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Abstract 19 

 Cryptosporidium is an enteric parasite that is considered the second greatest cause of 20 

diarrhoea and death in children after rotavirus. Currently, 27 species are recognized as valid and of 21 

these, Cryptosporidium hominis and Cryptosporidium parvum are responsible for the majority of 22 

infections in humans. Molecular and biological studies indicate that Cryptosporidium is more 23 

closely related to gregarine parasites rather than to coccidians. The identification of gregarine-like 24 

gamont stages and the ability of Cryptosporidium to complete its life cycle in the absence of host 25 

cells further confirm its relationship with gregarines. This opens new avenues into the investigation 26 

of pathogenesis, epidemiology, treatment and control of Cryptosporidium. Effective drug treatments 27 

and vaccines are not yet available due, in part, to the technical challenges of working on 28 

Cryptosporidium in the laboratory. Whole genome sequencing and metabolomics have expanded 29 

our understanding of the biochemical requirements of this organism and have identified new drug 30 

targets. To effectively combat this important pathogen, increased funding is essential. 31 

 32 

 33 
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1. Introduction 37 

 Cryptosporidium is an enteric protozoan parasite of medical and veterinary importance that 38 

infects a wide range of humans and animals worldwide. A recent epidemiological study 39 

investigating the cause and effect of diarrhoea in over 22,000 children (under 5 years of age), 40 

residing in four African and three Asian study sites, identified cryptosporidiosis as the second most 41 

common pathogen responsible for severe diarrhoea and was also associated with death in young 42 

children (12 - 23 months of age) (Kotloff et al., 2013). Globally, cryptosporidiosis is estimated to be 43 

responsible for 30 - 50% of the deaths in children under 5 years of age and is considered the second 44 

greatest cause of diarrhoea and death in children after rotavirus (Ochoa et al., 2004; Snelling et al., 45 

2007; Striepen, 2013). Infection in this age group is also associated with developmental problems 46 

(Guerrant et al., 1999).  47 

 Cryptosporidiosis commonly results in watery diarrhea that may sometimes be profuse and 48 

prolonged (Current and Garcia, 1991; Chalmers and Davies, 2010; Bouzid et al., 2013). Other 49 

common symptoms include abdominal pain, nausea, vomiting and low-grade fever. Occasionally, 50 

non-specific symptoms such as myalgia, weakness, malaise, headache and anorexia occur (Current 51 

and Garcia, 1991). Immunocompetent individuals experience a transient self-limiting illness (up to 52 

2 to 3 weeks). However, for immunocompromised patients such as HIV-infected individuals, 53 

symptoms may include chronic or protracted diarrhea and prior to the use of antiretroviral therapy 54 

cryptosporidiosis was associated with significant mortality (Manabe et al., 1998; Hunter and 55 

Nichols, 2002). Infections among HIV-infected individuals may also become extra-intestinal, 56 

spreading to other sites including the gall bladder, biliary tract, pancreas and pulmonary system 57 

(López-Vélez et al., 1995; Hunter and Nichols, 2002). Transmission of the parasite occurs via the 58 

fecal-oral route, either by ingestion of contaminated water or food, or by person-to-person or 59 

animal-to-human transmission (Xiao, 2010). Waterborne transmission is considered a major mode 60 

of transmission and Cryptosporidium was the etiological agent in 60.3% (120) of the waterborne 61 
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protozoan parasitic outbreaks that have been reported worldwide between 2004 and 2010 62 

(Baldursson and Karanis, 2011).   63 

  Current treatment options for cryptosporidiosis are limited and only one drug, nitazoxanide 64 

(NTZ), has been approved by the United States (US) Food and Drug Administration (FDA). This 65 

drug, however, exhibits only moderate clinical efficacy in children and immunocompetent people, 66 

and none in people with HIV (Abubakar et al., 2007; Amadi et al., 2009).  67 

 68 

2. Taxonomy 69 

Cryptosporidium is an apicomplexan parasite and, until recently, belonged to the order 70 

Eucoccidiorida (which includes Toxoplasma, Cyclospora, Isospora and Sarcocystis) (Levine, 1984). 71 

Genomic and biochemical data indicate that Cryptosporidium differs from other apicomplexans in 72 

that it has lost the apicoplast organelle, as well as genomes for both the plastid and the 73 

mitochondrion (Zhu et al., 2000; Abrahamsen et al., 2004; Xu et al., 2004). Cryptosporidium also 74 

demonstrates several peculiarities that separate it from any other coccidian. These include (i) the 75 

location of Cryptosporidium within the host cell, where the endogenous developmental stages are 76 

confined to the apical surfaces of the host cell (intracellular, but extracytoplasmic); (ii) the 77 

attachment of the parasite to the host cell, where a multi-membranous attachment or feeder 78 

organelle is formed at the base of the parasitophorous vacuole (PV) to facilitate the uptake of 79 

nutrients from the host cell; (iii) the presence of two morpho-functional types of oocysts, thick-80 

walled and thin-walled, with the latter responsible for the initiation of the auto-infective cycle in the 81 

infected host; (iv) the small size of the oocyst (5.0 x 4.5 µm for Cryptosporidium parvum) which 82 

lacks morphological structures such as sporocyst, micropyle and polar granules (Tzipori and 83 

Widmer, 2000; Petry, 2004); (v) the insensitivity to all anti-coccidial agents tested to date 84 

(Blagburn and Soave, 1997; Cabada and White, 2010); (vi) cross-reaction of an anti-cryptosporidial 85 

monoclonal antibody with gregarines (Bull et al., 1998), and (vii) the observation of the presence of 86 

novel gamont-like extracellular stages similar to those found in gregarine life cycles (Hijjawi et al., 87 
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2002; Rosales et al., 2005; Karanis et al., 2008; Borowski et al., 2010; Koh et al., 2013, 2014; 88 

Huang et al., 2014).  89 

Molecular studies indicate that Cryptosporidium is more closely related to the primitive 90 

apicomplexan gregarine parasites rather than to coccidians (Carreno et al., 1999; Leander et al., 91 

2003). Recent whole genome analysis comparing Cryptosporidium with the 92 

gregarine Ascogregarina taiwanensis supports this phylogenetic association (Templeton et al., 93 

2010). Ascogregarina and Cryptosporidium, however, also possess features that unite them with the 94 

Coccidia, including an environmental oocyst stage, metabolic pathways such as the Type I fatty 95 

acid and polyketide synthetic enzymes, and a number of conserved extracellular protein domain 96 

architectures (Templeton et al., 2010). Future genomic studies of other gregarine parasites will 97 

hopefully provide a clearer understanding of the correct taxonomic placement of the genus 98 

Cryptosporidium. Further characterization of these novel gamont-like developmental stages, which 99 

are similar to those of gregarines, will also contribute to a greater understanding of the 100 

environmental ecology of Cryptosporidium, which is fundamental to its control (Barta and 101 

Thompson, 2006). A better understanding of the relationship between Cryptosporidium and 102 

gregarines will also open up new approaches into the investigation of pathogenesis, epidemiology, 103 

treatment and control of Cryptosporidium. 104 

Delimiting species within the genus Cryptosporidium has also been controversial but 105 

currently 27 species are regarded as valid (Ryan et al., 2014, 2015). Three of these are avian 106 

Cryptosporidium spp.; Cryptosporidium meleagridis, Cryptosporidium baileyi and 107 

Cryptosporidium galli, 19 are species in mammals; Cryptosporidium muris, C. parvum, 108 

Cryptosporidium wrairi, Cryptosporidium felis, Cryptosporidium andersoni, Cryptosporidium canis, 109 

Cryptosporidium hominis, Cryptosporidium suis, Cryptosporidium bovis, Cryptosporidium fayeri, 110 

Cryptosporidium macropodum, Cryptosporidium ryanae, Cryptosporidium xiaoi, Cryptosporidium 111 

ubiquitum, Cryptosporidium cuniculus, Cryptosporidium tyzzeri, Cryptosporidium viatorum, 112 

Cryptosporidium scrofarum and Cryptosporidium erinacei;  one  (Cryptosporidium fragile) is a 113 
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species in amphibians; two (Cryptosporidium serpentis and Cryptosporidium varanii) are species in 114 

reptiles; and two (Cryptosporidium molnari and Cryptosporidium huwi) are species in fish (Ryan 115 

and Xiao, 2014; Ryan et al., 2014, 2015). There are also over 40 genotypes, with a high probability 116 

that many of these will eventually be given species status with increased biological and molecular 117 

characterisation.  118 

In humans, nearly 20 Cryptosporidium spp. and genotypes have been reported, including C. 119 

hominis, C. parvum, C. meleagridis, C. felis, C. canis, C. cuniculus, C. ubiquitum, C. viatorum, C. 120 

muris, C. suis, C. fayeri, C. andersoni, C. bovis, C. scrofarum, C. tyzzeri, C. erinacei and 121 

Cryptosporidium horse, skunk and chipmunk I genotypes, with C. hominis and C. parvum most 122 

commonly reported (Xiao, 2010; Ryan et al., 2014). Other species,such as C. meleagridis, C. felis, 123 

C. canis, C. cuniculus, C. ubiquitum and C. viatorum are less common. The remaining 124 

Cryptosporidium spp. and genotypes have been found in only a few human cases (Xiao, 2010; Ryan 125 

et al., 2014). These Cryptosporidium spp. infect both immunocompetent and immunocompromised 126 

persons.   127 

Molecular analysis using highly variable loci such as the 60 kDa glycoprotein (gp60) has 128 

revealed that C. hominis appears to be highly human-specific. Whilst some C. parvum subtypes 129 

such as the IIc subtype family are transmitted anthroponotically, other C. parvum subtypes are 130 

transmitted zoonotically (Xiao, 2010; Ryan et al., 2014).  131 

 132 

3. Life cycle and cell culture 133 

 Cryptosporidium has a complex, monoxenous life cycle consisting of several developmental 134 

stages involving both sexual and asexual cycles (Fig. 1). The infective sporulated oocyst is excreted 135 

from the body of an infected host in the faeces. The oocysts possess a tough trilaminar wall, which 136 

is extremely resistant to chemical and mechanical disruption, and maintains the viability of the 137 

internal sporozoites under adverse environmental conditions (Fayer and Unger, 1986). This wall is 138 
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very rigid (Chatterjee et al., 2010) and atomic force microscopy shows that the oocyst wall 139 

resembles common plastic materials (Dumètre et al., 2013). 140 

 Once ingested, oocysts release sporozoites in the intestine, where infections are 141 

predominately localized to the jejunum and ileum. Cell invasion by the sporozoite is followed by 142 

intracellular development to a trophozoite stage which undergos asexual proliferation to produce 143 

two different types of meronts. Merozoites released from type I meronts enter other intestinal 144 

epithelial cells and either develop into type II meronts or complete another cycle of type I meronts. 145 

Merozoites from type II meronts then multiply sexually to produce microgamonts and 146 

macrogamonts. The microgamonts fertilize the macrogamonts producing zygotes, which mature 147 

into oocysts (Hijjawi, 2010).  148 

 The presence of gamont-like extracellular stages in the life cycle of Cryptosporidium was 149 

first observed in a study by Hijjawi et al. (2002) and has since been reported by several 150 

investigators (Rosales et al., 2005; Karanis et al., 2008; Borowski et al., 2010; Koh et al., 2013, 151 

2014; Huang et al., 2014). The origin of the extracellular stages is not known but it has been 152 

suggested that these stages might originate from sporozoites which failed to penetrate the host cells 153 

and developed extracellularly into motile trophozoite stages (Hijjawi et al., 2004; Rosales et al., 154 

2005). Extracellular gamont-like stages have also been purified from mice infected with C. parvum 155 

(Hijjawi et al., 2004). 156 

A major hurdle for research laboratories to facilitate biological, pathological, immunological 157 

and molecular and drug evaluation studies on Cryptosporidium has been the inability to 158 

continuously propagate Cryptosporidium in vitro. In addition, there are no methods allowing the 159 

indefinite storage of infectious material and isolates have to be continuously passaged through 160 

animals, usually calves or mice for C. parvum and piglets and gerbils for C. hominis (Tzipori and 161 

Widmer, 2008). 162 

Factors that affect the development and proliferation of Cryptosporidium in in vitro culture 163 

include the excystation protocol, age and strain of the parasite, stage and size of inoculum, host cell 164 
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type, maturity and culture conditions such as pH, medium supplements and atmosphere (Hijjawi, 165 

2010; Karanis and Aldeyarbi, 2011). The majority of in vitro cultivation studies to date use human 166 

adenocarcinoma (HCT-8) cells, as this cell line supports superior development of the parasite in a 167 

conventional 5% CO2 environment compared with other cell lines and atmospheres but still suffers 168 

from failure to propagate the parasite long-term, low yields of oocysts and/or lack of reproducibility 169 

(Hijjawi, 2010; Karanis and Aldeyarbi, 2011). Long-term culturing (up to 25 days) of 170 

Cryptosporidium in cell culture using pH modification, sub-culturing and gamma irradiation has 171 

been reported (Hijjawi et al., 2001). Reducing the volume of excystation medium and centrifugation 172 

of excysting oocysts onto the cell monolayer has also reportedly resulted in an approximately four-173 

fold increase in sporozoite attachment and subsequent infection (King et al., 2011). Another study 174 

cultivated intact crypts from human intestinal fragments of intestinal layers with culture medium 175 

supplemented with growth factors and antiapoptotic molecules but only reported that 176 

Cryptosporidium development increased for >120 h (Castellanos-Gonzalez et al., 2013). 177 

Nonetheless, high throughput screening of Cryptosporidium, using HCT-8 cultures, for viability 178 

and drug analysis has been achieved (King et al., 2011; Bessoff et al., 2013; Jefferies et al., 2015). 179 

Complete development of Cryptosporidium in a cell-free (axenic) in vitro cultivation system 180 

was first reported by Hijjawi et al. (2004). According to this report, new oocysts were present after 181 

8 days post-culture inoculation (Hijjawi et al., 2004). Other researchers such as Girouard et al. 182 

(2006), who used similar but not identical serum-free cultivation systems, were unable to reproduce 183 

these results. However, multiplication of Cryptosporidium DNA from cell-free cultures has been 184 

reported by other researchers (Zhang et al., 2009; Hijjawi et al., 2010; Koh et al., 2013) and various 185 

Cryptosporidium developmental stages (sporozoites, trophozoites, large meronts, merozoites, 186 

microgamonts, gamont-like cells and extra-large gamont-like cells) have been identified from 187 

biofilms using various techniques including scanning electron microscopy (SEM) (Koh et al., 2013, 188 

2014). A previous study had suggested that the presence of gamont-like stages in both cell-free and 189 

in-vitro cultures was due to contaminating debris or fungal infection resembling Bipolaris 190 
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australiensis and Colletotrichum acutatum (Woods and Upton, 2007). In the most recent study by 191 

Koh et al. (2014), however, intense immunofluorescent labelling of the internal structures of 192 

gamont-like stages using a Cryptosporidium-specific antibody counters this argument. The authors 193 

suggested that the role of the gamont-like stage is to generate trophozoites and merozoites so that 194 

more new oocysts can be produced without host encapsulation (Koh et al., 2014). The latter study 195 

also demonstrated that Cryptosporidium has the ability to form a PV independent of a host (in both 196 

biofilms and HCT-8 cell cultures) (Koh et al., 2014), which is consistent with the proposal by 197 

Pohlenz et al. (1978) that Cryptosporidium does not require host encapsulation to form a PV.  198 

Another study identified sporozoites, trophozoites and type I merozoites in cell-free cultures 199 

by SEM and compared gene expression in cell culture and cell-free culture (Yang et al., 2015). 200 

Findings from that study showed that gene expression patterns in cell culture and cell-free culture 201 

were similar but in cell-free culture, gene expression was delayed in some genes and was lower 202 

(Yang et al., 2015). A recent study conducted a genome-wide transcriptome analysis over a 72 h in 203 

vitro culture of C. parvum-infected HCT-8 cells (Mauzy et al., 2012). Quantitative-PCR (qPCR) for 204 

3,302 genes (87% of the protein coding genes) indicated that each gene has detectable transcription 205 

in at least one time point assessed (Mauzy et al., 2012). Further studies which involve a wider range 206 

of genes should be conducted to better understand the expression of Cryptosporidium genes in cell-207 

free culture. 208 

Numerous studies have reported aggregations of trophozoites in cell-free culture (Hijjawi et 209 

al., 2004, 2010; Boxell et al., 2008; Koh et al., 2014; Yang et al., 2015) and it has been suggested 210 

that trophozoites may have fused together by a syzygy-like process (Hijjawi et al., 2004). More 211 

recently, all life cycle stages from cell-free culture have been described using electron microscopy 212 

(Aldeyarbi and Karanis, 2014, unpublished data). The authors also reported different 213 

Cryptosporidium stages developing within the shells of the oocysts, the detection of gregarine-like 214 

stages and syzygy and a PV (Aldeyarbi and Karanis, 2014, unpublished data). A cell-free in vitro 215 

cultivation system for Cryptosporidium represents a significant advance that will be extremely 216 
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useful in drug assessment and in research on developmental biology, avoiding the need for 217 

infectivity experiments with animal models or cell culture (Karanis and Aldeyarbi, 2011). It is 218 

hoped that with further advances in cell-free culturing, more researchers skilled in immunology, 219 

biochemistry and molecular biology will apply these skills to Cryptosporidium. 220 

  221 

4. Vaccines 222 

The immune status of the host plays a critical role in determining susceptibility to infection 223 

with this parasite as well as the outcome and severity of cryptosporidiosis. Therefore understanding 224 

host-parasite interactions and the essential elements of immunity to Cryptosporidium spp. are 225 

essential to the development of effective immunotherapies or vaccines (Mead, 2014). A complex 226 

sequence of events involving various components of the innate and adaptive host response has been 227 

shown to be important in the control of Cryptosporidium infection (Petry et al., 2010; McDonald et 228 

al., 2013). Yet the nature of these responses, particularly in humans, is not completely understood 229 

(Borad and Ward, 2010). However, as this parasite is largely localised to the intestinal tract, a 230 

vaccine that stimulates mucosal immune responses will likely be most beneficial (Mead, 2014). For 231 

example, commercially available mucosal vaccines against other enteric pathogens such as 232 

rotavirus, that are live and attenuated, have achieved considerable success in disease prevention and 233 

control in children in developed countries (Pasetti et al., 2011), but lower protection in children in 234 

developing countries (Vesikari, 2012). The use of an attenuated Cryptosporidium strain could 235 

therefore result in better immunological responses and protection from symptomatic disease and/or 236 

infection. Several lines of evidence support this. For example, dairy calves inoculated with gamma-237 

irradiated C. parvum oocysts were protected against subsequent challenge (Jenkins et al., 2004). In 238 

pigs, C. hominis-specific immunity was sufficient to completely protect against challenge with the 239 

same species (Sheoran et al., 2012). In a second group of pigs, primary infection with C. hominis 240 

and subsequent infection with C. parvum resulted in a partial cross-protective immunity with milder 241 

symptoms and lower oocyst shedding than C. parvum only infected controls (Sheoran et al., 2012). 242 
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Studies in human volunteers have shown that re-challenge with the same C. parvum isolate, 1 year 243 

after recovery from cryptosporidiosis, did not prevent infection but did reduce its severity 244 

(Okhuysen et al., 1998). Indeed, it has been suggested that regular exposure to low doses of 245 

Cryptosporidium are beneficial, as Cryptosporidium infection rates were significantly higher for 246 

outbreaks associated with groundwater than surface water consumption (Craun et al., 1998; Hunter 247 

and Quigley, 1998). The authors argued that people who use surface water sources were regularly 248 

exposed to small numbers of oocysts and thus did not experience many outbreaks, unless there was 249 

a major breakdown in treatment (Craun et al., 1998; Hunter and Quigley, 1998). Development of 250 

vaccines containing Cryptosporidium parasites that have been rendered incapable of causing disease, 251 

through irradiation or genetic engineering, and identification of effective cryopreservation methods 252 

is likely the best approach for the development of potential vaccine strains (Striepen, 2012; Mead, 253 

2014). However, it is important to remember that malnutrition and the associated reduction in 254 

immunity (Coutinho et al., 2008) may lower the effectiveness of any Cryptosporidium vaccine used 255 

on children in developing countries. This is particularly sobering in light of that fact that there are 256 

currently >842 million chronically malnourished persons worldwide 257 

(http://www.fao.org/docrep/018/i3458e/i3458e.pdf).  258 

 259 

5. Genomics 260 

The sequencing of the genomes of C. parvum, C. hominis and C. muris has been a major 261 

advance in our understanding of the molecular biology of Cryptosporidium (Abrahamsen et al., 262 

2004; Xu et al., 2004; Widmer and Sullivan, 2012; Widmer et al., 2012). The genomes of C. 263 

parvum and C. hominis display 95 - 97% DNA sequence identity and ~30% GC content, with no 264 

large indels or rearrangements evident (Widmer and Sullivan, 2012). They are each 9.2 million 265 

bases (Mb) in size and encode 4000 genes (Abrahamsen et al., 2004; Xu et al., 2004). The genome 266 

of C. parvum is essentially fully assembled (13 scaffolds representing eight chromosomes; see 267 

www.cryptodb.org), whereas the C. hominis genome still has some gaps (90 scaffolds; see 268 



  

12 

www.cryptodb.org). Approximately 75.3% of the C. parvum genome is annotated as coding 269 

(Abrahamsen et al., 2004). Cryptosporidium (together with gregarines) has lost its apicoplast, and C. 270 

parvum and C. hominis have a degenerate ‘mitosome’ instead of a mitochondrion, and have lost the 271 

mitochondrial genome and nuclear genes for many mitochondrial proteins, including those required 272 

for the tricarboxylic acid (TCA) cycle, oxidative phosphorylation, and fatty acid oxidation 273 

(Abrahamsen et al., 2004; Xu et al., 2004; Templeton et al., 2010). Also absent are genes for de 274 

novo biosynthesis of amino acids, nucleotides and sugars, as well as mechanisms for splicing RNA 275 

and gene silencing (Abrahamsen et al., 2004; Xu et al., 2004). Loss of genes from multiple 276 

metabolic pathways means C. parvum and C. hominis rely heavily on scavenging nutrients from the 277 

host, salvage rather than de novo biosynthesis, and glycolysis or substrate-level phosphorylation for 278 

energy production. 279 

A recent comparison of the genome of the anthroponotic C. parvum isolate TU114 (gp60 280 

IIc) and the reference genome originating from the zoonotic C. parvum isolate IOWA identified a 281 

small number of highly diverged genes (Widmer et al., 2012). Among these, transporters were 282 

significantly over-represented, which suggests that the ability to establish an infection in a 283 

particular host species may depend in part on transporters controlling the exchange of metabolites 284 

between the host cell and intracellular developmental stages of the parasite (Widmer et al., 2012). 285 

Further genome sequencing is required to confirm this. Interestingly, a three-way comparison of the 286 

newly sequenced anthroponotic C. parvum TU114 isolate, the reference zoonotic C. parvum 287 

(IOWA) and C. hominis identified at least three genes where the anthroponotic C. parvum sequence 288 

was more similar to C. hominis than to the zoonotic C. parvum reference. Because C. hominis and C. 289 

parvum IIc are human parasites, this raises the possibility that their evolution is driven by the 290 

adaptation of the parasite to different host species (Widmer et al., 2012). 291 

 A draft de novo assembly of the C. muris genome has been available from online public 292 

databases (e.g., CryptoDB, cryptodb.org) since 2008 (Widmer and Sullivan, 2012). The C. muris 293 

genome overall is similar in size, nucleotide composition and gene content to the other two species, 294 
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with a few notable exceptions, e.g., the nuclear genome encodes a complete set of TCA cycle 295 

enzymes, genes required for oxidative phosphorylation, and a functional ATP synthase (Mogi and 296 

Kita, 2010). Similar to C. parvum and C. hominis, C. muris lacks a cytochrome-based respiratory 297 

chain and shows no evidence of having a mitochondrial genome (Widmer and Sullivan, 2012). 298 

However, the presence of mitochondrial structure and proteins that are absent from C. parvum and 299 

C. hominis, but present in C. muris and gregarines (Uni et al., 1987; Toso and Omoto, 2007; Mogi 300 

and Kita, 2010), supports the theory that the common ancestor of gregarines and Cryptosporidium 301 

had a larger complement of mitochondrial proteins than C. parvum and C. hominis, and that the loss 302 

of mitochondria in C. parvum and C. hominis occurred after they diverged from C. muris (Widmer 303 

and Sullivan, 2012).  304 

 Functional genomics in Cryptosporidium has been hampered by the lack of a transfection 305 

system due to the complex life cycle of the parasite and a lack of effective endogenous promoters. 306 

A transient expression system using GFP, has been developed based on the double-stranded RNA 307 

(dsRNA) C. parvum virus (CPV) harboured by Cryptosporidium (Li et al., 2009). More recently, a 308 

DNA-based transient transfection of yellow (YFP) or red (RFP) fluorescent protein in C. parvum 309 

oocysts and sporozoites controlled by the endogenous promoters of actin, alpha tubulin and myosin 310 

genes using the restricted enzyme-mediated integration technique has been described (Li et al., 311 

2014). Further research is required to develop a stable transfection system, which will be helpful in 312 

determining the function and localization of novel Cryptosporidium proteins.  313 

 314 

6. Drug discovery 315 

 Progress in developing anti-cryptosporidial drugs has also been slow due to the limitations 316 

of in vitro culture for Cryptosporidium, an inability to genetically manipulate the organism and the 317 

unique metabolic features in this parasite, which has a highly streamlined metabolism and is unable 318 

to synthesize nutrients de novo (Abrahamsen et al., 2004; Andrews et al., 2014; Guo et al., 2014). 319 

As discussed, Cryptosporidium has completely lost the plastid-derived apicoplast present in many 320 
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other apicomplexans, and the remnant mitochondrion lacks the citrate cycle and cytochrome-based 321 

respiratory chain. Therefore, many classic drug targets are unavailable in Cryptosporidium and 322 

novel targets need to be identified for drug development (Guo et al., 2014). However, essential core 323 

metabolic pathways, including energy metabolism and lipid synthesis, are present in this parasite. 324 

Many enzymes within these pathways may serve as new drug targets because they are either absent 325 

in, or highly divergent from, humans and animals. For example, the C. parvum genome encodes 326 

three long chain fatty acyl-coenzyme A synthetases (LC-ACS) which are essential in fatty acid 327 

metabolism (Abrahamsen et al., 2004). A recent study reported good efficacy of the ACS inhibitor 328 

triacsin C against cryptosporidial infection in mice (Guo et al., 2014).  329 

 Another enzyme pathway that has been extensively examined is the salvage of adenosine 330 

from its host or environment as Cryptosporidium is unable to synthesize purine nucleotides de novo 331 

(Striepen et al., 2004; Umejiego et al., 2004; Kirubakaran et al., 2012). Cryptosporidium does not 332 

contain guanine salvage enzymes and consequently this pathway appears to be the only route to 333 

source guanine nucleotides (Striepen et al., 2004; Kirubakaran et al., 2012). The inosine 5’ - 334 

monophosphate dehydrogenase (IMPDH) gene in Cryptosporidium appears to have been acquired 335 

through lateral gene transfer from an ε-proteobacterium (Striepen et al., 2002, 2004) and recent 336 

studies have shown that compounds optimised for inhibition of cryptosporidial IMPDH also have 337 

antibacterial activity (Mandapati et al., 2014). Detailed kinetic analysis of this prokaryote-like 338 

enzyme demonstrated that the Cryptosporidium IMPDH is very different from its human homologs 339 

(Striepen et al., 2004; Umejiego et al., 2004). Furthermore, the “drugability” of IMPDH is well 340 

established as inhibitors of human IMPDHs have been used clinically as immunosuppressants as 341 

well as for the treatment of viral infections and cancer (Chen and Pankiewicz, 2007; Hedstrom, 342 

2009). Thus, the exclusive reliance on the salvage pathway by Cryptosporidium and its high 343 

metabolic demand for nucleotides due to the complicated lifecycle of this parasite make IMPDH a 344 

potential drug target candidate. This hypothesis is supported by the recent discovery of several 345 

Cryptosporidium IMPDH inhibitors (Umejiego et al., 2008; Maurya et al., 2009; Sharling et al., 346 
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2010; Gorla et al., 2012, 2013; Johnson et al., 2013). Another study used a yeast-two-hybrid system 347 

to identify “Phylomer®” peptides (constructed from the genomes of 25 phylogenetically diverse 348 

bacteria) that targeted the IMPDH of C. parvum and several interacting Phylomers® exhibited 349 

significant growth inhibition in vitro (Jefferies et al., 2015).  350 

 The prohibitive cost of de novo drug development, estimated to be between $500 million 351 

and $2 billion per compound successfully brought to market (Adams and Brantner, 2006), is 352 

another major limiting factor in the development of anti-cryptosporidial drugs and has resulted in 353 

drug repurposing. For example, drugs such as the human 3-hydroxy-3-methyl-glutaryl-coenzyme A 354 

(HMG-CoA) reductase inhibitor, itavastatin and Auranofin (Ridaura®) were initially approved for 355 

the treatment of rheumatoid arthritis and have been shown to be effective against Cryptosporidium 356 

in vitro (Bessoff et al., 2013; Debnath et al., 2013), which holds promise for further in vivo testing 357 

in animals and humans. 358 

 359 

7. Metabolomics 360 

Metabolomics, the study of intracellular and extracellular metabolites that are consumed and 361 

produced as a result of biological activity, is in its infancy in Cryptosporidium research but provides 362 

an avenue for biomarker discovery, drug targets and improved diagnostic techniques.  363 

Genome sequencing and biochemical data has revealed that Cryptosporidium is highly 364 

reliant on its host/environment for nutrients as it is missing key metabolic pathways and lacks the 365 

ability for de novo synthesis of nucleosides, fatty acids and amino acids (Abrahamsen et al., 2004; 366 

Xu et al., 2004). An in silico genome-scale metabolic model of C. hominis identified 540 reactions 367 

performed by 213 enzymes (Vanee et al., 2010). Of these reactions, 514 were metabolic 368 

biochemical reactions involving intracellular metabolites and 26 were transport reactions 369 

representing the movement of metabolites across the cell membrane (Vanee et al., 2010). 370 

A recent preliminary metabolomics study on Cryptosporidium developed a faecal metabolite 371 

extraction method for untargeted gas chromatography-mass spectrometry (GC-MS) analysis using 372 
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Cryptosporidium-positive and -negative human faecal samples (Ng et al., 2012). In that study, 373 

higher levels of metabolites were generally detected in Cryptosporidium-positive patients, 374 

suggesting that metabolic homeostasis and intestinal permeability were affected as a result of the 375 

infection (Ng et al., 2012). Interestingly, a more controlled metabolomics analysis of faecal 376 

metabolite profiles using experimentally infected mice reported that lower metabolite levels were 377 

generally detected in faecal samples from Cryptosporidium-infected mice (Ng-Hublin et al., 2013). 378 

Differences in metabolite profiles between different host types have been previously reported by 379 

Saric et al. (2008). In that study, a comparison of faecal metabolite profiles from mice, rats and 380 

humans showed that the levels of metabolites differed between the host species, presumably as a 381 

result of different endogenous and exogenous perturbations, and differences in the gut microbiome 382 

between species (Saric et al., 2008). Despite the differences in faecal metabolite profiles between 383 

Cryptosporidium-infected humans and mice, metabolomic analysis in both studies was still able to 384 

clearly differentiate between infected and uninfected hosts, as well as provide information on the 385 

metabolic activity of the parasite during the infection based on faecal metabolite profiles. 386 

Another study used metabolomic techniques coupled with statistical chemometric analysis 387 

of viable and irradiated Cryptosporidium oocysts and identified a number of key metabolites 388 

including aromatic and non-aromatic amino acids, carbohydrates, fatty acids and alcohol type 389 

compounds that differentiated between the viable and non-viable oocysts (Beale et al., 2013). 390 

 391 

8. Perspectives 392 

Despite the evidence that Cryptosporidium is one of four pathogens responsible for the 393 

majority of severe diarrhoea in infants and toddlers (Kotloff et al., 2013), Cryptosporidium research 394 

lags behind the other three pathogens identified (rotavirus, Shigella and enterotoxigenic Escherichia 395 

coli) (Striepen, 2013). Unlike those pathogens, no fully effective drug treatment or vaccine is 396 

available for Cryptosporidium. 397 
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Increased funding for Cryptosporidium is essential to effectively combat this disease. The 398 

US National Institutes of Health (NIH) currently spends US$4.3 million each year on 399 

Cryptosporidium research, compared with approximately $300 million on more than 600 malaria 400 

projects (Striepen, 2013). In Australia, the National Health and Medical Research Council 401 

(NHMRC) has expended ~AUD $320,000 on Cryptosporidium research projects in the last 5 years 402 

compared with more than AUD $5 million on malaria research 403 

(www.nhmrc.gov.au/grants/research-funding-statistics-and-data). It is hoped that philanthropic 404 

organizations such as the Bill and Melinda Gates Foundation, USA, (www.gatesfoundation.org), 405 

which have focused previously on monitoring rather than intervention, will fund basic research on 406 

Cryptosporidium and that more research funding will become available from various governments.  407 
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Figure legend 671 

 672 

Fig. 1. Cryptosporidium life cycle (reproduced with permission from Hijjawi et al. (2004)). 673 
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