

MURDOCH RESEARCH REPOSITORY

This is the author's final version of the work, as accepted for publication following peer review but without the publisher's layout or pagination. The definitive version is available at <u>http://dx.doi.org/10.1016/j.prevetmed.2015.02.002</u>

Sawford, K., Geong, M., Bulu, P.M., Drayton, E., Mahardika, G.N.K., Leslie, E.E.C., Robertson, I., Gde Putra, A.A. and Toribio, J.L.M.L. (2015) An investigation of classical swine fever virus seroprevalence and risk factors in pigs in East Nusa Tenggara, eastern Indonesia. Preventive Veterinary Medicine, 119 (3-4). pp. 190-202.

http://researchrepository.murdoch.edu.au/25808/

© 2015 Published by Elsevier B.V

Accepted Manuscript

Title: An investigation of classical swine fever virus seroprevalence and risk factors in pigs in East Nusa Tenggara, eastern Indonesia

PII:	S0167-5877(15)00037-9
DOI:	http://dx.doi.org/doi:10.1016/j.prevetmed.2015.02.002
Reference:	PREVET 3739
To appear in:	PREVET
Received date:	7-4-2014
Revised date:	29-1-2015
Accepted date:	2-2-2015

Please cite this article as: Sawford, K., Geong, M., Bulu, P.M., Drayton, E., Mahardika, G.N.K., Leslie, E.E.C., Robertson, I., Putra, A.A.G., Toribio, J.-A.L.M.L., An investigation of classical swine fever virus seroprevalence and risk factors in pigs in East Nusa Tenggara, eastern Indonesia, *Preventive Veterinary Medicine* (2015), http://dx.doi.org/10.1016/j.prevetmed.2015.02.002

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

1 Highlights

- 2 Seroprevalence varied widely at various levels of spatial aggregation
- 9 Pigs positive for CSFV antibody in areas with no vaccination or reported cases
- 4 Levels of herd immunity inadequate for disease control
- 5

5	Title
6	An investigation of classical swine fever virus seroprevalence and risk factors in pigs in East
7	Nusa Tenggara, eastern Indonesia
8	
9	Authors
10	Kate Sawford ^{1,2} , Maria Geong ³ , Petrus M. Bulu ⁴ , Emily Drayton ¹ , Gusti N. K. Mahardika ⁵ ,
11	Edwina E. C. Leslie ¹ , Ian Robertson ⁴ , Anak Agung Gde Putra ⁶ , Jenny-Ann L. M. L. Toribio ^{1*}
12	
13	Affiliations
14	¹ Farm Animal & Veterinary Public Health, Faculty of Veterinary Science, University of
15	Sydney, 425 Werombi Road, Camden, New South Wales, 2570, Australia
16	² Greater Sydney Local Land Services, Level 4, 2-6 Station Street, Penrith,
17	New South Wales, 2750, Australia
18	³ Animal Health & Veterinary Services, Provincial Department of Livestock, East Nusa
19	Tenggara Province, Kupang, West Timor, Indonesia
20	⁴ College of Medicine, Murdoch University, South Street Murdoch, Western Australia, 6150,
21	Australia
22	⁵ Animal Biomedical and Molecular Biology Laboratory, Faculty of Veterinary Medicine
23	Udayana University, Bali, Indonesia
24	⁶ Disease Investigation Centre Denpasar, Ministry of Agriculture, Bali, Indonesia
25	
26	*Corresponding author
27	T +61 2 9351 1609, F +61 2 9351 1618, jenny-ann.toribio @sydney.edu.au
28	
29	Email addresses:

- 30 KS: kate.sawford@gmail.com
- 31 MG: geong_maria@yahoo.com
- 32 PMB: pietmb@gmail.com
- 33 ED: edra4815@uni.sydney.edu.au
- 34 GNKM: gnmahardika@gmail.com
- 35 EECL: eles2597@uni.sydney.edu.au
- 36 IR: I.Robertson@murdoch.edu.au
- 37 AAGP: aagputra@gmail.com
- 38 JALMLT: jenny-ann.toribio@sydney.edu.au
- 39

40 **Complete correspondence address including email address**

- 41 Farm Animal & Veterinary Public Health, Faculty of Veterinary Science, University of
- 42 Sydney, 425 Werombi Road, Camden, New South Wales, 2570, Australia, jenny-
- 43 ann.toribio@sydney.edu.au

44

45 Abstract

46	Classical swine fever virus (CSFV) is a highly infectious disease of pigs. It has had
47	significant impacts on East Nusa Tenggara, eastern Indonesia since its introduction in 1997.
48	In spite of its importance to this region, little is known about its seroprevalence and
49	distribution, and pig-level and farmer-level factors that may have an impact on the
50	serological status of an individual pig. To address this knowledge deficit, a cross-sectional
51	seroprevalence survey was conducted in 2010 involving 2160 pigs and 805 farmers from four
52	islands in the region. Farmer questionnaires and pig record forms were used to collect data
53	about the farmers and pigs surveyed. Blood was collected from each pig to determine its
54	CSFV serological status. Apparent and true prevalence were calculated for each island,
55	district, subdistrict, and village surveyed. CSFV serological status was used as an outcome
56	variable in mixed effects logistic regression analyses.
57	Overall true CSFV seroprevalence was estimated at 17.5% (lower CI 16.0%; upper CI
58	19.5%). Seroprevalence estimates varied widely across the islands, districts, subdistricts, and
59	villages. Manggarai Barat, a district on the western end of Flores Island, contained pigs that
60	were positive for antibody to CSFV. This result was unexpected, as no clinical cases had
61	been reported in this area. Older pigs and pigs that had been vaccinated for CSFV were more
62	likely to test positive for antibody to CSFV. The final multivariable model accounted for a
63	large amount of variation in the data, however much of this variation was explained by the
64	random effects with less than two percent of the variation explained by pig age and pig CSFV
65	vaccination status.

In this study we documented the seroprevalence of CSFV across four islands in East
Nusa Tenggara, eastern Indonesia. We also identified risk factors for the presence of antibody
to CSFV. Further investigation is needed to understand why clinical CSFV has not been

- 69 reported on the western end of Flores Island, and to identify additional risk factors that
- 70 explain CSFV serological status to inform disease control strategies.
- 71
- 72

73 Keywords

- 74 Classical swine fever virus; East Nusa Tenggara; Indonesia; Epidemiology; Risk factors;
- 75 Seroprevalence
- 76

	1
- 1	n
	v

77 Introduction

78	Classical swine fever virus (CSFV), or hog cholera, is a pestivirus associated with
79	high morbidity and mortality rates in pigs. CSFV has been eradicated from several countries
80	including the United States, Australia, and New Zealand, and a number of countries in
81	Central and Western Europe (Artois et al., 2002; Edwards et al., 2000; World Organisation
82	for Animal Health, 2014). However, recent outbreaks in countries previously free of CSFV in
83	domestic pigs have had significant economic and animal health consequences (Elbers et al.,
84	1999; Moennig et al., 2003; World Organisation for Animal Health, 2014), and CSFV
85	remains endemic in parts of Asia, Central America and South America.
86	East Nusa Tenggara (NTT) is the province with the highest level of pork consumption
87	in Indonesia, and the largest pig population with an estimated size of 1.8 million animals
88	(BPS Statistics, 2013). Smallholder pig farmers (total herd sizes of \leq 20 pigs) are the
89	predominant producers in this region, with 85% of households raising pigs (Johns et al.,
90	2009; Santhia et al., 2006) and agriculture is the primary income source for the majority of
91	households (Wang, 2007). In NTT, pigs provide a food source and financial security, and are
92	highly valued socially and culturally (Santhia et al., 2006; Leslie et al., 2014). Therefore,
93	morbidity and mortality events in the pig population impact a large proportion of the human
94	population.
95	CSFV is a highly contagious transboundary disease. Pigs are generally infected
96	oronasally, and spread is both direct via horizontal and vertical transmission, and indirect via
97	contaminated fomites and pork products. Clinical disease caused by CSFV is classified as
98	acute, subacute, or chronic, and is determined by CSFV strain, as well as host factors,
99	including pig age, breed, stage of pregnancy, previous CSFV exposure status, and CSFV

100 vaccination status. There are no pathognomonic signs for CSFV, and therefore laboratory

101 diagnostics are required to make a diagnosis (Moennig et al., 2003).

102	CSFV was confirmed in NTT in 1998. It subsequently spread across the province
103	largely through uncontrolled live pig movement, causing substantial losses. It continues to
104	limit pig production in the region (Tri Satya et al., 1999; Christie, 2007). In NTT, districts are
105	classified by CSFV infection status, which is based on clinical case reports to the NTT
106	Livestock Office and limited government-led serological surveys. In 2010, all districts on
107	West Timor and Sumba Island and one district on the eastern end of Flores Island were
108	classified as infected; one district in east Flores Island was classified as suspect; and the rest
109	of Flores Island plus Lembata Island classified as not infected (Figure 1). Vaccination
110	campaigns are conducted in districts with the highest pig densities and annual reports of cases
111	in an attempt to control disease. However, fluctuations in the size of the pig population have
112	continued, and the NTT Livestock Office has documented an increase in the number of
113	annual reported cases (Dinas Peternakan Propinsi, 2011).
114	Live attenuated 'Chinese' strain (C-strain) vaccine CSFV vaccine is used in NTT to
115	control disease. Its effectiveness has been demonstrated by a number of studies, and
116	protection lasts at least 6-18 months and may be life long (van Oirschot, 2003). Neutralizing
117	antibody usually appears within two weeks and increases until at least 4-12 weeks post
118	vaccination (van Oirschot, 2003). Antibody can persist many years after inoculation with a
119	single dose, but also disappears in some individuals and may disappear at a higher rate under
120	'real' field conditions compared to field trial conditions (van Oirschot, 2003). It is generally
121	accepted that the presence of neutralizing antibody confers CSFV protection (Suradhat et al.,
122	2007). Similarly, pigs that recover from acute CSFV infection develop neutralizing antibody
123	as early as two weeks post infection (Moennig, 2000). These animals are protected against
124	future infection for several years and immunity may be life long (Moennig, 2000).
125	In spite of the importance of CSFV to NTT, little is known about the seroprevalence
126	and distribution. No serological surveys have been conducted in many parts of NTT,

127	including the western half of Flores Island. Inconsistencies have been noted between the
128	number of CSFV cases reported by the NTT Livestock Office and the few published studies
129	(Santhia et al., 2003; Dinas Peternakan Propinsi, 2011). It has been recognised that as a result
130	of government decentralisation, communication between and within different government
131	sectors is lacking, which may be the cause of data inconsistencies (Brandenburg et al., 2002).
132	However, previous studies have also noted that farmers across NTT are reluctant to report
133	CSFV cases (Robertson et al., 2010; Deveridge, 2008). Moreover, Santhia et al. (2003) stated
134	that farmers and animal health workers on Alor Island in NTT were not reporting all CSFV
135	cases.
136	The overarching aim of the presented study was to better understand CSFV
137	seroprevalence and distribution in NTT to provide information to support decisions on CSFV
138	control. The objectives of this study were: 1) to determine CSFV seroprevalence in West
139	Timor and Sumba islands, both classified as CSFV infected; 2) to detect the presence of
140	CSFV antibody in CSFV suspect and not infected districts on Flores island, and in Lembata
141	island, which was classified as not infected in 2010, and; 3) to investigate pig-level and
142	farmer-level factors to determine their impact on pig CSFV serological status in the islands
143	surveyed.
144	

145 Material and methods

The survey was conducted as described from April to September 2010 following
approval the University of Sydney's Human Research Ethics Committee (08-2009/11866).

149 **Questionnaire design**

A questionnaire was developed to record information on farmer demographics, farm
structure and performance, pig husbandry, reproductive management, pig movements, pig

152 health history and response, and farmer CSFV knowledge and awareness, and vaccination 153 practices. A pig record sheet was developed to record information regarding the sex, age, 154 health in the last three months, source, body condition score (BCS), and CSFV vaccination 155 status of the pigs from which a blood sample was collected. Both consisted of open and 156 closed questions. Closed questions included multiple choice, checklist, or short answer type 157 questions. Throughout the farmer questionnaire and pig record forms, CSFV was referred to 158 as hog cholera as this term is used commonly in Indonesia. It took approximately 30 minutes 159 to complete the farmer questionnaire with each participant. The farmer questionnaire and pig 160 record form are provided as online supplements (S1-2). 161 The documents were developed initially in English and then translated into Bahasa 162 Indonesia by Dr. Maria Geong, Director of Livestock Services NTT and a native speaker of 163 local origin. Veterinarians from each island attended a joint training event during which the 164 farmer questionnaire and pig record form were pilot tested with 12 pig owners in Kupang, 165 which allowed question refinement. 166 167 Sampling strategy 168 A multi-stage approach to sampling was used to select the districts, subdistricts, 169 villages and farmers. 170 171 Selection of districts 172 Purposive sampling was used to select districts within each island. District inclusion 173 was based on reported clinical cases of CSFV (Dinas Peternakan Propinsi, 2011), 174 geographical diversity, and perceived high importance of pig production and trade within the 175 district according to Livestock Services NTT veterinarians.

176	On West Timor Island, the districts Belu and Kota Kupang were included. Both have
177	a history of reported CSFV and vaccination campaigns for CSFV. Belu borders Timor Leste
178	and pig trading across the border is known to occur. Kota Kupang is the main pig-producing
179	district on West Timor Island and includes the provincial capital Kupang.
180	On Sumba Island, the districts Sumba Barat Daya and Sumba Timur were included.
181	Both have a history of clinical cases of CSFV and CSFV vaccination campaigns.
182	On Flores Island, the districts Manggarai Barat in west Flores and Sikka in central
183	Flores were included. Manggarai Barat is the most western district on Flores Island. It is
184	considered not infected with CSFV based on no CSFV clinical case reports. There has been
185	no CSFV vaccination in this district, and therefore CSFV seroprevalence was expected to be
186	very low, or zero. Sikka is a CSFV suspect district as there have been very few reported cases
187	with only one case reported from 2002 to 2009, and therefore CSFV seroprevalence was also
188	expected to be low.
189	For Lembata Island, a district in itself, clinical CSFV had not been reported prior to
190	the study and there had been no CSFV vaccination campaigns.
191	
192	Selection of subdistricts and villages
193	Simple random sampling was used to select two subdistricts per district in Flores,
194	West Timor, and Lembata, and one subdistrict per district in Sumba. Subdistricts considered
195	remote, unsafe, or unlikely to co-operate were excluded from the sampling frame. The
196	number of subdistricts sampled was based on logistical issues relating to time and funds
197	available. For each selected subdistrict, simple random sampling was used to select three
198	villages per subdistrict in Flores and Lembata and two villages per subdistrict in Sumba and
199	West Timor.

201 Selection of farmers

In West Timor and Sumba, 30 farmers from each village completed the farmer questionnaire, while in Flores and Lembata 20 farmers from each village completed the farmer questionnaire. For each selected village, a sampling frame was constructed by obtaining a list of pig farmers from the Village Head. Livestock Services veterinarians requested this information during a preliminary visit to each selected village. At the same time permission to conduct the survey in the village was obtained.

208 Simple random sampling was used to select twenty to 50 percent more farmers than 209 required from each village. Extra farmers were selected to ensure a sufficient number of 210 farmers were surveyed. Farmers had to be present in the village on the day of the interview 211 team visit to participate. In Flores and Lembata, farmers also had to own at least three pigs 212 over the age of three months. In Sumba, pigs owned by multiple individuals were often 213 grouped in pens and under the care of a single farmer. Therefore in Sumba, farmers had to 214 have at least three pigs over the age of three months under their care to participate. In West 215 Timor, farmers had to own a minimum of one pig over three months of age to participate. If a 216 selected farmer did not meet the selection criteria or was unwilling to participate the next 217 farmer selected during the random sampling process who met the criteria replaced them. 218 Farmers were informed of their selection on the day prior to the village visit, and therefore a 219 high rate of farmer attendance in the village was expected. Farmers were provided with a free 220 health check of their pigs and administration of medications as required as an incentive.

221

222 <u>Selection of pigs</u>

In Sumba, three pigs three months of age or older were selected for blood sample collection from each interviewed farmer using convenience sampling for a total of 90 pigs sampled per village. In West Timor, 1-4 pigs greater than three months of age were selected

226	from each interviewed farmer using convenience sampling. In each village in West Timor, at
227	the end of the interview process there were fewer than 90 pigs sampled and therefore the
228	decision was made to sample pigs greater than three months of age from farmers who did not
229	take part in the farmer interview. In Flores and Lembata, three pigs greater than three months
230	of age were selected from each interviewed farmer using convenience sampling for a total of
231	60 pigs sampled per village. Previous studies have shown that maternally derived antibody
232	levels reach a minimum level by about 10 weeks of age, and therefore it was assumed that
233	maternal derived antibody would not be present in pigs greater than three months of age
234	(Klinkenberg et al., 2002a).
235	Table 1 lists by island the names of the study districts, subdistricts, and villages, and
236	the number of farmers and pigs sampled.
237	
238	Estimation of required sample size
239	In Sumba and West Timor, the number of pigs required to estimate CSFV antibody
240	prevalence was calculated with Epitools (Sergeant, 2010) using: 1) an expected
241	seroprevalence of 20-30% based on the expert opinion of Dr. Maria Geong; 2) a village pig
242	population of 2000 pigs based on the expert opinion of Dr. Maria Geong; 3) a level of
243	precision of 10%; 4) a level of confidence of 95%; and 5) an imperfect test with 95%
244	sensitivity on 1.050/ marificity. The sensule size received reveal from 01 to 00 vice
	sensitivity and 95% specificity. The sample size required ranged from 81 to 99 pigs
245	depending on the expected prevalence, and therefore the midrange value was chosen.
245 246	depending on the expected prevalence, and therefore the midrange value was chosen. In Flores and Lembata, the number of pigs required to detect CSFV antibody was
245 246 247	depending on the expected prevalence, and therefore the midrange value was chosen. In Flores and Lembata, the number of pigs required to detect CSFV antibody was calculated with Epitools (Sergeant, 2010) using: 1) a minimum expected prevalence in the
245 246 247 248	 depending on the expected prevalence, and therefore the midrange value was chosen. In Flores and Lembata, the number of pigs required to detect CSFV antibody was calculated with Epitools (Sergeant, 2010) using: 1) a minimum expected prevalence in the selected villages of 5%; 2) a village pig population ranging from 500 to 5000 pigs; 3) a level

- 250 These inputs resulted in a sample size ranging from 59 to 62 pigs depending on the village
- 251 pig population size, and therefore the midrange value was chosen.
- 252
- 253 Data and sample collection
- 254 The farmer questionnaire was completed during each participant interview. This
- 255 process was conducted prior to blood collection from the sampled pigs. The pig record form
- was completed after sample collection. Each farmer and pig was assigned a unique
- 257 identification code.

Pigs were manually restrained with a nose snare and 3 ml of blood was collected from the jugular vein using a serum vacutainer and 20-gauge needle. When blood could not be collected from the jugular vein, a 23-gauge needle and 3 ml syringe were used to collect blood from the lateral ear vein. This sample was then immediately transferred to a serum vacutainer.

Vacutainers were labeled with the corresponding pig identification code from the pig
questionnaire and stored on ice during the sample collection period and transportation to the
Livestock Services Department Laboratory. Serum separation was performed within 12 hours
of sample collection – samples were centrifuged for 5 minutes at 80 000 rpm and the serum
transferred to a serum vacutainer and stored at -5°C. Samples were later transported on ice to
the Animal Biomedical and Molecular Biology Laboratory, University of Udayana,
Denpasar, and stored at -20°C until serological analysis.

270

271 Serological analysis

272 Serum samples were analysed using a commercial CSFV enzyme-linked

- 273 immunosorbent assay (ELISA) kit (PrioCHECK® CSFV Ab, Lleydstat, Netherlands).
- 274 ELISAs were performed according to the manufacturer's instructions. ELISA plates were

275	read using a 450 nm filter on an ELISA reader to determine optical density and these values
276	were used to calculate percent inhibition (PI) (Colijn et al., 1997). A sample was considered
277	positive for CSFV antibody when PI was \geq 50%, inconclusive when PI was 31-50% and
278	negative when PI was <30% (Colijn et al., 1997). Samples that had haemolysed or appeared
279	contaminated were included in the analysis.
280	Serum samples that were classified as inconclusive or positive by the PrioCHECK
281	CSFV Ab, or for which the result was missing, were reanalyzed using the PrioCHECK®
282	CSFV Ab 2.0. This second generation ELISA is more specific for CSFV antibody compared
283	to other pestivirus antibody, and therefore was used to reduce the likelihood that positive
284	results were due to cross reaction with antibody to another pestivirus. A sample was
285	considered positive for CSFV antibody when PI \geq 40%, negative when PI was <40%
286	according to the manufacturer's instructions.
287	A sample that was positive for CSFV antibody on the PrioCHECK CSFV Ab but for
288	which there was insufficient serum to conduct the PrioCHECK CSFV Ab 2.0 was considered
289	positive for CSFV antibody. Samples that had no result available for the PrioCHECK CSFV
290	Ab but tested positive with PrioCHECK CSFV Ab 2.0 were deemed positive, while samples
291	that had no result available for the PrioCHECK CSFV Ab but tested negative on the
292	PrioCHECK CSFV Ab 2.0 were deemed negative. Samples that had an inconclusive test
293	result with PrioCHECK CSFV Ab but had no result on the PrioCHECK CSFV Ab 2.0 were
294	deemed to have no result.
295	
296	Data management
297	Data were entered into two databases created in Epi Info TM Software (version 3.5.1,
298	CDC, www.cdc.gov/epiinfo, Atlanta, GA, USA), one for the farmer questionnaire and one

299 for the pig record form. These databases were exported to Microsoft Excel, and merged by

300 matching on farmer identification code. The data were cleaned in Microsoft Excel and

- 301 exported for analysis in R (version 3.0.2. © 2013, The R Foundation for Statistical
- 302 Computing).
- 303

304 Calculation of apparent and true seroprevalence

305 Apparent seroprevalence and confidence intervals, using the normal approximation 306 interval, were calculated for each island, district, subdistrict, and village in the R statistical 307 package (prevalence, v 0.2.0). Estimated true seroprevalence and confidence intervals were 308 calculated in the R statistical package (prevalence, v.0.2.0) (Rogan and Gladen, 1978). Test 309 sensitivity was set at 89% and specificity at 100%. These test performance parameters were 310 calculated in Epitools (Sergeant, 2014) for use in series of the PrioCHECK CSFV Ab 311 (sensitivity 98% and specificity 99% determined by Colijn et al., (1997) and Moser et al., 312 (1996)) and the PrioCHECK CSFV Ab 2.0 (sensitivity 91% and specificity 100% determined 313 by Schroeder et al., (2012)). 314 315 **Risk factor analysis** 316 Outcome and explanatory variables 317 The unit of interest was the individual pig. The outcome variable was CSFV 318 serological status. Pigs were classified as either CSFV antibody positive or CSFV antibody 319 negative as previously described. 320 Twenty-six explanatory variables were derived from the questionnaires: 20 farmer-321 level variables and six pig-level variables. Number of pigs on the farm was the only 322 continuous variable. The remaining explanatory variables were categorical, 20 of which were

binary variables. All explanatory variables are presented in Table 2.

325 <u>Descriptive analyses</u>

326 Contingency tables were created to explore the relationship between each of the
327 categorical explanatory variables and CSFV serological status. In addition, summary
328 statistics were calculated for the number of pigs on farm (the only continuous explanatory
329 variable), both alone and according to CSFV serological status.

331 <u>Univariable analysis</u>

332 The association of each explanatory variable with the binary outcome variable was 333 assessed using univariable mixed effects logistic regression analyses in the R statistical 334 package (lme4, v.1.0-5). To control for the effect of clustering, farmer, village, subdistrict, 335 district, and island were fitted separately as random effects. Based on the association between 336 each explanatory variable and the outcome variable, all explanatory variables with a *p*-value 337 of ≥ 0.20 were excluded from the multivariable analyses. In addition, variables with more 338 than 10% of missing values were excluded from multivariable analyses (Dohoo et al., 2009, 339 pp. 369).

According to expert opinion from Livestock Services NTT, farmers with herd sizes of 1-3 pigs generally keep pigs for home consumption or use in traditional ceremonies, while farmers with larger herds were responsible for the majority of pig movements into and out of a village. Therefore, the decision was made to exclude the data from West Timor from the univariable and multivariable analysis. The data from Lembata were also excluded as all samples tested negative for CSFV antibody.

346

347 <u>Multivariable analyses</u>

A multivariable mixed effects logistic regression model was constructed using the R
 statistical package (lme4, v.1.0-5) with a manual backward stepwise approach to evaluate the

350	association of explanatory variables with the outcome variable after adjusting for each other.
351	Variables that were statistically significant (<i>p</i> -value <0.05) were retained in the final model.
352	The correlation between covariates was evaluated using a chi-square test and deemed
353	significant at a <i>p</i> -value of less than 0.05. A 2-way interaction between age and vaccinated for
354	CSFV was tested within the multivariable model.
355	To control for the effect of clustering, farmer, village, subdistrict, district, and island
356	were fitted separately as random effects. Goodness-of-fit of the final logistic regression
357	model was assessed by calculating conditional R^2 for the final model $(R^2_{GLMM(\sigma)})$. The amount
358	of variation in the data explained by the fixed effects was assessed by calculating marginal R^2
359	for the fixed effects $(R_{GLMM(m)}^2)$ (Nakagawa et al., 2013).
360	
361	Intra-class correlation coefficient
362	Intra-class correlation (ICC) was calculated for each random effect using the latent
363	variable approach to quantify the amount of clustering between units at each of the different
364	levels of clustering (Browne et al., 2005). Clustering was deemed high for random effects
365	that had an ICC greater than 0.3 (Dohoo et al., 2009, pp. 537, 583).
366	
367	Results
368	Seven hundred and twenty farmers and 2160 pigs from 805 farmers were surveyed
369	across the four islands. Herd size ranged from 1 to 48 pigs, with an average of 4.6 pigs. One
370	thousand four hundred fifty-two (67.2%) of the 2160 pigs included in the survey were born in
371	the farmer's herd. Approximately 42% (898/2160) of the pigs surveyed were 3-5 months of
372	age, 30% (652/2160) were 6-11 months of age, and the remaining 28% (610/2160) were
373	equal to or greater than 12 months of age. Five percent (113/2160) of the pigs had been sick
374	in the three months prior to the time of the survey

375

376 Seroprevalence

377	Three hundred and twenty two samples tested positive for CSFV antibody with
378	PrioCHECK CSFV Ab, 1761 samples tested negative, and 46 samples had an inconclusive
379	result. For 31 samples there was no result with PrioCHECK CSFV Ab. Of the 46 samples
380	that had an inconclusive test result with PrioCHECK CSFV Ab, 19 tested positive and 25
381	tested negative on the PrioCHECK CSFV Ab 2.0. There was no result for two samples that
382	had an inconclusive result on the PrioCHECK CSFV Ab. Of the 322 samples that tested
383	positive on the PrioCHECK CSFV Ab, 315 tested positive and 7 tested negative with
384	PrioCHECK CSFV Ab 2.0. Of the 31 samples for which there was no result on the
385	PrioCHECK CSFV Ab, two tested negative and two tested positive on the PrioCHECK
386	CSFV Ab 2.0, while 27 had no result available. Therefore serological findings were available
387	for 2131 of the 2160 sample collected. Overall apparent CSFV seroprevalence across the four
388	islands was 15.8% (95%CI 14.3, 17.4), while overall true CSFV seroprevalence was
389	estimated at 17.5% (95%CI 16.0, 19.5). Apparent prevalence and true prevalence estimates
390	across the islands, districts, subdistricts, and villages are presented in Table 3.
391	
392	Univariable mixed effects logistic regression analyses
393	Eleven variables were associated with CSFV serological status at the univariable cut-
394	off <i>p</i> -value of < 0.20 , six variables at the pig level and five variables at the farmer level

395 (Tables 4-7). The variables 'Use own boar for breeding' and 'Body condition score' were

excluded due to too many missing responses. A total of eleven variables were considered inmultivariable analyses.

398

399 Multivariable mixed effects logistic regression analyses

400	The final model for CSFV serological status is presented in Table 8. The two
401	variables in the final model were both pig-level characteristics. Pigs with a previous history
402	of vaccination for CSFV were 3 times more likely to test positive for antibody to CSFV. Pigs
403	equal to or greater than 12 months of age were 2.5 times as likely to test positive for antibody
404	to CSFV compared to pigs 3-5 months of age, while pigs 6-11 months of age were equally as
405	likely to test positive for antibody to CSFV compared to pigs 3-5 months of age (Table 8).
406	The variables 'Age' and 'Vaccinated for CSFV' were significantly correlated.
407	However, pigs 3-5 months of age were more likely to be vaccinated for CSFV compared to
408	the other two age categories, and the proportion of pigs 6-11 months of age vaccinated for
409	CSFV was similar to that of pigs ≥ 12 months of age. Therefore both variables were left in the
410	multivariable model. The interaction term for age and vaccinated for CSFV was not
411	significant. None of the other variables in the final model were significantly correlated.
412	The conditional R^2 value for the overall model was 0.638, though the marginal R^2
413	value for the fixed effects was 0.0181, indicating that the fixed effects accounted for 1.8% of
414	the variation in the data.
415	
416	Intraclass correlation coefficient
417	The variances and ICCs for the five random effect terms are shown in Table 9. The
418	data were highly clustered at the subdistrict, village, and farmer levels.
419	
420	Discussion
421	CSFV is a highly infectious disease of pigs with major animal health and economic
422	consequences. In regions where CSFV is endemic, the first step to controlling the disease is
423	to understand its seroprevalence and distribution. Therefore we undertook a CSFV
424	seroprevalence and risk factor study in the NTT province of eastern Indonesia.

425 In the sample size calculations for CSFV antibody prevalence, the inputs for test 426 sensitivity and specificity were estimated to be lower than the values reported in the literature 427 (Colijn et al., 1997; Moser et al., 1996). The decision to use more conservative estimates was 428 based on the fact that the performance of first-generation CSFV antibody ELISAs has not 429 been evaluated in Indonesia, and the desire to ensure that a sufficient number of pigs were 430 sampled during each village visit. The decision to use the first- and second-generation CSFV 431 antibody ELISAs in series was made after the unexpected result from Flores Island. The 432 number of pigs required to estimate CSFV antibody prevalence was sufficient at a level of 433 precision of 10 percent and a level of confidence of 95 percent given that test sensitivity was 434 89 percent and test specificity was 100 percent for the tests in series (Sergeant, 2014). In 435 2010, Epitools assumed a test specificity of 100 percent when calculating the sample size 436 required for disease detection, which is the reason that test specificity was set at 100 percent 437 when determining the number of pigs to be sampled on Flores and Lembata. A sample size of 438 60 was sufficient for detecting CSFV antibody at a minimum expected prevalence of six 439 percent, assuming a village pig population of 5000, a level of confidence of 95 percent, and 440 an imperfect test with 89 percent sensitivity and 100 percent specificity (Sergeant, 2014). 441 In West Timor, farmers had to own at least one pig over three months of age to 442 participate, while in Flores, Lembata, and Sumba farmers had to care for at least three pigs 443 over three months of age to participate. This selection bias toward larger herds in Flores, 444 Lembata, and Sumba could have impacted the seroprevalence calculations. Given that larger 445 herds are responsible for the majority of pig movements into and out of a village, 446 seroprevalence estimates for the islands of Flores, Lembata and Sumba may be higher than 447 those that would have been calculated had farmers with fewer than three pigs over three 448 months of age been eligible to participate.

449	True seroprevalence varied widely between the islands, districts, subdistricts, and
450	villages (Table 3). For example, even in the district of Kota Kupang, an area with a history of
451	clinical reports of CSFV and CSFV vaccination campaigns, village-level true seroprevalence
452	estimates ranged from five percent in Sikumana to 42 percent in Oebufu. This finding is
453	significant because it shows that CSFV seroprevalence is dissimilar within and between
454	various levels of spatial aggregation. Further, it demonstrates that in areas where CSFV
455	vaccination campaigns have been undertaken, the levels of herd immunity required to control
456	disease are not being achieved (Klinkenberg et al., 2002b).
457	Of the 1080 pigs included in the univariable and multivariable analysis, 152 were
458	reported vaccinated for CSFV. Of the pigs reported vaccinated, only 46% (70/152) tested
459	positive for CSFV antibody (Table 4). There are a number of factors that could be
460	contributing to this low seroconversion rate. Maternally derived antibody is the most
461	common cause of CSFV vaccination failure, particularly in highly endemic areas (Suradhat et
462	al., 2007), and therefore piglets that have circulating maternal antibody may not seroconvert
463	when vaccinated. This interference may be particularly important in NTT where farmers may
464	not actively wean piglets, prolonging the time during which piglets nurse from the sow.
465	Alternatively, vaccine storage and delivery may not be adequate for achieving the high levels
466	of efficacy reported for the C-strain vaccine in the literature (van Oirschot, 2003). Further, it
467	is possible that farmers in the region are not accurately reporting the CSFV vaccination status
468	of their pigs. Finally, co-infection with other pathogens (e.g., pseudorabies, porcine
469	reproductive and respiratory syndrome virus), as well as mycotoxins and chemicals are
470	known to interfere with CSFV vaccination (Suradhat et al., 2007), and their negative impact
471	in this region cannot be ruled out.
472	None of the farmer-level variables were significant determinants of CSFV serological

473 status, and only two pig-level factors were included in the final multivariable model (Table

8). Pigs equal to or greater than 12 months of age were more likely to test positive for
antibody to CSFV. This result is expected, as older animals are both more likely to have been
exposed to CSFV and vaccinated during a campaign. Pigs that were reported vaccinated for
CSFV were three times as likely to test positive for CSFV antibody compared to those that
were not reported vaccinated. This result is expected, and importantly suggests that the
vaccination campaigns undertaken by NTT Livestock Services are contributing to CSFV
seroprevalence in the region.

481 In contrast to the expectation that older pigs are more likely to be reported vaccinated, 482 in this study pigs 3-5 months were more likely to be reported vaccinated compared to pigs in 483 the other two age categories. This finding could be the result of reporting bias whereby 484 farmers are more likely to recall the vaccination of young pigs compared to older pigs, in 485 particular because vaccination of younger pigs would have had to occur in the more recent 486 past and therefore might be more memorable. Alternatively, vaccinated pigs may be healthier 487 compared to unvaccinated pigs and therefore may be more likely to be slaughtered once they 488 reach the 6-11 month or \geq 12 month age category. Finally, farmers could assume that any 489 injection is a CSFV vaccination, and therefore 'CSFV vaccination status' may in fact 490 represent 'Treatment by NTT Livestock Services'.

491 The final multivariable model accounted for a large amount of the variation in the 492 data, however the fixed effects, pig age and CSFV vaccination status, accounted for only 493 1.8% of the variation. High ICCs at the farmer, village, and subdistrict indicate the data were 494 highly clustered. It may be that unmeasured factors at any one of these three levels of spatial 495 aggregation better explain CSFV serological status compared to the pig and farmer-level 496 factors explored in this study. This finding is of relevance to CSFV control efforts in the 497 region because it suggests that interventions may be best implemented at the subdistrict level 498 to account for the high level of clustering at this level, as well as the level of village and

farmer. A recent social network analysis found that the majority of formal and informal pig
movements occur between subdistricts, lending further support for intervention at the
subdistrict level (Leslie, 2012).

502 The C-strain vaccine has a number of advantages, including early onset of CSFV 503 immunity and full protection against vertical transmission (Suradhat et al., 2007; Schroeder et 504 al., 2012). However, one of its disadvantages is that the antibody response it induces cannot 505 be differentiated from that caused by CSFV infection. While marker vaccines have been 506 developed in the hope of enabling differentiation of infected from vaccinated animals, these 507 vaccines are less protective and the immune response is delayed when compared to the C-508 strain vaccine (Suradhat et al., 2007; Schroeder et al., 2012). Additionally, the antibody 509 ELISAs developed as accompanying marker tests have been shown to lack sensitivity 510 (Schroeder et al., 2012). These characteristics of CSFV vaccines and ELISAs impact 511 significantly our ability to understand the epidemiology of the virus in the field. Future 512 studies should consider using additional detection techniques, including polymerase chain 513 reaction, virus genotyping, and sentinel pigs, to better understand CSFV herd immune status, 514 pathogenesis, and epidemiology in NTT.

515 Clinical cases of CSFV have not been reported in Manggarai Barat district on the 516 west end of Flores Island. Based on this history, CSFV seroprevalence in the district was 517 expected to be very low to non-existent. A minimum expected prevalence of 5% was used to 518 calculate the sample size required to detect the presence of CSFV in this district. The true 519 prevalence of CSFV in Manggarai Barat was 13.1%, with all seropositive pigs detected in 520 Lembor subdistrict (Table 3). This result could be due to one or a combination of several 521 factors. Underreporting of clinical CSFV has been reported in NTT (Santhia et al., 2003). In 522 addition, the virulence of the strain or strains of CSFV circulating in NTT is unknown, and 523 therefore infected pigs may show few clinical signs and recover. CSFV vaccination is not

524	permitted in this area (Tri Satya et al., 1999), however its occurrence canno	ot be ruled out.
525	Finally, while movement of pigs from CSFV infected to suspect or uninfec	ted areas is not
526	permitted in Indonesia (Tri Satya et al., 1999), illegal movements from cen	tral districts to
527	western districts on Flores are known to occur (Leslie, 2012). While such r	novements could
528	result in the introduction of CSFV into Manggarai Barat, it could also resu	It in the presence
529	of vaccinated pigs in the region.	

530

531 Conclusions

532 In 2010, Lembata Island was confirmed free of antibody to CSFV. However, the 533 district of Manggarai Barat on the west end of Flores Island contained pigs that were 534 seropositive for CSFV, in spite of no reports of clinical CSFV and no government-led 535 vaccination programs in this region. Pig age and CSFV vaccination status were associated 536 with CSFV serological status, with older pigs and pigs vaccinated for CSFV more likely to 537 test positive for antibody to CSFV. Our results indicate that further research to identify the 538 strains of circulating CSFV and determine the effectiveness of disease control strategies is 539 required. Such activities would contribute to a better understanding of CSFV epidemiology in 540 NTT.

541

542

543 Acknowledgements

544 The Australian Centre for International Agricultural Research (ACIAR) funded this study 545 under the AH/2006/156 project. The authors gratefully acknowledge the NTT Livestock 546 Office in Kupang, the village leaders and participating farmers for their collaboration. The 547 authors are also indebted to the veterinarians and field staff who assisted with the sample 548 collection and survey administration. The assistance of Navneet Dhand and Peter Thompson

- 549 (Faculty of Veterinary Science, University of Sydney) was critical to the data analysis and
- 550 much appreciated.
- 551

552 **References**

- 553 Artois, M., Depner, K.R., Guberti, V., Hars, J., Rossi, S., Rutili, D., 2002. Classical swine
- fever (hog cholera) in wild boar in Europe. Rev. Sci. Tech. 21, 287-303.
- 555 BPS Statistics, 2013. Nusa Tenggara Timur Dalam Angka 2013, Integration processing and
- 556 statistical dissemination division. Publication Number 53000.06.02. Badan Pusat Statistik
- 557 Office of Nusa Tenggara Timur Province, Indonesia.
- 558 Brandenburg, B., Sukobagyo, P., 2002. An update on livestock sector performance in
- response to the economic crisis, government decentralization and local autonomy. Indonesia
- 560 Livestock Sector Study, Document 37565. Director General of Livestock Services, Jakarta,
- 561 Indonesia.
- 562 Browne, W.J., Subramanian, S.V., Jones, K., Goldstein, H., 2005. Variance partitioning in
- 563 multilevel logistic models that exhibit overdispersion. J. Roy. Stat. Soc. A. Sta. 168, 599-613.
- 564 Christie, B. (Ed.), 2007. ACIAR Technical Reports 65: A review of animal health research
- 565 opportunities in Nusa Tenggara Timur and Nusa Tenggara Barat Province, Eastern Indonesia.
- 566 ACIAR, Canberra, Australia.
- 567 Colijn, E.O., Bloemraad, M., and Wensvoort, G., 1997. An improved ELISA for the
- 568 detection of serum antibodies directed against classical swine fever virus. Vet. Microbiol. 59,
- 569 15-25.
- 570 Deveridge, A., 2008. Challenges in the development of a livestock disease surveillance
- 571 program on Alor, eastern Indonesia. Honours Thesis. School of Natural Sciences, University
- 572 of Western Sydney, Sydney.

- 573 Dinas Peternakan Propinsi, 2011. Dinas Peternakan (Provincial Livestock Service) annual
- 574 report 2011. Dinas Peternakan Propinsi, Kota Kupang, Indonesia.
- 575 Dohoo, I., Martin, W., Stryhn, H., 2009. Veterinary Epidemiologic Research. VER Inc.,
- 576 Charlottetown, Canada.
- 577 Elbers, A.R.W., Stegeman, A., Moser, H., Ekker, H.M., Smak, J.A., Pluimers, F.H., 1999.
- 578 The classical swine fever epidemic 1997-1998 in the Netherlands: descriptive epidemiology.
- 579 Prev. Vet. Med. 42, 157-184.
- 580 Johns, C., Cargill, C., Patrick, I., Geong, M., Ly, J., Shearer, D., 2009. Smallholder
- 581 commercial pig production in NTT opportunities for better market integration, SADI Final
- 582 Report. Australian Centre for International Agricultural Research, Canberra.
- 583 Klinkenberg, D., Moormann, R.J.M., de Smit, A.J., Bouma, A., de Jong, M.C.M., 2002a.
- 584 Influence of maternal antibodies on efficacy of a subunit vaccine: transmission of classical
- swine fever virus between pigs vaccinated at 2 weeks of age. Vaccine. 20, 3005-3013.
- 586 Klinkenberg, D., de Bree, J., Laevens, H., de Jong, M.C., 2002b. Within- and between-pen
- 587 transmission of Classical Swine Fever Virus: a new method to estimate the basic
- reproduction ratio from transmission experiments. Epidemiol. Infect. 128, 293-299.
- 589 Leslie, E.C.C., 2012. Pig movements across eastern Indonesia and associated risk of classical
- 590 swine fever transmission. Doctor of Philosophy Ph.D. University of Sydney, Sydney.
- 591 http://hdl.handle.net/2123/9316
- 592 Leslie, E.E.C., Geong, M., Abdurrahman, M., Ward, M.P., and Toribio, J.-A.L.M.L., 2014. A
- 593 description of smallholder pig production systems in eastern Indonesia. Prev. Vet. Med. [In
- 594 review].
- 595 Moennig, V., 2000. Introduction to classical swine fever: virus, disease and control policy.
- 596 Vet. Microbiol. 73, 93-102.

- 597 Moennig, V., Floegel-Niesmann, G., Greiser-Wilke, I., 2003. Clinical signs and
- 598 epidemiology of classical swine fever: A review of new knowledge. Vet. J. 165, 11-20.
- 599 Moser, C., Ruggli, N., Tratschin, J.D., and Hofmann, M.A., 1996. Detection of antibodies
- against classical swine fever virus in swine sera by indirect ELISA using recombinant
- 601 envelope glycoprotein E2. Vet. Microbiol. 51, 41-53.
- Nakagawa, S., Schielzeth, H., 2013. A general and simple method for obtaining R2 from
- 603 generalized linear mixed-effects models. Methods. Ecol. Evol. 4, 133-142.
- 604 R Development Core Team, 2008. R: A language and environment for statistical computing.
- 605 R Foundation for Statistical Computing, Vienna, Austria.
- 606 Robertson, I., Holyoake, C., Ramsay, G., Mesiti, L., Geong, M., Pullingomang, D., 2010. The
- 607 development of a national surveillance system for classical swine fever, avian influenza, and
- 608 foot and mouth disease. Annual Report, Project AH/2004/020. Australian Centre for
- 609 International Agricultural Research (ACIAR), Canberra.
- 610 Rogan, W.J., Gladen, B., 1978. Estimating prevalence from the results of a screening test.
- 611 Am. J. Epidemiol. 107, 71-76.
- 612 Santhia, K.A.P., Purnatha, N.I., Sunarno, C., Wulan, S.S.N., Pullingomang, D., 2003.
- 613 Epidemiological study of Hog Cholera in Alor District, East Nusa Tenggara Province. Balai
- 614 Penyidikan dan Pengujian Veteriner Regional VI Denpasar, Disease Investigation Centre,
- 615 Denpasar, Bali, Indonesia.
- 616 Santhia, K.A.P., Dibia, I., N., Purnatha, N., I., Sutami, N.N., 2006. Surveillance for Hog
- 617 Cholera eradication in Alor District, Nusa Tenggara Timur. Balai Penyidikan dan Pengujian
- 618 Veteriner Regional VI Denpasar, Disease Investigation Centre, Denpasar, Bali, Indonesia.
- 619 Schroeder, S., von Rosen, T., Blome S., Loeffen, W., Haegeman, A., Koenen, F., Uttenthal,
- 620 A., 2012. Evaluation of classical swine fever virus antibody detection assays with an

- emphasis on the differentiation of infected from vaccinated animals. Rev. Sci. Tech. 31, 997-
- 622 1010.
- 623 Sergeant, E.S.G., 2010. Epitools epidemiological calculators. AusVet Animal Health
- 624 Services and Australian Biosecurity Cooperative Research Centre for Emerging Infectious
- 625 Disease. Available at: http://epitools.ausvet.com.au.
- 626 Sergeant, E.S.G., 2014. Epitools epidemiological calculators. AusVet Animal Health
- 627 Services and Australian Biosecurity Cooperative Research Centre for Emerging Infectious
- 628 Disease. Available at: http://epitools.ausvet.com.au.
- 629 Suradhat, S., Damrongwatanapokin, S., Thanawongnuwech, R., 2007. Factors critical for
- 630 successful vaccination against classical swine fever in endemic areas. Vet. Microbiol. 119, 1-

631 9.

- 632 Tri Satya, P., Hutabarat, Santhia, K., 1999. The distribution and control strategies of classical
- 633 swine fever in Indonesia. In: Blacksell, S. (Ed.), Classical Swine Fever and Emerging
- Diseases in Southeast Asia. ACIAR Proceedings No. 94. Vientiane, Loa, pp 111-115.
- van Oirschot, J.T., 2003. Vaccinology of classical swine fever: from lab to field. Vet.
- 636 Microbiol. 96, 367-384.
- 637 Wang, Y., 2007. Rural poverty in Indonesia Enabling the rural poor to overcome poverty in
- 638 Indonesia. International Fund for Agricultural Development (IFAD), Rome, Italy.
- 639 World Organisation for Animal Health, 2014. World Animal Health Information Database
- 640 (WAHID) Interface. World Organisation for Animal Health, Paris, France. Accessed online
- on 20/10/2014 at <u>http://www.oie.int/wahis_2/public/wahid.php/Wahidhome/Home</u>.

642643 Figure captions

- 644 Figure 1: The distribution and spread of CSFV across Nusa Tenggara Timur, eastern
- 645 Indonesia up until the end of 2010. The numbers correspond to the following events: 1) the
- 646 first suspected CSFV cases reported in Sumba Timur and Flores Timur districts in mid 1997;
- 647 2) the first diagnostic laboratory confirmed cases of CSFV in NTT in March 1998; 3)
- 648 additional cases identified in 1999; 4) the first suspected CSFV cases from clinical reports
- 649 from in Sikka district in 2000; and 5) the first case of CSFV detected on Alor Island in July
- 650 2002. Adapted from information obtained from Tri Satya et al., (1999), Christie (2007),
- 651 Santhia et al., (2003), and Geong, M (pers comm., 2011). The classification of districts
- according to CSFV infection status is illustrated using boxes red boxes contain districts
- 653 classified as infected, yellow boxes contain districts classified as suspect, and green boxes
- 654 contain districts classified as not infected.

655

656 Tables

- Table 1: Total number of farmers and pigs surveyed across the islands, districts, subdistricts,
- and villages in East Nusa Tenggara, eastern Indonesia, from April to September 2010.

Island	District	Subdistrict	Village	# of farmers
				(# of pigs)
Flores	Sikka	Alok	Kota Uneng	20 (60)
			Madawat	20 (60)
			Nangalimang	20 (60)
		Nita	Bloro	20 (60)
			Tilang	20 (60)
			Tebuk	20 (60)
	Manggarai Barat	Komodo	Wae Kelambu	20 (60)
			Batu Cermin	20 (60)
			Golo Bilas	20 (60)
		Lembor	Tangge	20 (60)
			Amba	20 (60)
			Poco Rutang	20 (60)
			Island total	240 (720)
Lembata	Lembata	Nubatukan	Selandoro	20 (60)
			Lewoleba	20 (60)
			Bakalerek	20 (60)
		Lebatukan	Lamatuka	20 (60)
			Merdeka	20 (60)
			Waienga	20 (60)
			Island total	120 (360)
Sumba	Sumba Timur	Haharu	Rambangaru	30 (90)
			Praibakul	30 (90)
	Sumba Barat Daya	Loura	Waitabula	30 (90)
			Rada Mata	30 (90)
			Island total	120 (360)
West Timor ¹	Belu	Tasifeto Barat	Naitimu	37 (90)
			Naekasa	41 (90)
		Atambua Selatan	Fatukbot	50 (90)
			Lidak	42 (90)
	Kota Kupang	Maulafa	Sikumana	39 (90)
			Oepura	32 (90)
		Oebobo	Oebobo	39 (90)
			Oebufu	45 (90)
			Island total	325 (720)
			Total	805 (2160)

659 ¹Thirty farmers per village in West Timor completed the farmer questionnaire. The number

660 of farmers in the table indicates the number of farmers that owned the sampled pigs.

661

- 662 Table 2: Explanatory variables analysed for associations with CSFV serological status
- amongst 1080 pigs from 360 farmers surveyed in East Nusa Tenggara, eastern Indonesia,
- 664 from April to September 2010.

Variable group	Variables
Pig-level variables	Sex ^b ; Age ^a ; Vaccinated for CSFV; Sick in the last three
	months; Source of pig ^b ; Body condition score ^a
Farmer level	Cattle on farm; Goats on farm; Buffalo on farm; Number of
variables	pigs ^c ; Pigs free to roam; Pigs fed swill; Pigs fed agricultural
	waste; Cook swill; Litters with dead piglets before weaning ^b ;
	Pigs introduced in the last 12 months; Pigs exited in the last 12
	months; Use own boar for breeding; Pigs slaughtered at home;
	Sudden death of pigs in the last three months; Sick pigs that
	died in the last three months; Livestock services contacted in
	the event of a sick pig; Pigs have contact with other pigs
	outside the herd ^b ; Heard of CSFV; Pigs vaccinated for CSFV
A 11 1 1 1	- (1 Ver 2 Ne) - de maiser indicated

665 All variables are binary (1 - Yes, 2 - No) unless otherwise indicated.

Second Second

- 666 ^a Ordinal variable
- 667 ^b Categorical variable
- 668 ^c Continuous variable

Table 3: Apparent prevalence and true prevalence of CSFV antibody across the islands, districts, subdistricts, and villages surveyed in East Nusa

Island	District	Subdistrict	Village	Number of samples	Number	Apparent	True prevalence
			e	with a test result	positive	prevalence	1
Flores				706	55	7.8 (5.9, 10.1)	8.9 (6.8, 11.2)
	Sikka			357	15	4.2 (2.5, 7.0)	5.0 (2.9, 7.7)
		Alok		179	6	3.4 (1.4, 7.5)	4.3 (1.8, 8.0)
			Kota Uneng	60	1	1.7 (0.087, 10.1)	3.6 (0.46, 10.0)
			Madawat	60	0	0 (0, 7.5)	1.8 (0, 5.4)
			Nangalimang	59	5	8.5 (3.2, 19.4)	11.1 (4.3, 20.7)
		Nita		178	9	5.1 (2.5, 9.7)	6.3 (3.0, 10.6)
			Bloro	59	4	6.8 (2.2, 17.3)	9.2 (3.1, 18.0)
			Tilang	59	0	0 (0, 7.6)	1.8 (0, 5.5)
			Tebuk	60	5	8.3 (3.1, 19.1)	10.9 (4.1, 20.3)
	Manggarai Barat			349	40	11.5 (8.4, 15.4)	13.1 (9.6, 17.2)
		Komodo		177	0	0 (0, 2.6)	0.63 (0, 1.9)
			Wae Kelambu	59	0	0 (0, 7.6)	1.8 (0, 5.4)
			Batu Cermin	59	0	0 (0, 7.6)	1.8 (0, 5.4)
			Golo Bilas	59	0	0 (0, 7.6)	1.8 (0, 5.4)
		Lembor		172	40	23.3 (17.3, 30.4)	26.4 (19.7, 33.7)
			Tangge	56	12	21.4 (12.0, 34.8)	25.3 (14.4, 38.4)
			Amba	59	22	37.3 (25.3, 50.9)	42.3 (29.3, 56.2)
			Poco Rutang	57	6	10.5 (4.4, 22.2)	13.3 (5.6, 23.8)
Lembata				360	0	0 (0, 1.3)	0.31 (0, 0.94)
	Lembata			360	0	0 (0, 1.3)	0.31 (0, 0.94)
		Nubatukan		180	0	0 (0, 2.6)	0.6 (0, 1.8)
			Selandoro	60	0	0 (0, 7.5)	1.8 (0, 5.4)
			Lewoleba	60	0	0 (0, 7.5)	1.8 (0, 5.4)
			Bakalerek	60	0	0 (0, 7.5)	1.8 (0, 5.4)
		Lebatukan		180	0	0 (0, 2.6)	0.6 (0, 1.8)

Tenggara, eastern Indonesia, from April to September 2010.

			Lamatuka	60	0	0 (0, 7.5)	1.8 (0, 5.4)
			Merdeka	60	0	0 (0, 7.5)	1.8 (0, 5.4)
			Waienga	60	0	0 (0, 7.5)	1.8 (0, 5.4)
Sumba				358	139	38.8 (33.8, 44.1)	43.7 (38.2, 49.5)
	Sumba Timur			179	60	33.5 (26.8, 41.0)	37.8 (30.2, 45.9)
		Haharu		179	60	33.5 (26.8, 41.0)	37.8 (30.2, 45.9)
			Rambangaru	89	35	39.3 (29.3, 50.3)	44.5 (33.7, 56.0)
			Praibakul	90	25	27.8 (19.1, 38.4)	31.7 (21.9, 42.7)
	Sumba Barat Daya			179	79	44.1 (36.8, 51.7)	49.7 (41.7, 58.0)
		Loura		179	79	44.1 (36.8, 51.7)	49.7 (41.7, 58.0)
			Waitabula	90	36	40.0 (30.0, 50.9)	45.2 (34.4, 56.8)
			Rada Mata	89	43	48.3 (37.7, 59.1)	54.3 (42.7, 66.0)
West Timor				707	142	20.1 (17.2, 23.3)	22.7 (19.5, 26.1)
	Belu			352	83	23.6 (19.3, 28.4)	26.6 (21.8, 31.7)
		Tasifeto Barat		178	49	27.5 (21.2, 34.8)	31.2 (24.2, 38.7)
			Naitimu	90	18	20.0 (12.6, 30.0)	23.2 (14.6, 32.9)
			Naekasa	88	31	35.2 (25.5, 46.2)	39.9 (29.1, 51.5)
		Atambua Selatan		174	34	19.5 (14.1, 26.4)	22.4 (16.2, 29.4)
			Fatukbot	87	22	25.3 (16.8, 35.9)	29.1 (19.6, 39.5)
			Lidak	87	12	13.8 (7.6, 23.2)	16.4 (9.1, 25.4)
	Kota Kupang			355	59	16.6 (13.0, 21.0)	18.9 (14.7, 23.5)
		Maulafa		178	9	5.1 (2.5, 9.7)	6.2 (3.0, 10.5)
			Sikumana	89	3	3.4 (0.87, 10.2)	4.9 (1.4, 10.6)
			Oepura	89	6	6.7 (2.8, 14.6)	8.6 (3.6, 15.6)
		Oebobo		177	50	28.2 (21.9, 35.6)	32.0 (24.8, 39.7)
			Oebobo	88	17	19.3 (12.0, 29.4)	22.5 (13.9, 32.7)
			Oebufu	89	33	37.1 (27.3, 48.0)	42.0 (31.3, 53.4)

Table 4: Descriptive results for pig-level explanatory variables significantly associated (p <0.20)^a with CSFV serological status amongst 1080 pigs from 360 farmers surveyed in East Nusa Tenggara, eastern Indonesia, from April to September 2010.

Variables	Categories	CSFV serole	ogical status	Total
	-	Negative (Row%)	Positive (Row%)	
Age			• •	
	3 to 5 months	242 (80%)	59 (20%)	301
	6 to 11 months	310 (88%)	44 (12%)	354
	≥ 12 months	318 (78%)	91 (22%)	409
Sex				
	Male	224 (84%)	42 (15%)	226
	Female	516 (80%)	128 (20%)	664
	Male castrated	123 (85%)	22 (15%)	145
Sick in the last				
three months				
	Yes	37 (70%)	16 (30%)	53
	No	829 (82%)	177 (18%)	1006
Pig source				
	Born in your	507 (82%)	109 (18%)	616
	herd			
	Other	362 (81%)	83 (19%)	445
Body condition				
score				
	1	28 (65%)	15 (35%)	43
	2	95 (75%)	32 (25%)	127
	3	228 (90%)	25 (10%)	253
	4	392 (91%)	41 (9%)	433
	5	27 (93%)	2 (7%)	29
Vaccinated for				
CSFV				
	Yes	82 (54%)	70 (46%)	152
	No	787 (87%)	120 (13%)	907

CSFV – classical swine fever virus.

^aAll pig-level variables had *p*-values <0.20.

Table 5: Descriptive results for farmer-level explanatory variables significantly associated (p < 0.20)^a with CSFV serological status amongst 1080 pigs from 360 farmers surveyed in East Nusa Tenggara, eastern Indonesia, from April to September 2010.

Variables	Categories	Total herds	CSFV serological status		Total pigs
		-	Negative (Row%)	Positive (Row %)	F 8-
Cook swill			~ , //		
	Yes	114	268 (79%)	72 (21%)	340
	No	241	558 (83%)	121 (17%)	709
Pigs slaughtered at home					
	Yes	125	274 (73%)	100 (27%)	374
	No	231	588 (87%)	90 (13%)	678
Sick pigs that died in the last three months					
	Yes	17	33 (65%)	18 (35%)	51
	No	338	825 (83%)	173 (17%)	998
Livestock services contacted in the event of a sick pig					
	Yes	193	512 (90%)	57 (10%)	569
	No	164	350 (72%)	136 (28%)	486
Pigs vaccinated for CSFV					
	Yes	59	98 (56%)	77 (44%)	175
	No	299	767 (87%)	116 (13%)	883

CSFV – classical swine fever virus.

^aVariables with p > 0.20 not included in this table: Cattle on farm; Buffalo on farm; Goats on farm; Number of pigs; Pigs free to roam; Pigs fed swill; Pigs fed agricultural waste; Litters with dead piglets before weaning; Pigs introduced in the last 12 months; Pigs exited in the last 12 months; Sudden death of pigs in the last three months; Pigs have contact with other pigs outside the herd; Heard of CSFV.

Table 6: Univariable mixed effects logistic regression results for pig-level variables associated with CSFV serological status (p < 0.20)^a amongst 1080 pigs from 360 farmers surveyed in East Nusa Tenggara, eastern Indonesia, from April to September 2010.

Variables and categories	β	SE (β)	Odds	LCL	UCL	<i>p</i> -value ^a
-	•		ratio	(OR)	(OR)	
Vaccinated for CSFV						< 0.0001
No	-	-	1.0	-	-	
Yes	1.26	0.32	3.51	1.87	6.58	
Age						< 0.001
3-5 months	-	-	1.0	-		
6-11 months	0.0160	0.304	1.02	0.560	1.843	
≥12 months	1.023	0.298	2.78	1.551	4.989	
Sick in the last three months						0.005
No	-	-	1.0	-	-	
Yes	-0.38	0.42	0.68	0.298	1.555	
Body condition score						< 0.0001
1	-	-	1.0	-	-	
2	-0.252	0.446	0.78	0.32	1.86	
3	0.889	0.610	2.43	0.735	8.05	
4	1.144	0.727	3.14	0.756	13.05	
5	0.521	1.117	1.68	0.189	15.03	
Source of pig						0.023
Other	- 7	-	1.0	-	-	
Born in your herd	-0.00146	0.280	0.999	0.577	1.73	
Sex						0.0116
Female	-	-	1.0	-	-	
Male	-0.124	0.249	0.884	0.542	1.44	
Castrated male	-0.766	0.314	0.465	0.251	0.861	

^a All pig-level variables had *p*-values < 0.20.

^b p-values based on likelihood ratio X²-test of significance.

Table 7: Univariable mixed effects logistic regression results for farmer level variables associated with CSFV serological status (p < 0.20)^a amongst 1080 pigs from 360 farmers surveyed in East Nusa Tenggara, eastern Indonesia, from April to September 2010.

Variables	β	SE	Odds	LCL	UCL	<i>p</i> -value ^b
		(β)	ratio	(OR)	(OR)	
Pigs vaccinated for CSFV						0.000186
No	-	-	1.0	-		
Yes	0.988	0.306	2.686	1.474	4.893	
Livestock services contacted in						0.0032
the event of a sick pig						
No	-	-	1.0	-	-	
Yes	-0.284	0.316	0.752	0.405	1.39	
Sick pigs that died in the last						0.00892
three months						
No	-	-	1.0	_	-	
Yes	0.0498	0.446	1.051	0.438	2.52	
Pigs slaughtered at home						0.00040
No	-	-	1.0	-	-	
Yes	0.380	0.277	1.25	0.850	2.52	
Cook swill						0.0020
No	-	-	1.0	-	-	
Yes	-0.029	0.424	0.971	0.423	2.23	
	1 1 .		0.771	··· <i>20</i>		

^a Variables with p > 0.20 not included in this table.

^b p-values based on likelihood ratio X²-test of significance.

Table 8: Final multivariable mixed effects logistic regression model (p < 0.05) for CSFVserological status amongst 1080 pigs from 360 farmers surveyed in East Nusa Tenggara,eastern Indonesia, from April to September 2010.

Variables	β	SE (β)	Odds ratio	LCL (OR)	UCL (OR)	<i>p</i> -value ^a			
Fixed Effects									
Intercept	-3.31	1.02	-	-	-	0.0012			
Age						< 0.001			
3-5 months	-	-	1.0	-	-				
6-11 months	-0.044	0.31	0.96	0.524	1.75				
≥ 12 months	0.925	0.30	2.52	1.40	4.54				
Vaccinated for CSFV						< 0.001			
No	-	-	1.0	-	-				
Yes	1.15	0.32	3.17	1.68	5.98				
N = 1059 Log-likelihood = -37441 d f = 9 $p < 0.001$ Goodness-of-fit R_2 -test statistic									

 $R_{\rm GLMM(c)}^2 = 0.64.$

^a p-values based on likelihood ratio X²-test of significance.

Cook K

Table 9: Variances and intraclass correlation (ICC) coefficients for each random effect term in the final multivariable mixed effects logistic regression model for CSFV serological status amongst 1080 pigs from 360 farmers surveyed in East Nusa Tenggara, eastern Indonesia, from April to September 2010.

Random effect term	Number in level	Variance	ICC
Island	2	0.591	0.0645
District	4	0.00056	0.0646
Subdistrict	6	3.504	0.447
Village	16	0.687	0.522
Farmer	359	1.090	0.641

ی م

