ter 5 provided satisfactory prediction accuracy and provided adequate model interpreta-

bility. However, one fuzzy interpretability criterion is still not satisfied in the previous 

chapter, that is, rule base parsimony and simplicity, as the proposed models in the previ-

ous chapter can generate a large number of fuzzy rules.  

In Chapter 4, the modular technique had been used to improve interpolation accuracy of 

the GAFIS model. Conceptually, the modular technique divides the whole data into sev-

eral parts in order to reduce the complexity of the data. As a result, the complexity in the 

modeling process is decreased. This technique will be used herein again to simplify the 

complicacy of fuzzy parameters of the MFIS–OPT2 used for time series prediction.  

The chapter is organized as follows: Section 2 presents the case study and the datasets 

used in this chapter; Section 3 presents the modular fuzzy inference systems for monthly 

rainfall time series prediction; in Section 4 the proposed models will be evaluated and 

recommendations will be presented; and, finally, Section 5 is the conclusion.  
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6.2. Case Study Area and Datasets 

The case study area and the datasets used in this chapter are the same as in the previous 

chapter. Some general information about the eight case studies has been shown in Table 

5.1. The training data and testing data are also the same for comparison purposes. 

 

6.3. Establishing a Modular Fuzzy System 

In this chapter, again, the modular technique named multiple expert systems has been 

adopted as shown in Figure 4.1. However, this approach has been adapted according to 

the characteristics of monthly time series data. The details of the proposed model are as 

follows. 

6.3.1. The Model’s Architecture  

The architecture of the proposed model is shown in Figure 6.1. The model consists of an 

input layer, a prediction layer, an aggregation layer and an output layer. The input layer 

is used to feed the input data into the associated prediction modules. The prediction lay-

er consists of twelve prediction modules (predictors) associated with the calendar 

months. The function of these modules is to generalize the input-output relationships of 

the rainfall pattern of the month. The aggregation layer consists of twelve aggregation 

modules (aggregators) associated with the calendar months, which are the same as the 

prediction modules. The function of these modules is to aggregate the outputs from the 

associated prediction modules by using the combination weights. The output layer is 

used to derive the final prediction of the system. 
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Figure 6.1. An overview of the proposed model’s architecture. 

An example of the model’s operation is as follows: suppose that the model is used to 

predict the rainfall value in February (see Figure 6.1). Firstly, the input selector feeds 

input data into the associated predictor (i.e. Feb), the previous predictor (i.e. Jan) and the 

next predictor (i.e. Mar). Secondly, the outputs from the predictors are aggregated by the 

associated aggregator (i.e. Feb). Finally, the output selector receives the aggregated out-

put from the associated aggregator and provides the final output. Therefore, to perform 

the prediction, three consecutive predictors and one aggregator will be used.  

6.3.2. Input Identification 

As discussed before, the objective in predicting rainfall using antecedent values is to 

generalize the relationships of the form     (  ), where    is an m-dimensional in-

put vector representing rainfall values with different time lags, and y is an one-

dimensional output value representing the predicted rainfall. Since    is not known be-
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forehand and there is no consistent procedure to define    for non-linear models, ACF 

and PACF are then used to identify an appropriate input again.  

Figure 6.2 represents an example of ACF and PACF of the monthly rainfall time series 

data (ACF and PACF of all cases are shown in Appendix B). In general, ACF exhibits 

peak values at lag 12 and PACF exhibits a significant correlation at 95% confidence 

level interval up to lag 12. Thus, these functions suggest that twelve antecedent rainfall 

values contain sufficient information to predict future rainfall. 

However, for the proposed model, as the whole system is decomposed into twelve sub-

modules, 12-lag information may be redundant to the sub-module. Instead, the model 

suggests the first lag that crosses the confidence line in PACF as minimum information 

for each sub-module. Therefore, two antecedent rainfalls are considered as the input for 

each sub-module. 

 

(a)      (b) 

Figure 6.2. ACF (a) and PACF (b) of monthly rainfall time series data (Case 1). 
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It can be observed that the inputs to the systems of the proposed models in the previous 

chapter and this chapter are identical. In both proposed models, the similarity is that the 

1
st
 lag and 2

nd
 lag antecedence of the rainfall data and the time variable (month) are used 

as the inputs to the systems. The difference is that the proposed model in the previous 

chapter employs the time variable to provide the prediction, whereas the proposed mod-

el in this chapter employs the time variable to select the sub-modules.  

6.3.3. Create Prediction Modules  

In order to create interpretable fuzzy models for the prediction modules (PM), the proto-

type-based fuzzy modeling is used. Similar to those fuzzy models in Chapters 3 and 4, a 

Mamdani-type FIS model is created from the FCM technique. However, the method 

used to determine the number of clusters is different. As the number of training data in 

each sub-module is rather small (i.e. approximately 17 to 18 records), cluster analysis 

seems to be redundant, and only a simple clustering method is required. 

Therefore, the number of clusters in the FCM method is determined by using the sub-

tractive clustering (Jang et al., 1997). This technique is another commonly-used method 

in a hydrological study (Nayak & Sudheer, 2008). One parameter that has to be defined 

in the subtractive method is the vector that specifies the cluster center's range of influ-

ence in each of the data dimensions, assuming the data falls within a unit hyper box (ra-

dii). To ensure that the range of the subtractive method examines at least half of the 

range of data in a unit hyper box, this parameter is set to 0.5. 
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The subtractive method can make the modeling process more convenient by omitting the 

clustering analysis process. However, there is no report of this automatic technique to 

ensure the parsimonious number of created prototypes on the large dataset. In this case, 

for each sub-module, the number of training data is small and thus the complexity of 

training data is reduced. This technique is appropriate to reduce the complexity in the 

modeling process.   

6.3.4. Create Aggregation Modules 

In order to derive the final output of the system, the aggregation modules (AM) are used 

to combine the outputs yi from *   +   
  by using the combination weights. The combi-

nation formula is 

  ∑     
 
          (6.1) 

where      and ∑   
 
     . These weights can be viewed as the measure of “close-

ness” of the rainfall pattern, in which the rainfall pattern is close to the rainfall pattern of 

that PM. A larger combination weight indicates that the rainfall pattern is closer to that 

PM than the others. For comparison purposes, however, the sequential method and the 

non-sequential method are used to evaluate the combination weights. Bayesian learning 

is used for the sequential method and non-linear programming is used for the non-

sequential method. 
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6.3.4.1. The Sequential Method 

Wang et al. (2010) proposed the Bayesian learning method that aggregates information 

from modular neural networks in a sequential way and this method is adopted for the 

current model. Since the nature of time series data is sequential in time, the aggregation 

in a sequential fashion should be more appropriate than in a non-sequential fashion. The 

steps to create combination weights for the AM from associated PMs are as follows: 

Step 1. Prepare training data for associated PMs. 

Step 2. Ordering S training data records from oldest to newest. 

Step 3. For i = 1 to S: 

Step 3a. Calculate likelihood function (LF) values, ωj
i
 (j = 1,2, ... ,K) as 

    
     ⁄

∑      ⁄ 
   

     (6.2) 

where ssej is the training error of the j
th

 prediction module, K is the 

number of prediction modules aggregated (i.e. K = 3). 

Step 3b. Update the combination weights by using Bayesian reasoning as 

  
  {

     
     

             ∑   
     

    
   

  
     

 

∑   
     

  
   

                                   
    (6.3) 

From Step 3b, it can be seen that the combination weights are constructed in a sequential 

way so that each training data processes a certain property of inheritance. The advantage 

of a Bayesian decision analysis is that it can model uncertainty information via the 
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Bayesian reasoning process (Wang et al., 2010), which can help human analysts to gain 

more insights into the system to be modeled. 

6.3.4.2. The Non-Sequential Method 

For the non-sequential method, constrained non-linear optimization (or constrained non-

linear programming) is used to find the optimal combination weights. The algorithm at-

tempts to find a constrained minimum of a scalar function of several variables starting 

from an initial estimate. The algorithm uses a Hessian, the second derivatives of the La-

grangian (Byrd et al., 2000). The problem can be specified by  

     ( )           [
       

             
   (6.4) 

where         is set for constraint      and             is set for constraint 

∑   
 
     . For this case, A = [-1 0 0; 0 -1 0; 0 0 -1]; b = [0; 0; 0]; Aeq = [1 1 1]; beq = 

[1]. The initial estimate vector is set to [0 1 0]
T
. In other words, the algorithm finds the 

optimal values of wi are better than no aggregation method. The cost function f(x), 

which has to be minimized, is as follows:  

    ∑ ,(     
        

       
 )     -

  
                      (6.5) 

Where SSE is error of training data, S is the number of training data,   
  is the predicted 

value from PMi , and zi is the observed value.  
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6.4. Evaluation of the Proposed Methodology  

This chapter continues from the previous one and all models are compared herein. These 

models include ARMA, BPNN12, ANFIS, and MFIS–OPT2. Also, the modular model 

without aggregation modules is included. Such a model derives the final output directly 

from the triggered PM module. Henceforth, Mod FIS refers to the modular models 

without an aggregation layer. Mod FIS–BSA and Mod FIS–HSA refer to the modular 

models with sequential and non-sequential aggregation layers, respectively.  

6.4.1. Quantitative Results  

To evaluate the prediction accuracy of the current models, three error measures have 

been used, MAE, RMSE and R. The experimental results are shown in Tables 6.1 to 6.3. 

In the tables, MAE and RMSE measure are normalized by the mean values of the da-

tasets for comparison purposes. In the tables, the row Average refers to the average val-

ues from all case studies and the row Improvement refers to the improvement percent-

age of the average values based on the MFIS–OPT2 model. Figure 6.3 shows these aver-

age values (use the left axis for reference) and improvement values (use the right axis 

for reference). 
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Table 6.1. Normalized mean absolute error. 

Case Study ARMA BPNN12 ANFIS 
MFIS–

OPT2 
Mod FIS 

Mod 

FIS–HSA 

Mod 

FIS–BSA 

1 0.740 0.566 0.555 0.483 0.463 0.492 0.448 

2 0.480 0.484 0.387 0.381 0.384 0.350 0.331 

3 0.595 0.620 0.580 0.420 0.456 0.409 0.398 

4 0.549 0.616 0.522 0.472 0.474 0.468 0.461 

5 0.623 0.611 0.518 0.464 0.455 0.456 0.440 

6 0.570 0.660 0.595 0.515 0.495 0.464 0.465 

7 0.518 0.567 0.510 0.440 0.491 0.424 0.460 

8 0.419 0.526 0.420 0.410 0.360 0.349 0.354 

Average 0.562 0.581 0.511 0.448 0.447 0.427 0.420 

Improvement -25.34 -29.71 -13.97 0.00 0.21 4.82 6.34 

 

Table 6.2. Normalized root mean square error. 

Case Study ARMA BPNN12 ANFIS 
MFIS–

OPT2 
Mod FIS 

Mod 

FIS–HSA 

Mod 

FIS–BSA 

1 0.956 0.773 0.769 0.729 0.662 0.688 0.658 

2 0.677 0.710 0.593 0.616 0.537 0.565 0.513 

3 0.867 0.974 0.845 0.672 0.727 0.688 0.699 

4 0.799 0.966 0.764 0.709 0.640 0.648 0.641 

5 0.880 0.874 0.771 0.708 0.694 0.695 0.673 

6 0.851 1.013 0.845 0.754 0.767 0.758 0.763 

7 0.651 0.743 0.667 0.575 0.665 0.588 0.648 

8 0.574 0.757 0.603 0.598 0.528 0.515 0.520 

Average 0.782 0.851 0.732 0.670 0.653 0.643 0.639 

Improvement -16.71 -27.06 -9.27 0.00 2.58 4.02 4.57 

 

Table 6.3. Correlation coefficient. 

Case Study ARMA BPNN12 ANFIS 
MFIS–

OPT2 
Mod FIS 

Mod 

FIS–

HSA 

Mod 

FIS–

BSA 

1 0.539 0.731 0.764 0.800 0.813 0.816 0.825 

2 0.787 0.761 0.844 0.844 0.872 0.859 0.886 

3 0.543 0.572 0.583 0.732 0.696 0.721 0.725 

4 0.797 0.740 0.835 0.855 0.873 0.877 0.877 

5 0.666 0.656 0.738 0.781 0.791 0.791 0.809 

6 0.587 0.465 0.613 0.718 0.681 0.693 0.692 

7 0.466 0.371 0.468 0.634 0.663 0.683 0.657 

8 0.776 0.664 0.772 0.767 0.824 0.830 0.835 

Average 0.645 0.620 0.702 0.766 0.777 0.784 0.788 

Improvement -15.80 -19.08 -8.36 0.00 1.35 2.31 2.87 
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(a) 

 
(b) 

 
(c) 

Figure 6.3. Average values and improvement of models. 
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In terms of MAE, the best prediction accuracy comes from Mod FIS–BSA in five cases 

and comes from Mod FIS–HSA in three cases. Among the proposed models, the lowest 

accuracy appears on Mod FIS in four cases, MFIS–OPT2 in three cases and Mod FIS–

HSA in only one case. Based on the average values, the prediction accuracy can be or-

dered as Mod FIS–BSA > Mod FIS–HSA > Mod FIS ≈ MFIS–OPT2 > ANFIS > ARMA 

> BPNN12.  

In terms of RMSE, the best prediction accuracy is in Mod FIS–BSA and MFIS–OPT2, 

three cases in each, and in Mod FIS and Mod FIS–HSA in one case each. Considering 

all the proposed models, the lowest accuracy appears in MFIS–OPT2 in five cases and 

three cases in Mod FIS. Based on the average values, the prediction accuracy can be 

ranked as Mod FIS–BSA ≈ Mod FIS–HSA > Mod FIS > MFIS–OPT2 > ANFIS > AR-

MA > BPNN12. However, Mod FIS–BSA shows slightly better accuracy than Mod FIS–

HSA. 

In terms of R, the best prediction accuracy appears on Mod FIS–BSA in five cases, on 

MFIS–OPT2 in two cases and on Mod FIS–HSA in one case. Among all proposed the 

models the lowest accuracy comes from MFIS–OPT2 in six cases and from Mod FIS in 

two cases. Based on average values, the prediction accuracy can be ordered as Mod 

FIS–BSA ≈ Mod FIS–HSA > Mod FIS > MFIS–OPT2 > ANFIS > ARMA > BPNN12. 

For this measure, the accuracy gradually increases from MFIS–OPT2 to Mod FIS–BSA. 

As the results from MAE, RMSE and R measures are consolidated, these experimental 

results are rather consistent. Overall, the prediction accuracy can be ordered as Mod 
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FIS–BSA > Mod FIS–HSA > Mod FIS > MFIS–OPT2 > ANFIS > ARMA > BPNN12. It 

can be seen that major improvement comes from the use of a time coefficient (MFIS–

OPT2) and the modular technique (Mod FIS). For the modular model, the minor im-

provement comes from the use of an aggregation layer. In turn, the sequential method 

provided slightly more improvement than the non-sequential method. 

6.4.2. Qualitative Results 

Table 6.4 shows the number of prototypes generated in twelve monthly sub-modules of 

the eight case studies. The number of prototypes is aligned with the number of fuzzy 

rules and the number of MFs of each input and output of the fuzzy models. The average 

number of prototypes of the fuzzy models from all cases is approximately 76.  

Figure 6.4 shows an example of the fuzzy parameters of monthly PMs. The figure shows 

MFs of Case 1, which has the most number of prototypes (i.e. 94). The fuzzy rules of all 

PMs are in the form of "IF 1
st
Lag = clsi AND 2

nd
Lag = clsi THEN Rainfall = clsi" (i =1, 

2, 3, ..., n), where n is the number of generated prototypes. 

Table 6.4. The numbers of prototypes generated in twelve sub-modules. 

Case  

Study 

Numbers of  

Local Modules 

Numbers of Prototypes  

in Local Modules 

Numbers of all 

Fuzzy Rules (MFs) 

1 12 4, 7, 7, 8, 10, 10, 9, 7, 8, 9, 8, 7 94 

2 12 1, 2, 6, 8, 8, 7, 8, 9, 9, 8, 5, 2 73 

3 12 3, 4, 6, 8, 8, 6, 6, 6, 6, 7, 7, 5 72 

4 12 1, 2, 5, 7, 8, 6, 8, 9, 9, 8, 8, 5 76 

5 12 2, 1, 1, 2, 7, 7, 7, 8, 7, 7, 6, 5 60 

6 12 2, 2, 5, 8, 8, 7, 8, 7, 8, 6, 9, 6 76 

7 12 6, 5, 8, 7, 6, 9, 9, 8, 8, 7, 4, 6 83 

8 12 2, 6, 8, 8, 7, 8, 7, 6, 5, 7, 6, 5 75 
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Figure 6.4. An example of fuzzy parameters of monthly sub-modules (Case 1). 
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Figure 6.4. (cont.) An example of fuzzy parameters of monthly sub-modules (Case 1). 
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Figure 6.4. (cont.) An example of fuzzy parameters of monthly sub-modules (Case 1). 
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Figure 6.4. (cont.) An example of fuzzy parameters of monthly sub-modules (Case 1). 
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At the level of the fuzzy sets, according to Figure 6.5, the generated input's MFs satisfy 

the distinguishability criterion. In general, the generated MFs represent enough distinct 

space. However, some of the generated MFs are very close, for example, the first input 

of May's PM, and the second input of February's PM and June's PM. Overall, the input's 

MFs are distinct enough to represent linguistic terms.  

As shown in Table 6.5, the numbers of MFs (prototype) in the sub-modules are close to 

the moderate number of MFs (7±2) criterion. Only two sub-modules in Case 1 have the 

number of MFs up to 10. Therefore, this criterion can be justified as accomplished. The 

normalization criterion is also met since at least one data point in the universe of dis-

course should have a membership value equal to one.  

The case of the coverage or completeness of fuzzy partitioning criterion should be con-

sidered from both the entire system and the sub-modules. As the sub-modules are gener-

ated from prototype-based fuzzy modeling, this criterion should be satisfied for sub-

modules. For the entire system, as the input is fed into three consecutive PMs, the possi-

bility that the input vector does not belong to anyone of fuzzy sets is rather small. Thus, 

this criterion should be justified as acceptable for the entire system. 

At the level of the fuzzy rules, the proposed model satisfies the rule base parsimonious 

and simplicity criterion. The number of fuzzy rules has considerably decreased in the 

proposed model from the proposed model in the previous chapter. As shown in Table 

6.5, the average number of fuzzy rules for the models is about 64. The readability of 

single rules is satisfied since the number of conditions in the antecedent part is only two.  
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For the consistency and completeness criteria, as the models are generated by prototype-

based fuzzy modeling, the contradictory fuzzy rules are absent and they guarantee at 

least one rule will be fired for any input vector. Also, the fuzzy rules of the proposed 

model satisfied the transparency of rule structure criterion. As the entire model is de-

composed into twelve sub-modules, the two-dimensional input vector (i.e. first lag and 

second lag of rainfall data) is understandable by human analysts and can be represented 

in the three-dimensional space. Table 6.5 summarizes the qualitative results. 

So far, the proposed modular models have been evaluated in quantitative and qualitative 

terms. The experimental results have suggested that the proposed modular models can 

improve prediction accuracy and simplify model interpretability of the proposed single 

model (i.e. MFIS–OPT2). The substantial advantage of the Bayesian learning method is 

not only to improve prediction accuracy, but also to represent the uncertainty in time 

dimension inherited across the historical time.  

This method proposes a new approach to analyze the uncertainty of time. Alternating to 

static representation of the uncertainty of time in MFIS–OPT2, the Mod FIS–BSA pro-

poses the dynamic representation of the uncertainty in time. Figure 6.5 shows an exam-

ple of a combination of weights of the aggregation modules that are inherited across the 

time dimension.  

Up to this point, the single and modular interpretable fuzzy models have been proposed. 

Each model has its own advantages and disadvantages. However, the question is which 
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model is appropriate to the problem on hand. Table 6.6 summarizes some general issues 

that can be used as a guideline for the selection.  

Table 6.5. Summary of qualitative results. 

Level Criterion Weak Fair Good Strong 

Lo
w

-L
ev

el
 Distinguishability  x   

Moderate number of MFs   x  
Coverage or completeness of partition of input 

variable 
  x  

Normalization    x 

      

H
ig

h
-L

ev
el

 Rule-base parsimony and simplicity   x  
Readability of single rule    x 
Consistency of rules    x 
Completeness of rules   x  
Transparency of rule structure    x 
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Figure 6.5. An example of the combination weights from the Bayesian method inherited 

across the time dimension (Case 1). 
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Figure 6.5. (cont.) An example of the combination weights from the Bayesian method 

inheriting across the time dimension (Case 1). 
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Table 6.6. Summary of observed characteristics of the proposed models for time series 

prediction. 

No characteristics Single Modular 

1 

 

The model that provides the direct process in the model 

establishment but the prediction accuracy may not be 

relatively high. 

 

Preferred  

2 

 

The model that provides relatively higher prediction 

accuracy but the model establishment is not complete in 

one structuring process. 

 

 Preferred 

3 

 

The model that provides the solidity in which the entire 

model consists of one clear structure and enables other 

techniques in each establishment step. 

 

Selected  

4 

 

The model that provides the flexibility in which an en-

tire model consists of several structures and each of 

them can be modeled by different techniques. 

 

 Selected 

5 

 

The model that provides the static view of the uncer-

tainty in time dimension for further analysis. 

(i.e. represented in the form of fuzzy parameters) 

 

Selected  

6 

 

The model that provide the dynamic view of the uncer-

tainty in time dimension for further analysis. 

(i.e. represented in the form of Bayesian reasoning) 

 

 Selected 

7 

 

The model that provides the global understanding of 

monthly rainfall time series data. Human analysts may 

not need to make a detailed analysis of the data. 

 

Selected  

8 

 

The model that provides the local understanding of 

monthly rainfall time series data. Human analysts may 

be required to make a detailed analysis of the data. 

 

 Selected 
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6.5. Conclusion 

This chapter proposes the use of a modular technique to create an interpretable fuzzy 

model for monthly rainfall time series prediction. This chapter continues from the previ-

ous chapter by proposing an alternative model which simplifies the complexity of the 

previous model. The proposed modular model consists of two main layers, that is, the 

prediction layer and the aggregation layer. A Mamdani-type FIS is used to predict 

monthly rainfall in the prediction layer, whereas the Bayesian reasoning method (or 

nonlinear programming method) is used to aggregate predicted results in the aggregation 

layer.  

The proposed models are evaluated by eight monthly rainfall time series data in the 

northeast region of Thailand and are also compared with the previously proposed mod-

els. The experimental results pointed out that the use of the modular technique can im-

prove the prediction from the single model’s quantitative and qualitative terms. The pre-

diction accuracy had been increased and the model interpretability had been simplified.  

Consequently, the use of modular models allows the model to provide independent de-

tails of each part of the model to human analysts. Moreover, aggregation modules that 

employ the Bayesian reasoning method can be used to analyze the uncertainty in time 

dimension in a sequential fashion. Unlike the static representation of the single model, 

the modular models show dynamic representation instead. This sort of representation 

opens an alternative approach to analyze monthly time series data. 
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Finally, it would be more suitable if the model proposed in this chapter has been seen as 

an alternative to the model in the previous chapter. Both models provided comparably 

good prediction accuracy. But the uncertainty in time dimension is represented in differ-

ent views. Each proposed model has its own prominence. This thesis has finalized the 

time series prediction technique by presenting some general idiosyncrasies of both sin-

gle and modular models. They can be used as a guideline for selecting the appropriate 

models to be matched to user requirements. 
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CHAPTER 7 

CONCLUSIONS 

7.1. Introduction 

This thesis proposed the methodologies to analyze and establish interpretable fuzzy sys-

tems for monthly rainfall spatial interpolation and time series prediction. The case study 

area in the experiments is located in the northeast region of Thailand. In each part of the 

thesis, eight case studies were used to evaluate the established models. The experimental 

results were presented by quantitative and qualitative points of view. A summary of 

each part follows.  

7.2. Research Summary of Spatial Interpolation 

 In the global method, the thesis proposes two FCM clustering validation indices to 

determine the number of clusters specific to the spatial data. The first method em-

ploys the statistical characteristics of spatial data by analyzing the standard deviation 

of clustered data. The second method employs the artificial neural network by ana-

lyzing the training performance of clustered data.  

 The thesis then proposes the use of the prototype-based fuzzy modeling in coopera-

tion with GA to create an interpretable fuzzy spatial interpolation model. The estab-

lished model named GAFIS is the outcome of the methodology. The experimental 

results suggested that GAFIS provided good interpolation accuracy and model inter-

pretability for the global method. 
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 In the local method, the thesis proposes a methodology to improve the accuracy of 

GAFIS while the model interpretability is maintained. At this point, a decision tree-

like modular technique is applied. In turn, the thesis also proposes a fuzzy gating 

method to improve the accuracy of the generic gating method and also to maintain 

the interpretability in the gating module. The established models named Mod FIS–

FSG/FST are the outcomes of the proposed methodology.   

 The experimental results suggested that the established modular models can improve 

the interpolation accuracy from GAFIS and can be a good alternative to those of lo-

cal spatial interpolation methods used in GIS. In terms of interpretability, due to the 

decision tree-like architecture, the established model can be interpreted effectively in 

a modular way.  

 For future works, in the author’s opinion, as the proposed methodology was devel-

oped for spatial data in general, one challenging task is to apply the proposed meth-

odology to other spatial data which is not limited to the hydrological and environ-

mental discipline. Another interesting point is to apply other intelligent techniques to 

the proposed methodology, for example, the memetic algorithm.  

7.3. Research Summary of Time Series Prediction 

 In the single model, this thesis utilizes a cooperation of FL, ANN and GA to create 

an interpretable fuzzy system for monthly rainfall time series prediction. The exper-

imental results showed that the proposed single model provided satisfactory predic-
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tion accuracy in comparison with commonly-used models in the hydrological disci-

pline. Thus, the proposed model can satisfy the quantitative requirement. In terms of 

the qualitative aspect, the proposed model provided good model interpretability. 

However, a large number of generated fuzzy rules are still unsatisfied.  

 An advantage of the proposed single model is to provide an approach to analyze the 

uncertainty in time dimension of monthly time series data. Due to the advantage of 

the fuzzy system, this model allows human analysts to analyze the uncertainty in 

time dimension (between months) through the fuzzy MFs. By this approach, human 

analysts can gain insight into the data to be modeled. 

 In the modular model, this thesis proposes the use of a modular technique to simpli-

fy the complexity in the single models. The experimental results showed that the 

modular model improved the prediction accuracy and also increased the interpreta-

bility of the single model. The number of fuzzy rules and fuzzy MFs considerably 

decreased. Furthermore, the modular model is more flexible than the single model in 

that users can use other techniques with the sub-modules independently.  

 An advantage of the proposed model is to provide another approach to analyze the 

uncertainty in time dimension of monthly time series data. Due to the advantage of 

the Bayesian reasoning, this model allows human analysts to analyze the uncertainty 

in time dimension in a sequential fashion. By this approach, human analysts can un-

derstand how the uncertainty in time dimension varied along the calibration period.  
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 For future works, in the author’s opinion, the proposed models are developed for any 

monthly time series data. These models are applicable to other monthly time series 

data, actually any periodic time series data. One interesting work is to develop an al-

gorithm to simplify the complexity of the established modular model by using the 

pruning method.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



147 
 

REFERENCES 

Abonyi, J., Babuska, R., Verbruggen, H.B., & Szeifert, F. (2000). Incorporating prior 

knowledge in fuzzy model identification. International Journal of Systems Sci-

ence, 31(5), 657–667. 

Afshin, S., Fahmi, H., Alizadeh, A., Sedghi, H., & Kaveh, F. (2011). Long term rainfall 

forecasting by integrated artificial neural network-fuzzy logic-wavelet model in 

Karoon basin. Scientific Research and Essays, 6(6), 1200–1208. 

Alcalá, R., Alcalá-Fdez, J., Casillas, J., Cordón, O., & Herrera, F. (2006). Hybrid learn-

ing models to get the interpretability–accuracy trade-off in fuzzy modeling. Soft 

Computing, 10(9), 717–734. 

Alonso, J.M., & Magdalena, L. (2011). Special issue on interpretable fuzzy systems. In-

formation Sciences, 181(20), 4331–4339. 

Alonso, J.M., Magdalena, L., & González-Rodríguez, G. (2009). Looking for a good 

fuzzy system interpretability index: An experimental approach. International 

Journal of Approximate Reasoning, 51(1), 115–134. 

Alvisi, S., & Franchini, M. (2011). Fuzzy neural networks for water level and discharge 

forecasting with uncertainty. Environmental Modelling & Software, 26(4), 523–

537. 

Araghinejad, S., Azmi, M., & Kholghi, M. (2011). Application of artificial neural net-

work ensembles in probabilistic hydrological forecasting. Journal of Hydrology, 

407(1–4), 94–104. 

ASCE Task Committee on Application of Artificial Neural Networks in Hydrology 

(2000a). Artificial neural networks in hydrology. I: Preliminary concepts. Jour-

nal of Hydrologic Engineering, 5(2), 115–123.  

ASCE Task Committee on Application of Artificial Neural Networks in Hydrology 

(2000b). Artificial neural networks in hydrology. II: Hydrologic applications. 

Journal of Hydrologic Engineering, 5(2), 124–137.  

Asklany, S.A., Elhelow, K., Youssef, I.K., & El-wahab, M.A. (2011). Rainfall events 

prediction using rule-based fuzzy inference system. Atmospheric Research, 101, 

228–236. 

Bacanli, U.G., Firat, M., & Dikbas, F. (2009). Adaptive neuro-fuzzy inference system 

for drought forecasting. Stochastic Environmental Research and Risk Assess-

ment, 23(8), 1143–1154. 

Bargaoui, Z.K., & Chebbi, A. (2009). Comparison of two kriging interpolation methods 

applied to spatiotemporal rainfall. Journal of Hydrology, 365(1–2), 56–73. 



148 
 

Beale, M.H., Hagan, M.T., & Demuth, H.B. (2011). Neural Network Toolbox
™

 User’s 

Guide MATLAB. Retrieved from www.mathworks.com/help/pdf_doc/nnet/nnet 

_ug.pdf.  

Bezdek, J.C. (1981) Pattern recognition with fuzzy objective function algorithms. New 

York: Plenum Press.  

Bezdek, J.C., Ehrlich, R., & Full, W. (1984). FCM: The fuzzy c-means clustering algo-

rithm. Computers & geosciences, 10(2–3), 16–20.  

Box, G.E.P., & Jenkins, G. (1970). Time series analysis: Forecasting and control. San 

Francisco, CA: Holden-Day. 

Brown, M., & Harris, C. (1994). Neuro fuzzy adaptive modelling and control. New 

York: Prentice-Hall. 

Burrough, P., & McDonnell, R. (1998). Principles of geographical information systems. 

New York: Oxford University Press. 

Byrd, R.H., Gilbert, J.C., & Nocedal, J. (2000). A trust region method based on interior 

point techniques for nonlinear programming. Mathematical Programming, 89(1), 

149–185. 

Casillas, J., Cordón, O., Herrera, F., & Magdalena, L. (Eds.) (2003a). Accuracy im-

provements in linguistic fuzzy modeling. Springer. 

Casillas, J., Cordón, O., Herrera, F., & Magdalena, L. (Eds.) (2003b). Interpretability 

issues in fuzzy modeling. Springer. 

Cellura, M., Cirrincione, G., Marvuglia, A., & Miraoui, A. (2008). Wind speed spatial 

estimation for energy planning in Sicily: A neural kriging application. Renewa-

ble Energy, 33(6), 1251–1266. 

Chang, C.L., Lo, S.L., & Yu, S.L. (2005). Applying fuzzy theory and genetic algorithm 

to interpolate precipitation. Journal of Hydrology, 314(1–4), 92–104. 

Chang, K. (2006). Introduction to geographic information systems (3
rd

 ed.). Singapore: 

McGraw-Hill. 

Chris-Tseng, H., & Almogahed, B. (2009). Modular neural networks with applications 

to pattern profiling problems. Neurocomputing, 72, 2093–2100.  

Collins, F.C., & Bolstad, P.V. (1996, January). A comparison of spatial interpolation 

techniques in temperature estimation. In Proceedings of the Third International 

Conference/Workshop on Integrating GIS and Environmental Modeling CD-

ROM. 

Córdon, O. (2011). A historical review of evolutionary learning methods for Mamdani-

type fuzzy rule-based systems: Designing interpretable genetic fuzzy systems. 

International Journal of Approximate Reasoning, 52(6), 894–913. 

Cordón, O., Herrera, F., & Villar, P. (2001). Generating the knowledge base of a fuzzy 

rule-based system by the genetic learning of the data base. IEEE Transactions on 

Fuzzy Systems, 9(4), 667–674. 



149 
 

Demyanov, V., Kanevsky, M., Chernov, S., Savelieva, E., & Timonin, V. (1998). Neu-

ral network residual kriging application for climatic data. Journal of Geographic 

Information and Decision Analysis, 2(2), 215–232. 

Dubois, D., Prade, H., & Ughetto, L. (1997). Checking the coherence and redundancy of 

fuzzy knowledge bases. IEEE Transaction on Fuzzy Systems, 5(3), 398–417. 

Dunn, J.C. (1973). A fuzzy relative of the ISODATA process and its use in detecting 

compact well-separated clusters. Journal of Cybernetics, 3(3), 32–57. 

Erilli, N.A., Yolcu, U., Eğrioğlu, E., Aladağ, C.H., & Öner, Y. (2011). Determining the 

most proper number of cluster in fuzzy clustering by using artificial neural net-

works. Expert Systems with Applications, 38(3), 2248–2252. 

ESRI (n.d.). ArcGIS. Retrieved from http://www.esri.com/software/arcgis 

Firat, M., & Gungor, M. (2008). Hydrological time-series modeling using an adaptive 

neuro-fuzzy inference system. Hydrological Processes, 22(13), 2122–2132. 

Firat, M., & Turan, M.E. (2009). Monthly river flow forecasting by an adaptive neuro-

fuzzy inference system. Water and Environment Journal, 24(2), 116–125. 

Firat, M., Turan, M.E., & Yurdusev, M.A. (2009). Comparative analysis of fuzzy infer-

ence systems for water consumption time series prediction. Journal of Hydrolo-

gy, 374(3–4), 235–241. 

Gilardi, N., & Bengio, S. (2000). Local machine learning models for spatial data analy-

sis. Journal of Geographic Information and Decision Analysis, 4(1), 11–28. 

Goovaerts, P. (2000). Geostatistical approaches for incorporating elevation into the spa-

tial interpolation of rainfall. Journal of Hydrology, 228(1–2), 113–129. 

Guillaume, S. (2001). Designing fuzzy inference systems from data: An interpretability-

oriented review. IEEE Transactions on Fuzzy Systems, 9(3), 426–443. 

Guo, J., Zhou, J., Qin, H., Zou. Q., & Li, Q. (2011). Monthly streamflow forecasting 

based on improved support vector machine model. Expert Systems with Applica-

tions, 38(10), 13073–13081. 

Haberlandt, U. (2007). Geostatistical interpolation of hourly precipitation from rain 

gauges and radar for a large-scale extreme rainfall event. Journal of Hydrology, 

332(1–2), 144–157. 

Halkidi, M., Batistakis, Y., & Vazirgiannis, M. (2001). On clustering validation tech-

niques. Journal of Intelligent Information Systems, 17(2), 107–145.  

Hameed, I.A. (2011). Using Gaussian membership functions for improving the reliabil-

ity and robustness of students’ evaluation systems. Expert Systems with Applica-

tions, 38(6), 7135–7142.  

Hancock, P.A., & Hutchinson, M.F. (2006). Spatial interpolation of large climate data 

sets using bivariate thin plate smoothing splines. Environmental Modeling & 

Software, 21, 1684–1694. 



150 
 

Harris, C.J., Hong, X., & Gan, Q. (2002). Adaptive modelling, estimation and fusion 

from data. Berlin: Springer. 

Hartkamp, A.D., Beurs, K.D., Stein, A., & White, J.W. (1999). Interpolation techniques 

for climate variables. National Resource Group Geographic Information Systems 

Series 99-01, Mexico. 

Holland, J.H. (1975). Adaptation in natural and artificial systems. Ann Arbor: Universi-

ty of Michigan Press. 

Hong, Y., Nix, H.A., Hutchinson, M.F., & Booth, T.H. (2005). Spatial interpolation of 

monthly mean climate data for China. International Journal of Climatology, 

25(10), 1369–1379. 

Hu, C., Meng, L., & Shi, W. (2008). Fuzzy clustering validity for spatial data. Geo-

Spatial Information Science, 11(3), 191–196. 

Hu, G., & Zhang, Q. (2008). Application of adaptive variable structure of ANN to dis-

tributed rainfall interpolation. In Proceedings of IEEE Pacific-Asia Workshop 

on Computational Intelligence and Industrial Application, pp. 598–601. 

Huang, Y., Wong, P., & Gedeon, T. (1998). Spatial interpolation using fuzzy reasoning 

and genetic algorithms. Journal of Geographic Information and Decision Analy-

sis, 2(2), 204–214. 

Huarng,  K. (2001). Effective lengths of intervals to improve forecasting in fuzzy time 

series. Fuzzy Sets and Systems, 123(3), 387–394. 

Isaaks, E.H., & Srivastava, R.M. (1989). An introduction to applied geostatistics. New 

York: Oxford University Press. 

Ishibuchi, H. (2007, July). Multiobjective genetic fuzzy systems: Review and future re-

search directions. In Proceedings of the IEEE International Conference on Fuzzy 

Systems, pp. 1–6.  

Ishibuchi, H., Nozaki, K., Yamamoto, N., & Tanaka, H. (1994). Construction of fuzzy 

classification systems with rectangular fuzzy rules using genetic algorithms. 

Fuzzy Sets and Systems, 65(2–3), 237–253. 

Jain, A., & Kumar, A.M. (2007). Hybrid neural network models for hydrologic time se-

ries forecasting. Applied Soft Computing, 7(2), 585–592. 

Jang, J.S.R., Sun, C.T., & Mizutani, E. (1997).  Neuro-fuzzy and soft computing: A 

computational approach to learning and machine intelligence. Upper Saddle 

River, NJ: Prentice Hall. 

Jeffrey, S.J., Carter, J.O., Moodie, K.B., & Beswick, A.R. (2001). Using spatial interpo-

lation to construct a comprehensive archive of Australian climate data. Environ-

mental Modelling & Software, 16(4), 309–330. 

Kajornrit, J., Wong, K.W., & Fung, C.C. (2011). Estimation of missing rainfall data in 

northeast region of Thailand using spatial interpolation methods. Australian 

Journal of Intelligent Information Processing Systems, 13(1), 21–30. 



151 
 

Karray, F.O., & Silva, C.W. (2004). Soft computing and intelligent systems design. 

United Kingdom: Addison Wesley. 

Zounemat-Kermani, M., & Teshnehlab, M. (2008). Using adaptive neuro-fuzzy infer-

ence system for hydrological time series prediction. Applied Soft Computing, 

8(2), 928–936. 

Keskin, M.E., Taylan, D., & Terzi, O. (2006). Adaptive neural-based fuzzy inference 

system (ANFIS) approach for modeling hydrological time series. Hydrological 

Sciences Journal, 51(4), 588–598. 

Kim, J., & Pachepsky, Y.A. (2010). Reconstructing missing daily precipitation data us-

ing regression trees and artificial neural networks for SWAT streamflow simula-

tion. Journal of Hydrology, 394(3–4), 305–314. 

Krige, D.G. (1951) A statistical approach to some mine valuations problems at the Wit-

watersrand. Journal of the Chemical, Metallurgical and Mining Society of South 

Africa, 52, 119–138. 

Land Development Department of Thailand (n.d.) Rainfall data. Retrieved [2013] from 

http://irw101.ldd.go.th/lib/images/dr_57th.pdf 

Lee, S., Cho, S., & Wong, P.M. (1998). Rainfall prediction using artificial neural net-

works. Journal of Geographic Information and Decision Analysis, 2(2), 233–

242. 

Li, J., & Heap, A.D. (2008). A review of spatial interpolation methods for environmen-

tal scientists. Geoscience Australia Record, vol. 23. 

Li, J., Heap, A.D., Potter, A., & Daniell, J.J. (2011). Application of machine learning 

methods to spatial interpolation of environmental variables. Environmental 

Modelling & Software, 26(12), 1647–1659. 

Lin, G., & Chen, L. (2004). A spatial interpolation method based on radial basis func-

tion networks incorporating a semivariogram model. Journal of Hydrology, 288, 

288–298. 

Liu, S., Zhang, Y., Ma, P., Lu, B., & Su, H. (2011). A novel spatial interpolation method 

based on the integrated RBF neural network. Procedia Environmental Sciences, 

10(Part A), 568–575. 

Lohani, A.K., Goel, N.K., & Bhatia, K.K.S. (2010). Comparative study of neural net-

work, fuzzy logic and linear transfer function techniques in daily rainfall-runoff 

modeling under different input domains. Hydrological Processes, 25(2), 175–

193. 

Lu, K., & Wang, L. (2011, April). A novel nonlinear combination model based on sup-

port vector machine for rainfall prediction. In Proceedings of Fourth Interna-

tional Joint Conference on Computational Sciences and Optimization, Yunnan, 

China, pp. 1343–1346. 



152 
 

Luo, W., Taylor, M.C., & Parker, S.R. (2008). A comparison of spatial interpolation 

methods to estimate continuous wind speed surfaces using irregularly distributed 

data from England and Wales. International Journal of Climatology, 28(7), 947–

959. 

Luo, X., Xu, Y., & Shi, Y. (2011, June). Comparision of interpolation methods for 

spatial precipitation under diverse orographic effects. In Proceedings of 19
th

 

International Conference on Geoinformatics, Shanghai, China, pp. 1–5.  

Luo, X., Xu, Y., & Xu, J. (2010, June). Application of radial basis function network for 

spatial precipitation interpolation. In Proceedings of 18
th

 International Confer-

ence on Geoinformatics, Beijing, China, pp. 1–5.  

Mamdani, E.H., & Assilian, S. (1975). An experiment in linguistic synthesis with fuzzy 

logic controller. International Journal of Man-Machine Studies, 7(1), 1–13. 

Marques, C.A.F., Ferreira, J.A., Rocha, A., Castanheira, J.M., Melo-Goncalves, P., Vaz, 

N., & Dias, J.M. (2006). Singular spectrum analysis and forecasting of hydrolog-

ical time series. Physics and Chemistry of the Earth, 31(18), 1172–1179. 

Matheron, G. (1965). Les variables régionalisées et leur estimation. Paris: Masson. 

Mikut, R., Jäkel, J., & Gröll, L. (2005). Interpretability issues in data-based learning of 

fuzzy systems. Fuzzy Sets and Systems, 150, 179–197. 

Monira, S.S., Faisal, Z.M., & Hirose, H. (2011, September). An adaptive ensemble 

method for quantitative rainfall forecast. In Proceedings of SICE Annual Con-

ference, Tokyo, pp. 149–154.  

Montgomery, D.C., Jennings, C.L., & Kulahci, M. (2008). Introduction to time series 

analysis and forecasting. New Jersey: John Wiley & Sons.  

Nalder, I.A., & Wein R.W. (1998). Spatial interpolation of climatic normals: Test of a 

new method in the Canadian boreal forest. Agricultural and Forest Meteorology, 

92(4), 211–225. 

Nayak, P.C., & Sudheer K.P. (2008). Fuzzy model identification based on cluster esti-

mation for reservoir inflow forecasting. Hydrological Processes, 22(6), 827–841. 

Nayak, P.C., Sudheer, K.P., Rangan, D.M., & Ramasastri, K.S. (2004). A neuro-fuzzy 

computing technique for modeling hydrological time series. Journal of Hydrolo-

gy, 291(1–2), 52–66. 

Negnevitsky, M. (2011). Artificial intelligence: A guide to intelligent systems (3
rd

 ed.). 

United Kingdom: Addison Wesley. 

Oliveira, J.V. de (1999). Semantic constraints for membership function optimization. 

IEEE Transactions on Systems, Man and Cybernetics–Part A: Systems and Hu-

mans, 29(1), 128–138. 

Pedrycz, W., Bezdek, J.C., Hathaway, R.J., & Rogers, G.W. (1998). Two nonparametric 

models for fusing heterogeneous fuzzy data. IEEE Transactions on Fuzzy Sys-

tems, 6(3), 411–425. 



153 
 

Pena-Reyes, C.A., & Sipper, M. (2003). Fuzzy CoCo: Balancing accuracy and interpret-

ability of fuzzy models by means of coevolution. In J. Casillas, O. Cordón, F. 

Herrera, & L. Magdalena (Eds.), Accuracy improvements in linguistic fuzzy 

modeling studies in fuzziness and soft computing, (vol. 129). Berlin: Springer. 

Piazza, A.D., Conti, F.L., Noto, L.V., Viola, F., & Loggia, G.L. (2011). Comparative 

analysis of different techniques for spatial interpolation of rainfall data to create 

a serially complete monthly time series of precipitation for Sicily, Italy. Interna-

tional Journal of Applied Earth Observation and Geoinformation, 13(3), 396–

408. 

Raman, H., & Sunilkumar, N. (1995). Multivariate modeling of water resources time 

series using artificial neural networks. Hydrological Sciences Journal. 40(2), 

145–163. 

Remote Sensing & GIS (n.d.). GIS data of Thailand. Retrieved [2009] from 

http://www.rsgis.ait.ac.th/~souris/thailand.htm  

Rezaee, M.R., Lelieveldt, B.P.F., & Reiber, J.H.C. (1998). A new cluster validity index 

for the fuzzy c-means. Pattern Recognition Letters, 19(3–4), 237–246. 

Robinson, T.P., & Metternicht, G. (2006). Testing the performance of spatial interpola-

tion techniques for mapping soil properties. Computers and Electronics in Agri-

culture, 50(2), 97–108. 

Ross, T.J. (2004). Fuzzy logic with engineering applications (2
nd

 ed.). United Kingdom:  

John Wiley & Sons. 

See, L.M., Abrahart, R., & Kneale, P.E. (2004). Neural networks for hydrological mod-

eling. London, UK: Taylor & Francis Group. 

Sen, Z., & Sahin, A.D. (2001). Spatial interpolation and estimation of solar irradiation 

by cumulative semivariogram. Solar Energy, 71(1), 11–21. 

Setnes, M., Babuska, R., & Verbruggen, H.B. (1998). Rule-based modeling: Precision 

and transparency. IEEE Transactions on Systems, Man, and Cybernetics –Part 

C: Applications and Reviews, 28(1), 165–169.  

Setnes, M., Babuska, R., Kaymak, U., & van Nauta Lemke, H.R. (1998). Similarity 

measures in fuzzy rule base simplification. IEEE Transactions on Systems, Man, 

and Cybernetics. Part B: Cybernetics, 28(3), 376–386. 

Sharma, V., & Irmak, S. (2012). Mapping spatially interpolated precipitation, reference 

evapotranspiration, actual crop evapotranspiration, and net irrigation require-

ments in Nebraska: Part II. Actual crop evapotranspiration and net irrigation re-

quirements. American Society of Agricultural and Transactions Biological Engi-

neers, 55(3), 923–936. 

Singh, A., & Imtiyaz, M. (2013). Hydrological modelling using process based and data 

driven models: Process-based and neural network modelling in hydrology. 

Scholars’ Press. 



154 
 

Somvanshi, V.K., Pandey, O.P., Agrawal, P.K., Kalanker, N.V., Prakash, M.R., & 

Chand, R. (2006). Modelling and prediction of rainfall using artificial neural 

network and ARIMA techniques. Journal of Indian Geophysical Union, 10(2), 

141–151.  

Sudheer, K.P., Gosain, A.K., & Ramasastri, K.S. (2002). A data-driven algorithm for 

constructing artificial neural network rainfall-runoff models. Hydrological Pro-

cesses, 16(6), 1325–1330. 

Sugeno, M., & Yasukawa, T. (1993). A fuzzy-logic based approach to qualitative mod-

eling. IEEE Transactions on Fuzzy Systems, 1(1), 7–31. 

Sun, Y., Kang, S., Li, F., & Zhang, L. (2009). Comparison of interpolation methods for 

depth to groundwater and its temporal and spatial variations in the Minqin oasis 

of northwest China. Environmental Modelling & Software, 24(10), 1163–1170. 

Tang, L., Su, X., Shao, G., Zhang, H., & Zhao, J. (2012). A clustering-assisted regres-

sion (CAR) approach for developing spatial climate data sets in China. Environ-

mental Modelling & Software, 38, 122–128. 

Tokar, A., & Johnson, P. (1999). Rainfall-runoff modeling using artificial neural net-

works. Journal of Hydrologic Engineering, 4(3), 232–239. 

Toprak, Z.F., Eris, E., Agiralioglu, N., Cigizoglu, H.K., Yilmaz, L., Aksoy, H., Coskun, 

H.G., Andic, G., & Alganci, U. (2009). Modeling monthly mean flow in a poorly 

gauged basin by fuzzy logic. Clean–Soil, Air, Water, 37(7), 555–567. 

Tutmez, B., & Hatipoglu, Z. (2010). Comparing two data driven interpolation methods 

for modeling nitrate distribution in aquifer. Ecological Informatics, 5(4), 311–

315. 

Tutmez, B., Tercan, A.E., & Kaymak, U. (2007). Fuzzy modeling for reserve estimation 

based on spatial variability. Mathematical Geology, 39(1), 87–111.  

Wahba, G., & Wendelberger, J. (1980). Some new mathematical methods for variational 

objective analysis using splines and cross validation. Monthly Weather Review, 

108, 1122–1143. 

Wang, P., Xu, L., Zhou, S.M., Fan, Z., Li, Y., & Feng, S. (2010). A novel Bayesian 

learning method for information aggregation in modular neural networks. Expert 

Systems with Applications, 37(2), 1071–1074. 

Wang, W.C., Chau, K.W., Cheng, C.T., & Qiu, L. (2009). A comparison of performance 

of several artificial intelligence methods for forecasting monthly discharge time 

series. Journal of Hydrology, 374(3–4), 294–306. 

Wong, K.W., Gedeon, T.D., & Wong, P.M. (2001, July). Spatial interpolation using 

conservative fuzzy reasoning. In Proceedings of Joint Ninth IFSA World Con-

gress and Twentieth NAFIPS International Conference, Vancouver, vol. 5, pp. 

2825–2829. 



155 
 

Wong, K.W., Wong, P.M., Gedeon, T.D., & Fung, C.C. (2003). Rainfall prediction 

model using soft computing technique. Soft Computing, 7(6), 434–438. 

Wu, C.L., & Chau, K.W. (2010). Data-driven models for monthly streamflow time se-

ries prediction. Engineering Applications of Artificial Intelligence, 23(8), 1350–

1367. 

Wu, C.L., & Chau, K.W. (2013). Prediction of rainfall time series using modular soft 

computing methods. Engineering Applications of Artificial Intelligence, 26, 997–

1007. 

Wu, C.L., Chau, K.W., & Fan, C. (2010). Prediction of rainfall time series using modu-

lar artificial neural networks coupled with data-preprocessing techniques. Jour-

nal of Hydrology, 389(1–2), 146–167. 

Xie, X.L., & Beni, G. (1991). A validity measure for fuzzy clustering. IEEE Transac-

tions on Pattern Analysis and Machine Intelligence, 13(8), 841–847. 

Yu, D. (2009, August). Spatial interpolation via GWR, a plausible alternative? In 

Proceedings of Seventeenth IEEE International Conference on Geoinformatics, 

Fairfax, Virginia, pp. 1–5. 

Yue, W., Xu, J., Liao, H., & Xu, L. (2003). Applications of spatial interpolation for cli-

mate variables based on geostatistics: A case study in Gansu province, China. 

Geographic Information Science,  9(1–2), 71–77. 

Zadeh, L.A. (1965). Fuzzy Sets. Information and Control, 8, 338–353.  

Zhang, Q., & Wang, C. (2008, October). Integrated application of artificial neural net-

work and genetic algorithm to the spatial interpolation of rainfall. In Proceed-

ings of Fourth International Conference on Natural Computation, Jinan, China, 

pp. 516–520. 

Zhou, S., & Gan, J.Q. (2008). Low level interpretability and high level interpretability: 

A unified view of data-driven interpretable fuzzy system modelling. Fuzzy Sets 

and Systems, 159, 3091–3131. 

Zimmerman, D., Pavlik, C., Ruggles, A., & Armstrong, M.P. (1999). An experimental 

comparison of ordinary kriging and universal kriging and inverse distance 

weighting. Mathematical Geology, 31(4), 375–399.  

 

 

 

 

 



156 
 

APPENDIX A 

Results from commonly-used FCM validation indices. 

 Case 1   Case 2 

n SC S XB DI ADI  n SC S XB DI ADI 

2 3.74119 0.01889 2.40020 0.04630 0.00488  2 3.81831 0.01958 4.46798 0.05741 0.01094 

3 2.10647 0.01195 8.01935 0.04723 0.00509  3 2.19085 0.01210 2.50868 0.04763 0.02252 

4 1.67523 0.01129 2.49567 0.04254 0.00441  4 1.55153 0.00912 2.59978 0.04078 0.01181 

5 1.54040 0.00941 1.97145 0.02546 0.00158  5 1.56487 0.01383 2.15173 0.04143 0.00025 

6 1.56945 0.01327 2.08688 0.04925 0.00062  6 1.39405 0.01170 1.94041 0.04143 0.00144 

7 1.46909 0.01082 1.37428 0.02754 0.00125  7 1.21864 0.01004 2.07136 0.05339 0.00005 

8 1.44444 0.01252 1.14645 0.07248 0.00025  8 1.17731 0.00944 1.37976 0.05957 0.00053 

9 1.34413 0.01184 1.27987 0.07019 0.00035  9 1.20541 0.01017 1.65637 0.04158 0.00003 

10 1.35426 0.01161 1.24319 0.05144 0.00029  10 1.11637 0.00955 1.68305 0.04715 0.00004 

             

 Case 3   Case 4 

n SC S XB DI ADI  n SC S XB DI ADI 

2 3.01261 0.01506 10.9572 0.00937 0.05451  2 3.91141 0.01985 4.33106 0.03907 0.21636 

3 1.86610 0.01052 2.37837 0.06074 0.00276  3 2.21344 0.01223 3.49022 0.02466 0.00322 

4 1.50754 0.00834 3.94808 0.03525 0.00222  4 1.62391 0.00984 2.37308 0.02327 0.00042 

5 1.31016 0.00820 2.99020 0.06652 0.00149  5 1.64441 0.01490 2.13244 0.02376 0.00298 

6 1.20586 0.01012 1.71468 0.04450 0.00363  6 1.41165 0.01191 1.84875 0.06552 0.00482 

7 1.21073 0.01047 1.49790 0.07494 0.00027  7 1.39905 0.01107 1.92281 0.07084 0.00450 

8 1.10700 0.00997 1.67046 0.07015 0.00179  8 1.32365 0.01134 1.45646 0.06849 0.00474 

9 1.14038 0.00917 1.66426 0.07015 0.00036  9 1.11106 0.00872 1.56368 0.07786 0.00213 

10 0.92099 0.00803 1.45111 0.07197 0.00018  10 1.06865 0.00924 1.48006 0.05864 0.00006 

             

 Case 5   Case 6 

n SC S XB DI ADI  n SC S XB DI ADI 

2 4.42081 0.02210 4.60425 0.04898 0.02841  2 2.97768 0.01512 4.06645 0.03108 0.00531 

3 2.11103 0.01283 2.99875 0.03382 0.00097  3 1.99997 0.01240 1.91439 0.03418 0.00440 

4 1.74476 0.01356 1.73027 0.04019 0.00116  4 1.47764 0.00937 2.46733 0.05147 0.00215 

5 1.52363 0.01250 2.41909 0.03959 0.00034  5 1.53060 0.01366 1.86498 0.07202 0.00001 

6 1.37723 0.01029 1.63524 0.04936 0.00074  6 1.49642 0.01152 2.09082 0.03542 0.00255 

7 1.22792 0.00898 1.56688 0.04427 0.00004  7 1.22999 0.01051 1.90269 0.05126 0.00096 

8 1.20654 0.00905 1.19568 0.05776 0.00017  8 1.15223 0.00911 1.28961 0.05068 0.00148 

9 1.04025 0.00843 1.11898 0.06938 0.00014  9 1.08278 0.00922 1.20478 0.06540 0.00063 

10 1.05519 0.00847 1.24648 0.06373 0.00001  10 1.08686 0.00930 1.29220 0.06540 0.00001 

             

 Case 7   Case 8 

n SC S XB DI ADI  n SC S XB DI ADI 

2 3.69848 0.01967 2.64381 0.04349 0.02559  2 3.13905 0.01764 6.79078 0.04602 0.01443 

3 1.81911 0.00997 3.00923 0.02937 0.00852  3 1.76652 0.01057 2.72890 0.05869 0.00113 

4 1.29284 0.00780 1.82292 0.03352 0.03788  4 1.45477 0.00924 2.47488 0.05511 0.00515 

5 1.34172 0.01253 1.55378 0.04802 0.00557  5 1.37273 0.01202 2.24855 0.05538 0.00223 

6 1.23881 0.01042 2.45065 0.03128 0.00210  6 1.25191 0.01028 1.66658 0.04574 0.00201 

7 1.12486 0.00948 1.94834 0.04017 0.00146  7 1.20463 0.00951 1.48238 0.04574 0.00003 

8 1.06936 0.00826 1.38420 0.06700 0.00078  8 1.11148 0.00867 1.88364 0.05566 0.00045 

9 1.04575 0.00970 1.51423 0.06087 0.00146  9 1.10766 0.01091 2.21902 0.08418 0.00060 

10 1.03915 0.00926 1.39951 0.04836 0.00027  10 1.10485 0.01054 1.57029 0.05024 0.00083 
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APPENDIX B 

ACF and PACF of monthly rainfall time series data. 

 

 
 (Case 1’s ACF)    (Case 1's PACF) 
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(Case 4’s ACF)    (Case 4's PACF) 
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0 10 20 30 40 50 60
-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Lag

S
a
m

p
le

 A
u
to

c
o
rr

e
la

ti
o
n

Sample Autocorrelation Function (ACF)

0 10 20 30 40 50 60
-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Lag

S
a
m

p
le

 P
a
rt

ia
l 
A

u
to

c
o
rr

e
la

ti
o
n
s

Sample Partial Autocorrelation Function

0 10 20 30 40 50 60
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Lag

S
a
m

p
le

 A
u
to

c
o
rr

e
la

ti
o
n

Sample Autocorrelation Function (ACF)

0 10 20 30 40 50 60
-0.5

0

0.5

1

Lag

S
a
m

p
le

 P
a
rt

ia
l 
A

u
to

c
o
rr

e
la

ti
o
n
s

Sample Partial Autocorrelation Function

0 10 20 30 40 50 60
-0.5

0

0.5

1

Lag

S
a
m

p
le

 A
u
to

c
o
rr

e
la

ti
o
n

Sample Autocorrelation Function (ACF)

0 10 20 30 40 50 60
-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Lag

S
a
m

p
le

 P
a
rt

ia
l 
A

u
to

c
o
rr

e
la

ti
o
n
s

Sample Partial Autocorrelation Function



159 
 

 

 

 

 

 

 

 
(Case 7’s ACF)    (Case 7's PACF) 

 

 

 
(Case 8’s ACF)    (Case 8's PACF) 
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APPENDIX C 

Graphical Representations of MFIS and SFIS. 

 

(a) Mamdani-Type Fuzzy Inference System (MFIS) 

 

(b) Sugeno-Type Fuzzy Inference System (SFIS) 

 

 

 

    

 
 
 

 
 
  

 
 

 
 
  

 
  

 
  

 
 

 
 
  

 
  

 
 

        
 
          

 
           

 
 

        
 
          

 
           

 
 

  

 

 

 

    

 
 
 

 
 
  

 
 

 
 
 

        
 
          

 
                          

        
 
          

 
                          

  

   

   




