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ABSTRACT

The authors evaluate a 30-yr (1981–2010) Weather Research and Forecast (WRF) Model regional climate

simulation over the southwest of Western Australia (SWWA), a region with a Mediterranean climate, using

ERA-Interim boundary conditions. The analysis assesses the spatial and temporal characteristics of climate

extremes, using a selection of climate indices, with an emphasis on metrics that are relevant for forestry and

agricultural applications. Two nested domains at 10- and 5-km resolution are examined, with the higher-

resolution simulation resolving convection explicitly. Simulation results are compared with a high-resolution,

gridded observational dataset that provides daily rainfall, minimum temperatures, and maximum tempera-

tures. Results show that, at both resolutions, the model is able to simulate the daily, seasonal, and annual

variation of temperature and precipitation well, including extreme events. The higher-resolution domain

displayed significant performance gains in simulating dry-season convective precipitation, rainfall around

complex terrain, and the spatial distribution of frost conditions. The high-resolution domain was, however,

influenced by grid-edge effects in the southwestern margin, which reduced the ability of the domain to rep-

resent frontal rainfall along the coastal region. On the basis of these results, the authors feel confident in using

the WRF Model for regional climate simulations for the SWWA, including studies that focus on the spatial

and temporal representation of climate extremes. This study provides a baseline climatological description at

a high resolution that can be used for impact studies and will also provide a benchmark for climate simulations

driven by general circulation models.

1. Introduction

Changes in climate extremes are of particular interest

because of their disproportionately large influence on

ecosystems, agriculture, and human health (Patz et al.

2005; Easterling et al. 2000). The southwest of Western

Australia (SWWA) has been identified as a region that

is acutely at risk of climatic change (Hughes 2003;

Malcolm et al. 2006); there is limited knowledge on how

these changes are likely to manifest at the regional scale,

however, in particular with respect to extremes. Forestry

and agriculture encapsulate the majority of the land use

in the SWWA and contribute significantly to regional

prosperity. For example, cereal crops, the largest agri-

cultural sector in the state, contribute AUD 4.5 billion

annually to the Western Australian economy (Varnas

2014). Understanding how these industries may be im-

pacted by changes in climate extremes is critical for

developing management strategies that will enable ad-

aptation and preserve this prosperity.

Niu et al. (2014) reviewed the current understanding

of plant responses to climate extremes, including heat

waves, frost, drought, and flooding, and found that,

while the response was not uniform between ecosys-

tems, extreme events generally have a deleterious effect

on plant productivity and survivability. The negative

response to drought and heat stress for forests globally

is supported by Allen et al. (2010) and Clifford et al.

(2013). When examining forest mortality events in the

SWWA, Evans and Lyons (2013) found that sudden
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increases in the diurnal temperature range were

a significant factor in forest-mortality events, whereas

Brouwers et al. (2012) established that the combination

of drier-than-average conditions followed by heat-wave

events also led to an episode of widespread decline

within the native forest. Because forest ecosystems have

acclimated to the prevailing conditions, extreme events

tend to cause damage to the biota by increasing stress on

the vegetation, making it less able to withstand other

stresses such as, for example, attacks by bark beetles

(Williams et al. 2012).

The response of agricultural production, particularly

cereal crops, to extreme conditions is more temporally

dependent and is linked with the growing cycle. Frost or

high temperatures that occur in the grain-filling period

of the crop-growth cycle, for example, will result in the

most significant reduction in agricultural yield (Asseng

et al. 2012; Ludwig and Asseng 2006; Zheng et al. 2012).

It is therefore clear that assessments of future changes in

climate on agriculture and forestry need to focus on

climate extremes, with a particular focus on the magni-

tude and timing of these events.

Investigating changes in extremes of both temperature

and precipitation is difficult within the constructs of

general circulation models (GCMs) because their reso-

lution does not allow for the adequate representation of

finer-scale features, including topography and land

cover, and mesoscale weather systems, which play a sig-

nificant role in the development of extreme conditions

(Ekström et al. 2005; Fowler et al. 2005; Donat et al.

2010; Mishra et al. 2012). As such, downscaling tech-

niques, including dynamical downscaling, are frequently

applied to GCM output. The Weather Research and

Forecasting (WRF) Model (Skamarock et al. 2008) em-

ployed as a regional climate model (RCM) is one such

tool for this purpose. The ability of WRF to downscale

GCMs and to better account for regional climate has

been well established in simulations conducted over cli-

matological regions in Europe (Christensen et al. 2007;

Chu et al. 2010), North America (Mearns et al. 2009;

Patricola and Cook 2013), and Asia (Chotamonsak et al.

2011). A number of these studies have also included an

assessment of climate extremes (Argüeso et al. 2011;
Gao et al. 2012; Salathé et al. 2010). To promote a con-

sistentmethod for regional downscaling experiments and

hence to improve the quality of experiment outcomes,

the Coordinated Regional Downscaling Experiment

(CORDEX; Giorgi et al. 2009) was established. The

CORDEX framework highlights the importance of first

validating the RCM configuration through the evalua-

tion of simulations with boundary conditions derived

from reanalysis data before simulations downscaling

GCM data are run.

Kala et al. (2015) examined a number of physics op-

tions for WRF in the SWWA for a 12-month period and

found that the model was sensitive to parameterization

options, in particular the choice of longwave and short-

wave radiation schemes, land surface model, and plane-

tary boundary layer scheme. Kala et al. (2015) also found

that at a 10-km resolutionWRFwas not able to represent

the magnitude of dry-season rainfall, and a systematic

underestimation of coastal precipitation was linked to

unresolved topography in the region. The influence of

unresolved topography on simulated precipitation is

supported by regional climate studies in other regions,

which have found that higher-resolution simulations

represent precipitation with greater skill (Cardoso et al.

2013; Warrach-Sagi et al. 2013).

In this study we aim to validate WRF as an RCM in

the SWWA that is forced by reanalysis data over a 30-yr

period between 1981 and 2010. We evaluate the ability

of WRF to simulate extremes of temperature and pre-

cipitation in the SWWA as the basis for ongoing re-

search to downscale an ensemble of GCMs to examine

the impact of future climate changes. To achieve this

aim, we consider the extent to which increasing the

resolution of the WRF simulation will improve simula-

tion of extremes. The ability of the simulation to detect

the daily, seasonal, and annual variability of the

SWWA is evaluated to ensure thatWRF can adequately

represent the climatological characteristics of the re-

gion. The spatial and temporal distribution of some ex-

treme precipitation and temperature indices are also

assessed.

2. Methods

a. Southwest Western Australia

SWWA is a region of high biological diversity

(Fitzpatrick et al. 2008), which also supports an urban

population in the coastal city of Perth and extensive rain-

fed cereal crops toward the interior. The growing season

for these crops is in the cooler months of May–October

(Ludwig andAsseng 2006). In the region, summer is from

December to February (DJF), autumn is from March to

May (MAM), winter is from July to August (JJA), and

spring is from September to November (SON). SWWA

experiences hot dry summers and cool wet winters, typ-

ical of its Mediterranean-type climate (Gentilli 1971,

108–114), but this type of climate in combinationwith low

soil fertility means that the biota and agricultural re-

sources of the region are highly susceptible to changes in

climate (Kingwell 2006).

The most influential large-scale driver of the SWWA

climate is the position of the subtropical high pressure
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belt (Gentilli 1971, 108–114). In the spring and summer,

the belt is positioned to the south of SWWA and advects

hot continental air to the coast while channeling the

passage of rain-bearing frontal systems to the south,

resulting in dry conditions. Summer rainfall is a result of

surface convection, cutoff lows (Pook et al. 2012), and

northwesterly cloud bands that bring rain to the interior

(Tapp and Barrell 1984). Infrequent, large-scale sum-

mer rain events in the SWWA, which occur only two or

three times in a decade, were described by Wright

(1974). Caused by meridional troughs passing over the

region, Wright (1974) found that these rain events often

took place when a former tropical cyclone was present

north of Western Australia. Previous studies assessing

WRF downscaling capabilities over the SWWA on

a seasonal time scale have found that the scarcity and

distribution of rain in the summer months is challenging

to represent accurately (Kala et al. 2015). In the winter

months the subtropical high pressure belt moves

northward, allowing for the passage of frontal systems

over the region that are the main source of annual

rainfall. Annual rainfall variability in the region is con-

siderable (Power et al. 1998) and has been found to be

influenced by large-scale teleconnections, such as the

Indian Ocean dipole (England et al. 2006).

SWWA is an area of low relief. The main topo-

graphical feature that influences the climate of the re-

gion is the Darling Scarp, which runs parallel to the

coast 25 km inland and results in a sudden change in

elevation of approximately 300m. This feature can be

seen in Fig. 1b. The meteorological influence of this

scarp has been shown to be difficult to represent in

mesoscalemodels with resolutions that aremore coarse

than 0.5 km (Pitts and Lyons 1990; Kala et al. 2011,

2015).

b. Model configuration

A 30-yr, three-domain regional climate simulation

from 1981 to 2010 was conducted using WRF, version

3.3, driven by ERA-Interim (Dee et al. 2011) boundary

conditions. A 3-month model spinup period was used.

The outer 50-km domain (Fig. 1a) was based on the

CORDEXAustralia domain. The two nested domains,

at 10- and 5-km resolution, were chosen to evaluate the

influence of spatial scale on model skill and also to

compare the performance of parameterized convec-

tion with convection that is explicitly resolved in the

model. We note that the downscaling ratio of 2 used

between our two nested domains is a lower ratio than is

usually employed by regional climate simulations.

Our choice of downscaling ratio between these do-

mains was based on the limits of the computational

resources available. This meant that the resolution of

the inner domain (5 km) matched the resolution of the

gridded observational dataset, which is discussed in

section 2c.

Parameterization options and model setup were based

on the findings of a prior sensitivity analysis of WRF to

different physics and input data over SWWA (Kala et al.

2015) and include the single-moment 5-classmicrophysics

scheme (Hong et al. 2004), RRTM for longwave radia-

tion (Mlawer et al. 1997), Dudhia shortwave radiation

(Dudhia 1989), Yonsei University planetary boundary

layer scheme (Hong and Lim 2006), convective parame-

terization on the first and second domains only from

Kain–Fritsch (Kain 2004), theMM5 surface-layer scheme

(Grell et al. 2000), and the Noah land surface model

(Chen and Dudhia 2001). (Acronym definitions can be

found at http://www.ametsoc.org/PubsAcronymList.)

The model employs 30 vertical levels, which are more

densely spaced near the surface, 150-day averaging for

deep soil temperatures, and spectral nudging for the

upper layers of the outer domain only. Carbon dioxide

concentrations were updated on amonthly frequency on

the basis of observations from Baring Head, New Zea-

land (Keeling et al. 2001), as being representative of the

Southern Hemisphere. A 10-gridpoint relaxation zone

was removed from the domain boundaries prior to

analysis of the results.

c. Observational data

Observational data used for evaluation come from

a daily gridded dataset of maximum and minimum tem-

peratures and rainfall provided by the Australian Bureau

of Meteorology (BoM) as a contribution to the Austra-

lian Soil Water Availability Project (AWAP; Raupach

et al. 2009). The AWAP temperature and precipitation

dataset, at a resolution of 5 km, is an interpolation from

a network of weather stations across Australia (Jones

et al. 2009) and has been used as a validation tool for

previous regional climate simulations inAustralia (Evans

andMcCabe 2010; Evans et al. 2012; Kala et al. 2015).We

note the uncertainties associated with the fitting of sur-

faces to the observations to yield the gridded dataset, but

the AWAP data have employed topography-resolving

analysis methods to minimize this uncertainty (Jones

et al. 2009). King et al. (2013) evaluated the merits

of the AWAP dataset to examine extreme-rainfall

characteristics and found that it demonstrated

good agreement with station data and was suitable

to examine extreme rainfall. King et al. (2013) did

suggest caution in using the AWAP data in areas of low

station density, but these regions are sufficiently re-

moved from the two innermost domains of this simu-

lation so as not to influence the quality of the

observational data for this study. The AWAP data are

372 JOURNAL OF APPL IED METEOROLOGY AND CL IMATOLOGY VOLUME 54

http://www.ametsoc.org/PubsAcronymList


illustrated in Fig. 2, which shows the average seasonal

mean rainfall, maximum temperatures, and minimum

temperatures for 1981–2010. Precipitation (Fig. 2c)

is most heavily concentrated at the coast, and there

is a significant decline in rainfall as distance inland

increases.

d. Statistics and indices

The AWAP observations were interpolated using

simple inverse-distance weighting to the 5- (W5k) and

10-km (W10k) domains to enable intercomparison.

Daily variability was quantified using probability density

FIG. 1. RCM terrain for the (a) outer model domain, including the extent of the nested grids,

and (b) the higher-resolution terrain of domain 3.
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functions (PDFs). Because the observational data do

not include daily rainfall values of less than 0.2mm,

simulation values below this threshold have been re-

moved from the daily variability analysis. To establish

the spatial variability of the daily PDFs, the Perkins

skill score (PSS; Perkins et al. 2007) was employed,

which compares the observed and simulated probabil-

ity distributions:

FIG. 2. Climatological seasonal means of AWAP (a) maximum temperatures, (b) minimum temperatures, and (c) rainfall for the W5k

domain. The stations that have been used to generate the AWAP dataset are shown as white dots on the DJF plots in (a) for temperature

and (c) for precipitation.
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PSS5 �
n

1

minimum(zs, zo) , (1)

where n is the number of bins used to calculate the PDF,

zs is the simulated frequency of values in n, and zo is the

observed frequency of values in n. Perfect agreement

between the PDFs will result in a PSS of 1. If the model

represents the observed PDF poorly, there will be less of

an overlap between the two distributions and the PSS

will be close to 0.

Simulation skill in representing the seasonal spatial

variability of temperature and rainfall was assessed

through the use of Taylor diagrams (Taylor 2001) and

bias contour plots. WRF’s ability to reproduce the in-

terannual climatic variability of the SWWA is exam-

ined using annual time series plots of regionally

averaged minimum and maximum temperature anom-

alies. Interannual variability with respect to pre-

cipitation was examined by plotting a time series of the

regionally averaged annual precipitation anomaly.

We assessed the ability of WRF to represent aspects

of temperature and precipitation extremes by using

a number of the core indices developed by the World

Meteorological Organization working group, the Ex-

pert Team on Climate Change Detection and Indices

(ETCCDI; Persson et al. 2007). Some of the indices

applied in this paper have been modified to be more

relevant to the proposed applications of this research.

For example, the ETCCDI frost-days (FD) index pro-

vides an annual count of days on which minimum

temperature is lower than 08C. Kala et al. (2009),

however, have shown that screen temperatures of less

than 28C are sufficient to result in foliage temperatures

below 08C and hence frost damage to crops in SWWA.

Therefore we use the threshold of 28C for FD. In ad-

dition, the summer-days (SU) index is an annual count

of days on which temperatures exceed 258C. In the

SWWA, 258C is more representative of a mean tem-

perature rather than an extreme, and as such we have

modified this index to a threshold of 348C. This level is
based on studies by Asseng et al. (2011) and Wardlaw

(1994), who found that temperatures in excess of

348C can have significant impact on grain yields, par-

ticularly in the reproductive and grain-filling stages

of the crop cycle. We note that there are many other

temperature-based indices defined by the ETCCDI

that are based on percentiles; for the applications in-

tended for this research, however, we felt that the

threshold-based approach of the FD and SU indices

was the most relevant.

The precipitation indices examined in this study are

applied as defined by the ETCCDI, but for percentile-

based indices we have used 1981–2010 as the baseline

period. These include the 5-day maximum precipitation

intensity (Rx5day):

Rx5dayj 5max(RRkj) (2)

(where RRkj is the precipitation amount for the 5-day

interval ending at k in period j), the simple daily in-

tensity index (SDII):

SDIIj5

�
w

w51

RRwj

W
(3)

(where RRwj is the daily precipitation amount on a wet

dayw when RR$ 1mm in period j andW is the number

of wet days in j), and the annual total precipitation for

which rainfall exceeds the 95th percentile (R95pTOT):

R95pTOTj 5 �
w

w51

RRwj, where RRwj.RRwn95,
(4)

(where RRwj is the daily precipitation amount on a wet

day w when RR $ 1mm in period j and RRwn95 is the

95th percentile of precipitation on wet days in the 1981–

2010 normal period).

Although three domains were used, the analysis in this

paper is restricted to the two inner nested domains over

SWWA. The outer domainwas chosen to conform to the

CORDEX specifications so as to contribute to the

CORDEX initiative. Although a thorough analysis of

the outer domain would certainly be useful, it does not

fit within the scope of this paper, which is to focus on the

agricultural and forested regions of SWWA. Results

from the outer CORDEX Australia domain will be the

subject of a separate study.

3. Results

In this section, the WRF simulations are compared

with the AWAP observations to evaluate the overall

performance of the model and the relative performance

of the two nested domains. To allow for direct compari-

son betweenW5k andW10k, the largerW10kdomainhas

been limited to the extent of the W5k domain.

a. Precipitation

1) DAILY RAINFALL

The domain-averaged PDF of observed and simulated

daily rainfall is shown in Fig. 3a forW10K and Fig. 3b for

W5k. The distribution highlights the prevalence of days

with rainfall under 1mm; this interval accounts for 55%

of all rain days in the region. The overall distribution of
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rainfall is simulated well, albeit with a tendency to

overestimate the probability of light precipitation, par-

ticularly by W10k. This is apparent because W10k pro-

duced 4% more (59.74% as compared with 54.92%)

days with rainfall below 1mm than were observed. The

overestimation of small precipitation events is improved

by W5k, for which the proportion of days with less than

1mm of rainfall is only 1.25% above observations. In

their simulation over Portugal, the findings of Soares

et al. (2012) closely match our own, specifically that

WRF represents high-rainfall days well but tends to

overestimate the proportion of days with low rainfall or

drizzle. In a similar way, Soares et al. (2012) found that

the higher-resolution simulation reduced the tendency

for the model to simulate drizzle. Evans and McCabe

(2010) performed a similar analysis for precipitation in

a regional climate simulation over eastern Australia and

also found that higher-intensity rainfall events were

simulated well; the tendency for the simulation to

overestimate drizzle was regionally dependent in that

study, however. The performance of theW10k domain is

sensitive to the threshold of the PDF, especially for low

rainfall amounts; 33.5% of rainfall days in W10k had

rainfall below 0.5mm as compared with 26.9% for W5k

and 27.2% for observations.

PSS results over the domain are shown in Fig. 4. Al-

though the range of skill scores between W10k (0.78–

0.96) and W5k (0.78–0.97) does not show any significant

variation, the difference in their spatial distribution is

marked; inW5kmost of the domain has skill scores over

0.875, with small areas below this threshold being gen-

erally confined to the southwestern coastline. Con-

versely, themajority of theW10k domain has skill scores

below 0.875. Domain-averaged rainfall PSS are 0.87 for

W10k and 0.91 forW5k. These scores are comparable to

the findings of previous studies that have employed the

PSS for spatial analysis of daily rainfall distribution

(Evans and McCabe 2010; Perkins et al. 2007; Argüeso
et al. 2012). The spatial distribution of rainfall intensity

shows a clear improvement in the level of agreement

between W10k and W5k, which is not an unexpected

result given the findings of previous studies in the

SWWA that highlighted the need for higher-resolution

simulations to more accurately represent rainfall in the

region (Kala et al. 2015).

2) SEASONAL RAINFALL

Seasonal rainfall variability in the SWWA is driven by

the movement of the subtropical high pressure belt. A

preliminary analysis (not shown) of mean sea level

pressure (MSLP) patterns from the outer domain

showed that WRF was able to reproduce typical MSLP

patterns for summer and winter as compared with the

BoM MSLP analysis.

Rainfall model agreement is examined using Taylor

diagrams. These plots allow a succinct comparison of

models using the metrics of pattern correlation (corr),

RMSE, and variance ratio. Strong model performance

will be indicated by values that are close to the x axis and

near the line that is labeled as REF (a 1:1 variance ratio).

Figure 5 shows that pattern correlation is high—greater

than 0.9 in almost all cases. The exceptions forW10k are

in DJF (corr 5 0.56) and MAM (corr 5 0.77); those for

W5k are in DJF (corr 5 0.84). The nature of DJF and

MAM rainfall in SWWA’s Mediterranean climate is

sparse, convective events of limited spatial extent.

FIG. 3. Probability density plot of domain-averaged daily rainfall for (a) W10k and (b) W5k vs observations.
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Sparse, convective precipitation has been found by other

studies (Soares et al. 2012; Kala et al. 2015) to be difficult

for WRF to simulate well, particularly when using con-

vective parameterization, and therefore the lower cor-

relations we have seen for these two seasons are

expected. The higher-resolution W5k simulation is able

to improve performance with respect to the convective-

dominated rainfall seasons (DJF andMAM) as a result of

explicitly resolved convection and a higher-resolution

domain, which can represent the patchy nature of this

precipitation with greater skill. This is most significant in

DJF, for which period theW5k simulation has improved

W10k results from a pattern correlation of 0.55 to one of

0.84 and a variance ratio from 4.4 to 0.7. For the seasons

of JJA and SON, for which rainfall in the SWWA is

dominated by frontal systems, W5k deteriorates relative

to the performance of W10k, especially with respect to

the variance ratio, indicating that W5k is not capturing

the variability of the rainfall in JJA and SON as well as

W10k. This deterioration in JJA and SON rainfall var-

iability for W5k can be explained by the strongly nega-

tive coastal winter rainfall biases in W5k, caused by

domain-edge effects, which are discussed further in the

following paragraphs.

Rainfall seasonal bias for both W10k and W5k is

shown in Fig. 6. Across the region, and for all seasons

except JJA, bias remains low and predominantly nega-

tive. JJA rainfall biases are considerably larger than in

other seasons because most of the region’s rainfall

occurs in this season (Fig. 2c). Furthermore, the spatial

distribution of bias shows a marked difference between

W10k and W5k. W10k is producing a band of positive

rainfall bias along the west coast of the region that is not

present in the higher-resolution W5k. The area of pos-

itive bias in W10k aligns closely with the Darling Scarp,

which runs parallel to the coast at this point (as shown in

FIG. 4. PSS of daily precipitation for (a) W10k and (b) W5k.

FIG. 5. Taylor plot showing seasonal rainfall performance forW10k

(red) and W5k (blue).
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Fig. 1b). The pattern of bias is consistent with the

‘‘windward/lee effect,’’ in which mesoscale models tend

to overestimate rainfall on the windward side of topo-

graphical features, as described by Wulfmeyer et al.

(2008). In a 30-yr climate simulation over Germany,

Warrach-Sagi et al. (2013) also found evidence of the

windward/lee effect in WRF at 10-km resolution, but

this error was overcome in short-run simulations at

a convection-resolving scale (5 km). Consistent with

Warrach-Sagi et al. (2013), W5k improves the repre-

sentation of the Darling Scarp’s influence on rainfall

because W5k is able to eliminate the positive bias at the

coast and much of the strong negative bias in the area to

the east of the Darling Scarp. W5k is still showing an

overall negative bias in this region, however, which

suggests that the 5-km resolution is still not sufficient to

fully resolve the meteorological influence of this topo-

graphical feature, which is supported by findings from

Pitts and Lyons (1990) who found that representing

the wind-generated turbulence of the scarp requires a

0.5-km resolution.

While the W5k simulation is overcoming the

resolution-induced positive bias at the Darling Scarp, it

is further enhancing the negative bias in the southwest

corner of the region in JJA: up to 80mmmonth21, which

represents a relative error of approximately 60% of

rainfall. To diagnose whether this bias could have re-

sulted from grid-boundary interference, we considered

the proximity of the area in question to the edge of the

W5k grid. The southwest corner of the SWWA landmass

begins 20 km (4 grid points) from the western boundary

of the domain. A 10-gridpoint relaxation zone has been

removed from this domain, but at 5-km resolution this

represents a relaxation zone of only 50 km. It is there-

fore possible that this region is experiencing some

anomalous rainfall output as a consequence of edge ef-

fects in this area interfering with the response of the

model, as was found in Lowrey and Yang (2008) and

Seth and Giorgi (1998).

A simulation (called W5k-ext) was run for the JJA

period of 2007 (plus a 3-month spinup) with a 5-km

domain extended to the south and west by 10 grid points

to allow for further enhanced development of the frontal

processes in this region away from the edge effects of the

domain. This run was compared with a simulation ini-

tialized at the same time but using the standard 5-km

FIG. 6. Average seasonal rainfall bias (observation 2 simulation) for (a) W10k and (b) W5k.
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domain (called W5k-cld). The 2007 JJA season was

chosen because the W5k simulation displayed the larg-

est negative rainfall anomaly during this year. Bias plots

for the 2007 JJA season are shown in Fig. 7, and it is

apparent that the coastal bias has been reduced by the

W5k-ext simulation; there has also been an increase in

positive bias along the southern coastal region, however.

We examined the individual rainfall events over the

course of the W5k-ext simulation and found that this

increased bias was systematic across all rainfall events.

Identifying the physical mechanisms leading to this bias

requires extra simulations with different domain setups,

which will be the subject of future studies.

Notwithstanding, the overall marked reduction in bias

provides a strong indication that the boundary proximity

of the W5k domain is resulting in an anomalous rainfall

response. Despite the reduction in bias, W5k-ext does

still show a negative bias in the western coastal region,

which indicates that the 5-km resolution is not fully re-

solving frontal processes. Kala et al. (2011) simulated

the passage of cold fronts over the SWWAusing a 5-km-

resolutionmodel. This study did not consider precipitation

from these fronts at 5-km resolution (precipitation was

examined at 20-km resolution only), but it did find that

5-km resolution was not sufficient to represent accu-

rately the baroclinic zone at the frontal boundary, and

we suggest that this smoothing of the baroclinic zone is

contributing to the negative winter rainfall bias in

W5k in the high-precipitation region of the southwest

coast.

3) ANNUAL RAINFALL

Annual (December–November) precipitation anom-

alies for W10k and W5k are compared with observed

precipitation anomalies in Fig. 8. Averaged over the

region, the largest observed amplitude anomaly is

2200mmyr21 in 2010. There is little difference between

the W10k and W5k simulations, which is likely due to

averaging over the whole domain. In general, the sim-

ulations are able to account for the sign of the in-

terannual variability well, particularly in the very low

rainfall year of 2010, which was shown by Evans and

Lyons (2013) to have resulted in a significantly increased

number of forest-mortality events. There are exceptions

in 1990, 2001, 2005, and 2007 in which the simulated

precipitation anomaly was the opposite sign of the ob-

served anomaly. The years 1990 and 2005 were wetter-

than-average years that were simulated as being drier

than average. TheW5kDJF and JJA bias for these years

is shown in Fig. 9a, and it is apparent that JJA bias fol-

lows a pattern that is similar to the climatological mean

bias (Fig. 6) but that DJF rainfall is underestimated.

Furthermore, 2001 and 2007 were drier-than-average

years that were simulated as wetter than average. When

the W5k DJF and JJA biases for these years are con-

sidered (Fig. 9b), JJA bias is again similar to the

FIG. 7. Rainfall bias in JJA (2007) for (a) W5k-ext and (b) W5k-cld.
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climatological mean, whereas DJF shows a very strong

positive bias (W10k simulation bias is not shown be-

cause the pattern of bias closely matches that of W5k).

This result indicates that simulation limitations with

respect to dry-season rainfall events are the cause of the

model’s inability to detect the sign of the rainfall

anomaly in these years.

To establish the source of the dry-season rainfall er-

ror, we considered the region’s dry-season climatologi-

cal behavior. Dry-season rainfall tends to be sporadic

and sparse, but regional-scale rainfall events take place

every 3–4 years on average. These events, triggered by

high-level moisture advection from the tropics via me-

ridional troughs, are simulated poorly by the model.

Over the course of our simulation, 9 of these dry-season

regional-scale rainfall events were observed. Our model

generated 11 such events, 4 of which coincided with

observed precipitation events in 2000, 2001, 2007, and

2008. Rainfall was overestimated for these events in

both 2001 and 2007, leading to the anomalously high

simulated mean rainfall in these years. Observed DJF

rainfall in 1990 was also high as a result of a regional-

scale rainfall event; this particular event was poorly

simulated, however. The relatively low DJF bias seen in

Fig. 6 shows that, over the 30-yr climatological period,

the model is accounting for the extent of these regional-

scale rainfall events well. When individual events are

considered, however, the timing and magnitude are not

well represented. We conducted a number of short

simulations during 2007 with different initialization

dates and found that the moisture-advection processes

are particularly sensitive to the time since initialization,

but there was no consistent pattern in this behavior.

Further research is required to fully understand the

nature of the misrepresentation of moisture advection

within the outer domain of our model.

Figure 10 shows the spatial distribution of the stan-

dard deviation for annual rainfall. As expected, the

largest observed variability is found in the highest-

rainfall regions. Both W10k and W5k are able to rep-

resent the magnitude of the standard-deviation changes

throughout the domain well. W5k is able to account for

the spatial distribution of standard deviations better

than W10k is in the midwest coastal region, but there is

a large disparity between observations and W5k in the

southwestern corner of the landmass that can be at-

tributed to the grid-edge effects that are enhancing

negative bias in this region.

4) EXTREME INDICES

We next examine indices that consider the contribu-

tion of rainfall from high-intensity events (R95pTOT

and RX5day) and average rainfall intensity (SDII).

From observations of SDII shown in Fig. 11a, it is ap-

parent that the most intense rainfall is inland of the west

coast, to the east of the Darling Scarp. W5k shows good

spatial agreement with observations, especially in the

area of highest precipitation intensity. SDII is under-

estimated by W5k in the southwest corner by approxi-

mately 2mmday21. W10k represents the SDII as being

the highest along the west coast, whereas the observa-

tions show that the highest-intensity rainfall occurs to

the east of the Darling Scarp. The W10k representation

of SDII is lacking in the finescale spatial structure of this

index, which is well developed in W5k. W10k does,

however, provide a better representation in the south-

west corner and the interior of the domain than W5k

does.

The RX5day index measures the highest annual

rainfall in a 5-day period. Climatologically averaged

annual RX5day is shown in Fig. 11b for the observations

and for the W10k and W5K simulations. Similar to the

SDII index, observations show that RX5day is highest in

the region east of the Darling Scarp and along the

southern coast, with declining intensity inland. Al-

though there is spatial agreement for the W5k simula-

tion, it is less well represented than the average intensity

that was identified by the SDII index (Fig. 11). W10k

does not capture the spatial pattern of Rx5day on the

coast or in the Darling Scarp, and both W10k and W5k

are overestimating RX5day in the interior.

The contribution of rainfall from the highest-intensity

rainfall events (above the 95th percentile) is measured

by the R95pTOT index. This metric differs fromRx5day

because it considers all of the high-intensity rainfall

events in a year over the percentile threshold whereas

the RX5day only represents a single high-intensity event

from each year. Observations for the R95pTOT index

show a clear gradient from the southwest corner to the

FIG. 8. Time series (1981–2010) of domain-averaged annual

rainfall anomaly for observations (solid blue), W10k (dotted red),

and W5k (solid red).
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northeast of the domain that is not as well defined in the

W10k and W5k simulations (Fig. 11c). Both simulations

show a significant departure from observations in the

southwest corner, where the model is underestimating

this index by over 100mm (50%) in W5k and 50mm

(25%) inW10k. TheW10k domain continues tomiss the

spatial distribution of the rainfall on the west coast; both

W10k and W5k represent R95pTOT well over the in-

terior of the SWWA, however. The RX5day and

R95pTOT indices were evaluated by Argüeso et al.
(2012) in a regional climate simulation over Spain. Their

assessment of the performance of these metrics mirrors

what we found here: the Rx5day index was well repre-

sented both spatially and with respect to magnitude and

FIG. 9. Mean W5k (left) DJF and (right) JJA rainfall bias for (a) 1990 and 2005 and (b) 2001 and 2007.
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R95pTOTwas less well matched, although broad spatial

patterns were captured.

b. Temperature

1) DAILY TEMPERATURES

The PDFs of daily maximum and minimum temper-

atures for the 30-yr simulation comparing observations

with bothW10k andW5k are shown in Fig. 12. Domain-

averaged PDFs for maximum temperatures show that

the simulation distributions are skewed to the left, in-

dicating that WRF is overestimating the proportion of

cooler maximum temperatures. Temperatures toward

the middle of the distribution are generally under-

estimated, and the extreme right of the distribution

shows that the simulated hottest days closely match

observations. This result suggests that, while moderate

maximum temperatures tend to be underestimated and

low maximum temperatures are overestimated, the oc-

currence of very hot maxima is well represented by the

model. Critical for the applications of this research, the

incidence of temperatures above 348C shows good

agreement; this is the threshold used by the SU index.

Conversely, the simulated distribution of minimum

temperatures is skewed to the right, showing that the

model is overestimating warm minima and under-

estimating the likelihood of moderately cold minima.

An examination of the right tail of the W5k distribution

(cold minima below 28C) shows that the simulation

corresponds to observations well; when minimum tem-

peratures below 28C are considered for the W10k dis-

tribution, however, there is a greater tendency to

overestimate their frequency.

The goodness of fit of simulated PDFs relative to

observations at each grid point is represented using the

PSS in Fig. 13. The distribution of daily maximum and

minimum temperatures is well represented in both the

W10k and W5k simulations, with little difference ap-

parent between the simulations.Mean PSS forminimum

temperatures are equal (0.93) for both W10k and W5k

simulations, and W10k (0.92) performs slightly better

than W5k (0.91) for maximum temperatures. Maximum

temperatures show their lowest levels of agreement

on the southern coastal margins, where PSS values fall

below 0.8.

2) SEASONAL TEMPERATURES

Figure 14 shows the mean seasonal performance of

W10k and W5k maximum and minimum temperatures.

Simulated maximum temperatures are represented well

across all seasons and domains, with pattern correlation

values between 0.9 and 1.0. Variance ratios are all below

1.0, which indicates that the spread of simulated sea-

sonal mean temperatures was greater than observed.

Both W10k and W5k show good representation of

maximum temperatures, but results for W10k are

somewhat better than for W5k, with generally higher

pattern correlations and variance ratios that are closer to

1.0. Seasonal minimum temperatures are also repre-

sented well by the simulations; the pattern correlation

values and variance ratios are lower than those of maxi-

mum temperatures, however—a finding that is consistent

with similar regional climate simulations (Zhang et al.

2009; Soares et al. 2012). Unlike maximum temperatures,

the W5k simulation is demonstrating better performance

relative to W10k for seasonal minimum temperatures.

FIG. 10. Standard deviation of annual rainfall for W10k, W5k, and observations.
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FIG. 11. Average values of annual precipitation indices (a) SDII, (b) RX5day, and (c) R95pTOT for W10k, W5k, and observations.
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The higher-resolution simulation (W5k) has more of

a positive influence on minimum temperatures than on

maximum temperatures because nighttime temperatures

are more heavily influenced by local conditions, which

are better represented in W5k.

Seasonal maximum temperature bias is shown in

Figs. 15a and 15b. Temperatures display a systematic

negative bias that is less than 28C; in DJF this bias in-

creases to 248C along the southern coastal margin. This

negative bias is intensified in the W5k simulation.

Figures 15c and 15d show low biases for mean seasonal

minimum temperatures in theW10k simulation (Fig. 15c)

that are reduced further by theW5k simulation (Fig. 15d),

with most of the study area having bias less than 618C.
DJF and MAM show a slight increase in positive bias

relative to JJA and SON; bias is relatively consistent

across all seasons, however, which indicates that the

model is able to account for seasonal changes inminimum

temperatures in the SWWA well. There is a discernible

and persistent warm bias forminimum temperatures over

the Perth metropolitan area (the location of Perth is

shown in Fig. 1b). This region represents the largest area

of urban land use in the domain, and therefore a possible

explanation for this bias is an unsuitable representation of

the urban surface in the simulation (Chen et al. 2011).

This simulation does not employ the use of an urban

canopy model because the resolution of the simulation is

too coarse to adequately resolve urban land use.

3) ANNUAL TEMPERATURES

Time series of domain-averaged annual minimum and

maximum temperature anomalies are shown in Fig. 16.

FIG. 12. Probability density plots comparing the distribution of daily maximum temperatures for (a) W10k and

(b) W5k and minimum temperatures for (c) W10k and (d) W5k relative to observations.
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Over the duration of the simulation, observed temper-

ature anomalies are small, less than 618C. These plots

demonstrate that the simulations are able to reflect the

interannual variations in temperature that are seen at

the domain scale. This is especially true of minimum

temperatures, for which the simulated anomalies are

close to the observations. Simulated maximum temper-

atures show less skill in accounting for the observed

variability. Although the magnitudes of the anomalies

are well simulated over the 30-yr period, in 1984, 1987,

1998, 2001, 2003, and 2009 the sign of the temperature

anomaly is poorly represented. The years 1984 and

1987 were colder-than-average years that were simu-

lated as warmer than average. Conversely, 1998, 2001,

2003, and 2009 were warmer-than-average years but

were simulated as colder than average. It was found

FIG. 13. PSS of (a) maximum temperature distributions and (b) minimum temperature distributions for (left) W10k

and (right) W5k.
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that, similar to annual rainfall anomalies, these maxi-

mum temperature anomalies arise from fluctuations in

the warm-season (DJF) biases, whereas the cooler-

season (JJA) biases remain constant throughout the

simulation. We considered whether these anomalous

summer maximum temperature biases were linked

with the model’s poor simulation of regional-scale DJF

rain events and could not find a consistent relationship

with rainfall.

4) EXTREME INDICES

The FD index provides an annual count of days on

which minimum temperatures are below 28C. The cli-

matologically averaged count of FD across the domain

for W10k, W5k, and observations is shown in Fig. 17a.

Observations highlight that the areas with the most FD

are concentrated in the interior of the region and ap-

proximately 100km inland of the western coastal mar-

gin. W10k andW5k show that the spatial extent of FD is

represented well around the coastal regions. BothW10k

and W5k overestimate the frost risk in the area to the

east of the Darling Scarp and in the northwest corner of

the domain, and FD is underestimated in the northeast.

The higher-resolution W5k demonstrates a reduction in

positive bias when compared with W10k. This im-

provement is enabled by the higher-resolution simula-

tion allowing for more accurate representation of the

local conditions, such as topography, that contribute to

frost conditions.

Figure 17b illustrates the SU index. The simulated

spatial representation of this index is overall satisfactory,

and there is little difference between the two domains.

This result is consistent with other studies that also

found that maximum temperatures do not tend to be as

heavily influenced as minimum temperatures are by

increases in model resolution (Soares et al. 2012).

There is an underestimation of the incidence of SU

days in the north of the domain by approximately 5–10

days per year, which is a result of the negative bias in

maximum temperatures that was found in the region

(shown in Fig. 15).

The temporal characteristics of these temperature

thresholds are very important, particularly how they

interact with the cereal-crop growing season. As such,

the mean monthly counts of these indices are now con-

sidered. Figure 18 shows that W10k and W5k are both

able to represent the spatiotemporal development of FD

in the growing season, with W5k showing an improved

spatial representation and a reduction in positive bias.

Simulations are demonstrating a small negative bias for

early-season frost days (in May and June), showing that

the model develops frost conditions later than observed;

the spatiotemporal representation of frost is satisfac-

tory, however.

Because the growing season is over the austral win-

ter, the high-temperature threshold SU is exceeded

less in the growing season than is FD. Figure 19 shows

the monthly distribution of SU in those months that

experience SU and highlights that the likelihood of SU

in the growing season is low, with the north of the re-

gion experiencing less than 2 SU in October. Both

W10k and W5k underestimate the extent of SU, but

FIG. 14. Taylor plots showing the relative skill of W10k and W5k simulations for seasonal (a) maximum and (b) minimum temperatures.
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FIG. 15. Average seasonal temperature bias (observation 2 simulation) for (a) W10k maximum temperature, (b) W5k maximum

temperature, (c) W10k minimum temperature, and (d) W5k minimum temperature.
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both simulations are able to account for the spatial

distribution of monthly SU days, with W5k providing

an improved representation of their magnitude rela-

tive to W10k.

4. Discussion and conclusions

We present an evaluation of the RCM WRF over

the SWWA for 30 years between 1981 and 2010 to ex-

amine the ability of the model to accurately represent

the ‘‘climatology’’ of the region, including the clima-

tology of extreme events. Our study compared two do-

main resolutions: 10-km resolution using convective

parameterization (W10k) and a 5-km domain that re-

solves convection explicitly (W5k).

Overall, we found that the simulation performed well in

representing the climatology of the region. The statistical

distribution of daily temperatures and rainfall showed

that, while WRF tended to underestimate average maxi-

mum temperatures, warm extremes were well repre-

sented. This pattern was followed by rainfall, where daily

high-intensity rainfall events were simulated well, and was

mirrored by minimum temperatures, for which the mean

was overestimated but very cold days showed good

agreement with observations.

An analysis of seasonal variation showed that WRF

was able to model seasonal minimum and maximum

temperatures well. The W5k simulation improved the

representation of minimum temperatures because of the

improved resolution of local topographical effects but

introduced additional bias for maximum temperatures.

There were some large biases associated with JJA pre-

cipitation. While the positive bias on the midwest coast

was overcome by W5k because of an improved topo-

graphical resolution of the Darling Scarp, the negative

bias in the southwest corner was further enhanced. Bias

in this region was influenced by the proximity of the grid

edge to the coast in theW5k domain. This is indicated by

a 3-month simulation for JJA in 2007 that showed that

more than 50% of this bias was removed by expanding

the W5k domain in a southerly and westerly direction.

Even with the edge effects eliminated in the W5k-

extended domain, a small negative bias on the south-

west coast persisted. This follows the results from other

studies in the SWWA that found that a 5-km resolution

is not sufficient to fully resolve the baroclinic zone of the

frontal systems that bring most of the JJA rainfall to the

region (Kala et al. 2011). The W5k simulation was able

to demonstrate significant improvements in the repre-

sentation of DJF and MAM rainfall. Because of the

edge effects that affect this simulation, it is not recom-

mended that this domain be used for examining coastal

precipitation, however. For future regional climate

simulations it is strongly recommended that a larger do-

main, allowing for greater distance from the grid bound-

ary to the coast, be used. The optimal spatial extent and

positioning of the high-resolution domain relative to the

coast is currently unknown, and further simulationswill be

required to establish how frontal rainfall processes are

influenced by the location of the domain, as well as by

horizontal and vertical resolution.

Extreme temperature indices were simulated well by

WRF, especially by W5k, which was able to represent

not only the magnitude but also the spatial and temporal

distribution of FD and SU. Precipitation indices SDII,

Rx5day, and R95pTOT were also modeled satisfacto-

rily, but their performance was influenced by the biases

found in both the W10k and W5k simulations. Soares

et al. (2012) found that higher-resolution domains im-

proved the simulation of precipitation extremes, and our

results are not as conclusive in this respect. Note, how-

ever, that the Soares et al. (2012) highest-resolution

domain was 9 km and used convective parameteriza-

tion, comparable to ourW10k domain. Furthermore, the

FIG. 16. Time series (1981–2010) of domain-averaged annual (a) maximum and (b) minimum temperature anomaly

for observations (solid blue), W10k (dotted red), and W5k (solid red).
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downscaling ratio between the two domains compared

in Soares et al. (2012) was 3, whereas the downscaling

ratio used in our research was 2.

It was expected that the W5k simulation would

demonstrate improved results when compared with

W10k, but this finding was equivocal. W5k is influ-

enced by edge effects in the southwestern coastal

regions but even removing these affected areas from

our analysis does not always elevate the performance

of the W5k simulation above that of W10k. For ex-

ample, W10k provided a better representation of

R95pTOT and SDII relative to W5k in the interior

of the domain. Despite the fact that the performance

of W5k is not always superior to W10k, this high-

resolution model does consistently demonstrate im-

proved simulation skill with respect to convective

precipitation, rainfall surrounding the Darling Scarp,

and also frost.

For applications related to cereal-crop produc-

tion in SWWA, the W5k simulation is useful because it

reduces the negative JJA rainfall bias in the interior

of the domain, which is the area of main agricultural

production in the region. Furthermore, representa-

tion of the daily distribution of precipitation is improved

significantly by the higher-resolution simulation, which

indicates that the W5k simulation is providing a better

FIG. 17. Values of the temperature indices (a) FD and (b) SU for W10k, W5k, and observations.

FEBRUARY 2015 ANDRYS ET AL . 389



spatial representation of rainfall. W5k does not show as

marked an improvement on temperature representa-

tion, and this result is because temperatures, particularly

maxima, are not as heavily affected by the finer-scale

features that the higher-resolution domain improves

upon. When we consider the temporal distributions of

the SU and FD indices in accordance with the growing

season, however, we do see that, for both metrics, W5k

improves the spatiotemporal representation of these

indices relative to W10k.

There are a number of regional climate studies that

demonstrate improved simulation performance when

comparing domains of 30–50 km with domains of 9–

15 km in which both domains employ convective pa-

rameterization (Cardoso et al. 2013; Soares et al. 2012;

Heikkilä et al. 2011). Fewer studies compare a 10-km

domain with a higher-resolution grid that is explicitly

resolving convection. Villarroel et al. (2013) found

that a high-resolution 5-km domain over southern

Chile improved model performance for both temper-

ature and precipitation relative to the driving data, and

this result was attributed to improved topographical

resolution, but the domain was not compared with

a lower-resolution WRF grid. In a simulation over

central Japan, Kusaka et al. (2010) found that 4-km

resolution represented a 5-yr climatology well; again,

these results were compared with a lower-resolution

WRF grid. Warrach-Sagi et al. (2013) conducted a 30-yr

simulation over Germany at 10-km resolution and then

compared these results with a shorter, convection-

resolving simulation at 5-km resolution. Their findings

were consistent with our own in demonstrating that

a convection-resolving resolution can overcome the

windward/lee effect that is apparent at 10-km resolution

(W10k), and they support the use of high-resolution,

convection-resolving simulations for RCM.

On the basis of the results of W10k and W5k, partic-

ularly the spatial and temporal representation of the

climate extremes that were considered in this research,

we have high confidence in the model for regional cli-

mate simulations over SWWA.
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