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Abstract 

In Thailand’s early history, prior to the availability of paper and printing 

technologies, palm leaves were used to record information written by hand. These 

ancient documents contain invaluable knowledge. By digitising the manuscripts, the 

content can be preserved and made widely available to the interested community via 

electronic media. However, the content is difficult to access or retrieve. In order to 

extract relevant information from the document images efficiently, each step of the 

process requires reduction of irrelevant data such as noise or interference on the 

images. The pre-processing techniques serve the purpose of extracting regions of 

interest, reducing noise from the image and degrading the irrelevant background. The 

image can then be directly and efficiently processed for feature selection and 

extraction prior to the subsequent phase of character recognition. It is therefore the 

main objective of this study to develop an efficient and intelligent image pre-

processing system that could be used to extract components from ancient 

manuscripts for information extraction and retrieval purposes. 

The main contributions of this thesis are the provision and enhancement of 

the region of interest by using an intelligent approach for the pre-processing of 

ancient Thai manuscripts on palm leaves and a detailed examination of the pre-

processing techniques for palm leaf manuscripts. As noise reduction and binarisation 

are involved in the first step of pre-processing to eliminate noise and background 

from image documents, it is necessary for this step to provide a good quality output; 

otherwise, the accuracy of the subsequent stages will be affected. In this work, an 

intelligent approach to eliminate background was proposed and carried out by a 
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selection of appropriate binarisation techniques using SVM. As there could be 

multiple binarisation techniques of choice, another approach was proposed to 

eliminate the background in this study in order to generate an optimal binarised 

image. The proposal is an ensemble architecture based on the majority vote scheme 

utilising local neighbouring information around a pixel of interest. To extract text 

from that binarised image, line segmentation was then applied based on the partial 

projection method as this method provides good results with slant texts and 

connected components. To improve the quality of the partial projection method, an 

Adaptive Partial Projection (APP) method was proposed. This technique adjusts the 

size of a character strip automatically by adapting the width of the strip to separate 

the connected component of consecutive lines through divide and conquer, and 

analysing the upper vowels and lower vowels of the text line. Finally, character 

segmentation was proposed using a hierarchical segmentation technique based on a 

contour-tracing algorithm. Touching components identified from the previous step 

were then separated by a trace of the background skeletons, and a combined method 

of segmentation.  

The key datasets used in this study are images provided by the Project for 

Palm Leaf Preservation, Northeastern Thailand Division, and benchmark datasets 

from the Document Image Binarisation Contest (DIBCO) series are used to compare 

the results of this work against other binarisation techniques. The experimental 

results have shown that the proposed methods in this study provide superior 

performance and will be used to support subsequent processing of the Thai ancient 

palm leaf documents. It is expected that the contributions from this study will also 

benefit research work on ancient manuscripts in other languages.  
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Chapter  1 

Introduction 

1.1 Significance of Ancient Thai Palm Leaf 

Manuscripts 

In Thai history, over the past five hundred years, palm leaves were used as 

one of the most popular medium for written documents. The leaves were used to 

record information written by hand prior to the availability of paper. These ancient 

documents represent the history and heritage of Thai people that are passed down 

through many generations. Libraries and museums all across Thailand contain large 

collections of palm leaf manuscripts written in ancient local languages. These 

manuscripts contain knowledge about Buddhist teachings and doctrines, folklores, 

knowledge on the use of herbal medicines, stories of dynasties, laws, traditional arts 

and architectures, astrology, astronomy and techniques of traditional massages. 

Typically, only a few groups of people are allowed access to these collections due to 

concerns over the fragile state of these highly valued materials. With the passage of 

time, most of these documents, if left unattended, will deteriorate in the face of 

destructive environmental elements such as dampness, fungus, bacteria, and insect 

attacks.  

Recently in Thailand, many projects have been initiated on the digitisation 

and preservation of these ancient documents. These projects are of great interest to 

the community including historians, traditional pharmacists, researchers, students, 
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scholars and people both local and foreign who are interested in Thai cultural 

heritage. The main goal of most of these projects is to preserve the content of the 

ancient manuscripts and to make the documents widely available to interested 

communities via electronic media. Typical projects were initiated by libraries, 

universities, and institutes such as medical departments and religious organisations. 

The list of organisations includes the National Library [1], Chiang Mai University 

[2],[3], and Mahasarakham University [4] which are involved in projects targeting 

the preservation of palm leaf manuscripts and the development of related database 

systems for access via the Internet. For example, two databases of digitised images of 

the manuscripts at the National Library, and the Centre for the Promotion of Arts and 

Culture [2] at Chiang Mai University [3] are readily available to the public. The 

volume of the collections is about 295 bundles and has kept increasing in number. 

Another example is the Thailand Herbal Repository Access Initiative (THRAI) at 

Kasetsart University [5]. The THRAI project aims at developing an ultimate database 

for the preservation and propagation of medical knowledge and wisdom from ancient 

manuscripts. 

Unfortunately, digitised images alone are not sufficient to provide an easy 

access to the content in the manuscripts for useful research purposes.  Laborious 

human involvement is required to search and read all the information contained in 

the documents. Although current storage systems can hold all these images and make 

them available for access, there is no specific system that is capable of searching and 

retrieving relevant information efficiently and allow for the extraction of knowledge 

from the documents.  
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This leads to the need of a system that is capable of providing features of 

search, retrieval, and knowledge extraction from the images of ancient documents. 

An essential component of such a system is an efficient module that should be able to 

carry out pre-processing of the images through background elimination line and 

character segmentation. This will help the process of knowledge and information 

retrieval from the ancient palm leaf documents. This therefore forms the key 

objectives of this study. The following section describes the problems of pre-

processing associated with document recognition and information extraction from the 

ancient Thai manuscripts. 

1.2 Problems of Pre-processing for Information 

Extraction and Recognition from Ancient Thai 

Documents 

At present, there is no specific system that can satisfactorily process 

practical handwritten documents in Thai language because it is very different from 

other language systems. Also, there is not much reported work on the handling of 

horizontally overlapping lines in modern and ancient Thai handwritings. The use of 

specific tonal, vowel and consonant characters with multiple levels and no word 

spacing are the key challenges and obstacles against automatic processing of Thai 

language. Therefore, the main objective of this study is to develop an efficient image 

pre-processing system that could be used to extract components from ancient 

manuscripts for subsequent information extraction and retrieval purposes. 
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One obvious solution for knowledge extraction is by matching directly the 

image data using images of the words as queries or Optical Character Recognition 

(OCR). Word and character segmentation is generally seen as a pre-processing step 

for tasks such as document structure extraction, printed character or handwriting 

recognition. Most of the ancient manuscripts were handwritten while some printed 

characters have been identified in more recent manuscripts that are under fifty years 

old. Comparatively speaking, printed scripts can be separated easily using 

mechanism such as OCR. Despite much research, handwritten scripts still pose as a 

demanding challenge as they are difficult to segment. Handwritten pages with 

narrow spaced lines with overlapping and touching components, incomplete writings 

and blurred images are the typical issues and challenges. In addition, characters and 

words have unusual and varying shapes, and they are writer-dependent. Other issues 

are the periods and their places. Thai vocabulary is also very large and may include 

proper and unusual names and words. Full text recognition in most cases is therefore 

not yet available, except for printed documents for which dedicated OCR systems 

that have been developed.  

In terms of Document Image Processing (DIP), it is desirable to have 

embedded tools to extract the knowledge by searching of specific blocks, lines and 

words and the inclusion of a dedicated handwriting recognition system. Interactive 

tools are generally offered for segmentation and recognition correction purposes. 

Several past projects in the discipline have been concerned with printed materials. 

However, solutions to tackle handwritten text perfectly are yet developed. In 

particular, there are several problems related to Thai handwritten segmentation. The 

main one is the different individual styles especially there is no stop words like the 
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English language. This is the main problem of the Thai writing system: the difficulty 

in separating the words or the sentences. In addition, in the Thai writing system, the 

characters could be located on one of the three levels; main text line, above and 

under main text line. This poses another challenge: the recognition of the position of 

a character at either below or above the main text line. 

Although there are professional OCR software applications that are able to 

produce good results from high quality scanned document images, they are not 

applicable to the ancient palm leaf documents. Over the years, such documents have 

been deteriorating due to age and the lack of preservation facilities at the place of 

collection. In addition, palm leaf manuscripts are different from other printed 

documents. Information on these physical media is harder to extract because the 

formatting structure of the documents is looser. Also, many of these documents are 

of poor quality because of their fragility. The problems are due to issues such as 

spots and holes on the media, smearing, dirt, discolouration and blurriness as shown 

in Figure 1.1. These factors cause poor contrast and ghosting noise (seeping ink from 

the other side) as shown in Figure 1.1(b). In addition, text within the manuscripts 

often shows a certain amount of variation in terms of the stroke width, stroke 

brightness, and stroke connection as illustrated in Figure 1.1(c). These reasons 

reduce the accuracy of the automatic recognition results noticeably and can even 

render them useless. Moreover, due to limited space on the palm leaves, characters 

were written in narrow spaced lines with overlapping and touching components. The 

characters are non-uniformed, vary in shape and have different styles because of 

different writers. The Thai language by itself also imposes additional challenges 

caused by no word separation and the high number of consonants, vowels and tonal 
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indicators.  Digital image pre-processing techniques are hence necessary to improve 

the readability of the manuscripts.  

 

(a) 

 

(b) 

 

(c) 

Figure 1.1 Three examples of palm leaf images that pose challenges for document 

binarisation and processing. 

In this study, most of the manuscripts were acquired from the Project for 

Palm Leaf Preservation, Northeastern Thailand Division, Mahasarakham University 

[4]. The alphabets on these palm leaves are Thai-Noi, which is different from the 

modern Thai language. Also, there is no current system that can process the ancient 

handwritten document in Thai language because it is very different from other 

widely used languages such as English or Chinese. The use of specific tones, vowels 

and consonants with multiple levels and the lack of word spacing are the key 

challenges for the researchers to develop automated systems for the processing of 

Thai handwritten documents. The main purpose of this research is to develop an 
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intelligent framework for the pre-processing of ancient Thai manuscripts on palm 

leaves. The objective is to improve the quality of the documents before they are used 

by a recognition system for subsequent information extraction. 

1.3 Objectives 

This study aimed to achieve the following objectives: 

(1) To study, design and develop a new intelligent framework of pre-processing 

ancient Thai manuscripts that have been handwritten on palm leaves. 

(2) To study, design and develop a method in order to select an appropriate 

binarisation technique to eliminate background noise and generate an optimal 

output from multiple binarised images. 

(3) To study, design and develop text line and character segmentation 

methodology to separate handwritten characters from ancient Thai manuscripts 

on palm leaves. 

1.4 Organisation of the Thesis 

The thesis is presented in seven chapters. Chapter 1 presents the 

introduction and overview of the research. As a background to this thesis, Chapter 2 

introduces ancient Thai manuscripts, digital document image processing, and related 

research works on the pre-processing of ancient manuscripts. Data used in this thesis 

are also considered in this chapter. 

Figure 1.2 shows the framework of the pre-processing steps that was 

implemented in this research study. Chapter 3 to Chapter 6 provide details of the 

framework design based on a pre-processing technique of image processing. 
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features. Global features are the grey-level histogram and the moment of image. 

Local features are the contrast values and the moment in local area of decomposed 

matrices of image. These features are selected by using Principal Component 

Analysis (PCA). As the dataset from palm leaf images is imbalanced, this study also 

improves the performance of the selection processing by utilising the Synthetic 

Minority Over-sampling Technique (SMOTE) to address the issue. 

Chapter 4 extends the work from previous chapter by considering the 

generation of an optimal output from multiple binarised outputs. The proposed 

approach is based on a majority vote approach used to combine binarised outputs 

from several techniques. Two new techniques of combination are proposed by 

considering the information of local neighbourhood around a pixel of interest. The 

two proposals are termed “local adaptation of majority vote” and “local adaptation 

of weighted majority vote”. The experimental results in this thesis have been 

compared to the combination of binarisation techniques based on Kohonen’s Self-

organising Map (KSOM). This proposal has been evaluated with benchmark dataset 

from the Document Image Binarisation Contest (DIBCO). The proposed techniques 

are then applied to the palm leaf manuscripts with the results discussed in the 

chapter. 

Chapter 5 describes the next stage of pre-processing - text line segmentation 

and it is an important step to separate the Thai handwritten text from a document 

image. In this thesis, two methods of text line segmentation have been proposed: 

Modified Partial Projection (MPP) and Adaptive Partial Projection (APP) methods. 

The MPP method is improved from the partial projection method by considering 

vowel analysis and touching components of two consecutive lines. The APP method 
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is improved from MPP by integrating an MPP with smooth histogram and adapts 

partial projections using divide and conquer strategies.  

The final stage of image pre-processing for ancient Thai manuscripts is 

character segmentation. This issue is addressed in Chapter 6. The proposed technique 

for character segmentation in this thesis is based on a hierarchical approach. A 

contour tracing algorithm is first applied to segment the characters. If touching 

components are identified, they will be separated by a trace of the background 

skeleton, and a combined method of segmentation will then be performed. 

Finally, conclusions are drawn from the work done in the study and they are 

discussed in Chapter 7. Suggestions for further development and possible extensions 

of this study are also discussed in this chapter. The thesis finally ends with 

appendices. 



 
 

Chapter  2 

Background  

This chapter discusses the background and relevant research works for the 

intelligent framework for pre-processing of ancient Thai manuscripts on palm leaves. 

In this chapter, different types of palm leaf manuscripts and the Thai-Noi script 

systems are presented. In order to understand the concept of document image 

processing, the involved stages are described. This chapter also discusses the 

methods for pre-processing of image documents which are background elimination, 

optimal binarisation, text line segmentation and character segmentation.  

2.1 Ancient Thai Manuscripts 

Ancient manuscripts are documents recorded and produced in the past. They 

are heritage of human civilisation as they contain information and knowledge passed 

down from past to present. Thai ancient manuscripts recorded the history of Thailand 

and the daily lives of the societies during bygone eras. Examples of the recorded 

information are: Buddhist teaching and doctrines, folklores, knowledge and use of 

indigenous medicines, stories of dynasties, customary laws, traditional arts and 

architectures, astrology, astronomy and techniques of traditional massage.  

In Thailand, ancient manuscripts were found only on stone inscriptions 

between the 13th and 16th centuries. After the 15h century, ancient Thai manuscripts 

were found on palm leaves and papers [5]. Thai manuscripts on palm leaves are on 

average have a width of either 30 or 55 centimetres, and a height of 5 to 6 
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centimetres. They are tied together in bundles to be viewed one page at a time. 

Manuscripts on papers are usually larger than on palm leaves, depended on the 

occasion of the recording. They are made in an accordion format which means the 

papers are often joined together along the width and can stretch to several yards if 

they are unfolded completely. Thai manuscripts on paper, named Samut Khoi or 

Samut Thai [6], consist of paintings and scripts. Paper-based ancient manuscripts are 

not considered in this study although the proposed techniques are equally applicable 

to them as well as palm leaf documents. 

Thai scripts in stone inscriptions have been created by King Ram 

Khamhaeng during the Sukhothai era dated back to A.D.1283 [6]. The alphabet 

system was influenced by Cambodian and Khmers scripts around the 13th century. 

From historic evidence, Thai scripts on stone inscriptions were found from the 13th to 

14th century. From the 15th century onwards, Thai scripts started to appear on palm 

leaves. The oldest palm leaf manuscript in Thailand is believed to have been 

engraved in A.D. 1498 using Dham-Lanna script in Pali language [5]. During the 

mid Ayudhaya era (16th century) until King Rama V of the Rattanakosin era (20th 

century), Samut Khoi was used. The oldest Samut Khoi was believed to have been 

produced in A.D. 1680. 

According to archaeological evidence in Thailand, apart from stone 

inscriptions, palm leaf is supposed to be the oldest ancient written and recording 

materials found [5]. The palm leaf manuscripts are therefore invaluable and need to 

be preserved. For these reasons, this study focuses on palm leaf manuscripts. Further 

details of these manuscripts are described in the next section. 



13 
 

2.1.1 Palm Leaf Manuscripts in Thailand 

Palm leaves had been used as one of the most popular medium for written 

documents in the past five hundred years [5]. They had been used to record 

information written by hand during the past prior to the availability of paper. These 

ancient documents represent the heritage of Thai people passed down through many 

generations. Libraries and museums all across Thailand contain a large collection of 

palm leaf manuscripts written in the ancient local languages.  

The ancient palm leaves are mostly taken from the family of palm trees, 

“Coryha lecomtie” [7]. The young leaves from these species are suitable for 

engraving due to their dimensions. Each palm leaf has an average height of 5 to 6 

centimetres and they could be as long as a meter. For engraving purpose, the length 

used is about 60 centimetres and the palm leaves are cut to size and tied up as a 

bundle. The components of a typical manuscript include covers, a title page, the main 

text, and possibly pagination. Information about the authors normally does not 

appear in the manuscripts, however, details of the transcriber and dates may have 

been recorded.  

Generally, the inscribed text engraved about 4 to 5 text lines in both sides of 

the leaves within the boundary of 5 to 6 centimetres. Many palm leaves are included 

in each book and the bundle is known as “phuk” [7] in Thai. One or two punch holes 

are made at the middle of the palm leaves so as to allow a string to tie and hold the 

palm leaves together to form a bundle. The front and back covers of each bundle give 

the title of the book or a summary of the book.  

In general, there are two sizes of Thai palm leaf manuscripts [7], [8] which 

are called Phuk book and Kom book. 
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 Phuk book (long palm leaf manuscript) is one that was made from long palm 

leaves with an average width of 55 to 60 centimetres and height of 5 to 6 

centimetres. Phuk books are normally longer than Kom books. Each bundle has a 

pair of wooden covers and these books mainly recorded information about local 

literacy writing, folklore, Buddhist teaching and doctrines, and Buddhist fables. 

They are normally kept at community centres such as temples or education 

centres in the villages.  

 Kom book - Kom means short, and they are made from shorter palm leaves. They 

use palm leaves of about 30 to 35 centimetres wide and about 5 to 6 centimetres 

in height. Each bundle has between ten to forty palm leaves and the average of 

most books is twenty to twenty five palm leaves. These books are normally 

owned by individuals and they were kept at homes. Most of the books contain 

information about incantation, astrology, ritual, auspicious occasions and local 

literary writing.  

Since both types of books covered different aspects of the ancient 

manuscripts, samples from both books are therefore used in this experiment. The 

subjects under study were acquired from the Project for Palm Leaf Preservation in 

Northeast of Thailand, Mahasarakham University [4] and a total of 480 images have 

been used.  

2.1.2 Thai-Noi Script System 

In Thailand, there are many types of scripts written on palm leaf 

manuscripts. The ancient scripts include Thai, Thai-Noi, Dham-Isan, Dham-Lanna, 

Kmare and Mon which are based on Thai, Pali and Mon languages [5]. Dham-Lanna 
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and Mon scripts have been found in the northern Thailand while Thai-Noi and 

Dham-Isan scripts were found in the northeastern part of Thailand [9]. Kmare scripts 

were found in every region in Thailand.  

 

Figure 2.1 Three levels of Thai-Noi writing. 

In this study, palm leaf manuscripts were provided by the Project for Palm 

Leaf Preservation in Northeastern Thailand, Mahasarakham University [10]. Most of 

palm leaf manuscripts in the area are Thai-Noi and Dham-Isan scripts. This thesis 

focuses on Thai-Noi script only as it is almost similar to Thai script and Thai-Noi 

script is the root of Laos script. The Thai-Noi system [10] comprises three levels in a 

text line, which are the upper vowel, body, and lower vowel level as shown in Figure 

2.1. Due to the characteristics that multiple levels are requested to form a text line, 

the line separation process is affected. Similar to modern Thai script, Thai-Noi 

writing starts from left to right and from top to bottom. It does not require any space 

between words and sentences. 

The Thai-Noi character set consists of twenty-six isolate consonants, six 

double consonants, twenty-three vowels, two special vowels, four special symbols, 

and ten numbers as shown in Table 2.1 [4]. 
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University [4]. The colour images have to be converted to grey-level images, and 

then the images are converted to binary format for characters recognition and 

extraction. The process is described as follows. 

The developed system in this study first of all imports an ancient document 

image in RGB (Red, Green and Blue) format as an input image, and the set of pixels 

is depicted as . The image is then converted from an RGB image to a 

greyscale,  by a commonly used expression as shown in equation (2.1) [13]: 

 ,  (2.1)

where ,  and  are the intensity of red, green and blue 

channel at pixel , respectively.  

During the scanning of the images and conversion to greyscale, noise may 

be generated and added to the images. Therefore, filtering techniques are needed to 

reduce the noise and to enhance the images. Noise from the image acquisition 

process may appear as salt-and-pepper-noise (impulse noise) [14]. Noise is a 

common problem in most of the image understanding processes. Noise reduction can 

be carried out by applying smoothing operations to grey level document images [11]. 

Smoothing and noise removal can be done by a neighbourhood operation, or “spatial 

filtering”.  

Conventionally, average filtering and Gaussian filtering are commonly used 

[11], [15] for smoothing and noise removal. These techniques can remove salt and 

pepper noise in the grey level images and they can blur the images to remove the 

unwanted details [11], [16], [17].  
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Gaussian filter is also called a weighted average as the central pixels add more 

significant weight to the result than pixels at the mask edges. 
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maskfilterAverage  (2.3)

In this study, the Gaussian filter [11] is used to reduce noise from the 

images. This filter can smooth the image data and enhance the characters. This 

filtering technique consists of convolution between the greyscale image  and 

a Gaussian filter with mask as given below.  

 . (2.4)

Next section explains the binarisation techniques which have been 

considered in this study. 

2.2.2 Binarisation Techniques 

Binarisation is the process of background elimination. This is an essential 

part of pre-processing in image processing that aims to convert a greyscale image to 

a binary image or to extract texts (foreground components) from the background, 

which could then be used for further processing such as document image analysis 

and OCR. Currently, scanners are able to binarise documents with a good contrast of 

foreground components and a uniform background [21]. However, most of the palm 

leaf manuscripts are of poor quality due to smeared or smudged characters, poor 

writing, and non-uniform changes in colours due to long term storage. Consequently, 

binarisation is necessary in order to process the document by identifying the 
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where 0 and 1 represent foreground and background,  is the coordinate of the 

pixel, ),( yxf  is the pixel of the input image after noise reduction process and 

),( yxb  is the pixel of the binary image. 

There are some popular techniques suitable for converting grey-level image 

into binary form [25] such as proposals by Otsu [26], Kittler and Illingworth [27], 

and Kapur et al. [28]. In this study, Otsu’s technique has been used to compare with 

other techniques. The technique is briefly described later in this chapter. Global 

thresholding has a good performance in a case where there is a uniform background 

and good contrast of foreground [29]. On the other hand, it is inappropriate for 

complex backgrounds [25]. Most ancient documents have poor quality and non-

uniform background. In this case, local area information may provide better 

binarisation results. 

2) Local adaptive thresholding techniques 

Local adaptive thresholding techniques [24] calculate the threshold values 

which are determined locally based on pixel by pixel or region by region. A 

threshold value )),(( yxTa  can be derived for each pixel in the image by considering 

the greyscale information of neighbourhood pixels. The image can be separated into 

foreground and background as given in expression (2.6) [30]. 
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where ),( yxTa  in the above expression is different from tT  in expression (2.5) as the 

value varies according to the local region or neighbouring pixels. 
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These techniques have been widely used in document image analysis 

because they produced good performance in separating the characters in the image 

[29]. The conventional local adaptive thresholding techniques are Niblack’s 

technique [31], Sauvola and Pietikainen’s technique [32] and Bernsen’s technique 

[33]. The Sauvola and Pietikainen’s technique was used in this study and briefly 

described in this section. 

Trier and Jain [24] proposed an evaluation methodology for low-level image 

analysis methods, called goal-directed evaluation. They tested 11 locally adaptive 

binarisation methods including Bernsen’s method [33], Chow and Kaneko’s method 

[34], Eikvil et al.’s method [35], Mardia and Hainsworth’s method [36], Niblack’s 

method, Taxt et al.’s method [37], Yanowitz and Bruckstein’s method [38], Parker’s 

method [39], Trier and Taxt’s method [40] and White and Rohrer’s Dynamic 

Threshold Algorithm [41]. They also experimented with four globally binarisation 

methods which are Abutaleb’s [42], Kapur et al.’s [28], Kittler and Illingworth’s 

[27], and Otsu’s methods [26]. Their experimental results indicated that Niblack’s 

method, Eikvil et al.’s method and Bernsen’s method with modified post-processing 

steps have good performance in the binarisation process respectively. However, their 

experiment results suggested that the original locally adaptive methods (Yanowitz 

and Bruckstein, Trier and Taxt, and Niblack) have the best performance. 

Leedham et al. [43] compared five thresholding techniques by evaluating 

the precision and recall value of the words in the foreground. Chen and Leedham 

[44] proposed a decompose algorithm for an image and found the best approach was 

to apply different techniques for local areas instead of employing a single threshold 

technique. They compared their technique with six binarisation techniques using 
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word recognition from ancient documents. Six thresholding techniques were chosen: 

Yanowitz and Buckstein’s method, improved Niblack’s method [45], Bernsen’s 

method, Otsu’s method, Quadratic Integral Ratio technique (QIR) [46] and Eikvil et 

al.’s method (ETM). These methods have also been evaluated and compared by Trier 

and Jain. They have shown good performance on difficult images. From the 

experiments, their proposed method produced better recall result than the other six 

methods. They found that the improved Niblack’s method and the Bernsen’s method 

worked well on heavy handwriting image blocks while the other four methods 

provided acceptable results on faint handwriting images. Yanowitz and Bruckstain’s 

method gave promising results on various types of documents, but it was not good 

when there was seeping noise. ETM worked well for both faint and heavy 

handwriting images. Otsu’s method produced good performance with simple 

document images that were clearly separated between the background and 

foreground. QIR performed well for bimodal histogram images. 

Sezgin and Sankur [47] surveyed 40 binarisation techniques and categorised 

them based on exploitation of their information content. They described different 

performance criteria for the binarisation techniques. They used five performance 

criteria including misclassification error, edge mismatch, region non-uniformity, 

relative foreground area error, and shape distortion penalty via Hausdorff distance 

[48]. They measured and ranked the techniques based on performance criteria. Their 

dataset was synthesised from a clean document image, which was considered as the 

ground truth image, and noise was then added to the original image. They found that 

even though the local binarisation techniques presented a better quality result, the 

global technique based on histogram or classification techniques (such as Otsu, 
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Kittler and Illingworth, and Kapur et al.) gave as good results as the local techniques. 

They concluded that the local based technique of Sauvola and Pietikainen’s 

technique and Improvement of Integrated Function (IIF) Algorithm  by White and 

Rohrer [40], [49] were the best performance. 

Badekas and Papamarkos [25] proposed a technique to combine the best 

binarisation results from the independence binarisation techniques (IBT) including 

Otsu’s technique, Fuzzy C-Mean (FCM) [50], Niblack’s technique, Sauvola and 

Pietikainen’s technique, Bernsen’s technique, Adaptive Logical Level (ALL) 

technique [51], [52] and IIF Algorithm. The best Parameter Set (PS) from the 

techniques was used and the Kohonen Self-organising Map (KSOM) neural network 

was applied in the final stage. Their paper explained that the best result was not 

known initially and this was the main problem of the validity of comparison. They 

used the ground truth image to estimate the best result, defined as estimated ground 

truth (EGT), and it was compared with IBT results using Receiver Operating 

Characteristics (ROC) analysis and Chi-square test. The evaluation was based on a 

variety of document images obtained from standard document databases such as the 

University of Washington database and the old Greek Parliamentary Proceeding [53]. 

The final binary image was produced by combining the binary information from 

independent binarisation techniques. 

Stathis et al. [23], [54] evaluated thirty binarisation techniques and their 

performance on ancient documents. The evaluation images were synthesised. The 

evaluation metrics were pixel error rate (PERR), mean square error (MSE), signal 

noise ratio (SNR), and peak signal-to-noise ratio (PSNR). They found that on 

average, the local adaptive thresholding techniques were slightly better than the 
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global techniques. Good performance from the global thresholding techniques were 

found mainly due to histograms or classification techniques. They suggested that 

Sauvola and Pietikainen’s technique was the best technique for the document images. 

Ntirogiannis et al. [55] proposed an objective evaluation methodology for 

document image binarisation as a semi-automated ground truth construction that 

aimed to reduce  human involvement. They used the evaluation metrics of precision, 

recall, F-measure, broken and missing text, false alarms and deformation. The six 

most promising global and local adaptive binarisation techniques were found to be 

Otsu’s technique, Bernsen’s technique, Niblack’s technique [45], Sauvola and 

Pietikainen’s technique, ALL technique [51], [52] and Adaptive Degrade Document 

(ADD) technique [29]. Recently, benchmarking datasets for binarisation evaluation 

have been generated by this researcher group. The datasets were used in the 

Document Image Binarizaiton Contest (DIBCO) [56], [57], [58] and the Handwritten 

Document Image Binarization Competition (H-DIBCO) [59]. Four evaluation 

measures had been used which were F-measure, Peak signal-to-noise ratio (PSNR), 

distance reciprocal distortion (DRD) metric and, misclassification penalty metric 

(MPM). These researchers have organised binarisation competitions in the 

International Conference on Document Analysis and Recognition (ICDAR) and the 

International Conference on Frontiers in Handwriting Recognition (ICFHR) since 

2009. 

In this research, binarisation techniques of the “classical” or the most 

commonly used approaches based on the global and local adaptive thresholding 

techniques were applied to palm leaf manuscripts. Otsu [26] of the global 

thresholding technique has been used, while local adaptive thresholding techniques 
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of Sauvola and Pietikainen [32], Adaptive Logical Level (ALL) technique [51], [52] 

Improvement of Integrated Function (IIF) Algorithm [49], Background Estimation 

(BE) technique  [60], and Local Maximum and Minimum (LMM) technique [61] have 

been used to compare the results with global thresholding techniques.  

Many researchers have applied different thresholding techniques to 

document images with both printed and handwritten text. Some of those techniques 

are more efficient for specific documents. In addition, most decisions on how to 

choose these techniques were subjectively decided by humans. There is no objective 

mean to decide whether an optimal result has been achieved. The next section 

discusses this issue. 

In the local adaptive thresholding method, Sauvola and Pietikainen [32] 

improved Niblack’s method [31] gave the best performance in Sezgin and Sankur’s 

report. The Sauvola and Pietikainen’s technique also has been used to evaluate 

results in several research studies in local adaptive thresholding techniques such as 

Stathis et al.[23], Ntirogiannis et al.[55], Gatos et al.[62] and Badekas et al.[25]. 

Bernsen’s technique was used to compare with others in this study. This technique 

works well on clear background, high contrast images, and heavy handwriting image 

blocks [44].  This technique also yielded good performance in Trier and Taxt’s 

research [40]. The ALL technique was recently used to evaluate results from research 

works by Stathis et al.[23], Gatos et al.[62] and Badekas et al.[25]. This technique is 

based on stroke width. Badekas and Papamarkos reported that ALL techniques were 

very stable when they were applied to several types of document images. The IIF 

algorithm [40], [49] has also been used in recent binarisation research such as those 

research by Stathis et al., Trier and Taxt, and Badekas and Papamarkos. Two recent 
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techniques that provided the best performance in the binarisation technique 

competition during 2009 and 2010 are the Background Estimation (BE) technique  

[60], and the Local Maximum and Minimum (LMM) technique [61]. Both techniques 

are therefore used in this study. 

The six binarisation techniques have been used in this study that describes 

in the following sections. The techniques comprise of 

1. Otsu’s technique, 

2. Sauvola and Pietikainen’s technique, 

3. Adaptive Logical Level technique, 

4. Improvement of Integrated Function algorithm, 

5. Background Estimation technique, 

6. Local Maximum and Minimum technique. 

2.2.2.1 Otsu’s Technique 

Otsu’s (OT) technique is the most popular global thresholding technique 

[11], [25], [44], [63]. It has been used in a wide range of image processing tools and 

libraries such as Matlab [64] and OpenCV [65]. This technique is one of the most 

used techniques for comparison and benchmarking in binarisation research [23]. This 

technique is based on nonparametric discriminant analysis of the histogram of the 

image intensity. It treats the task as a two class problem by maximising the class 

separability in order to determine the optimal threshold of binarisation. From the 

review undertaken by Trier and Taxt [40], the global thresholding technique based on 

Otsu’s method has been found to demonstrate good performance with simple 

documents and images with bimodal histogram. 
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The threshold selection is a clustering process which divides all the pixels of 

an image into two classes: , is the foreground or text, with a grey-level value 

below or equal to threshold,  and  is the background with a grey-level value 

above . This threshold selection is shown in Figure 2.5. By convention, the values 

below   are black and those above are white.  

 

Figure 2.5 Threshold selection from the histogram of an image. 

The threshold selection is explained as follows: A measurement of the 

“goodness” of the threshold value  is based on the discriminant criteria 

maximising , which is the separability measure as shown below. 

 , (2.7)

 , (2.8)

where  is the ratio of between-class variance  and total variance  of the 

resultant classes in grey levels. 
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2.2.2.2 Sauvola and Pietikainen’s Technique 

Sauvola and Pietikainen [32] applied a method by adapting the standard 

deviation based on a hypothesis of text pixels that have grey values close to zero, and 

background pixels with 8-bit grey values close to 255. This technique was an 

improvement on the Niblack’s method, especially for stained and badly illuminated 

documents. This technique is used in this research because it is one of the best 

among local adaptive thresholding techniques [47], [66]. 

The threshold aT  at a pixel  is determined by the equation below. 
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where  and  are the average value and the standard deviation value of 

grey-level values in local area at a pixel  respectively. The parameter R is the 

dynamic range of standard deviation that is equal to 128, and parameter k  obtains 

positive value that is equal to 0.5. The local area has a  window where  is 

the window size. In Bedekas and Papamarkos [67] experiment, they found that the 

proper values of their experiments were 1.0k  and 128R . 

2.2.2.3 Adaptive Logical Level (ALL) Technique 

The Adaptive Logical Level (ALL) technique was proposed by Yang and 

Yan [52]. This technique was improved from the Logical Level (LL) technique which 

was suggested by Kamel and Zhao [51]. The technique was based on stroke width 

 analysis and character geometry properties. This local technique gives good 

performance and it has been widely used for comparison purposes.  
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, (2.13)

where  are the coordinates of ,  or its smooth value. 

Yang and Yan proposed to improve this technique by determining the mean 

of maximal stroke width  automatically. It was defined as the run-length with 

the highest frequency of the histogram in the selected local region of the image. 

2.2.2.4 Improvement of Integrated Function (IIF) Algorithm 

Another popular stroke analysis technique for local adaptive thresholding is 

the Improvement of Integrated Function (IIF) algorithm [68]. IIF was proposed by 

Trier and Taxt [49] and it was improved by Badekas and Papamarkos [68]. 

This technique is based on a gradient from a Laplacian operator [49]. 

Firstly, the smoothed image of the original image is processed by a median filter. 

The gradient image is then separated by using the Laplacian operator, and an activity 

threshold ( ) which is calculated from Otsu’s algorithm. The three level image, 

, is used to extracted the objects as follows: 
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 is the Laplacian [16] for all pixels of the smoothed image,  is the gradient 

at every point of an image. 

The post-processing step is used to remove false print objects. The mean 

filter is used to smooth the input image, and the gradient image is then calculated. An 
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average gradient of the edge pixels is then calculated to determine the object by 

using a threshold )( pT  where pT  is a predetermined threshold by trial.  

2.2.2.5 Background Estimation (BE) Technique  

Lu et al. [60] in 2010 proposed another technique by using background 

estimation and it was evaluated based on the DIBCO 2009 benchmark dataset. This 

technique provided the best result among the 43 submitted techniques in DIBCO 

2009.  

This technique first estimates the document background surface through an 

iterative polynomial smoothing process. The polynomial order is adaptively 

increased as the following estimation of the document background surface 

 , (2.15)

where  refers to the iteration number and  denotes a rounding function.  and 

 are the order of the initial smoothing polynomial and the smoothing polynomial 

at the  iteration, respectively. Parameter  specifies the increase speed of the 

polynomial order that can be set between 0.1 and 0.2. 

The text stroke edge is then detected by combining L1-norm image gradient 

in horizontal  and vertical  directions as follows:  

  (2.16)

The text on the document is segmented by a local threshold that is estimated 

from the detected text stroke edges as follows: 
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   (2.17)

where 1 and 0 are set to be foreground (text) and background, respectively.  

refers to the normalised image from the estimation of document background surface.

 is the mean of the image intensity of the detected stroke edge pixels in the 

neighbourhood window.  is the number of detected stroke edge pixels that lie in 

the local neighbourhood window, and is the minimum number of the detected 

stroke edge pixels within the neighbourhood window. 

2.2.2.6 Local Maximum and Minimum (LMM) Technique 

This technique was proposed by Su et al. [61]. It was ranked first among the 

17 submissions of the H-DIBCO 2010 competition held at the 2010 International 

Conference on Frontiers in Handwriting Recognition (ICFHR’10). LMM used the 

image contrast that evaluated by the local maximum and minimum of the image 

intensity.  

An image contrast is performed based on the local image intensity 

maximum and minimum as follows: 

 , (2.18)

where  and  denote the maximum and the minimum image 

intensities within a local window. The local neighbourhood window is defined 

as . The  is a positive value which should be a small number that is added in 

case the local maximum equals to 0. 
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The high contrast image pixels around the text stroke boundary are then 

detected through the global thresholding by using Otsu’s technique. The text image is 

degraded based on the local thresholds that are estimated from the detected high 

contrast image pixels. The binary pixel of the image is then classified from its 

intensity and its neighbouring high contrast pixels as follows, 

 , (2.19)

where 1 and 0 are set to be foreground (text), and background, respectively.  

and  are the mean and the standard deviation of the image intensity of the 

detected high contrast image pixels in the neighbourhood window respectively.  

is the number of high contrast image pixels that lie in the local neighbourhood 

window, and is the minimum number of the high contrast image pixels within 

the neighbourhood window. 

In this study, a selection of the binarisation techniques is proposed by using 

machine learning and the techniques are explained in the next section. 

2.2.3 Optimal Binarisation 

Although there exist several good binarisation techniques, researchers (Trier 

and Jain [40], Leedham et al.[43], Chen and Leedham [44], Sezgin and Sankur [47], 

Badekas and Papamarkos [67]) have proved that there is no single binarisation 

technique that can be applied effectively to all kinds of digital documents, even in a 

single application domain. The overall performance of different binarisation systems 

may vary according to different datasets. 
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Due to this reason, a few researchers pointed to the need of selecting the 

optimal binarisation technique or combining binary results from multiple binarisation 

techniques for an image. Chen and Leedham [44] proposed the decompose algorithm 

for an image by using local information to analyse and select an appropriate 

algorithm to determine the threshold for the sub-regions in a document. Their 

techniques worked well on handwriting documents which contained text, but it did 

not work well on document images with big patterns or pictures. 

Badekas and Papamarkos [25] proposed a technique to combine the best 

binarisation results from IBT by using KSOM. Their techniques performed as a 

semi-automatic approach by selecting the most appropriate binarisation methods and 

applied them to the KSOM. This technique worked well on document images with 

complex background but it could be time consuming [69]. 

Gatos et al. [70] presented a binarisation technique based on a combination 

of multiple binarisation techniques and adapted edge information. Three binarisation 

techniques (Otsu, ALL, and ADD) were selected to combine the results and the 

majority vote approach was used. The authors compared their methods with six well-

known binarisation techniques from Otsu, Bernsen, Sauvola and Pietikainen, ALL, 

and ADD. F-measure was used to evaluate their proposal and they reported that the 

combined binary results from the multiple binarisation techniques gave the best 

performance. 

Another approach based on combination of binarisation was proposed by Su 

et al.[69]. The combination technique was performed by classifying each pixel into 

three classes; background, foreground and uncertainty, from results of the candidate 

binarisation techniques. The classifier first attempted to determine whether a pixel 
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was either foreground or background. If the result was uncertain, the classifier would 

then use the global foreground and background information to determine the status of 

the pixel. The proposed technique incorporated self-training strategy on existing 

binarisation methods. Evaluation of this technique was compared with the 

performance of Otsu’s, Sauvola and Pietikainen’s, Gatos’s, Lu’s and Su’s methods. 

The four evaluation measures from DIBCO’s report were used. The authors found 

that most of the text strokes in the result were preserved while most of the noise 

pixels were removed. This proposed method was based on combining two techniques 

at a time and then the result was combined with a subsequent technique one after 

another in a cascading fashion. This technique caused time consuming if a large 

number of binarisation techniques were used. 

From literature, the selection of optimal thresholding method, and the 

determination of an optimal binary image are challenging topics and they are 

subsequently addressed in Chapters 3 and 4 in this thesis respectively. 

The performance of the binarisation techniques has critical effects on the 

output from subsequent text line and character segmentation, and the recognition 

processes. The principles of text line and character segmentation are discussed in the 

next section. 

2.2.4 Text Line Segmentation 

The text line segmentation is required to separate the text lines from a 

document image. For English or similar languages, processing of character 

segmentation consists of three steps; text line segmentation, word segmentation and 

character segmentation. However, the ancient Thai writing system is slightly 
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different because there is no word separator. So the process consists of only two 

steps; text line segmentation and character segmentation. In the optical character 

recognition process, flow of text components (characters or alphabets) cannot be read 

unless they are in proper sequence. Therefore, text line segmentation is an essential 

process in document processing and it must be include in this study. 

Zahour et al. [71] proposed the partial projection profile for text line 

segmentation. The image was divided into eight vertical strips. The vertical profile of 

each strip was based on the histogram along the horizontal axis. The baselines were 

analysed by using maximum and minimum values of the histogram in each strip. The 

vertical gaps among two consecutive text lines were determined according to the 

vertical profiles. This method worked well for text with overlapping lines, 

incomplete lines and change in text orientation, but it did not deal with touching 

lines. An improved version of the partial projection profile method was explained by 

Pal and Datta [72], and Tripathy and Pal [73], for handwritten Bangla scripts. Their 

technique computed the width of the stripes by using four characters of Oriya that 

were calculated the width from 7500 Oriya words. The baselines were determined by 

using peak and valley points, and the baselines of each strip were connected to form 

a long line. In this approach, false text line separation might occur when several 

neighbouring text lines were connected significantly and there were diacritical points 

through letters. 

The review by Likforman-Sulem et al. [74] on historical documents 

described and compared six categories of text line separation methods (projection-

based, smearing, grouping, Hough-based, repulsive-attractive network and stochastic 

methods) for separating printed or handwritten documents, broken and touching 



39 
 

characters. They reported that piecewise projections proposed by Zahour et al. [71], 

and Pal and Datta [72] were suitable for overlapping or touching lines. However, the 

stochastic method [75] was more robust and suitable for overlapping lines. They 

summarised that there was no single line segmentation technique that suited all 

documents. The particular technique depended on the characteristics of the writings 

such as script size, stroke width and average spacing. 

Surinta [76] proposed an algorithm based on sorting and distinguishing the 

histograms of projection profiles in order to select the baselines. This experiment 

worked with Thai handwritten documents and the accuracy achieved was 97.11%. 

However, the reported experiment did not consider overlapping consecutive lines and 

fluctuating lines. 

Arivazhagan et al. [77] proposed a statistical approach to line segmentation. 

Their approach was also based on partial projection profile. The width of strip size 

was calculated by using 5% of the image width. Histograms of each strip were 

computed and then the baselines were determined by using bivariate Gaussian 

densities. When there were some connected components between consecutive lines, a 

decision would be performed by traversing lines around the obstructing components. 

It was reported that their technique could preserve the dot above and below a word. 

Most of the errors occurred because of two reasons; normal component which spans 

across two or more lines, and normal component lying in between two lines.  

Although those techniques deal quite well with overlapping lines, 

incomplete lines, change in text orientation and a touching component of two 

consecutive lines (as shown in Figure 2.7), they will have issues when dealing with 

the research problem in this thesis. Palm leaf manuscripts could have one or two 
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2.2.5 Character Segmentation 

Character segmentation is another important topic in image document 

processing system as the performance of this process could significantly affect the 

overall accuracy of the recognition system. Casey and Leolinet [79] reported a 

survey of four methods and strategies in character segmentation; classical approach, 

recognition-based segmentation, hybrid approach and holistic methods.  

The classical approach is based on character-like or image features [79]. 

The technique, called “dissections”, cuts an image into a sequence of sub-images. A 

number of popular methods under this category are the white space and pitch, 

projection analysis, connect component processing and dissection with contextual 

post-processing graphemes techniques. It has been reported that these techniques 

provided promising results but they may fail to separate the handwriting character 

and touching characters [80]. 

Recognition-based segmentation is based on pattern recognition [79] 

without the image content. The system searches the image for components that match 

classes of alphabets. This technique can be divided into two methods; windowing 

process and feature-based. Although there are other strategies that use intelligent 

techniques to determine touching segmentation points and they have reported high 

accuracy of segmentation, they however need a large volume of training data and 

overhead of time. In addition, the segmentation accuracy depends on the robustness 

of the recogniser [80].  

The hybrid approaches are performed by a process of preliminary 

segmentation based on image features. If the letters are dissected into multiple paths, 
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a correct segmentation are combined and processed using the recognition-based 

segmentation [79]. This technique can improve the accuracy of over-segmenting. 

The Holistic method is a searching and matching approach to recognise 

whole words, and avoids separation of characters [79]. This method performs feature 

extraction and global recognition. The global recognition is done by comparing the 

representation of the unknown word with those of the references stored in the 

lexicon. Consequently, this method uses the “classical approach”, with complete 

words as symbols to be recognised. For instance, the scale space technique [81] and 

holistic word recognition [82] are normally used on Roman scripts. These methods 

are restricted in applications with a predefined lexicon. 

Many techniques have also been proposed for segmentation of touching 

characters. In the literature, many character segmentation approaches have low 

performance when dealing with touched characters [80]. Although there are a 

number of approaches to segment touching characters, most techniques deal with 

touching handwritten numeral strings [83], [84], [85] and printed touching characters 

[86]. Most of the segmentation approaches for handwriting scripts are applied to 

Roman [87], Arabic [88], Indian [89], [90] Chinese [91], [92] and Japanese [93], [94] 

languages, but there are only limited researches on Thai handwriting segmentation. 

Many papers concerning Thai handwritten segmentation used the classical 

approaches to segment characters [95], [96], [97], and the demonstrations were based 

on controlling the writing styles of the writers which is not practical. In addition, all 

those studies were based on the modern Thai language which is far different from 

ancient Thai language. 



43 
 

Surinta and Chamchong [98] applied the recursive strip for line 

segmentation and connected components for character segmentation on Thai palm 

leaf manuscripts. Their experiment found several components fell into wrong lines 

and several ancient Thai characters cannot be separated due to overlapped 

components and connected characters. While it was found that these techniques 

could be applicable, they however were not useful for practical documents. 

Contour tracing technique [11], [99], [100] is applied to digital images for 

extracting the boundary of an object such as character. This technique is performed 

by using connected components, either 4-connected components or 8-connected 

components. The premising approaches of this algorithm are Square-Tracing 

algorithm [11], Moore-Neighbour tracing [99], and Theo Pavlidis’s algorithm [100]. 

This technique is suitable for extracting over-segmented character images and slant 

writing styles but the technique cannot separate connected or touching components.  

In terms of document image processing, it is desirable to have embedded 

tools for searching of blocks, text lines, words and characters, and the inclusion of a 

dedicated handwriting recognition system. Interactive tools are generally offered for 

segmentation and recognition correction purposes. Several projects in the past were 

concerned with printed materials. However, solutions to tackle Thai handwritten text 

accurately are yet to be developed. Furthermore, there is no OCR system tool or 

development currently widely available for the processing of ancient Thai 

handwriting and documents. This leads to the motivation of this study. 

The following section provides a description of the datasets used in this 

study. 
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2.3 Description of Datasets 

Datasets of this study are based on practical data from palm leaf 

manuscripts, and the DIBCO benchmarking datasets [56]. 

2.3.1 Palm Leaf Manuscripts 

 

(a) Example 1 

 

(b) Example 2 

 

(c) Example 3 

Figure 2.9 Samples of palm leaf images. 

This study focuses on ancient manuscripts provided by the Project for Palm 

Leaf Preservation [4]. The palm leaf manuscript images have been converted to RGB 

format of  dpi resolution. Most of the palm leaf manuscripts in Northeast 

Thailand are Thai-Noi and Dham-Esan. This research focuses on the  

Thai-Noi script as it is closer to modern Thai script, and it is also the root of Lao 

script. Dham-Esan has mainly been used in Buddhist documents only while Thai-Noi 

200200 
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was more commonly used in all other documents. Hence, this study used Thai-Noi 

for the initial investigation and development. The study used totally 480 palm leaf 

images from ten bundles that were written by different writers. Some samples of the 

palm leaf images are shown in Figure 2.9. 

2.3.2 The Binarisation Benchmark Data 

In 2009, the first International Document Image Binarisation Contest 

(DIBCO2009) was established and organised by Gatos et al. [56]. In the contest, 

evaluation of document image binarisation methods was based on a variety of 

scanned machine-printed and handwritten documents. Ntirogiannis et al. [55] 

developed the ground truth of the binary images by using an objective evaluation 

methodology for document image binarisation techniques. The datasets from the 

DIBCO series have been used to evaluate the binarisation techniques since 2009. In 

this study, the datasets used are the DIBCO2009 [58], H-DIBCO2010 [59] and 

DIBCO2011 [57]. They were used to evaluate and compare the results from the 

proposed combination technique. The categories of the benchmarking datasets in 

each contest are shown in Table 2.2. 

Table 2.2 Categories of the benchmarking dataset for binarisation 

Benchmark dataset Machine-Printed 
Document Images 

Handwritten 
Document Images 

Total 

DIBCO2009 5 5 10 

H-DIBCO2010  10 10 

DIBCO2011 8 8 16 

Total 13 23 36 

Chapter 3 discusses background elimination and selection of binarisation 

techniques in this study. 



 
 

Chapter  3 

Background Elimination and Selection of 

Binarisation Techniques 

Challenges for text processing in ancient document images are mainly due 

to the high degree of variations in the foreground and background composition. 

Image binarisation is one of the image segmentation techniques that has been used to 

separate the image into text and background components. Binarisation technique is 

crucial to the removal of unrelated artefacts and background noises in document 

images. If this step is inefficient, the original characters from the image may not be 

recognised, or more noise may even be added. Subsequently, this technique is deeply 

essential to improve the readability of the document and the overall performance of 

the process. 

Refer to the previous survey of binarisation techniques; it is observed that 

there is no single technique that is effective for all kinds of digital documents, even 

in the same problem domain. The performance of different binarisation techniques 

may vary due to different datasets. This chapter therefore proposes a new method for 

the selection of the most appropriate binarisation technique for the extraction of text 

from the background.  

The following Section (3.1) shows the example results from the noise 

reduction process, and the subsequent Section (3.2) investigates the binary results 

from six binarisation techniques that have been reported in the literature and they 

were used in this study. Then Section (3.3) introduces a selection framework of the 



47 
 

binarisation techniques. Finally, the nominated appropriate binarisation techniques 

have been evaluated, and a summary of this chapter is given in the last Section (3.4).  

3.1 Experiments with Noise Reduction 

Before the evaluation of the selection of binarisation, the input images in 

RGB format were first converted to greyscale images and then noise was reduced by 

using the Gaussians filtering technique with a mask of dimension. The input 

samples of palm leaf images in RGB format, greyscale images and filtered images 

are shown in Figure 3.1 to Figure 3.3. 

  

33
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(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

Figure 3.1 Five samples of original palm leaf images in RGB format. 
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techniques may vary according to different datasets. Consequently, six binarisation 

techniques reported widely in prior literature have been implemented in this study.  

After noise reduction, the palm leaf images were applied using six 

binarisation techniques; Otsu’s (OT) technique, Sauvola and Pietikainen’s (SAU) 

technique, ALL technique, IIF algorithm, BE technique and LMM technique. In this 

experiment, the initial parameters of SAU, ALL and IIF were set as follows: 

SAU: R=128, k=0.1, 

ALL: threshold was calculated automatically, and  

IIF:  was set automatically by Otsu’s technique, =60. 

Some example results of palm leaf manuscripts are shown in Figure 3.5 to 

Figure 3.10. On average, OT only worked well on bimodal histogram images and it 

did not perform well on palm leaf images. SAU could retain details of the strokes but 

it was sensitive to noise, especially ghosting noise as shown in Figure 3.6 (d).  
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On the other hand, IIF did not retain the details of the strokes in the text, and some of 

the texts had even been lost. This technique, yet, suppressed the noise on the 

background. Both ALL and IIF techniques were suitable for palm leaf image that has 

cracks or lines between text as shown in Figure 3.8(a).  

BE and LMM techniques suppressed noise better than other techniques. 

However, if the image has cracks or lines on the text, these techniques will have 

difficulties in extracting the text. If there are no lines or cracks, both techniques will 

be able to extract the text properly. The BE technique could reduce more noise 

surrounding the text better than the LMM. Besides, it reduced ghosting noise and 

isolates characters better than others. LMM could extract text better than BE. 

However, LMM is unsuitable for the image has lines of crack on the text because 

connected components could occur and it could not suppress ghosting noise. 

In conclusion, there is no single binarisation technique that suits all images 

although LMM has shown the acceptable result. The characteristics of practical 

datasets may greatly differ; it is, thus, difficult to claim a single algorithm or a 

suitable threshold value for all datasets. 

3.3 Selection Framework of Binarisation Techniques 

This section explains the selection process based on the machine learning 

technique - classification. The selection is performed by classifying the appropriate 

technique considering the features extracted from the image. In this study, the issue 

of imbalanced data was addressed in order to improve the accuracy of the method. 

Finally, the Support Vector Machine (SVM) [101], [102], [103], [104], [105] was 
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respectively. The overall process is divided into three steps: (i) feature extraction: 

feature patterns are extracted from greyscale images based on global intensity, and 

local contrast and local intensity; (ii) treatment of imbalanced data: imbalanced 

dataset are addressed and balanced by using the Synthetic Minority Over-sampling 

technique (SMOTE) [106], [107], [108], [109] to improve the performance of 

prediction; and (iii) selection: SVM is applied with the feature patterns in order to 

select the appropriate binarisation techniques. Detailed discussion of the proposed 

process is given in the sections below. 

3.3.1 Feature Extraction  

Feature extraction is an essential step in any learning methods which 

transforms the characteristics of original data to feature patterns for decision making. 

This section explains the feature pattern of the images used in the dataset, and 

Principal Component Analysis (PCA) [16], [105], [110] is used for dimensionality 

reduction of the feature space. 

3.3.1.1 Feature pattern  

Intensity histograms are the most commonly features for global binarisation 

techniques. They are used to convey the grey distribution information. This forms a 

compact representation of the colour feature. Apart from that, the mean, standard 

deviation, minimum and maximum of intensity are also used as global features. 

For local binarisation techniques, intensity and contrast have been the most 

frequently used features [111]. A contrast feature has also been used and modified by 

Su et al. [69]. If there is significantly change of intensity between the boundary of the 

foreground text and the background, the contrast of grey-level indicates the 
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characteristics differentiation between the foreground and background. In this study, 

the contrast feature was used for feature extraction and it was modified by 

decomposing the image into sub-images. In addition, this study also applied the 

intensity values by using mean, standard deviation, maximum and minimum of 

intensity of the sub-areas. The features of an image used in this study are explained 

below: 

1) Global features  

The image histogram represents the relative frequency of occurrence of the 

various grey levels in the image. It gives a global description of the image, and the 

shape of the histogram reveals significant contrast information. A discrete function 

of the histogram [11], [16], H , is given by the relation 

 }1-L10 h...,,h,{h= H , (3.1)

where 

  
N

n
 = h l

l , (3.2)

while l  is the level of greyscale such that  1Ll0  , ln  is the number of pixels in 

the image with the thl  level of greyscale, and N  is the total number of pixels in the 

image. 

The image histogram carries important content of the image. For global 

binarisation techniques, this content is useful to distinguish between foreground and 

background of an image. 
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In this study, sixty-four bins of greyscale histogram of the image were 

extracted and used as features for the selection module. This represents the global 

characteristic of the image and it could be used to assist the decision on selecting the 

appropriate technique. 

The mean )(  f  and standard deviation )f(   of the intensity of an image 

[18] represent the compact features. These expressions are shown as follows: 
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where ),( yxf  is the intensity value of the grey pixel at ),( yx  axis, while M  is the 

number of columns and N  is the number of rows of image. 

The other two intensity features are minimum, ),( jifmin  and maximum, 

)j,i(fmax  intensity values of image which were also used in this study. 

2) Local features 

For these features, an image is decomposed into sub-images with  of 

column and row matrices as shown in Figure 3.12. The contrast and intensity features 

of an image are then applied to describe the characteristics for each sub-image. In 

this study, 59  sub-images were considered for each feature. 

  

RC 
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Figure 3.12 Image decomposition. 

a. Contrast feature 

This feature is used to describe the characteristics of the text and 

background in the sub-area. It illustrates the difference between text and background 

information. The contrast feature in local neighbourhood from Su et al.’s study [69] 

is defined as follows: 

 , (3.5)

where ),( yxI  and ),( yxfmax  denote the intensity of pixel ),( yx  and the maximum 

intensity values within local area.   is an infinitely small positive number, which is 

added in case the local maximum is equal to 0. ),( yxontC  refers to the contrast 

value of the estimating pixel ),( yx . 

This feature is calculated from the high contrast responses at the area near 

the boundaries between the text strokes and document background. The contrast 
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feature preserves the ability to suppress the background variation and assigns a more 

accurate contrast value to the document pixels. 

In this study, the contrast feature is calculated in each sub-image, and this 

feature is then modified as expression (3.6). 
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max  (3.6)

where  and  denote the average intensity of sub-image  and 

the maximum intensity value of sub-image .   is an infinitely small positive 

number, which is added in case the maximum intensity values is equal to 0. 

 refers to the contrast value of the estimating sub-image , with 

 and , where  and  is the number of columns and rows of 

decomposed image. 

b. Intensity feature 

Another local feature commonly used in binarisation is the intensity feature. 

However, the feature for classification should form a compact representation and 

mean, standard deviation, maximum and minimum value of intensities are also used 

to extract the feature from each sub-image in this study. 

Acharya stated that the mean and standard deviation of sub-image [19] 

characterise the compact representation of the intensity feature. The mean , 

and the standard deviation of the sub-image  are expressed as follows: 
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where  is the value of the grey pixel in the  column and  row of the 

sub-image, while M  is the number of columns and N  is the number of rows. 

Two other intensity features are minimum  and maximum 

 intensity values of sub-image which were also used in this study. 

As 45 sub-images were considered in this study, 225 feature vectors from 

five features (contrast, mean, standard deviation, maximum and minimum) were then 

extracted from an image. The number of overall features is 293 feature vectors 

including 68 feature vectors from the global feature. These feature vectors were 

applied to the learning process described in the next subsection which explains the 

selection module that recommends the appropriate binarisation technique based on 

the feature space model. 

3.3.1.2 Principal Component Analysis 

In machine learning, it is common to deal with data having high 

dimensionality input features. In order to improve the prediction performance, 

dimensionality reduction may be applied through a transformation of the original 

data.  

Principal Components Analysis (PCA) is a powerful tool [112] and the most 

widely used technique [104] for feature selection in the transformed space for 

dimension reduction. This technique is an unsupervised method based on a 
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The issue of imbalanced data needs to be approached at data-level with an 

objective to balance the training data before learning process is applied. Approaches 

to deal with imbalanced data can be separated into three categories; under-sampling, 

over-sampling and combined techniques. The under-sampling technique aims to 

balance the dataset by removing instances of majority class while over-sampling 

balance the dataset by adding the minority class. In addition, the combined technique 

is a combination of both under-sampling and over-sampling techniques.  

In this study, there are cases that contain only a few instances in the dataset, 

over-sampling technique is therefore adopted. There are several over-sampling 

techniques such as the Random Over-sampling technique and Synthetic Minority 

Over-sampling technique (SMOTE) [106]. SMOTE has shown to be a successful 

method in many applications [107] and the SMOTE algorithm generates synthetic 

data based on the feature space similarities between minority examples. Other 

technique such as Random Over-sampling technique performs over-sampling by 

replicating minority class instances randomly. For this reason, the SMOTE algorithm 

may avoid the over-fitting problem [114]. The SMOTE algorithm is shown in  

Algorithm 3.1 below. 
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data [109]. This scheme can be used to deal with the data balancing issue in multi-

classes and it can also reduce the complexity in the machine learning process. As 

some of the datasets in this study contain fewer instances, the OAA scheme was 

therefore applied.  

3.3.3 Selection Module 

This study aims at proposing a selection process for the most appropriate 

binarisation technique by machine learning. In particular, the selection is based on 

Support Vector Machine (SVM) [101], [117], [118] , due to its appropriateness for 

classification problems. The SVM is a classification technique based on statistical 

learning theory which was introduced by Vapnik [101], and its applications have 

provided good results. In this study, SVM was used to select the appropriate 

binarisation technique by learning from feature patterns of a training dataset. The 

binarisation technique is then used to generate the binary image.  

The decision function of SVM is calculated from a training dataset. Four 

basic concepts of SVM [102], [103], [104], [105] are the separating hyperplane, the 

maximal margin hyperplane, the soft margin and the kernel function. 

The separating hyperplane is used to separate objects into two classes in 

which the objects are treated as points in a high-dimensional space. A linear decision 

function is given by 

 bxwxf )( . (3.9)

The training data of n samples  can be 

expressed by the hyperplane decision function as follows: 

  }1,1{,),(),...,,( 11 yyxyx nn
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3.4 Experimental Results from the Proposed 

Method 

The next section describes the datasets that were used in this experiment. 

Sample results of the candidate of binarisation techniques are then illustrated and 

finally, the evaluation of the selection is given.  

3.4.1 Dataset Used in This Experiment 

This chapter deals with training hence there is a need for a large set of data 

in the learning process. A dataset of palm leaf manuscripts is used to evaluate the 

proposed method in this study. The dataset is first split into training and test set by 

applying k-fold cross-validation [104]. The dataset is partitioned into  (randomly 

selected) subsets and the holdout method is repeated  rounds. For each iteration, 

one subset is used as the test set and  subsets are a training set. The advantage 

of this method is that every data point will be in a test dataset, and it will be in a 

training set of  rounds. Typical choice for  are 5 or 10 [120]. In this 

experiment, 10-fold cross validation was used. 

In this study, the dataset of the experiment was separated into two types 

which are: 

1. Imbalanced dataset – the dataset composes 480 instances, divided into 

four classes which are LMM 280 instances, ALL 96 instances, BE 58 instances and 

IIF 46 instances (Ratio of instances, LMM: ALL:BE:IIF=58:20:12:10). 

2. Balanced dataset by SMOTE – as class distribution of this dataset is 

imbalanced, SMOTE technique was applied to synthesise the minority classes. LMM 

k

k

1k

1k k
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is a majority class, and ALL, BE and IIF are minority classes. The number of 

instances of minority classes in ALL was increased 100%, BE 200% and IIF 200%. 

The number of instances after synthesise were 784 instances, with 280 instances in 

LMM, 192 instances in ALL, 174 instances in BE, and 138 instances in IIF. (Ratio of 

instances, LMM: ALL:BE:IIF=36:24:22:18). 

3.4.2 Evaluation Measures 

In general, the accuracy is used to explain the overall classification 

performance. In case of an imbalanced dataset, it has been widely premised that if 

the number of prior classes are very different, this measure may be unsuitable 

because misclassification may occur [114]. Other evaluation measures of the 

imbalance problem likes F-measure, the Geometric Mean (G-mean) and the area 

under the ROC curve (AUC) [107], [121], [122], [123] have been proposed. These 

indicators aim to maximise the accuracy between the minority class and the majority 

class so they are good for the class imbalanced problem. These measures were 

therefore applied to evaluate the performance of the selection of the binarisation 

techniques in this study. 

These measures are calculated from a confusion matrix. The confusion 

matrix of a multi-class application of k-classes is presented in Table 3.1 [121]. 
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Table 3.1 A confusion matrix of k-classes. 

 Predicted class 
    

Actual class 

     

     

     

     

 

The metrics of this study are defined as follows [121]:  

The accuracy (AC) is the proportion of the total number of predicted 

instances that were correct and it is shown as below. 

  (3.11)

Recall (RC) values or True Positive (TP) rate is the proportion of positive 

instances that were correctly identified: This value is calculated as follows: 

 
 

(3.12)

Precision (PR) is the proportion of the predicted positive instances that were 

correct. This value is determined by Equation (3.13) below. 

 
 

(3.13)

F-measure (FM) combines precision (PR) and recall (RC) as a measure of 

the effectiveness of classification. This value is calculated as follows: 

  (3.14)
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classification performance even if the class distribution of minority and majority 

instances is highly imbalanced [114]. If AUC has higher value, the better 

performance of the classification will be provided.  

The next section discusses the evaluation result of the proposed method. 

3.4.3 Evaluation  

For the experiment of optimal selection of binarisation techniques, 10-fold 

cross-validation was applied to two datasets (imbalanced data and balanced data). 

The overall features comprised of 68 global features (64 bins of histogram, a 

minimum, a maximum, a mean and a standard deviation values of intensity of 

image), and 225 local features (45 sub-images of contrast, 45 sub-images of mean, 

45 sub-images of standard deviation, 45 sub-images of maximum, and 45 sub-images 

of minimum).  

PCA was applied to the dataset in order to reduce the features and LIBSVM 

[103] was used with RBF kernel function (Gaussian) to select the optimal 

binarisation technique. The RBF parameters are estimated using the parameter 

selection tool of the LIBSVM that gives the highest cross validation accuracy. 

The confusion matrices by classes of the selection method are given in 

Table 3.2 and Table 3.3 for imbalanced dataset and balanced dataset by SMOTE, 

respectively. 
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Table 3.2 Confusion matrix of the selection of binarisation techniques on 

imbalanced dataset. 

Classify as  ALL LMM BE IIF Total 
ALL 15 80 1 0 96
LMM 14 266 0 0 280
BE 2 55 1 0 58
IIF 3 43 0 0 46
Total 34 444 2 0 480

 

Table 3.3 Confusion matrix of the selection of binarisation techniques on 

balanced dataset by SMOTE. 

Classify as  ALL LMM BE IIF Total 
ALL 166 24 1 1 192
LMM 23 240 11 6 280
BE 0 10 164 0 174
IIF 1 6 0 131 138
Total 190 280 176 138 784

 

The performance of selection of binarisation techniques on the imbalance 

data is tabulated in the results for comparisons from Table 3.2 and Table 3.3 as 

shown in Table 3.4. 

Table 3.4 Performance of the selection of binarisation techniques on imbalanced 

dataset and balanced dataset by SMOTE. 

Measure Class Imbalanced dataset Balanced dataset by SMOTE 

F-measure 

ALL 0.231 0.865 

LMM 0.735 0.857 

BE 0.033 0.943 

IIF 0.000 0.949 

Accuracy  0.588 0.980 

G-mean  0.000 0.902 

AUC  0.683 0.980 
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With respect to the selection of imbalanced dataset, the performances of 

class LMM are significantly better than those from classes ALL, BE and IIF, which 

have smaller instances. By applying SMOTE technique to imbalanced dataset 

(balanced dataset by SMOTE), performance of class LMM increased slightly, while 

performances of class ALL, BE and IIF improved dramatically. The selection 

accuracy of balanced dataset by SMOTE, G-mean and AUC of imbalanced dataset is 

significantly improved by 40.8%; 90.2% and 29.7%, respectively. 

3.5 Summary 

This chapter describes the experiments on background elimination, and 

proposed a framework for an automatic selection from multiple binarisation 

techniques. The background elimination consists of two main steps; noise reduction 

and binarisation techniques in order to extract texts from document images. This 

chapter has applied noise reduction by using Gaussian mask and original binarisation 

techniques (OT, SAU, ALL, IIF, BE and LMM), and the results from experimental 

studies have been reported. This chapter also recommends a framework for an 

automatic selection of binarisation techniques by using SVM with imbalanced and 

balanced datasets by applying SMOTE technique. The proposed measurement is 

based on F-measure, Accuracy, G-mean and AUC. From the evaluation of the 

proposed framework, all terms of measures of imbalance dataset have been 

improved. The evaluation result indicates that if the classes of dataset are 

imbalanced, the over-fitting problem may occur.  

With regard to the key points in this study, the automatic selection of 

binarisation techniques used in this framework will be beneficial to the users in 
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recommending the appropriate technique. In order to balance data, the SMOTE 

technique is applied to up-sample the instances of minority classes. As this method 

needs learning from a large dataset, the method may be unsuitable for large dataset as 

it could be time consuming. 

An optimal binarisation output could be generated by combining multiple 

binarised images. It is another module in the proposed framework and the details will 

be discussed in the next chapter. 



 
 

Chapter  4 

Generation of an Optimal Binarisation Output 

Chapter 3 discussed the selection of an appropriate technique for the 

binarisation of images. Another approach to provide improved results is to generate 

an optimal binary image from multiple binarised images with different binarisation 

techniques. 

The proposed techniques in this study are based on the majority vote 

scheme from the information based on local areas of the binarised image. To 

combine multiple binarised images, an output pixel can be defined as foreground, 

background and uncertain pixels. The uncertain pixel is then determined as either 

foreground or background by extending the size of neighbouring window. The 

benefits of this technique could be applied to both even and odd numbers of binary 

images. This proposed method has been applied and compared with six original 

binarisation techniques as explained in Section 2.2.2. The proposed techniques have 

also been compared with the combination of binarisation technique by KSOM [25], 

[67]. 

In this research, the benchmark datasets of DIBCO series and evaluation 

measures from DIBCO 2011’s report were used to evaluate the combination 

techniques. The benchmark datasets of DIBCO series was used in Section 2.3.2. The 

proposed techniques were also applied to palm leaf manuscript images. 

This chapter is organised as follows: Section 4.1 provides the detail of the 

combination of binarisation technique using KSOM. This technique was then used to 
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compare with the proposed techniques. Section 4.2 explains the proposed techniques 

for combining binarised images. The technique applied a majority vote scheme and 

local adaptation. Section 4.3 demonstrates the evaluation of the experiment based on 

benchmark dataset and the palm leaf manuscripts. A summary of this chapter is then 

given in Section 4.4. 

4.1 Background of Combination of Binarisation 

Techniques by KSOM (CBT-KSOM) 

Combination of Binarisation Techniques by KSOM (CBT-KSOM) was 

proposed by Badekas and Papamarkos [25], [67]. The technique combines the best 

results of binarisation from independent binarisation techniques (IBT). To combine 

binarised results, the technique optimises the best values of Parameter Set (PS) from 

individual binarisation techniques and the Kohonen Self-organising Map (KSOM) 

[125] was then used to obtain the final results. Specifically, the best parameter values 

for each independent binarisation technique were estimated in the first stage. In order 

to take advantage of the binarisation information given by the independent 

techniques, a neural network was then fed with the binarisation results obtained by 

those techniques using their estimated best parameter values. Ground truth images 

were estimated as proposed by Yitzhaky and Peli [126] for edge detection evaluation. 

The evaluation was performed using ROC analysis and Chi-square test [25]. 

In previous work, an IBT was designated as a set of binarisation techniques 

comprising with Otsu’s [26], Fuzzy C-Mean (FCM) [50], Niblack’s [31], Sauvola 

and Pietikainen’s [32], Bernsen’s [33], Adaptive Logical Level (ALL) [51], [52] and 

Improvement of Integrated Function (IIF) [41], [49] techniques. The entire 
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application was implemented in the BDI application [127]. The image data were 

digital document images obtained from standard document databases such as the 

University of Washington database and the old Greek Parliamentary Proceeding [53]. 

Even though their proposed technique provides promising results on the document 

images with complex background, manual-based generation of IBT inhibits fully 

automatic document image processing systems. In the next section, the proposed 

technique of automated generation of IBT is explained. The proposed technique 

combines a set of binarisation techniques using voting scheme approaches [69] based 

on local information. 

4.2 Combination of Binarised Images using 

Majority Vote Scheme 

Recently, a number of binarisation techniques have been proposed. Several 

binarisation techniques have revealed good performance on the evaluation of 

degraded document images. This section proposes a technique to combine the 

existing binarisation technique in order to produce the final results. The proposed 

combining method is performed based on majority vote schemes [69], [128], which 

is explained in the following sections. In this study, two new majority vote-based 

techniques for image combination have been proposed. The proposed techniques are 

based on the information of local interaction/neighbourhoods of a pixel in order to 

determine a pixel’s class. These techniques can be applied to both odd and even 

number of binarised images so that the techniques will not be limited to only odd 

number of input images as in the paper [70]. In case of even number of input images, 

the decision cannot be done if the result of combination may be equal in all classes. 
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For this reason, pixels can be assigned to the appropriate classes by using 

information from their local neighbourhood. The technique of deploying local 

neighbouring information of pixels can be achieved by applying local adaptive 

majority vote and adaptive weighted majority vote, which are described in Sections 

4.2.2 and 4.2.3, respectively. Both proposed techniques are applied to combine 

binarised images and the results are given in the next section. 

4.2.1 Combined Images Based on Majority Vote 

To apply the majority vote in order to derive a combination of binarised 

images, the input images  from multiple binarisation techniques are defined 

as follows [70]: 
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4.2.2 Local Adaptation of Majority Vote for Uncertain 

Pixel 

To avoid the problem of using the even number of input images such that 

summation of binarised images of foreground and background are equal, in this case, 

the result of combination is defined as uncertain pixels. In addition, as the 

information surrounding a pixel may affect it, the local neighbourhood of a pixel is 

used in this method to determine its status. The combination is then determined by  
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and  is a voting within neighbouring window from binarised images: 
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where 12 +m = M , M  is a size of window and N is a number of binarised images. 

To resolve an uncertain pixel, the information in the neighbouring area of 

the pixel is used. The combination is then applied iteratively to determine the status 

of the uncertain pixels into either foreground or background by extending the size of 

the neighbouring window. This technique is called Local Adaptation of Majority 

Vote (LAMV). This algorithm is described in Algorithm 4.1. 

iV
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Algorithm 4.1 LAMV: Combining binarised images and determining uncertain 

pixels by local adaptation of majority vote. 

(1) Generate a result image from N  binarised images by using voting of 

neighbouring window as given in Equation (4.3) and (4.4). 

(2) If an uncertain pixel occurs from step (1), a size of neighbouring window is 

increased by 1mm . 

(3) The process is then repeated from step (1) to step (2) until the uncertain pixel is 

resolved to either foreground or backgound. Otherwise, stop the process. 

 

In this study, M  starts from three, and the number of iterations is under 

five. 

Figure 4.2 shows an example of the combination method by using LAMV 

from three and four binarised images. Figure 4.2 (b) illustrate that the result of 

combination from four binarised images fall in the case of uncertain pixel, and then a 

size of neighbouring window is increased.  
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4.2.3 Local Adaptation of Weighted Majority Vote for 

Uncertain Pixel 

This is an improvement of the LAMV technique. As the majority vote from 

exact label does not consider the significance of a pixel and neighbouring pixels, 

weighted majority vote of the pixel in neighbouring window is then applied. This 

technique is performed as follows: 

(1) Normalised weight values of background )( ,1 i  and foreground )( ,0 i  in the 

neighbouring window of each image are defined by: 
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where 12 +m = M  and M  is a size of window. 

The normalised weights are defined as + and  to avoid the product of zero in 

the next step. A sample normalised weight value of background and foreground 

in neighbouring window of each binarised image is illustrated in Figure 4.3. 

(2) Normalised weight values in the neighbouring window of an input image are 

adjusted by using a Gaussian distribution mask [17], ),( yxg , which is 

calculated by 
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where  is the standard deviation of the associated probability distribution.  
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Gaussian distribution mask provides more significance in its pixel and the 

nearest neighbouring pixels. The Gaussian weight, ),( yxGWi , is then given by 
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(3) Combined pixel is determined by applying Equation (4.9) as follows : 
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where N  is a number of binarised images. 

If uncertain pixels still occur, the size of the neighbouring window will be 

increased and determination of the uncertain pixels is executed iteratively until 

the pixel is resolved to either foreground or background.  

This technique is called the Local Adaption of Weighted Majority Vote 

(LAWMV) and the algorithm is described in Algorithm 4.2. 
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In this study, both proposed techniques with local adaptation based on 

majority vote were compared with CBT-KSOM. The evaluation measures and results 

of this study are discussed in the next section. 

4.3 Experimental Results 

These proposed techniques were evaluated over benchmark datasets 

(DIBCO2011, H-DIBCO2010 and DIBCO2009) and tested with palm leaf images.  

The DIBCO2011, DIBCO2009 and H-DIBCO2010 datasets contain 36 

historical document images that suffer from different kinds of degradations. The 

different well-known binarisation techniques including Otsu’s (OT), Sauvola’s 

(SAU), ALL, IIF, BE and LMM techniques which are described in Section 2.2.2. 

4.3.1 Evaluation Measures 

Recently, a few researchers have proposed various evaluation measures for 

binarisation techniques. A competition of binarisation techniques was established in 

2009, the evaluation measures and benchmark dataset for this competition have been 

proposed by Gatos et al. [56], [58] for DIBCO. Researchers in this area also used 

evaluation measures and the dataset from the competitions. Such researchers 

included Lu et al. [60] and Su et al. [61]. 

The evaluation measures in this study consist of F-measure, Peak Signal to 

Noise Ratio (PSNR), Distance Reciprocal Distortion (DRD) and Misclassification 

Penalty Metric (MPM). In particular, these measures are described in the sections of 

this chapter. 



92 
 

4.3.1.1 F-measure 

F-measure measures how well a technique can detect text and background 

pixels in the image. A high F-measure value indicates a better match, and it is 

defined by integrating precision and recall as follows: 

 PCRC
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RC and PC refer to the binarisation Recall and the binarisation Precision, 

respectively. TP, FP and FN denote the True Positive, False Positive and False 

Negative values, respectively.  

4.3.1.2 Peak Signal to Noise Ratio (PSNR) 

PSNR is a measure of the difference between two images. A higher PSNR 

indicates a better match. This metric was used in both DIBCO [56] and Statis [23] 

and PSNR is computed by 
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and the Mean Square Error (MSE) is calculated from 
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where C is the difference between the foreground and background colours. In this 

study, all images were converted to binary (0, 1), thus 1C . ),( yxf  and ),( yxgt  

are the pixel of the result image )( NM   and the ground truth image. 

4.3.1.3 Distance Reciprocal Distortion (DRD) 

DRD has been proposed to measure visual perception in binary document 

images [129]. This metric properly correlates with the human visual perception, and 

it measures the distortion for all the S flipped pixels as follows: 

 

NUBN

DRD
DRD

S

k
k

 1 , 
(4.15) 

where NUBN is the number of the non-uniform (not all black or white pixels)  

blocks in the ground truth image and kDRD  is the distortion of the thk  flipped 

pixel and it is computed using a 55  normalised weight matrix )( NmW . kDRD  is 

the weighted sum of the pixels in the 55  block of the ground truth that differ from 

the centred )( thk  flipped pixel at ),( yx  in the binarisation result image. The kDRD  

is calculated by the following equation: 
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4.3.1.4 Misclassification Penalty Metric (MPM) 

This technique evaluates the prediction against the Ground Truth (GT) on an 

object by object basis. This metric provides a comparison of the contour of the 

character between the result and ground truth image. A low MPM value denotes that 

88
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the technique is good at identifying a boundary of objects. The MPM is defined as 

follows: 

 2
FPFN MPMP
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 , (4.17)
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i
FNd  and j

FPd  denote the distance of the ith false negative and the jth false 

negative pixel from the contour of the GT segmentation. The normalisation factor D 

is the sum over all the pixel-to-contour distances of the GT object. 

4.3.2 Evaluation Results of Benchmark Datasets 

To evaluate the benchmark datasets, the binarisation techniques were 

performed and produced corresponding results. The results from the binarisation 

were then combined to produce the optimal result. The combination were categorised 

into four groups as follows: 

Group 1 (G1) ALL, IIF, Otsu’s (OT) and Sauvola’s (SAU) techniques. 

Group 2 (G2) BE and LMM techniques. 

Group 3 (G3) BE, LMM and ALL techniques. 

Group 4 (G4) BE, LMM, ALL and Otsu’s techniques. 
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Having defined the combination groups, the evaluation was performed and 

the results of the evaluation were compared to the binarisation implemented by  

CBT-KSOM. The evaluated results are given in Table 4.1 to Table 4.6. 

  



96 
 

Table 4.1 Evaluation results of individual binarisation techniques on the dataset of 

DIBCO2011. 

Measures 
Binarisation techniques 

OT SAU ALL IIF BE LMM 

F-Measure 77.4611 73.8697 80.2972 80.4826 81.6674 85.5594

PSNR 14.6749 13.5711 15.0816 15.4837 15.5888 16.7525

DRD 25.819 18.1682 11.9148 8.0187 11.2353 5.0244

MPM 24.2516 22.897 16.8095 6.241 11.3977 5.423

 

Table 4.2 Evaluation results of combination binarisation techniques on the dataset 

of DIBCO2011. 

Group Measure 
Binarisation techniques 

CBT-KSOM LAMV LAWMV 

G1 
(combine OT, SAU, 

ALL and IIF) 

F-Measure 80.197 85.538 86.134

PSNR 14.8095 16.563 16.6267

DRD 8.7599 6.016 5.4064

MPM 10.1772 8.4308 8.0933

G2 
(combine BE and 

LMM) 

F-Measure - 87.516 85.4794

PSNR - 17.418 16.7251

DRD - 4.2913 5.5841

MPM - 4.9781 6.0289

G3 
(combine BE, LMM 

and ALL) 

F-Measure - 86.654 87.2591

PSNR - 16.94 17.22

DRD - 5.3342 4.7504

MPM - 6.7463 5.9286

G4 
(combine BE, LMM, 

ALL and OT) 

F-Measure - 87.036 87.1101

PSNR - 17.109 17.1767

DRD - 4.8597 4.7301

MPM - 6.6736 6.6055
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Table 4.1 and Table 4.2 show the evaluation results of the DIBCO2011 

dataset, which consists of eight handwritten and eight machine-printed documents. 

Based on the six independent binarisation techniques in Table 4.1, the LMM 

technique provided the best results of all measures while SAU technique had the 

lowest performance in terms of F-Measure and PSNR. Considering DRD and MPM; 

on the other hand, Otsu’s technique resulted the lowest performance. Table 4.2, the 

two proposed algorithms of combination binarisation techniques were compared to 

the binarisation results obtained by CBT-KSOM. CBT-KSOM was only compared 

with the proposed ensemble of binarisation algorithms-decomposed in group 1 (OT, 

SAU, ALL and IIF). The experimental results show that the ensemble algorithms of 

group 1 were superior to CBT-KSOM for the all measurements. In addition, CBT-

KSOM did not obtain the best result when it was compared with the four individual 

binarisation techniques. Based on the algorithms of the proposed techniques, 

LAWMV gave better performance than LAMV in data groups 1, 3 and 4, while 

LAMV had better performance than LAWMV in group 2. Overall, LAWMV 

provided better performance than other techniques for this dataset. In addition, the 

proposed techniques of combining binarisation in each group were superior results 

than each single technique in the group. 
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Table 4.3 Evaluation results of individual binarisation techniques on the dataset of 

H-DIBCO2010. 

Measures 
Binarisation techniques 

OT SAU ALL IIF BE LMM 

F-Measure 85.3844 78.7905 80.5917 75.3998 86.7442 91.3645

PSNR 17.4906 16.0501 16.5051 16.8418 17.9955 19.7821

DRD 4.0745 7.2526 6.4383 7.4121 4.792 2.4183

MPM 1.6068 4.8954 3.4189 1.873 1.1863 0.4911

 

Table 4.4 Evaluation results of combination binarisation techniques on the dataset 

of H-DIBCO2010. 

Group Measure 
Binarisation techniques 

CBT-KSOM LAMV LAWMV 

G1 
(combine OT, SAU, 

ALL and IIF) 

F-Measure 78.6165 82.685 82.6431

PSNR 15.6947 17.1319 17.1727

DRD 6.6868 5.0628 5.0013

MPM 1.9609 1.6285 1.4474

G2 
(combine BE and 

LMM) 

F-Measure - 88.5369 88.5255

PSNR - 18.8781 18.9009

DRD - 3.1182 3.1131

MPM - 0.3114 0.3674

G3 
(combine BE, LMM 

and ALL) 

F-Measure - 89.654 89.0318

PSNR - 19.0068 18.779

DRD - 2.8483 2.9017

MPM - 0.4194 0.3284

G4 
(combine BE, LMM, 

ALL and OT) 

F-Measure - 88.3723 88.2937

PSNR - 18.6099 18.588

DRD - 2.9924 2.9664

MPM - 0.3095 0.2808
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Table 4.3 and Table 4.4 present the evaluation results of the H-DIBCO2010 

dataset which was collected from ten handwritten documents. Based on the 

independent binarisation techniques in Table 4.3, LMM technique was the best result 

of all measurements while IIF and SAU techniques produced poor results. In Table 

4.4, the two proposed algorithms of combination binarisation techniques were 

compared to binarisation results obtained by CBT-KSOM. The experimental results 

show that the ensemble algorithm of group 1 was superior to CBT-KSOM for all 

measurements. In addition, CBT-KSOM did not obtain the best result when it was 

compared with the four individual binarisation techniques. Based on the algorithms 

of the proposed techniques, LAWMV and LAMV were not much different based on 

the data in all the groups. Overall, the proposed techniques of combining binarisation 

in each group provided better results than each single technique in the group. 

 

 

 

 

 

 

 

 

 

 

 



100 
 

Table 4.5 Evaluation results of individual binarisation techniques on the dataset of 

DIBCO2009. 

Measures 
Binarisation techniques 

OT SAU ALL IIF BE LMM 

F-Measure 78.1917 80.7447 74.7886 79.8307 91.1333 91.0604

PSNR 15.0586 15.1427 14.854 15.3695 18.6557 18.66

DRD 22.7551 11.3118 9.6019 10.4706 3.0528 2.8197

MPM 13.8624 7.9245 3.1703 3.2536 0.5496 0.4571

 

Table 4.6 Evaluation results of combination binarisation techniques on the dataset 

of DIBCO2009. 

Group Measure 
Binarisation techniques 

CBT-KSOM LAMV LAWMV 

G1 
(combine OT, SAU, 

ALL and IIF) 

F-Measure 83.244 85.3614 85.2604

PSNR 16.2702 16.7043 16.6961

DRD 8.3716 6.6387 6.6515

MPM 3.4057 2.3646 2.2663

G2 
(combine BE and 

LMM) 

F-Measure - 92.503 92.6512

PSNR - 19.3551 19.6257

DRD - 2.4786 2.3583

MPM - 0.4509 0.2379

G3 
(combine BE, LMM 

and ALL) 

F-Measure - 93.0461 92.2873

PSNR - 19.6571 19.2934

DRD - 2.2672 2.3834

MPM - 0.3834 0.3027

G4 
(combine BE, LMM, 

ALL and OT) 

F-Measure - 92.7203 92.6243

PSNR - 19.3967 19.3363

DRD - 2.3274 2.3371

MPM - 0.365 0.3505

 



101 
 

Table 4.5 and Table 4.6 demonstrate the evaluation results from the 

DIBCO2009 dataset, which comprises five handwritten and five machine-printed 

documents. Among the independent binarisation techniques, BE gave the best results 

in terms of F-Measure while LMM drove the best performance in terms of PSNR, 

DRD and MPM. In this dataset, ALL generated less-promising results and obtained 

the lowest performance in terms of F-Measure and PSNR. In terms of DRD and 

MPM, Otsu’s technique had the lowest performance. CBT-KSOM was only 

compared with the proposed ensemble of binarisation algorithms-decomposed in 

group 1. The experimental results show that the ensemble algorithm of group 1 was 

superior to CBT-KSOM for the all measurements. In addition, CBT-KSOM did not 

obtain the best result when it was compared with the four individual binarisation 

techniques. Based on two algorithms of the proposed techniques, LAWMV derived 

better performance than LAMV in data group 2, while LAWMV and LAMV were 

not much different. Overall, the proposed techniques of combining binarisation in 

each group provided better results than each single technique in the group. 

In summary, the proposed techniques demonstrated that they were superior 

performance than independent binarisation techniques in the DIBCO2011 and 

DIBCO2009 dataset, while in HDIBCO2010, they derived poor results. Due to the 

dataset from DIBCO2011 and DIBCO2009 comprises of handwritten and machine-

printed documents, they include a variety kinds of documents. The proposed 

technique can perform well over DIBCO2011 and DIBCO2009 because the 

combined output is based on local information of the input images.  

Furthermore, it is found that the CBT-KSOM did not perform well in all 

datasets as LAMV and LAWMV. As CBT-KSOM uses global information of input 
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images to determine a final result while LAMV and LAWMV are ensemble 

technique using local information of input images. 

4.3.3 Sample Results of Benchmark Datasets 

This section shows sample results of binarised images from independent 

binarisation techniques (OT, SAU, ALL and IIF), combined images from CBT-

KSOM and the proposed techniques (LAMV and LAWMV). 

Figure 4.4 shows samples of the original image, ground truth image and the 

results of binarised images performed by independent binarisation techniques.  

Figure 4.7 shows the samples of the combined images using CBT-KSOM and the 

proposed techniques (LAMV and LAWMV), respectively. The problem of this 

document is the existence of marginal noise, which is one of the major problems of 

extracting texts from the background. 
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reveal promising results as the technique eradicated some text fragments, whereas 

ALL technique extracted text properly and performed good results. These example 

results show that one technique may be applied effectively for some document 

images but they may not be suitable for all kinds of digital documents even it may 

achieve the best performance of those datasets. 
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The binarisation results of the sample document image from H-DIBCO2010 

are illustrated in Figure 4.5. LMM and BE suppressed noise better than the other 

techniques. LMM technique extracted the text properly, while BE technique 

produced few noises from seeping noise. In contrast, the other techniques often 

produced a certain amount of noises due to ghosting noise within the background. 

SAU, ALL and IIF generated more noise from ghosting noise while the OT 

technique revealed noises less than those techniques. As SAU and ALL techniques 

perform based on stroke width, this may affect the process to generate the result.  
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The binarisation results of the sample document image from DIBCO2009 

are shown in Figure 4.6. The OT technique of global thresholding could not classify 

text from background if the document image has high contrast background. The ALL 

technique suppressed high contrast of the background, but this technique still 

generated salt and pepper noise. The BE technique suppressed noise better than other 

techniques. ALL, BE and LMM techniques extracted the text properly. In contrast, 

the other techniques often produced a certain amount of noise due to the variation 

within the background.  
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Table 4.7 Summary of advantages and disadvantages of independent binarisation 

techniques. 

Binarisation 
Techniques 

Advantages Disadvantages 

OT - fast and suitable to separate 
uniform distribution of 
background 

- cannot extract texts from 
marginal noise and high contrast 
of background 

SAU  - there are more noises that 
distribute over the document such 
as in Figure 4.4 (d) and Figure 4.5 
(d) 
- noise distribution in the dark 
area of background and some 
parts nearby texts such as in 
Figure 4.6 (d) 

ALL - extract texts properly 
- reduce marginal noise better 
than other techniques 

- in the dark area of the image 
that has high contrast background 
can extract texts properly but salt 
and pepper noise may occur such 
as Figure 4.6 (e) 
- Not good for the image that has 
ghosting noise such as in Figure 
4.5 (e). 

IIF - high contrast of background 
can eliminate clearly 

- cannot extract texts properly 
- losing detail of interior 
characters such as in Figure 4.4 
(f) and Figure 4.6 (f) 
- texts are eliminated the in dark 
area of background as they fades 
out such as in marginal noise area 
in Figure 4.4 (f) 
- even high contrast of 
background can be eliminated 
clearly but texts are also 
eliminated in this area such as in 
Figure 4.6 (f) 

BE - extract texts properly 
- work well with ghosting noise 
such as Figure 4.5 (g) 
- texts are sharp and clear 

- some texts are eliminated in 
dark area of background and 
some texts are faded in area of 
high contrast background such as 
in Figure 4.6 (g) 

LMM - extract texts properly 
- work well with ghosting noise 
Figure 4.5 (i) 

- there are a few noises that occur 
surround texts in the dark area of 
high contrast background such as 
in Figure 4.6 (i) 
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Figure 4.7 to Figure 4.9 show sample results of combined images from 

DIBCO2011, H-DIBCO2010 and DIBCO2009. The combined results will depend on 

the original binarised images. Both proposed techniques performed better than  

CBT-KSOM. The combined results from LAMV and LAWMV were marginally 

different. 

The next section presents the sample results of combined techniques on 

palm leaf manuscripts. 

4.3.4 Sample Results of the Combined Techniques on 

Palm Leaf Images 

This section shows the sample results of combined images using the 

binarisation techniques on palm leaf manuscripts. The proposed method was applied 

to generate the optimal output from ancient Thai manuscripts on palm leaves. Some 

sample results of the combined image are shown in Figure 4.10 to Figure 4.12. 

From the sample results of three images, the results reveal that the proposed 

techniques could provide better output from multiple binarised images. The results 

from the proposed techniques were not significantly different. Furthermore, the result 

depends on the selected binarised-images obtained from the prior combining process. 

 

 

 

 

 



 

Figuree 4.10 Samp

(d) LA

(e) LAW

(f) LAMV

(g) LAWM

ple results o
filtere

114

(a) B

(b) LM

(c) A

AMV (combin

WMV (comb

V (combine B

MV (combine

of combined
ed image in

4 

BE 

MM 

ALL 

ne BE and LM

ine BE and L

BE, LMM an

 BE, LMM a

d images on 
n Figure 3.3

MM) 

LMM) 

nd ALL) 

and ALL) 

palm leaf m
(a). 

manuscript f

 

 

 

 

 

 

 

from 



 

Figuree 4.11 Samp

(d) LA

(e) LAW

(f) LAMV

(g) LAWM

ple results o
filtere

11

(a) B

(b) LM

(c) A

AMV (combin

WMV (comb

V (combine B

MV (combine

of combined
ed image in

5 

BE 

MM 

ALL 

ne BE and LM

ine BE and L

BE, LMM an

 BE, LMM a

d images on 
n Figure 3.3

MM) 

LMM) 

nd ALL) 

and ALL) 

palm leaf m
(b). 

manuscript f

 

 

 

 

 

 

 

from 



 

Figuree 4.12 Samp

(d) LA

(e) LAW

(f) LAMV

(g) LAWM

ple results o
filtere

11

(a) B

(b) LM

(c) A

AMV (combin

WMV (comb

V (combine B

MV (combine

of combined
ed image in

6 

BE 

MM 

ALL 

ne BE and LM

ine BE and L

BE, LMM an

 BE, LMM a

d images on 
n Figure 3.3

MM) 

LMM) 

nd ALL) 

and ALL) 

palm leaf m
(d). 

manuscript f

 

 

 

 

 

 

 

from 



117 
 

4.4 Summary 

This chapter proposes an approach for the generation of the optimal 

binarisation output by combining different binarised images. This study has 

developed two combination techniques called LAMV and LAWMV. Both methods 

have been implemented based on voting scheme and local adaptation of 

neighbouring window. LAWMV is an improved version of LAMV that utilises the 

Gaussian of weight majority vote in the neighbouring window of its pixel. The 

dataset from DIBCO’s series has been used in this chapter to evaluate both 

techniques. They have been compared with six independent binarisation techniques 

and a combination of binarisation techniques by CBT-KSOM. LAMV and LAWMV 

signify better performance than six independent binarisation techniques and the 

combination of binarisation technique by CBT-KSOM. Performance of LAMV and 

LAWMV is marginally different. Both techniques has been applied to generate the 

optimal binarisation output with palm leaf manuscripts. These approaches are able to 

provide promising results than independent binarisation techniques. 

The key contribution of this chapter is the proposal of a novel technique that 

can be used to combine different binarised outputs from different techniques to 

produce an optimal output. Experimental results show that the proposed techniques 

can improve the reported binarisation methods significantly. This method also has 

been applied to practical documents, namely, ancient Thai manuscripts from palm 

leaves. The results illustrate that the proposed method can provide the optimal 

binarised output. 

After background elimination, text line segmentation is then performed and 

the details will be explained in the next chapter. 



 
 

Chapter  5 

Text Line Segmentation 

In automatic ancient document processing, text line segmentation is one of 

the processes usually performed before character segmentation. Line segmentation 

extracts lines and locates the text regions in the document images. As a consequence, 

text line segmentation algorithms can potentially improve the performance of 

character segmentation and recognition. In previous literature, there are many 

methods for text line segmentation in ancient document data. However, there are still 

rooms for improvement in order to achieve better accuracy. Although partial 

projection methods [71], [72], [90] have been reported that are suitable for 

overlapping or touching lines, such techniques do not deal successfully with the 

separation of vertically connected text lines which is a significant issue associated 

with word or character recognition [87]. The partial projection approach proposed by 

Zahour et al. [71] works correctly on overlapping texts, tabulations, incomplete lines 

and changes in text orientation; however, inability to deal with touching lines is the 

major drawback of the technique [130]. An improved version of this method was 

proposed by Tripathy and Pal [90] for Indian scripts. Their technique computed the 

width of the stripes from a character dataset. The baselines were determined by using 

peak and valley points, and the baselines of each strip were connected to form a long 

line. This technique however may produce false segmented lines due to the use of 

diacritical points [130]. In addition, a number of touching neighbouring text-lines in 

document images may cause the technique to generate poor outcomes.  
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In order to improve those techniques, two text line segmentation algorithms 

based on partial projection profiles have been proposed in this study. To improve the 

partial projection profile for text line segmentation, this study determines the 

touching components of two consecutive lines, and analyses the components of the 

texts at vowel levels in order to identify the lines in the image. This approached is 

termed the Modified Partial Projection (MPP) in this thesis. In addition to the MPP, 

this study proposes an adaptive technique of partial projection profile, called the 

Adaptive Partial Projection (APP) method. The technique applies the MPP method 

with the smoothened histogram and adapts partial projections using divide and 

conquer strategies. 

This chapter is organised as follows: Section 5.1 outlines the details of the 

proposed method of the MPP while Section 5.2 describes the APP method. Finally, 

experimentations and evaluation are illustrated in Section 5.3. 

5.1 Modified Partial Projection (MPP) Method 

The MPP is a line segmentation technique based on the partial projection 

profile techniques [131]. To separate text lines, the partial projection method [71], 

[72], [90] is applied in the first step by dividing a text image into vertical strips. A 

width of strip is defined by a pre-determined width parameter. The width parameter 

governs the size of strips. There are a number of techniques that have been used to 

determine this parameter. Tripathy and Pal [90] examined a strip width by using 

statistical mode of the width of the bottom reservoirs obtained from texts as 

described in Section 2.2.4. The overall process of the MPP method is shown in 

Figure 5.1. 
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Figure 5.1 Overall process of the MPP method. 

In order to implement the MPP method, pre-defined parameters are firstly 

defined by using the mean of the characters from a dataset of palm leaf manuscripts. 

Then an image is cropped to reduce the unrelated information. After defining the 

width strip parameter, unrelated artefacts are removed before the MPP is carried out 

in the final step. The overall description of the MPP method is explained in the 

following sections. 
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1) Pre-defined parameters 

A vertical strip width is a preliminary parameter that is initiated before 

performing consequent processes in the MMP. To determine this parameter, there are 

two super-parameters that are taken into account: (i) the average width (WC) and (ii) 

the height (HC) of the isolated characters from the dataset. This dataset was collected 

by using Connected Component (CC) on forty-eight random images from the dataset 

of 480 palm leaf manuscripts. In the MPP method, the width of the vertical strips is 

defined as the value of WC. 

2) Image cropping 

To reduce unrelated information on palm leaf images, that is, separation of 

the artefacts located near the boundary of the images and noise, the images are 

cropped by checking the first and final valleys of global horizontal and vertical 

projection profile of the images. This information is then used to separate the two 

components as described in the next step. 

3) MPP approach 

After the two parameters are defined, the MPP approach to separate the 

lines is performed as follows: 

(1) Divide the images into vertical strips: 

 
WS

W
N  , (5.1)

where N, W and WS denote the number of  strips, the width of the images and 

the width of strips, respectively. 
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(2.2) Find the minimum value (equal to 0) of the projection in each strip. This 

minimal value of horizontal partial projection or histogram of projection 

indicates the top line )),(( jiLT  and the bottom line )),(( jiLB . A 

bottom line is chosen as a base line as follows: 

 ,5,3,1,)(min),(  yiPjiL yT  
(5.4)

and 

 ,6,4,2,)(min),(  yiPjiL yB , (5.5)

where j  is a line number. 

(3) Define the height of the characters of each line in each strip for vowel 

analysing as shown below:  

 ),(),(),( jiLjiLjiL BTH  . (5.6)

(4) Check the size of the height in each line.  

(4.1) If )),()1,(( HCjiLjiL BB  , ),( jiLB  are then removed as they 

should be vowels or noise. Adjust ),( jiLH  and set 1 jj . 

(4.2) Isolated vowels appearing above or below characters (illustrated in 

Figure 5.4(a)) are analysed. The positions of these vowels occupy 

certain distance from the characters. This significantly affects line 

separatation because Thai language has three levels (i.e. upper level, 

body level and lower level as shown in Figure 5.4 (b)) of texts, and 

some vowels belong to the upper level of the next line or the lower level 

of the current line. To calculate distances of vowels from the upper and 
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(5) Calculate the average value based on the number of lines )( avgLn  of all strips, 

and use this value to check the number of lines in each strip ))(( iLn  before 

checking the base line, ),( jiLB , as follows: 

(5.1) If ))(( avgLniLn  , ),( jiLB  is added from the same line of the closest 

left strips which is lower than the base line. Adjust ),( jiLH  and set 

1 jj . In case of the first strip, it may have the number of lines less 

than the number of lines in the strip of the text body so this needs to 

estimate the number of lines and base line from the first strip of text 

body that has avgLniLn )( . 

(5.2) If )),(),1(( HCjiLjiL BB  , the current line of this strip is 

assumed to be the base line of vowels or non-base line. 

(5.3) If the components of two lines are connected, they can be separated by 

checking  the gap between the two lines as shown in Figure 5.5. 

Touching consecutive lines can be separated into two lines by setting 

the base line position of the upper line as in Equation (5.7). 

 
2

),(),(
),(),(

jkLjiL
jkLjiL BB

BB


 , (5.7)

where i is the current strip, j is the current line position, and k is the 

current line position of the left strip. 

(6) Join the horizontal line from each strip and then form individual lines. 
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Figure 5.5 An example of touching components between two consecutive lines. 

The process of the MPP method can detect the base line of each text line 

from the documents, and individual lines (separated based-on the gap between lines) 

can be extracted from the document images. The next section describes a new 

proposed method that integrates the MPP method and smooth histogram of profile, 

and adaptive width-strip. 

5.2 Adaptive Partial Projection (APP) Method 

The proposed technique, called APP, is derived from the MPP method by 

integrating the smooth histogram of the profile. The improvement from the MPP 

method is to adapt the width of the strip based on the characters in each image and 

divide the strips based on divide and conquer strategies. Although the MPP method 

uses information related to vowels and touching components of two consecutive lines 

to detect the lines, the technique does not consider the prolonged part of the 

characters. Incorrect estimation of vowels may occur if the lower vowel and upper 

vowel of two consecutive lines are touching. In addition, if the upper vowel of 

current line is closer to upper lines than the current line, or the lower vowel of 

current line is closer to lower line than the current line, line estimation may be 

defined to the wrong line as shown in Figure 5.6.  
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size of the characters is varied and comes from several handwritten documents 

written by many writers; therefore, applying a global character size for all documents 

is not practical. 

This section outlines the underlying techniques of the Adaptive Partial 

Projection (APP) to detect lines in document images. In this method, pre-defined 

parameters are obtained automatically by finding the average width of characters in 

each image data. The image is then cropped by the global vertical and horizontal 

projection profile. Finally, the APP method is performed to separate the lines. 

1) Pre-defined parameters 

An advantage of the APP is the width of vertical strips and the height of 

characters are initiated automatically while other techniques (based on partial 

projection profile) are fixed or calculated from a dataset. Unlike the MPP, these two 

parameters are pre-defined automatically from a calculation based on the average 

width (WC) and height (HC) of the isolated characters of each image. The isolated 

characters are separated by using CC on the image of palm leaf manuscripts. The size 

of the width and height of characters are varied and adapted themselves according to 

the information in the images. Furthermore, these pre-defined parameters can be used 

with other scripts and do not need to determine the isolate characters before the 

processing. 

2) Image cropping 

To reduce the unrelated information on a palm leaf image, which are the 

boundary of an image and noise, an image is cropped by checking the first and final 

valleys of global horizontal and vertical projection profile of the image. 
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3) APP method 

Text images are divided into vertical strips and then the histogram of the 

projection profile is applied by smoothing the histogram of profile to separate lines. 

Smoothing is used to remove spurious peaks and valleys of the histogram. A moving 

average filter is implemented to smooth the histogram of profile based on the average 

value of the height of characters ( ), which has been defined previously. The size 

of a partial strip uses three characters which are the common length of words in Thai-

Noi scripts. The width of characters ( ) is calculated from the average value of 

the width of the isolated characters in each image as explained above. If the lines 

cannot be separated, divide and conquer strategy will then be applied to divide the 

strips into two parts and this process is iterated to find the baselines until the strip 

size are less than 75% of the width of characters. The approach to separate the lines 

by this technique is described as follows: 

(1) Find the number of lines )(Ln , the line position of each line )( pL  and the 

average height of lines )(HL  from the global horizontal projection profile. 

These values are calculated as given below: 

(1.1) Calculate the global horizontal projection profile of an image and 

smooth the histogram of profile by moving average filtering with HC. 

(1.2) Find the peaks of the histogram and then define Ln as the number of 

lines from the number of peaks and then define the line position ( pL ) 

from the peak position of the histogram, where Lnp ...,,2,1 . 

(1.3) Calculate the average value of the height of lines, )(HL  as follows: 

HC

WC
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Ln

LL

HL

Ln

p
pp 

 


2
1

 
(5.8)

(2) Divide the image into vertical strips as the following Equation:  

 
WS

W
N  , (5.9)

 
WCWS 3 , (5.10)

where N , W  and WS  denotes the number of the strips, the width of the 

image and the width of the strips, respectively. 

If the width of the last strip )( NWS  differs from WS  then NWS  is defined as 

below:  

 )1(  NWCWWSN . (5.11)

(3) Compute horizontal projection profile, )(iPy , which is obtained by summing 

the pixel values along the horizontal axis of each row ( y) as shown in 

Equation (5.12). 

 
 columnsx

y yxfiP
1

),()( , (5.12)

where rowsy 1  and Ni ,,2,1  . 
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(5.1) Find the valleys of the smooth histogram as shown in Figure 5.8(b). The 

valley of a histogram is the lowest point between two peaks. These 

valleys are defined as the estimation points of baselines in each strip. In 

Figure 5.8(b), four valley values are shown and they are used together 

with the final lowest value at the bottom of the diagram. 

(5.2) However, some obstructive components may occur at the estimation 

points of baselines and all valleys need to be tested. If two consecutive 

valleys are very close )
5

4
)(( 1 HCjj   , it can be assumed that it is 

the baseline of the vowel. To select  candidate valleys, projection profile 

))(( iPy  tested as follows: 

(5.2.1) If   0jyP   and   01 jyP   then go to (5.2.2),  

otherwise go to (5.2.3). 

(5.2.2) If    1 jyjy PSP   then delete j , 

otherwise delete 1j .β  

(5.2.3) If     0and0 1  jyjy PP   then go to (5.2.4), 

otherwise go to (5.2.5). 

(5.2.4) If HCjj   )( 1  then delete j , 

else if HCjj  )( 2  β ‐β Ht then delete 1j

,β   

otherwise set 2/)( 1 jjjj     and delete 1j .β  

(5.2.5) If   0jyP   then delete 1j , otherwise delete j . 
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(6) An incorrect top line (this may be the upper vowels of the first or unnecessary 

information) and bottom line (this may be the lower vowels of the last line or 

unnecessary information) are examined as follows: 

(6.1) For the top line: if 1Lj   then delete j β . 

(6.2) For the bottom line: if Lnj L1  β u then delete 1j . 

 

Figure 5.9 A hole and gap among text lines, and the gaps at left and right borders of 

image. 

(7) Test the number of base lines )1( M  as palm leaf manuscripts may have one 

or two holes and gaps among text lines, and the gaps at the left or right borders 

of the image as shown in Figure 5.9. Some base lines may occur due to vowels 

on the top and bottom of characters. These need to be checked, and insert or 

delete the correct base line to each strip. In each strip, therefore, correct base 

lines are inserted to text line or delected otherwise. This can be achieved by the 

following procedure. 

(7.1) If LnM  )1( , a baseline will be inserted by checking against pL . 

A hole among text lines 

The gaps at the left and right borders of image 

A gap among text lines 
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(8.1) If   0jyP  P β 0 then traverse the projection up and down from 

j  position to the size of vowels )(HV , which is estimated at the half 

of the height of characters )
2

(
HC

HV . Go to step (8.1.1). 

(8.1.1) If the first position ( F ) of   0jyP  is P β 0 between 

up traverse and down traverse, and if HVF j 2

1
   then 

the height )(H  is tested between 1j  and F .  

(8.1.2) If HLHHL
2

1
1

2

1
  then the new position is set to j . A 

sample result is shown in Figure 5.10(b). 

(8.2) If   0jyP  then it is a touching component as shown in Figure 

5.10(c), go to step (8). A sample result after separate this touching 

component is shown in Figure 5.10(d). 

(8.3) If a baseline overlaps one or more touching components, then divide the 

strip into two and repeat step (3) to step (8) to each of the strip. The 

recursion is halted when the width of the strips is less than 75% of the 

width of characters. 

(9) Join the horizontal lines from each strip and then form separate lines. 

The process can detect the baseline of each text line from the documents, 

and individual text lines can be extracted from the document images. The next 

section presents the assessment of the proposed method. 
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5.3 Assessment of the Proposed Methods 

The experimental results based on two line extraction techniques are 

presented in this section, (a) MPP and (b) APP. In the experiment, 552 text lines 

from 120 palm leaf manuscripts were sampled. To check whether a text line is 

extracted correctly, a boundary is drawn between two lines. The results of line 

extraction are measured by the rules presented in [89]. Sample results are shown 

from Figure 5.11 to Figure 5.13 and the results of the experiments are given in Table 

5.1. The experiment shows that the MPP and the APP technique correctly segmented 

158 lines (28.62%) and 351 lines of all lines (63.59%), respectively. There is one 

component (alphabet or vowel) out of the correct 144 lines of all lines (26.09%) and 

124 lines of all lines (22.46%) by using MPP and APP, respectively. For the lines 

with two components out of the correct lines, the number was 84 (15.22%) and 43 

(7.79%) by using MPP and APP, respectively. The rest are more than two out of the 

correct lines. 

The APP method can be used to separate some touching characters from 

consecutive lines. The APP method integrates the MPP method and smooth 

histograms with recursion so that the proposed method can employ with vowels, like 

in the MPP. The proposed method also varies the window size of the partial strip and 

window size of the height of characters according to the images. This method adjusts 

the size of characters automatically in each image. The APP also reduces the time for 

the line extraction process because the method determines three-character widths 

instead of one-character widths used in the MPP. In addition, the APP  

re-executes only some required partial strips. This technique also checks the 

prolonged characters during the process. However, false detection may result due to 
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overlapping characters. Furthermore, some binary images are vague and they have 

major effects on the accuracy of text line extraction. 

Table 5.1 Results from text line extraction. 

Number of 

components 

out from 

their correct 

line 

Percentage of 

components 

segmented 

within the 

correct line 

MPP APP 

Number 

of correct 

lines 

Percentage 

of correct 

line 

Number 

of correct 

lines 

Percentage 

of correct 

line 

0 100% 158 28.62% 351 63.59% 

1 98.00-99.99% 144 26.09% 124 22.46% 

2 96.00-97.99% 84 15.22% 43 7.79% 

3 94.00-95.99% 64 11.59% 21 3.80% 

4 95.99% 102 18.48% 13 2.36% 
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(a) Binary image 

 
 (b) MPP method 

 

 (c) APP method 

Figure 5.11 Sample result 1 of line extraction. 

 

(a) Binary image 

 
(b) MPP method 

 

 

(c) APP method 

Figure 5.12 Sample result 2 of line extraction. 
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(a) Binary image 

 
(b) MPP method 

 

(c) APP method 

Figure 5.13 Sample result 3 of line extraction. 

5.4 Summary 

This chapter describes the experiments on text line segmentation, and 

proposed two applied techniques based on partial projection profile; the MPP and 

APP methods. The MPP is based on analysis of vowels while the APP is improved 

by using smooth histogram of projection profile and it is able to define the size of 

strip automatically. 

From the evaluation of the proposed framework, it was found that the APP 

method generated dramatically higher accuracy than the MPP method. The APP 

method also reduced the time required because this technique will separate the strips 

wider than the MPP method. The APP method will divide each strip if obstructive 

components exist at the estimated points of baselines. The APP technique is an 
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improvement based on partial projection profile and it is anticipated that this work is 

significant for text line segmentation on palm leaf manuscripts. 

The final pre-processing step for recognition systems is character 

segmentation and this is described in the next chapter. 

 



 
 

Chapter  6 

Character Segmentation 

After text line segmentation, the next stage of automatic ancient document 

processing is character segmentation. Character segmentation has been proposed in 

literature for many years. In general, there are four approaches: classical approach, 

recognition-based segmentation, holistic approach, and hybrid methods [79]. 

Touching characters is the main issue of character segmentation. Therefore, a 

number of segmentation techniques have also been proposed to solve the problem. 

Character segmentation of Roman, Arabic, Indian, Chinese and Japanese handwritten 

has been published but there are few research reports on Thai handwritten 

documents. Concerning the research on Thai handwritten segmentation, mainly the 

classical approaches have been used [95], [96], [97] and demonstrations based on 

controlling the writing styles of the writers are not practical. Furthermore, all the 

reported studies were based on modern Thai language and it is different from ancient 

Thai languages. While it was found that touching component techniques could be 

applicable, they are not useful when dealing with practical ancient documents [98]. 

In terms of document image processing, it is desirable to have embedded 

tools for searching of blocks, lines and words, and the inclusion of a dedicated 

handwriting recognition system. Interactive tools are generally offered for 

segmentation and recognition correction purposes. Several projects in the past have 

mainly been concerned with printed materials. However, solutions to tackle Thai 

handwritten text accurately are yet to be developed. Furthermore, there is no OCR 
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systems, or tools currently available for the processing of ancient Thai handwriting 

and documents. 

Most of the past studies have focused on specific scripts. The proposed 

methods are difficult to apply to other scripts due to different characteristics in the 

scripts. This study developed a system for extracting scripts from palm leaf 

manuscripts composing with Thai-Noi script of ancient Thai language. To this date, 

there is no effective system for automatic separation of the characters in these scripts. 

To extract characters from the manuscript, a framework of character segmentation 

for ancient Thai handwriting has been proposed by applying the Contour Tracing 

algorithm [11], [99], [100], a trace of the background skeleton [132], and a combined 

method of segmentation.  

The background of these approaches is described in Section 6.1, the 

proposed framework of character segmentation is addressed in Section 6.2, and the 

subsequent section is an assessment of the proposed framework. The last section is 

the summary of this chapter. 

6.1 Background of Character Segmentation 

After the text line is extracted, isolated characters are then segmented. In 

this study, the Contour Tracing algorithm, trace of background skeleton, and a 

combined method of separation were applied to separate the characters. The related 

concepts of these techniques are explained in the following sections concerning 

contour tracing algorithm, thinning algorithm and Hough transform. 
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6.1.1 Contour Tracing Algorithm 

Contour tracing [11], [99], [100] is an algorithm applied to digital images 

for extracting the boundary of objects. These algorithms are also applied to separate 

characters. The boundary of an object P is defined as the set of border pixels of P

.There are two types of boundary pixels which are 4-conectivity and 8-connectivity 

as shown in Figure 6.1. 

 
(a) 4-connectivity (b) 8-connectivity 

Figure 6.1 Connectivity patterns. 

From relevant literature, the most common algorithms frequently used are 

the Square Tracing algorithm [11] and the Moor Neighbouring Tracing algorithm 

[99]. Both algorithms are easy to implement, but each of these algorithms has some 

deficiency and weak in stopping criterion [99]. 

Another algorithm proposed recently is the Theo Pavlidis’s algorithm [100]. 

This algorithm cited by Ghuneim [99] that is superior to both algorithms (Square 

Tracing and Moor Neighbouring Tracing). An example result of contour tracing 

algorithm is shown as Figure 6.2. 
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The first rule, pixel 1P  is checked. If pixel 1P  is black, pixel 1P  is defined 

to be the current boundary pixel as shown in Figure 6.4(a).  

The second rule, pixel 2P  is checked if pixel 1P  is white and pixel 2P  is 

black, pixel 2P  is defined to be the current boundary pixel as shown in Figure 

6.4(b). 

The third rule, pixel 3P  is checked if pixel 1P  and 2P  is white. If pixel 3P  

is black, pixel 3P  is defined to be the current boundary pixel as shown in  

Figure 6.4(c). 

The algorithm terminates the trace in two cases:  

1) If all three pixels in front of current pixel are white, then it needs to rotate 

90 degrees clockwise to face a new set of three pixels in front of the current pixel, 

and three rules are then applied. This indicates that the pixel is an isolated pixel.  

2) When the current boundary pixel is the start pixel and the trace is 

completed. 

The next section describes the thinning algorithm. 

6.1.2 Thinning Algorithm 

Thinning [118] is a process for finding the skeleton of an object. After the 

pixels have been peeled off, the pattern will be recognised. Hence, the obtained 

skeleton should have the following properties: it must be as thin as possible; it should 

be connected and centred. An example result of thinning algorithm is shown in 

Figure 6.5. There are many algorithms that can be used for skeletonisation of binary 

patterns in digital images and two examples are the Hilditch’s [133] and Zhang-Suen 

[134] thinning algorithms. These algorithms are easy to implement and the Zhang-
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the second sub-iteration, the north or west boundary pixels, or the south-east corner 

pixels are removed as shown in Figure 6.7(d), (e) and (f) respectively. 

 

Figure 6.7 Zhang-Suen thinning algorithm [11]. 

6.1.3 Hough Transform 

Hough transform [11], [117] is applied in order to detect lines in horizontal 

direction for path of components and vertical direction for junctions. Hough 

transform is calculated in the parameter space as expressed in Equation (6.1). 

  sincos yx   (6.1)

where  is the length from the origin to the line as shown in Figure 6.8, and   is the 

angle of  with respect to the x -axis.  

Therefore, a line in the image space is mapped to a unique point, ),( 00  . 
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Figure 6.9 A framework for hierarchical character segmentation. 

Firstly, the contour tracing algorithm is executed as described in Section 

6.1.1. This method is suitable for extracting over segmented characters in images and 

slant writing styles. The characters of text line are then separated. Although most of 

the components are isolated, touching components may still occur.  
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The criteria of segmented components are described in the next sub-section. 

6.2.1 Criteria of Segmented Components 

After the characters are isolated, the mean and standard deviation width of 

all the segmented components ( and  ) in each manuscript are calculated. The 

values are then used for the analysis of the width of the segmented components. 

If the width of the segmented component is greater than the width threshold 

( wT ) value which is shown in Equation (6.2), it will be separated again by using a 

trace of the background skeleton. If the components are still connected, the combined 

method of separation is used to separate touching components again. 

 
2

1
wT  (6.2)

The width of the segmented components from this process is checked. If the 

width is greater than the threshold value of the average width of the components, this 

means there are some connected characters are not separated. 

6.2.2 A Trace of Background Skeleton 

A trace of background skeleton approach [132] is applied to separate the 

touching components. Background skeleton technique was used to segment the 

connected characters. It is processed by the Zhang-Suen thinning algorithm that 

described in Section 6.1.2. Contour tracing algorithm is then applied to extract the 

skeleton of the background. An example result after this process is shown in Figure 

6.10. 
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The overall process of the proposed method is shown in Figure 6.11, and the details 

of this method are explained in the following section. 

 

Figure 6.11 The combined method of segmentation for connected components of 

handwritten segmentation. 

6.2.3.1 Points of Foreground Detection 

To identify the points of connected character (foreground), the three steps 

are outlined as follows. 

 Foreground skeletons: To detect touching component, foreground skeletons are 

extracted by the Zhang-Suen thinning algorithm.  

 Path and junction detection: This step is to identify the path and junction of the 

object. The process is given as follows. 
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 Lines in vertical direction for junction: The parameter for vertical 

direction is the degree of angle )(  of lines. In this case,   is less 

than 01.0 , or   is more than 99.0 . 

6.2.3.2 Points of Background Detection 

For character segmentation, background information of image is considered 

in order to identify the position of connected path as the foreground information 

alone cannot identify precisely. The process of points of background detections 

described as follows. 

 Background skeletons: To find the path of background in vertical direction, the 

background skeletons are extracted by using Zhang-Suen thinning algorithm. 

 Top and bottom path detection: This step is to detect the path of top and bottom 

between connected characters in vertical direction. The path is detected as the 

same as path and junction as explained in points of foreground detection (Section 

6.2.3.1). Hough transform is used to detect the lines in vertical direction, by 

setting   to less than 45 or greater than 135 degrees. 

6.2.3.3 Point Estimation and Separation 

The purpose of this step is to estimate the possible points of separation. 

Junctions and paths from the points of foreground detection are then identified as 

shown in Figure 6.13(c) between two characters, and top and bottom path is detected 

as shown in Figure 6.13(e). If there is an intersection point between the path (inside 

junction) from the foreground detection and path from the background detection, the 
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Figure 6.14 Examples of two connected components of this dataset. 

   

Figure 6.15 Examples of three or more connected components of this dataset. 

The connected components were separated by tracing background skeleton 

and the correct rate of segmented characters had improved at 82.57%. After the 

combined method of segmentation for touching components from the second step 

was processed, the correct rate of segmented characters was 83.83%. After the 

contour tracing algorithm was applied and touching components from this step was 

separated by a trace of background skeleton and combined method of segmentation, 

the correct rate had increased 2.59%. This process could improve the segmentation 

method for touching components shown as Figure 6.16. 



 
 

 

(a) An image from text line segmentation 

 

(b) The results of character segmentation 

Figure 6.16 A sample result of a proposed framework of character segmentation for ancient Thai handwriting. 
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Table 6.1 Accuracy of character segmentation. 

Manuscripts 

Accuracy 

Total 

components 

Correct segmentation by using 

contour tracing algorithm (1) 

Correct segmentation after using 

tracing background skeleton (2) 

Correct segmentation after 

using combined method (3) 

Difference between after (1) and 

(3) 

Components Rates (%) Components Rates (%) Components Rates (%) Components Rates (%) 

1 288 234 81.25 235 81.60 237 82.29 3 1.04 

2 284 199 70.07 204 71.83 207 72.89 8 2.82 

3 298 258 86.58 260 87.25 261 87.58 3 1.00 

4 260 233 89.62 240 92.31 245 94.23 12 4.61 

5 269 202 75.09 211 78.44 219 81.41 17 6.32 

6 273 232 84.98 234 85.71 236 86.45 4 1.47 

7 305 248 81.31 253 82.95 255 83.61 7 2.30 

8 228 186 81.58 186 81.58 188 82.46 2 0.88 

9 270 216 80.00 219 81.11 225 83.33 9 3.33 

10 227 187 82.38 189 83.26 192 84.58 5 2.20 

Total 2702 2195 81.24 2231 82.57 2265 83.83 70 2.59 
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6.4 Summary 

This chapter describes the technique of character segmentation for ancient 

Thai Handwriting, and the proposed framework is based on hierarchical character 

segmentation. The proposed framework of hierarchical character segmentation is to 

improve the performance of connected components by applying the trace of 

background skeleton and the combined method of segmentation after the contour 

tracing algorithm. 

From the evaluation of the proposed framework, it was found that the 

touching components occurred after the contour tracing algorithm. The touching 

components are difficult to separate due to the writing style and smearing from ink. 

Moreover, some of the binary images are unclear and they have a major effect on the 

accuracy of text line and character segmentation. After the trace of background 

skeleton and the combined method of segmentation have been applied, the approach 

can improved the performance of separating connected components. A main problem 

of segmentation is the touching characters and the proposed techniques applied in 

this system have separated most characters correctly. 

The next chapter provides the conclusion and discussion on future work. 

 



 
 

Chapter  7 

Conclusion and Future Work 

7.1 Conclusion 

In Thailand, there is an increasing demand to access the visual content of 

documents stored in ancient and cultural archives. In order to extract information	

from	ancient	documents,	 it	 is	essential	 to	develop efficient image pre-processing 

and processing techniques in the recognition systems. The ancient manuscripts in this 

study are palm leaves from Thailand. The study focuses on the pre-processing 

techniques for information extraction. To obtain optimum binary outputs from 

multiple binarisation techniques, this study proposes a novel technique for the 

selection of binarisation-technique candidates in Chapter 3 and a novel method for 

combining multiple binarisation technique in Chapter 4. In addition, an intelligent 

approach for text line and character segmentation has also been proposed in  

Chapter 5 and Chapter 6.  

In this study, the pre-processing framework of ancient Thai manuscripts 

improves the performance of the information extraction approaches and generates 

better results for the recognition or information extraction system. A conclusion of 

this study is described in the following sections. 
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7.1.1 Framework for the Selection of Binarisation 

Techniques 

There are several techniques for binarising text in image documents. The 

performance of these techniques is differing and depended on the image 

characteristics. Some techniques require certain datasets while the others work in 

different way. In order to improve the document image analysis performance, an 

approach for selecting the appropriate binarisation technique is then necessary. 

This study has proposed a selection framework for multiple binarisation 

techniques using SVM. The proposed framework aims to selecting the optimum 

binarisation technique from multiple binarisation techniques. The performance of the 

proposed techniques is evaluated based on F-measure, Geometric Mean and area 

under the ROC curve, by using a dataset of palm leaf images. This study has also 

improved the performance of the proposed framework by treating imbalanced data 

using the SMOTE technique. Results from the techniques have demonstrated that the 

selection framework of binarisation techniques is useful for the recommendation of 

appropriate binarisation techniques. In order to deal with unbalanced data, the 

SMOTE technique has been applied to up-sample the instances of minority classes. 

This framework can be applied to select the optimum binarisation technique 

from multiple binarisation techniques. However, it is unsuitable for real world 

dataset as it is necessary to treat imbalanced data before learning method. In addition, 

it also requires a large prior dataset for learning. 
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On the other hand, an optimal binarisation output can be generated by 

combining multiple binarised images. Summary of this technique is described in the 

following section. 

7.1.2 Generation of Optimal Binarisation Output 

This study has suggested a combination of multiple binarised images to 

generate an optimal output based on majority vote scheme using information of local 

pixels in the images. The objective is to select the optimal output pixels in order to 

produce the most likely binarised image.The proposed technique can be used to 

combine different binarised outputs from different techniques to produce an optimal 

output. The differences between the proposed technique and the selection framework 

of binarisation techniques using SVM are: 

1) the combination method does not need learning  mechanisms, 

2) the combination method does not depend on neither the dataset nor prior 

dataset, 

3) the combination method determines the output pixel from the input 

pixels of multiple input images - using the information of local 

interaction between the pixels in the images.  

The key advantages of the proposed technique are simplicity and it does not 

require a large prior dataset. The results from the proposed technique have been 

compared with those from different independent binarisation techniques, and those 

from the combination of binarisation technique using KSOM (CBT-KSOM). The 

benchmark dataset (DIBCO series) from the competition of binarisation technique 

(DIBCO) is used in this evaluation.  The evaluation methods consist of F-measure, 
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Peak Signal to Noise Ratio (PSNR), Distance Reciprocal Distortion (DRD) and 

Misclassification Penalty Metric (MPM). The performance of the proposed technique 

is better than those from other binarisation techniques. This method also has been 

applied to practical ancient Thai manuscripts on palm leaves and the results have 

been shown in previous chapters. 

7.1.3 Text Line Segmentation 

The objectives of line segmentation are to extract precise lines and locate 

text regions in document images. Text line segmentation can potentially improve the 

performance of character segmentation and recognition. In this study, text line 

segmentation algorithms based on partial projection profiles have been proposed. In 

order to improve the partial projection profile segmentation, this study has proposed 

a Modified Partial Projection (MPP) approach to address issues due to touching 

components of two consecutive lines, and analyse the components of texts at vowel 

levels. In addition, an Adaptive Partial Projection (APP) method has been proposed 

by applying the MPP method with smooth histogram, and adapting partial 

projections using divide and conquer strategies. 

The proposed technique aims to extract text lines from the images in order 

to identify the characters or alphabets in proper sequences. The APP technique is an 

improvement based on partial projection profile and this work addresses issues 

associated with text line segmentation on palm leaf manuscripts. The contributions of 

the study are still the development of analysis techniques for touching components 

between two consecutive lines and the analysis of the components of texts at vowel. 

Moreover, the APP technique adapts the partial projections using divide and conquer 
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strategies based on the size of characters in each image. The size of strip is flexible 

for each images and the APP can reduce the time for the line segmentation process as 

it re-executes only some required partial strips due to obstructive objects. 

Furthermore, some binary images are vague and they have major effects on the 

accuracy of text line extraction. 

7.1.4 Character Segmentation 

This study has proposed the framework of hierarchical character 

segmentation. The framework consists of three steps; (i) a contour tracing algorithm 

for the identification of individual characters, (ii) a separation of touching 

components using a trace of background skeleton, and (iii) a separation of touching 

components using combined method. The applied technique aims to extract 

characters from the text line images for the identification of individual characters.  

The major contribution of this study is the development of techniques that 

consider touching components by a trace of background skeleton, and combined 

method of segmentation. The proposed method can successfully segment characters 

from text line images. Although some of touching components can be separated, 

some complex connected components are still difficult to be segmented.  

 

The overall contributions of this study are summarised as follows: 

 An investigation on palm leaf manuscripts dataset with ancient Thai-language 

which have received little attention from researchers. 

 A study of candidate binarisation techniques for background elimination. 
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 Addressing the problem of background elimination as there is no single 

effective technique for all kinds of digital documents, even in the same 

problem domain.  

 Proposal and development of a selection framework of binarisation technique 

using SVMs and treatment of imbalanced data. 

 Proposal and development of a combination technique for generating an 

optimum output from multiple binarised images based on majority vote scheme 

and local pixel information. The performance of the proposed technique is 

better that the binarised images from different binarisation techniques and the 

combination of binarisation technique using KSOM. 

 Proposal and development of the Adaptive Partial Projection method for text 

line segmentation by applying the Modified Partial Projection method with 

smooth histogram and adapting partial projections using divide and conquer 

strategies with significant results. 

 Proposal and development of the hierarchical approach for character 

segmentation by applying contour tracing algorithm and separating touching 

components using a trace of the background skeleton, and a combined method 

with significant results. 

Future work on this study is described in the next section. 

7.2 Future work 

Future work of this study may be extended as follows: 

1) The pre-processing framework of this study can be integrated with a 

number of document image analysis applications such as Optical Character 
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Recognition (OCR) systems and Text-Based Image Retrieval (TBIR) systems for 

information extraction. With respect to these systems, there are no specific off-line 

OCR systems capable of dealing with handwritten Thai or ancient Thai scripts, and 

there are also no TBIR systems for Thai scripts. This is a challenge for researchers 

working on OCR system for Thai handwritten documents, ancient Thai scripts and 

TBIR system for Thai scripts.  

2) On the selection framework of binarisation techniques, this study 

developed a prototype for future research in this area. This framework can be 

improved to provide selections to be ranked by the user in a semi-automatic 

approach. 

3) As regard to text line segmentation based on Partial Projection Profile, 

the APP technique can be improved by considering the position of touching 

components of consecutive lines and prolong the path of characters by using blocks 

of characters. This technique could be compared with other text line segmentation 

approaches such as smearing and grouping methods. In addition, the hit-rate may be 

used as evaluation measures. 

4) In character segmentation, dealing with touching components remains an 

issue in this problem domain. This is a challenge for researchers in developing 

techniques to separate touching components by determining the possible positions of 

connected characters due to smearing, water reservoir and falling path. However, this 

research does not consider the touching characters in vertical direction such as 

touching components between upper vowel and body consonant, and between lower 

vowel and the body consonant. 
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5) The major public benchmark datasets used in this study is obtained from 

Roman scripts of ancient documents as there is no benchmark dataset in Thai scripts. 

It is necessary to generate benchmark datasets for Thai scripts on ancient document 

for future research in this problem.  
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Appendix A. Details of Evaluation Results of Benchmark Datasets (Sub-section 

4.3.3) 

Table A.1 DIBCO2011 dataset. 

File name Technique RC PR FM PSNR DRD MPM 
HW1.bmp OT 97.2664 52.0163 67.7833 9.3123 27.1653 80.2695 
HW2.bmp OT 80.6106 98.262 88.5654 20.195 2.8507 0.034774 
HW3.bmp OT 79.8243 95.6171 87.0099 17.4547 3.199 0.66093 
HW4.bmp OT 87.73 34.1546 49.1675 7.7207 35.7906 82.9115 
HW5.bmp OT 91.3403 88.6709 89.9858 16.4122 4.0221 6.9763 
HW6.bmp OT 76.6671 56.4216 65.0045 12.1814 16.0002 17.4345 
HW7.bmp OT 82.3037 77.4436 79.7997 17.6612 6.6356 4.668 
HW8.bmp OT 79.9805 97.8663 88.024 19.8547 2.6451 0.083096 
PR1.bmp OT 92.4493 95.8012 94.0954 17.0944 3.0212 4.3337 
PR2.bmp OT 96.5374 62.09 75.5734 11.3624 13.8328 37.7995 
PR3.bmp OT 90.3699 93.4306 91.8748 15.3069 3.1164 4.9536 
PR4.bmp OT 90.5423 97.441 93.8651 18.7318 2.5534 0.51576 
PR5.bmp OT 96.2595 68.3405 79.9322 11.7588 9.5483 19.3727 
PR6.bmp OT 91.9136 88.4539 90.1506 20.0184 4.705 1.7505 
PR7.bmp OT 99.2466 8.9497 16.4189 6.0261 273.4698 125.2335 
PR8.bmp OT 71.0707 97.256 82.1266 13.7069 4.5477 1.0282 

HW1.bmp SAU 90.0453 58.7717 71.1224 10.3314 21.1316 60.951 
HW2.bmp SAU 87.7329 89.8383 88.7731 19.9171 3.6898 2.5196 
HW3.bmp SAU 74.4593 97.6552 84.4942 16.8606 3.686 0.74237 
HW4.bmp SAU 83.8048 61.3492 70.84 11.919 12.8207 33.909 
HW5.bmp SAU 88.2122 88.2177 88.215 15.77 4.8129 8.1407 
HW6.bmp SAU 78.963 64.282 70.8702 13.2253 12.5239 18.8414 
HW7.bmp SAU 86.6232 36.3099 51.1706 11.676 31.8012 35.1987 
HW8.bmp SAU 82.5729 76.1564 79.2349 16.8691 7.4219 7.1408 
HW1.bmp SAU 90.0453 58.7717 71.1224 10.3314 21.1316 60.951 
HW2.bmp SAU 87.7329 89.8383 88.7731 19.9171 3.6898 2.5196 
HW3.bmp SAU 74.4593 97.6552 84.4942 16.8606 3.686 0.74237 
HW4.bmp SAU 83.8048 61.3492 70.84 11.919 12.8207 33.909 
HW5.bmp SAU 88.2122 88.2177 88.215 15.77 4.8129 8.1407 
HW6.bmp SAU 78.963 64.282 70.8702 13.2253 12.5239 18.8414 
HW7.bmp SAU 86.6232 36.3099 51.1706 11.676 31.8012 35.1987 
HW8.bmp SAU 82.5729 76.1564 79.2349 16.8691 7.4219 7.1408 

  



181 
 

File name Technique RC PR FM PSNR DRD MPM 
HW1.bmp IIF 75.6838 60.7859 67.4217 10.3302 21.2355 48.1587 
HW2.bmp IIF 85.3641 98.5495 91.4841 21.3669 2.3472 0.038541 
HW3.bmp IIF 64.9205 97.8002 78.0384 15.5991 5.7265 0.42536 
HW4.bmp IIF 85.5029 94.9353 89.9726 17.5062 2.645 0.88754 
HW5.bmp IIF 78.5777 90.2343 84.0035 14.733 6.6235 5.7814 
HW6.bmp IIF 72.3073 94.5155 81.9332 16.3122 5.2743 0.66067 
HW7.bmp IIF 88.0178 69.0459 77.386 16.7461 9.1779 7.9842 
HW8.bmp IIF 65.7888 97.5591 78.5844 17.6862 5.3571 0.14482 
PR1.bmp IIF 50.9875 87.5296 64.4385 10.2367 20.0258 11.182 
PR2.bmp IIF 85.7926 78.3814 81.9197 13.5316 7.8129 15.6563 
PR3.bmp IIF 77.1286 89.6822 82.9331 12.3271 7.2633 5.8898 
PR4.bmp IIF 58.7665 97.6255 73.3683 13.1632 12.8939 1.0908 
PR5.bmp IIF 85.1212 92.4703 88.6437 15.2148 3.4153 0.80003 
PR6.bmp IIF 83.2102 90.0068 86.4752 18.8924 6.4988 0.58174 
PR7.bmp IIF 67.7709 93.2993 78.5121 20.3779 7.3201 0.032854 
PR8.bmp IIF 73.3063 94.6111 82.6072 13.7161 4.6815 0.54106 
        
HW1.bmp ALL 95.2804 69.3055 80.2433 12.2584 13.308 43.4021 
HW2.bmp ALL 89.875 95.5614 92.631 21.8256 1.9099 0.34599 
HW3.bmp ALL 73.9249 98.7338 84.547 16.9094 3.5724 0.15566 
HW4.bmp ALL 85.4033 71.2983 77.716 13.4072 8.4733 21.334 
HW5.bmp ALL 92.8193 88.2458 90.4748 16.5834 3.9143 7.2771 
HW6.bmp ALL 77.9992 72.5619 75.1824 14.2309 9.3001 8.7361 
HW7.bmp ALL 88.7867 44.7526 59.5096 13.0378 22.8105 25.52 
HW8.bmp ALL 84.4144 93.6113 88.7753 19.9387 2.8138 1.0086 
PR1.bmp ALL 85.6107 88.4734 87.0185 13.6673 7.7273 19.4207 
PR2.bmp ALL 89.8151 69.5168 78.373 12.3625 10.5725 30.2914 
PR3.bmp ALL 88.0544 93.6589 90.7702 14.8136 3.4845 8.9624 
PR4.bmp ALL 86.9304 92.5563 89.6552 16.4402 5.094 6.2171 
PR5.bmp ALL 91.0853 79.351 84.8142 13.4669 5.9405 21.207 
PR6.bmp ALL 93.1504 28.8798 44.0902 9.3133 75.3535 69.6227 
PR7.bmp ALL 85.9244 69.0401 76.5624 18.8608 12.3681 4.2892 
PR8.bmp ALL 74.8325 96.7508 84.3917 14.1896 3.9934 1.1617 
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File name Technique RC PR FM PSNR DRD MPM 
HW1.png BE 97.9942 64.0632 77.4765 11.4148 16.5942 52.7016 
HW2.png BE 86.7076 91.7181 89.1425 20.1314 3.1732 0.1988 
HW3.png BE 87.5892 86.8382 87.2121 17.1297 3.9288 3.2207 
HW4.png BE 85.8671 72.266 78.4816 13.5781 8.0216 17.611 
HW5.png BE 95.8634 86.6538 91.0262 16.7286 3.9118 7.6138 
HW6.png BE 67.3571 81.6947 73.8363 14.5601 7.8736 2.5068 
HW7.png BE 85.1381 82.3058 83.698 18.6524 5.0083 2.2335 
HW8.png BE 88.4162 79.7633 83.8672 17.9152 5.5826 4.1823 
PR1.png BE 92.6785 95.854 94.2395 17.1976 3.0149 3.1992 
PR2.png BE 92.2009 80.8692 86.1641 14.6001 5.9716 16.4211 
PR3.png BE 93.7104 91.6541 92.6709 15.6346 3.0079 3.2468 
PR4.png BE 92.2398 95.9482 94.0575 18.7985 2.681 0.59457 
PR5.png BE 92.3573 86.6453 89.4102 15.2013 3.4068 2.8266 
PR6.png BE 91.7959 39.7225 55.4502 11.3589 46.4872 42.2992 
PR7.png BE 91.5929 30.973 46.2919 12.7969 56.3671 21.9566 
PR8.png BE 78.8796 89.0426 83.6535 13.722 4.7334 1.5514 

HW1.png LMM 91.9588 63.9539 75.4413 11.1996 17.1329 52.0592 
HW2.png LMM 77.8276 99.114 87.1904 19.7865 3.212 0.037133 
HW3.png LMM 76.8954 98.5046 86.3689 17.3757 3.19 0.10892 
HW4.png LMM 79.3277 88.293 83.5706 15.3668 4.557 5.1551 
HW5.png LMM 89.2563 95.3456 92.2005 17.7035 2.6081 1.8792 
HW6.png LMM 58.8293 87.2936 70.2891 14.382 8.0108 1.6086 
HW7.png LMM 78.0747 96.704 86.3965 19.9523 3.025 0.10621 
HW8.png LMM 80.1811 98.2974 88.3198 19.967 2.5598 0.033334 
PR1.png LMM 85.3207 98.4058 91.3973 15.6821 4.0073 1.9823 
PR2.png LMM 88.1862 77.6269 82.5703 13.6056 7.7575 21.7098 
PR3.png LMM 87.3189 97.4977 92.128 15.6056 2.6095 0.83918 
PR4.png LMM 81.897 99.6159 89.8916 16.8111 4.0401 0.12096 
PR5.png LMM 84.5499 96.7319 90.2316 15.9752 2.5119 0.23004 
PR6.png LMM 69.4549 99.5926 81.8373 18.1573 6.6669 0.045641 
PR7.png LMM 90.6123 88.8068 89.7005 22.8888 3.8254 0.4001 
PR8.png LMM 69.7723 97.7267 81.4168 13.5801 4.6759 0.45281 
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File name Technique RC PR FM PSNR DRD MPM 
HW1.bmp KSOM-G1 93.0967 60.648 73.4481 10.691 18.7267 52.1817 
HW2.bmp KSOM-G1 88.5911 82.7929 85.5939 18.6335 3.9819 0.10161 
HW3.bmp KSOM-G1 80.5502 85.3621 82.8864 16.0072 4.3882 0.33958 
HW4.bmp KSOM-G1 82.5552 78.9075 80.6901 14.3397 5.2926 3.2814 
HW5.bmp KSOM-G1 90.6744 81.2687 85.7143 14.6899 5.5023 6.5717 
HW6.bmp KSOM-G1 78.5568 51.5437 62.2459 11.5578 17.818 17.7861 
HW7.bmp KSOM-G1 83.1706 73.2871 77.9167 17.1249 6.682 2.9439 
HW8.bmp KSOM-G1 82.7118 82.3686 82.5398 17.7921 4.3396 0.13414 
PR1.bmp KSOM-G1 88.5003 86.8698 87.6775 13.7821 7.5181 17.8133 
PR2.bmp KSOM-G1 88.4086 63.8886 74.1747 11.4215 13.1361 32.0453 
PR3.bmp KSOM-G1 89.5997 86.8245 88.1903 13.5423 4.708 7.5419 
PR4.bmp KSOM-G1 84.0422 93.3796 88.4652 16.0561 5.4811 2.4441 
PR5.bmp KSOM-G1 88.5445 78.4412 83.1872 13.0636 5.821 7.2949 
PR6.bmp KSOM-G1 91.0871 87.327 89.1675 19.5968 4.9955 1.3385 
PR7.bmp KSOM-G1 85.1232 48.0362 61.415 15.779 26.3922 9.6194 
PR8.bmp KSOM-G1 74.2042 86.3997 79.8389 12.8737 5.3752 1.3973 

HW4.tif LAMV-G1 84.2341 78.1194 81.0616 14.3566 6.3993 13.3945 
HW5.tif LAMV-G1 92.2374 91.9939 92.1155 17.5097 2.9958 4.4808 
HW6.tif LAMV-G1 68.6161 79.9389 73.846 14.4818 8.1443 3.2658 
HW7.tif LAMV-G1 82.4658 93.8691 87.7987 20.257 2.9426 0.33997 
HW8.tif LAMV-G1 81.8836 97.951 89.1996 20.2589 2.3805 0.054792 
HW1.tif LAMV-G1 95.6311 63.6057 76.398 11.2568 17.2542 54.4508 
HW2.tif LAMV-G1 82.2218 98.4733 89.6167 20.5791 2.6078 0.0313 
HW3.tif LAMV-G1 78.8124 98.3646 87.5096 17.7053 2.9315 0.10975 
PR1.tif LAMV-G1 86.883 94.7932 90.6659 15.2141 4.9158 7.4773 
PR2.tif LAMV-G1 91.0987 72.1521 80.5259 12.874 9.45 26.8617 
PR3.tif LAMV-G1 87.6953 94.7951 91.1071 15.0089 3.2413 4.8791 
PR4.tif LAMV-G1 85.7102 98.4707 91.6484 17.5266 3.4149 0.72319 
PR5.tif LAMV-G1 91.9954 87.2716 89.5713 15.2928 3.5241 8.0176 
PR6.tif LAMV-G1 92.0542 86.4432 89.1605 19.5478 5.6 2.7831 
PR7.tif LAMV-G1 88.1249 69.3553 77.6215 19.0114 12.0864 4.2999 
PR8.tif LAMV-G1 71.6492 97.3848 82.5579 13.8005 4.4371 0.97767 
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File name Technique RC PR FM PSNR DRD MPM 
HW1.tif LAWMV-G1 93.879 67.1172 78.2738 11.8022 15.0064 46.977 
HW2.tif LAWMV-G1 86.4787 98.7508 92.2082 21.7307 1.8913 0.014412 
HW3.tif LAWMV-G1 73.2156 99.1205 84.2211 16.8439 3.6411 0.10477 
HW4.tif LAWMV-G1 86.4535 80.0383 83.1223 14.853 5.7487 12.4442 
HW5.tif LAWMV-G1 91.2164 91.7639 91.4893 17.1966 3.277 5.0423 
HW6.tif LAWMV-G1 78.519 78.65 78.5844 15.0345 7.4487 5.4018 
HW7.tif LAWMV-G1 87.0717 73.2528 79.5667 17.3541 7.6593 7.149 
HW8.tif LAWMV-G1 80.1348 98.6325 88.4266 20.0147 2.5374 0.023214 
PR1.tif LAWMV-G1 86.6328 95.0148 90.6304 15.2084 4.8997 7.0553 
PR2.tif LAWMV-G1 90.49 72.9069 80.7524 12.9661 9.1911 25.5105 
PR3.tif LAWMV-G1 87.2804 94.9087 90.9349 14.938 3.2764 4.5757 
PR4.tif LAWMV-G1 85.3016 98.3691 91.3705 17.392 3.5466 0.75069 
PR5.tif LAWMV-G1 91.3764 86.5023 88.8726 15.0064 3.8458 10.2657 
PR6.tif LAWMV-G1 91.6768 86.6833 89.1102 19.5431 5.584 2.7736 
PR7.tif LAWMV-G1 89.0696 87.9858 88.5244 22.4365 4.4295 0.76081 
PR8.tif LAWMV-G1 70.7382 97.6864 82.0564 13.7065 4.5198 0.64371 

HW1.tif LAMV-G2 95.1601 66.5791 78.3443 11.7613 15.188 48.6068 
HW2.tif LAMV-G2 79.9767 98.8515 88.418 20.1664 2.9363 0.037908 
HW3.tif LAMV-G2 81.0027 98.0757 88.7254 18.0909 2.6661 0.11393 
HW4.tif LAMV-G2 81.2443 87.1971 84.1155 15.4379 4.5119 6.1859 
HW5.tif LAMV-G2 92.7332 94.5953 93.655 18.5019 2.2263 2.5884 
HW6.tif LAMV-G2 59.4601 87.6977 70.8697 14.4571 7.7958 1.4321 
HW7.tif LAMV-G2 79.6578 97.6798 87.753 20.389 2.6759 0.096956 
HW8.tif LAMV-G2 82.6398 98.113 89.7141 20.4559 2.2551 0.028631 
PR1.tif LAMV-G2 88.7564 98.574 93.4079 16.7613 3.0244 1.6731 
PR2.tif LAMV-G2 89.7019 82.4896 85.9447 14.6401 5.8484 16.6732 
PR3.tif LAMV-G2 90.0147 97.8171 93.7538 16.5542 2.0086 0.71324 
PR4.tif LAMV-G2 86.937 99.6684 92.8684 18.2082 2.7552 0.045846 
PR5.tif LAMV-G2 88.4998 95.7642 91.9888 16.722 2.0384 0.24948 
PR6.tif LAMV-G2 79.8743 99.0376 88.4296 19.845 4.3014 0.045404 
PR7.tif LAMV-G2 92.4181 87.6588 89.9756 22.934 3.962 0.7066 
PR8.tif LAMV-G2 70.9346 97.9894 82.2954 13.7653 4.4677 0.45243 
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File name Technique RC PR FM PSNR DRD MPM 
HW1.tif LAWMV-G2 94.1737 66.4857 77.9438 11.7047 15.3024 48.5615 
HW2.tif LAWMV-G2 79.5098 98.9124 88.1561 20.0818 2.9808 0.036089 
HW3.tif LAWMV-G2 79.7382 97.543 87.7465 17.7495 2.9468 0.28869 
HW4.tif LAWMV-G2 80.8264 85.2097 82.9602 15.0953 5.0457 8.7802 
HW5.tif LAWMV-G2 92.0882 94.6861 93.3691 18.3275 2.2947 2.6043 
HW6.tif LAWMV-G2 59.4273 87.2177 70.6892 14.4216 7.8611 1.6012 
HW7.tif LAWMV-G2 79.7294 94.831 86.6269 19.947 3.1468 0.81109 
HW8.tif LAWMV-G2 82.2797 94.2049 87.8394 19.6561 3.0325 0.87807 
PR1.tif LAWMV-G2 87.732 98.5977 92.848 16.4316 3.2812 1.6763 
PR2.tif LAWMV-G2 88.8377 82.6662 85.6409 14.5739 5.8986 16.5138 
PR3.tif LAWMV-G2 89.4606 97.788 93.4391 16.3529 2.0968 0.76785 
PR4.tif LAWMV-G2 85.5432 99.6371 92.0538 17.7704 3.0948 0.084896 
PR5.tif LAWMV-G2 87.7606 96.1727 91.7743 16.6335 2.0932 0.23196 
PR6.tif LAWMV-G2 78.7423 73.017 75.7716 16.0263 13.8519 8.8848 
PR7.tif LAWMV-G2 91.9158 68.7109 78.6372 19.0867 11.933 4.287 
PR8.tif LAWMV-G2 70.7199 98.0545 82.1737 13.7423 4.4848 0.45414 

HW1.tif LAMV-G3 93.5117 65.3889 76.9617 11.4911 16.1204 49.8012 
HW2.tif LAMV-G3 84.9773 98.3706 91.1848 21.2223 2.2136 0.026465 
HW3.tif LAMV-G3 78.4917 98.526 87.3751 17.6698 2.9692 0.11211 
HW4.tif LAMV-G3 83.2682 83.2044 83.2363 15.0514 5.2295 9.0088 
HW5.tif LAMV-G3 92.6765 91.7226 92.1971 17.5381 3.008 4.8429 
HW6.tif LAMV-G3 67.8037 85.6105 75.6737 14.9544 7.0688 2.2183 
HW7.tif LAMV-G3 83.8076 93.3263 88.3112 20.3986 2.9075 0.44113 
HW8.tif LAMV-G3 84.0029 97.2489 90.1419 20.59 2.2094 0.10048 
PR1.tif LAMV-G3 87.0257 97.5898 92.0055 15.9434 3.8428 3.1246 
PR2.tif LAMV-G3 90.7202 78.738 84.3055 14.0283 7.045 20.8315 
PR3.tif LAMV-G3 89.2196 97.0934 92.9901 16.0562 2.3574 1.2582 
PR4.tif LAMV-G3 86.9286 99.0606 92.5989 18.0349 2.9745 0.39239 
PR5.tif LAMV-G3 89.6624 93.3991 91.4926 16.3809 2.3813 1.7217 
PR6.tif LAMV-G3 88.9967 68.3143 77.2959 15.8634 15.2651 12.4349 
PR7.tif LAMV-G3 89.524 84.2544 86.8093 21.7245 5.6536 1.2412 
PR8.tif LAMV-G3 73.6178 97.4597 83.8774 14.0933 4.1004 0.38523 
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File name Technique RC PR FM PSNR DRD MPM 
HW1.tif LAWMV-G3 93.851 67.5497 78.5573 11.8762 14.7457 46.0577 
HW2.tif LAWMV-G3 84.4372 98.1746 90.7892 21.0405 2.3156 0.029833 
HW3.tif LAWMV-G3 77.8851 98.6047 87.0287 17.5687 3.0378 0.11071 
HW4.tif LAWMV-G3 82.7622 85.1179 83.9235 15.2954 4.8008 7.7848 
HW5.tif LAWMV-G3 93.2584 92.5565 92.9061 17.9579 2.6691 4.2771 
HW6.tif LAWMV-G3 64.6146 85.1 73.4558 14.6555 7.5077 2.1676 
HW7.tif LAWMV-G3 84.1054 95.6246 89.4958 20.9051 2.4053 0.22153 
HW8.tif LAWMV-G3 83.6325 97.5345 90.0501 20.5646 2.1853 0.033334 
PR1.tif LAWMV-G3 87.3519 97.9852 92.3635 16.143 3.592 2.6103 
PR2.tif LAWMV-G3 90.4842 79.5882 84.6872 14.1662 6.6541 19.2307 
PR3.tif LAWMV-G3 89.5612 97.4836 93.3547 16.2886 2.1666 1.108 
PR4.tif LAWMV-G3 87.1582 99.1806 92.7815 18.1405 2.8572 0.32833 
PR5.tif LAWMV-G3 90.166 93.2312 91.673 16.4581 2.2847 1.6543 
PR6.tif LAWMV-G3 87.3165 75.4479 80.9495 16.9087 11.506 8.5328 
PR7.tif LAWMV-G3 90.8754 91.6757 91.2738 23.6716 2.9577 0.28692 
PR8.tif LAWMV-G3 71.856 97.833 82.8562 13.8786 4.3203 0.42383 

HW1.tif LAMV-G4 95.6311 63.6057 76.398 11.2568 17.2542 54.4508 
HW2.tif LAMV-G4 82.2218 98.4733 89.6167 20.5791 2.6078 0.0313 
HW3.tif LAMV-G4 78.8124 98.3646 87.5096 17.7053 2.9315 0.10975 
HW4.tif LAMV-G4 84.2341 78.1194 81.0616 14.3566 6.3993 13.3945 
HW5.tif LAMV-G4 92.2374 91.9939 92.1155 17.5097 2.9958 4.4808 
HW6.tif LAMV-G4 68.6161 79.9389 73.846 14.4818 8.1443 3.2658 
HW7.tif LAMV-G4 82.4658 93.8691 87.7987 20.257 2.9426 0.33997 
HW8.tif LAMV-G4 81.8836 97.951 89.1996 20.2589 2.3805 0.054792 
PR1.tif LAMV-G4 89.1341 97.9453 93.3322 16.6897 3.1394 2.5551 
PR2.tif LAMV-G4 92.6086 76.3821 83.7163 13.7484 7.5274 21.678 
PR3.tif LAMV-G4 89.5873 97.071 93.1791 16.1659 2.2772 1.1124 
PR4.tif LAMV-G4 88.3043 99.2368 93.4519 18.5383 2.5499 0.19656 
PR5.tif LAMV-G4 92.5683 90.131 91.3334 16.1542 2.559 2.3183 
PR6.tif LAMV-G4 89.3812 92.6004 90.9623 20.5522 3.9639 1.113 
PR7.tif LAMV-G4 88.1727 85.0012 86.5579 21.6959 5.6455 1.2386 
PR8.tif LAMV-G4 71.4058 97.648 82.4901 13.7949 4.4371 0.43784 
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File name Technique RC PR FM PSNR DRD MPM 
HW1.tif LAWMV-G4 95.1717 63.1673 75.935 11.167 17.5797 55.3582 
HW2.tif LAWMV-G4 82.0685 98.3867 89.4898 20.5283 2.6251 0.031335 
HW3.tif LAWMV-G4 77.695 98.4158 86.8364 17.5058 3.0768 0.11309 
HW4.tif LAWMV-G4 83.9735 77.8971 80.8212 14.3024 6.4302 13.3613 
HW5.tif LAWMV-G4 92.2416 92.2416 92.2416 17.5855 2.9039 4.334 
HW6.tif LAWMV-G4 67.2915 79.7101 72.9763 14.373 8.2824 3.2408 
HW7.tif LAWMV-G4 82.6354 95.1976 88.4728 20.5281 2.6517 0.23232 
HW8.tif LAWMV-G4 81.6007 97.9622 89.0361 20.2007 2.3918 0.025744 
PR1.tif LAWMV-G4 88.7587 97.9924 93.1473 16.5807 3.201 2.4542 
PR2.tif LAWMV-G4 92.2126 76.7644 83.7823 13.788 7.386 21.0381 
PR3.tif LAWMV-G4 89.4954 97.1833 93.1811 16.1717 2.239 1.0742 
PR4.tif LAWMV-G4 87.9048 99.2421 93.2301 18.403 2.6362 0.20797 
PR5.tif LAWMV-G4 92.2896 90.2344 91.2504 16.122 2.5698 2.2924 
PR6.tif LAWMV-G4 88.8403 92.7389 90.7477 20.4664 4.0476 1.1909 
PR7.tif LAWMV-G4 88.8663 92.322 90.5612 23.3938 3.1497 0.28449 
PR8.tif LAWMV-G4 70.6545 97.8359 82.0527 13.7106 4.511 0.44823 

 

Table A.2 H-DIBCO2010 dataset. 

File name Technique RC PR FM PSNR DRD MPM 
H01.bmp OT 92.0691 89.2744 90.6502 16.9255 3.8731 3.8628 
H02.bmp OT 90.2907 86.169 88.1817 19.6218 4.8717 3.9115 
H03.bmp OT 76.0465 95.6378 84.7244 17.1160 3.6151 1.1939 
H04.bmp OT 79.433 92.8444 85.6167 16.5328 3.7196 0.2296 
H05.bmp OT 97.063 80.9606 88.2836 18.2731 4.6288 3.1180 
H06.bmp OT 70.8099 92.5729 80.2420 16.5571 4.0143 0.8565 
H07.bmp OT 87.0679 93.4008 90.1233 18.7302 2.7551 0.1642 
H08.bmp OT 85.9521 85.3997 85.6750 16.4368 3.6657 2.3647 
H09.bmp OT 71.0025 94.5309 81.0946 18.1389 3.6616 0.1954 
H10.bmp OT 69.4085 92.3494 79.2522 16.5738 5.9403 0.1710 

H01.bmp SAU 46.2859 96.3777 62.5377 12.2719 12.5155 2.8304 
H02.bmp SAU 71.0383 94.4554 81.0901 18.2579 6.5445 1.4337 
H03.bmp SAU 74.8535 78.759 76.7566 14.9327 7.3358 8.7225 
H04.bmp SAU 79.5742 95.2084 86.6920 16.9168 3.4758 0.3073 
H05.bmp SAU 93.6798 53.362 67.9934 12.9286 20.1590 24.8494 
H06.bmp SAU 71.4077 94.8654 81.4819 16.8686 3.7301 0.5550 
H07.bmp SAU 87.8367 79.9273 83.6956 16.1937 6.6556 9.1736 
H08.bmp SAU 69.8206 97.1735 81.2569 15.9421 4.0314 0.5113 
H09.bmp SAU 75.4057 95.9879 84.4610 18.9058 3.0705 0.2236 
H10.bmp SAU 70.0207 98.7484 81.9395 17.2829 5.0078 0.3471 
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File name Technique RC PR FM PSNR DRD MPM 
H01.bmp IIF 8.0186 95.9059 14.7998 10.0581 21.9554 3.4531 
H02.bmp IIF 39.2087 97.0838 55.8582 15.5386 14.2579 0.2608 
H03.bmp IIF 81.3323 96.5477 88.2892 18.1573 2.9886 0.3370 
H04.bmp IIF 85.0335 93.707 89.1598 17.6412 3.1209 0.2425 
H05.bmp IIF 89.1576 66.1257 75.9336 14.8614 12.4019 12.5289 
H06.bmp IIF 85.3342 95.5986 90.1753 19.2879 2.1399 0.0820 
H07.bmp IIF 86.2799 92.8258 89.4332 18.4430 3.4492 0.8655 
H08.bmp IIF 79.9292 95.3553 86.9634 17.2264 3.1032 0.2825 
H09.bmp IIF 88.6092 96.2249 92.2602 21.6156 1.7493 0.1874 
H10.bmp IIF 56.1557 96.976 71.1251 15.5887 8.9551 0.4906 

H01.bmp ALL 47.5261 99.1753 64.2586 12.4792 11.5362 1.7212 
H02.bmp ALL 73.8155 95.7586 83.3673 18.7689 5.5839 0.8308 
H03.bmp ALL 76.7853 92.3934 83.8693 16.7934 4.1094 2.6267 
H04.bmp ALL 84.7584 92.4122 88.4200 17.3324 3.0009 0.2478 
H05.bmp ALL 98.7508 51.0035 67.2654 12.5552 21.1942 26.2179 
H06.bmp ALL 72.4435 94.08 81.8561 16.9146 3.6176 0.2106 
H07.bmp ALL 93.7887 86.9761 90.2540 18.4714 3.0013 1.4002 
H08.bmp ALL 70.8216 95.6544 81.3858 15.9171 3.9710 0.4713 
H09.bmp ALL 74.8823 94.3421 83.4933 18.6237 3.2572 0.2284 
H10.bmp ALL 70.5325 97.2011 81.7467 17.1950 5.1115 0.2339 

H01.jpg BE 90.65683 88.5826 89.6077 16.4833 13.6727 3.5568 
H02.jpg BE 67.7722 94.2565 78.8498 17.8544 7.4933 0.1286 
H03.jpg BE 80.5723 94.0389 86.7863 17.5991 3.2843 1.2606 
H04.jpg BE 70.3325 93.8156 80.3943 15.4427 5.0863 0.3072 
H05.jpg BE 97.2221 88.0932 92.4328 20.3641 2.5906 1.5048 
H06.jpg BE 85.3434 93.5852 89.2745 18.8628 2.1644 0.0976 
H07.jpg BE 88.2797 91.6383 89.9277 18.5756 3.0692 1.7853 
H08.jpg BE 90.4923 85.1643 87.7475 16.9957 3.2521 2.7766 
H09.jpg BE 90.1558 91.2875 90.7181 20.6782 2.0435 0.3392 
H10.jpg BE 71.8945 94.6113 81.7032 17.0993 5.2636 0.1063 

H01.jpg LMM 95.2987 92.2094 93.7286 18.6551 2.7263 2.4373 
H02.jpg LMM 95.0689 94.02 94.5415 23.0552 2.0698 0.48239 
H03.jpg LMM 88.6219 96.4246 92.3587 19.8344 1.8513 0.22509 
H04.jpg LMM 84.6053 95.1107 89.5509 17.8417 2.8338 0.20096 
H05.jpg LMM 93.6977 96.0834 94.8756 22.3306 1.3908 0.051899 
H06.jpg LMM 87.2005 93.75 90.3567 19.2836 2.0997 0.11017 
H07.jpg LMM 83.2732 95.4516 88.9475 18.3782 3.2854 0.15975 
H08.jpg LMM 91.5376 92.5029 92.0177 19.0132 1.955 0.92882 
H09.jpg LMM 89.2787 94.8794 91.9939 21.4234 1.6901 0.1624 
H10.jpg LMM 75.6705 97.6703 85.2743 18.0057 4.2809 0.15213 
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File name Technique RC PR FM PSNR DRD MPM 
H01.bmp KSOM-G1 52.6128 93.8193 67.4182 12.6480 11.3481 1.9797 
H02.bmp KSOM-G1 62.8696 95.2139 75.7329 17.4083 8.1662 0.3485 
H03.bmp KSOM-G1 80.9586 85.3161 83.0803 16.3151 4.0388 0.6425 
H04.bmp KSOM-G1 81.1388 82.2525 81.6918 15.1889 5.1035 0.4244 
H05.bmp KSOM-G1 92.9847 61.1935 73.8114 14.1888 13.6105 13.6742 
H06.bmp KSOM-G1 79.5346 77.7743 78.6446 15.6275 4.8099 0.3196 
H07.bmp KSOM-G1 89.0117 83.4061 86.1177 16.9584 4.2975 0.5851 
H08.bmp KSOM-G1 81.9107 78.8438 80.3480 14.9940 4.8967 0.9422 
H09.bmp KSOM-G1 81.8115 76.8905 79.2747 17.0257 4.7706 0.3027 
H10.bmp KSOM-G1 72.5814 89.2192 80.0449 16.5921 5.8258 0.3897 

H01.tif LAMV-G1 45.5665 99.1972 62.4476 12.3233 12.0925 1.8455 
H02.tif LAMV-G1 74.6304 96.5065 84.1702 18.9777 5.3372 0.7024 
H03.tif LAMV-G1 76.5815 95.7482 85.0990 17.2125 3.5363 1.1849 
H04.tif LAMV-G1 82.4593 94.7991 88.1997 17.3591 3.0528 0.1891 
H05.tif LAMV-G1 97.1477 69.765 81.2102 15.8553 9.6023 11.1381 
H06.tif LAMV-G1 72.7721 95.6402 82.6535 17.1323 3.4028 0.1281 
H07.tif LAMV-G1 90.7786 93.5909 92.1633 19.6509 2.1855 0.3498 
H08.tif LAMV-G1 76.2895 96.2872 85.1297 16.7647 3.2275 0.3784 
H09.tif LAMV-G1 75.1455 95.7601 84.2095 18.8382 3.0847 0.1900 
H10.tif LAMV-G1 69.5387 98.6287 81.5677 17.2047 5.1066 0.1790 

H01.tif LAWMV-G1 43.4399 99.549 60.4858 12.1711 12.4833 1.7507 
H02.tif LAWMV-G1 74.2641 97.0321 84.1350 18.9876 5.2778 0.5293 
H03.tif LAWMV-G1 76.6367 98.3223 86.1356 17.5751 3.0485 0.2092 
H04.tif LAWMV-G1 82.1435 95.0741 88.1371 17.3497 3.0507 0.1837 
H05.tif LAWMV-G1 96.8168 70.5145 81.5985 15.9816 9.3105 10.7397 
H06.tif LAWMV-G1 72.8679 96.2568 82.9451 17.2155 3.2911 0.0656 
H07.tif LAWMV-G1 90.3688 93.9299 92.1149 19.6416 2.1845 0.2988 
H08.tif LAWMV-G1 76.247 96.2314 85.0814 16.7506 3.2082 0.3477 
H09.tif LAWMV-G1 75.2712 95.831 84.3158 18.8657 3.0367 0.1796 
H10.tif LAWMV-G1 69.3995 98.6575 81.4817 17.1886 5.1214 0.1694 

H01.tif LAMV-G2 95.5798 94.6563 95.1158 19.7918 1.866 1.2257 
H02.tif LAMV-G2 71.287 95.3076 81.5656 18.3787 6.6451 0.12335 
H03.tif LAMV-G2 82.5847 98.5161 89.8497 18.788 2.2023 0.078255 
H04.tif LAMV-G2 71.701 95.1279 81.7696 15.7485 4.7149 0.28023 
H05.tif LAMV-G2 95.5882 94.4064 94.9936 22.3505 1.3157 0.066606 
H06.tif LAMV-G2 85.0011 94.3142 89.4158 18.9447 2.1048 0.090825 
H07.tif LAMV-G2 83.5236 95.122 88.9463 18.3646 3.2381 0.16341 
H08.tif LAMV-G2 90.2625 90.4751 90.3687 18.18 2.2247 0.78869 
H09.tif LAMV-G2 87.8812 94.273 90.9649 20.918 1.8414 0.20144 
H10.tif LAMV-G2 71.5951 96.9872 82.3789 17.3166 5.0285 0.095408 
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File name Technique RC PR FM PSNR DRD MPM 
H01.tif LAWMV-G2 95.7666 95.0452 95.4046 20.0612 1.7084 1.1701 
H02.tif LAWMV-G2 70.8989 95.4988 81.3804 18.3491 6.6873 0.12344 
H03.tif LAWMV-G2 82.3045 98.5411 89.6939 18.7292 2.2269 0.076504 
H04.tif LAWMV-G2 71.5263 95.4537 81.7757 15.7609 4.7046 0.27431 
H05.tif LAWMV-G2 95.1059 94.9963 95.0511 22.4252 1.2972 0.059702 
H06.tif LAWMV-G2 84.7958 94.5363 89.4015 18.9487 2.0986 0.086452 
H07.tif LAWMV-G2 83.3625 95.3492 88.9539 18.3764 3.2331 0.2391 
H08.tif LAWMV-G2 89.922 90.2616 90.0915 18.0598 2.3662 1.3528 
H09.tif LAWMV-G2 87.6911 94.5287 90.9816 20.9362 1.8287 0.1992 
H10.tif LAWMV-G2 71.5532 97.46 82.5211 17.3618 4.9795 0.09211 

H01.tif LAMV-G3 88.8858 96.1367 92.3692 18.0422 3.0651 1.2471 
H02.tif LAMV-G3 79.8085 96.929 87.5395 19.8962 4.2947 0.23208 
H03.tif LAMV-G3 81.812 98.1161 89.2254 18.5394 2.444 0.15015 
H04.tif LAMV-G3 82.8206 94.7091 88.3668 17.4103 3.0819 0.20668 
H05.tif LAMV-G3 97.5119 89.4536 93.3091 20.9266 2.1786 1.0427 
H06.tif LAMV-G3 83.3539 95.3293 88.9403 18.8157 2.2661 0.078266 
H07.tif LAMV-G3 89.6035 93.7316 91.6211 19.3914 2.384 0.25192 
H08.tif LAMV-G3 88.0392 94.077 90.958 18.5907 2.1047 0.62884 
H09.tif LAMV-G3 87.3754 94.858 90.963 20.9421 1.8765 0.20145 
H10.tif LAMV-G3 72.7341 97.3128 83.2471 17.513 4.7869 0.1552 

H01.tif LAWMV-G3 86.5028 98.2458 92.0011 17.9383 2.7677 0.67068 
H02.tif LAWMV-G3 79.2725 96.9726 87.2338 19.805 4.3529 0.18538 
H03.tif LAWMV-G3 81.7441 98.6423 89.4017 18.6232 2.2933 0.078255 
H04.tif LAWMV-G3 79.4091 94.8778 86.457 16.8379 3.4764 0.20396 
H05.tif LAWMV-G3 97.7736 88.7084 93.0206 20.7182 2.2169 0.96111 
H06.tif LAWMV-G3 82.8291 95.1113 88.5463 18.6718 2.2526 0.075687 
H07.tif LAWMV-G3 89.192 93.414 91.2542 19.2078 2.4653 0.16982 
H08.tif LAWMV-G3 86.0594 93.4989 89.625 18.0282 2.2889 0.60147 
H09.tif LAWMV-G3 86.0509 94.5181 90.086 20.5641 1.9952 0.19889 
H10.tif LAWMV-G3 71.8436 97.3988 82.6918 17.3958 4.9081 0.13875 

H01.tif LAMV-G4 90.5725 96.9621 93.6585 18.8245 2.2447 0.81058 
H02.tif LAMV-G4 82.9688 96.1975 89.0948 20.3831 3.685 0.22122 
H03.tif LAMV-G4 79.3751 98.4622 87.8943 18.0996 2.6788 0.11476 
H04.tif LAMV-G4 79.8301 94.4923 86.5446 16.8476 3.4833 0.21021 
H05.tif LAMV-G4 97.5427 88.996 93.0736 20.764 2.1002 0.50457 
H06.tif LAMV-G4 76.8743 95.2023 85.0622 17.6681 2.9549 0.07978 
H07.tif LAMV-G4 88.4285 93.8067 91.0382 19.1289 2.5184 0.12621 
H08.tif LAMV-G4 85.6134 92.9679 89.1392 17.8284 2.4561 0.69557 
H09.tif LAMV-G4 79.1422 94.8558 86.2894 19.3325 2.7032 0.19054 
H10.tif LAMV-G4 70.9531 96.9211 81.9286 17.2223 5.0989 0.14174 
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File name Technique RC PR FM PSNR DRD MPM 
H01.tif LAWMV-G4 89.9921 97.6161 93.6492 18.8456 2.1211 0.5946 
H02.tif LAWMV-G4 83.1166 96.3577 89.2487 20.4446 3.6023 0.19839 
H03.tif LAWMV-G4 79.0142 98.7897 87.8022 18.0819 2.6223 0.072079 
H04.tif LAWMV-G4 79.0526 94.6386 86.1463 16.7433 3.5453 0.20577 
H05.tif LAWMV-G4 97.4837 89.061 93.0822 20.7725 2.0892 0.51285 
H06.tif LAWMV-G4 77.1298 95.0354 85.1515 17.6843 2.8793 0.076697 
H07.tif LAWMV-G4 88.2867 93.738 90.9307 19.079 2.5352 0.12702 
H08.tif LAWMV-G4 85.3938 92.6472 88.8727 17.7213 2.4695 0.69066 
H09.tif LAWMV-G4 79.1773 94.6193 86.2123 19.3023 2.6865 0.18916 
H10.tif LAWMV-G4 70.8214 96.9235 81.8416 17.2049 5.1133 0.14117 

 

Table A.3 DIBCO2009 dataset. 

File name Technique RC PR FM PSNR DRD MPM 
H01.bmp OT 87.9502 93.9466 90.8495 19.2626 2.3366 0.1705 
H02.bmp OT 93.3360 79.9834 86.1454 21.8742 6.4830 0.5686 
H03.bmp OT 96.7361 74.4056 84.1140 14.5025 6.2001 2.8956 
H04.bmp OT 98.7139 25.5213 40.5570 6.7312 74.2420 105.5666 
H05.bmp OT 95.7481 16.4239 28.0384 7.2727 117.4023 11.9583 
P01.bmp OT 96.9852 82.7561 89.3075 15.5254 3.6199 2.1907 
P02.bmp OT 95.9140 97.1737 96.5398 18.4559 1.4480 0.4109 
P03.bmp OT 94.2607 98.0601 96.1229 18.8633 2.4784 1.3995 
P04.bmp OT 95.6920 72.6453 82.5910 13.7480 9.4892 9.2957 
P05.bmp OT 89.1268 86.2247 87.6517 14.3498 3.8511 4.1680 

H01.bmp SAU 78.9158 98.5286 87.6383 18.2707 3.1123 0.2712 
H02.bmp SAU 89.5836 34.7582 50.0840 14.1307 45.1942 14.1171 
H03.bmp SAU 87.0488 88.6308 87.8327 16.3068 4.2178 4.0824 
H04.bmp SAU 89.7006 75.9990 82.2833 15.4767 8.7646 11.3599 
H05.bmp SAU 80.5700 90.2252 85.1247 19.6916 4.8657 0.5889 
P01.bmp SAU 87.1182 83.7243 85.3875 14.4400 5.2524 4.1868 
P02.bmp SAU 86.9097 92.3522 89.5483 13.7567 5.9029 9.2026 
P03.bmp SAU 58.7500 80.9885 68.0997 10.2668 24.7381 21.4124 
P04.bmp SAU 89.5226 88.5731 89.0453 16.3759 4.4760 3.3030 
P05.bmp SAU 85.7437 79.3132 82.4032 12.7114 6.5942 10.7208 

H01.bmp IIF 75.3319 96.5526 84.6323 17.3756 4.6732 0.3045 
H02.bmp IIF 87.5769 42.5458 57.2695 15.4863 32.6854 6.3502 
H03.bmp IIF 87.4447 95.4026 91.2505 17.8850 2.7655 0.5131 
H04.bmp IIF 82.9068 89.1721 85.9254 17.0063 5.5830 1.6656 
H05.bmp IIF 71.1637 92.5112 80.4453 18.7973 6.2317 0.3482 
P01.bmp IIF 89.4843 90.9904 90.2311 16.3120 2.9513 0.5144 
P02.bmp IIF 60.9273 93.6511 73.8254 10.4739 14.3723 10.7934 
P03.bmp IIF 44.2133 93.1878 59.9725 9.9638 26.6365 7.7761 
P04.bmp IIF 83.8790 91.8967 87.7049 16.0915 4.6985 0.7804 
P05.bmp IIF 85.3124 88.8598 87.0500 14.3032 4.1087 3.4902 
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File name Technique RC PR FM PSNR DRD MPM 
H01.bmp ALL 53.4002 99.5927 69.5231 15.0423 7.0781 0.2535 
H02.bmp ALL 82.9661 57.0017 67.5757 17.6386 18.8631 3.9836 
H03.bmp ALL 75.4615 92.6646 83.1829 15.2854 4.9705 1.9125 
H04.bmp ALL 81.8444 89.6807 85.5835 16.9408 5.1744 3.4094 
H05.bmp ALL 25.2291 99.3089 40.2362 15.4402 13.6707 0.1256 
P01.bmp ALL 75.9264 94.2987 84.1211 14.6113 4.2290 1.0389 
P02.bmp ALL 83.6777 96.3532 89.5692 13.9310 5.0561 3.3942 
P03.bmp ALL 40.6374 89.4315 55.8821 9.6007 28.2981 11.1126 
P04.bmp ALL 85.7331 93.6590 89.5210 16.7797 3.6384 1.4720 
P05.bmp ALL 76.9229 89.3940 82.6909 13.2696 5.0403 5.0003 

H01.BMP BE 95.4074 89.9925 92.6209 19.9274 2.0519 0.2830 
H02.BMP BE 97.3744 88.0486 92.4770 24.6504 2.9920 0.0825 
H03.BMP BE 96.0056 84.6147 89.9509 16.8157 3.1945 0.6004 
H04.BMP BE 85.7177 89.0082 87.3320 17.3893 4.5975 0.2319 
H05.BMP BE 78.8610 81.9241 80.3634 18.3287 6.8965 0.5327 
P01.BMP BE 94.2587 90.6689 92.4290 17.2977 2.1173 0.3808 
P02.BMP BE 98.9566 92.6025 95.6742 17.3115 2.0172 1.0655 
P03.BMP BE 98.0066 97.4088 97.7068 21.0456 1.3583 0.4614 
P04.BMP BE 94.6592 91.7061 93.1592 18.3747 2.4819 0.3096 
P05.BMP BE 84.8096 95.0083 89.6197 15.4158 2.8209 1.5481 

H01.BMP LMM 94.7627 94.8515 94.8071 21.5841 1.3589 0.14044 
H02.BMP LMM 95.5716 94.2268 94.8944 26.527 1.6899 0.015315 
H03.BMP LMM 96.4194 91.0339 93.6493 18.965 1.8681 0.78145 
H04.BMP LMM 92.4599 93.1571 92.8072 19.7827 2.3842 0.17486 
H05.BMP LMM 90.5827 89.4224 89.9988 21.1488 3.3247 0.29776 
P01.BMP LMM 95.3076 92.8814 94.0788 18.394 1.7006 0.32857 
P02.BMP LMM 82.2861 94.766 88.0862 13.354 7.1426 5.7272 
P03.BMP LMM 95.2296 97.7127 96.4552 19.223 2.4582 0.25716 
P04.BMP LMM 96.7943 91.2282 93.9289 18.8319 2.352 0.50378 
P05.BMP LMM 86.0753 97.5823 91.4683 16.2919 2.1401 0.13792 

H01.bmp KSOM-G1 83.8376 98.3152 90.5011 19.2915 2.4371 0.0852 
H02.bmp KSOM-G1 87.7057 49.2004 63.0381 16.5266 25.3607 5.2549 
H03.bmp KSOM-G1 91.7485 91.0832 91.4146 17.7664 2.8797 2.0532 
H04.bmp KSOM-G1 89.6619 79.3329 84.1817 16.0699 7.4376 9.1461 
H05.bmp KSOM-G1 79.9007 91.9152 85.4879 19.8537 4.5671 0.4742 
P01.bmp KSOM-G1 89.6632 91.7241 90.6819 16.5302 2.8312 0.9203 
P02.bmp KSOM-G1 90.1924 96.5695 93.2721 15.6857 3.2580 2.6936 
P03.bmp KSOM-G1 40.1503 97.8642 56.9401 9.8399 26.9421 5.8653 
P04.bmp KSOM-G1 89.6819 91.5789 90.6205 17.1185 3.5911 2.0256 
P05.bmp KSOM-G1 85.3514 87.2731 86.3016 14.0197 4.4117 5.5381 
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File name Technique RC PR FM PSNR DRD MPM 
H01.tif LAMV-G1 94.8823 93.1074 93.9865 20.9036 1.5481 0.099778 
H02.tif LAMV-G1 96.4086 93.8407 95.1074 26.6839 1.507 0.014511 
H03.tif LAMV-G1 96.1675 87.657 91.7153 17.7312 2.506 0.45045 
H04.tif LAMV-G1 86.3478 91.1154 88.6676 17.9073 3.9737 0.16378 
H05.tif LAMV-G1 82.0047 88.9861 85.3529 19.6937 4.6492 0.32887 
P01.tif LAMV-G1 94.6266 93.1358 93.8753 18.2689 1.5907 0.19566 
P02.tif LAMV-G1 93.3176 94.6406 93.9745 16.0492 3.3542 2.6915 
P03.tif LAMV-G1 97.256 98.5076 97.8778 21.4232 1.237 0.13072 
P04.tif LAMV-G1 95.2762 93.0943 94.1726 19.0898 2.0465 0.27424 
P05.tif LAMV-G1 83.7021 98.0278 90.3003 15.8003 2.3736 0.15987 

H01.tif LAWMV-G1 94.6068 93.5113 94.0558 20.9699 1.5397 0.11423 
H02.tif LAWMV-G1 96.0187 93.7911 94.8918 26.5044 1.632 0.018111 
H03.tif LAWMV-G1 95.9444 87.9847 91.7923 17.7855 2.5146 0.45751 
H04.tif LAWMV-G1 86.1542 90.7649 88.3995 17.8023 4.1347 0.18258 
H05.tif LAWMV-G1 81.895 86.4857 84.1278 19.2879 5.368 0.42573 
P01.tif LAWMV-G1 94.378 93.5434 93.9589 18.3439 1.5679 0.18933 
P02.tif LAWMV-G1 98.5054 95.228 96.839 18.7464 1.3684 0.42996 
P03.tif LAWMV-G1 97.8367 98.4449 98.1398 21.9813 0.97532 0.10672 
P04.tif LAWMV-G1 95.114 93.2486 94.1721 19.0967 2.0636 0.27264 
P05.tif LAWMV-G1 83.3272 98.1542 90.135 15.7384 2.4188 0.18236 

H01.tif LAMV-G2 93.0349 96.1062 94.5456 21.4386 1.3949 0.083132 
H02.tif LAMV-G2 95.2354 91.504 93.3324 25.311 2.5898 0.071917 
H03.tif LAMV-G2 94.6706 92.1826 93.41 18.8728 1.9103 0.65195 
H04.tif LAMV-G2 89.8254 94.8517 92.2701 19.5703 2.4564 0.15259 
H05.tif LAMV-G2 78.381 93.002 85.0678 19.7917 4.5018 0.28107 
P01.tif LAMV-G2 92.5836 94.7501 93.6543 18.1996 1.7325 0.26487 
P02.tif LAMV-G2 96.4605 95.9156 96.1873 17.9941 1.8152 0.7081 
P03.tif LAMV-G2 95.5426 98.8495 97.1679 20.2156 1.8335 0.21611 
P04.tif LAMV-G2 95.03 94.2098 94.6181 19.4669 1.8843 0.33387 
P05.tif LAMV-G2 84.5452 96.6815 90.207 15.7106 2.5529 1.0699 

H01.tif LAWMV-G2 87.886 97.9261 92.6348 20.2928 1.7805 0.049342 
H02.tif LAWMV-G2 94.5915 92.5003 93.5342 25.4834 2.3713 0.058153 
H03.tif LAWMV-G2 92.8173 92.1376 92.4762 18.3395 2.1188 0.57444 
H04.tif LAWMV-G2 89.2017 94.8696 91.9484 19.4083 2.5278 0.14501 
H05.tif LAWMV-G2 72.538 94.6997 82.1505 19.2016 5.0374 0.25398 
P01.tif LAWMV-G2 91.5298 95.4636 93.4553 18.1059 1.6718 0.20555 
P02.tif LAWMV-G2 95.0574 96.4823 95.7646 17.5819 1.8771 0.45331 
P03.tif LAWMV-G2 94.1722 99.0234 96.5369 19.3764 2.1076 0.17798 
P04.tif LAWMV-G2 94.8373 94.8799 94.8586 19.6853 1.6953 0.27146 
P05.tif LAWMV-G2 83.0173 97.1124 89.5133 15.4591 2.6461 0.83796 
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File name Technique RC PR FM PSNR DRD MPM 
H01.tif LAMV-G3 77.5502 99.1645 87.0355 18.1097 3.2393 0.1189 
H02.tif LAMV-G3 89.1544 62.0355 73.1628 18.4925 15.6736 2.7479 
H03.tif LAMV-G3 88.7330 92.3244 90.4931 17.4247 2.9566 1.5944 
H04.tif LAMV-G3 91.3115 86.2337 88.6999 17.6785 4.7046 4.4357 
H05.tif LAMV-G3 75.7503 95.6826 84.5577 19.7680 4.5202 0.2719 
P01.tif LAMV-G3 88.0055 92.4879 90.1910 16.3647 2.8859 1.0860 
P02.tif LAMV-G3 91.5764 97.6885 94.5338 16.5799 2.4690 0.8839 
P03.tif LAMV-G3 50.3418 96.2384 66.1047 10.5450 23.0253 6.7662 
P04.tif LAMV-G3 90.4960 93.0960 91.7776 17.7062 3.0315 1.4765 
P05.tif LAMV-G3 83.9839 90.3645 87.0574 14.3742 3.8808 4.2646 

H01.tif LAWMV-G3 77.1568 99.2974 86.8381 18.0563 3.2630 0.0915 
H02.tif LAWMV-G3 89.0471 61.5031 72.7554 18.4080 15.9804 2.8208 
H03.tif LAWMV-G3 89.0784 92.0771 90.5529 17.4382 2.9240 1.5709 
H04.tif LAWMV-G3 91.6921 85.9351 88.7203 17.6693 4.7230 4.4749 
H05.tif LAWMV-G3 75.1330 95.9704 84.2829 19.7128 4.5698 0.2729 
P01.tif LAWMV-G3 88.1397 92.8472 90.4322 16.4778 2.7676 1.0320 
P02.tif LAWMV-G3 91.1138 97.7716 94.3254 16.4298 2.5610 0.8951 
P03.tif LAWMV-G3 49.4996 97.1565 65.5848 10.5179 23.0295 6.1256 
P04.tif LAWMV-G3 90.5061 93.6114 92.0326 17.8546 2.8717 1.3290 
P05.tif LAWMV-G3 83.7260 90.7131 87.0796 14.3961 3.8254 4.0498 

H01.tif LAMV-G4 88.5827 96.7628 92.4923 20.1686 1.8566 0.076023 
H02.tif LAMV-G4 93.9297 92.0593 92.9851 25.1343 2.5593 0.062186 
H03.tif LAMV-G4 94.9548 88.5054 91.6168 17.7303 2.5162 0.83876 
H04.tif LAMV-G4 93.1115 91.357 92.2259 19.3874 2.5654 0.20472 
H05.tif LAMV-G4 83.4367 89.2672 86.2535 19.9397 4.3648 0.31629 
P01.tif LAMV-G4 94.035 93.3736 93.7032 18.1678 1.6792 0.30688 
P02.tif LAMV-G4 96.4643 97.1608 96.8113 18.7982 1.3142 0.26818 
P03.tif LAMV-G4 95.0257 99.13 97.0345 20.0332 1.7075 0.13673 
P04.tif LAMV-G4 95.3878 92.7413 94.0459 18.9854 2.1608 0.40687 
P05.tif LAMV-G4 84.6297 96.1774 90.0348 15.6223 2.5499 1.0336 

H01.tif LAWMV-G4 87.9311 97.3167 92.3861 20.1347 1.8585 0.0632 
H02.tif LAWMV-G4 93.6472 92.3034 92.9704 25.1376 2.5254 0.05956 
H03.tif LAWMV-G4 94.667 88.5072 91.4835 17.6687 2.5415 0.82881 
H04.tif LAWMV-G4 93.032 91.2289 92.1216 19.3283 2.5938 0.21022 
H05.tif LAWMV-G4 82.8935 89.7422 86.182 19.9419 4.354 0.31341 
P01.tif LAWMV-G4 93.6548 93.8437 93.7491 18.2194 1.6353 0.28529 
P02.tif LAWMV-G4 95.8289 97.3281 96.5727 18.5027 1.4119 0.24121 
P03.tif LAWMV-G4 94.8075 99.1846 96.9466 19.9125 1.7149 0.11374 
P04.tif LAWMV-G4 95.269 92.8441 94.0409 18.987 2.1402 0.39913 
P05.tif LAWMV-G4 84.1399 96.2538 89.7901 15.5304 2.5952 0.99033 
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Appendix C. Sample Images of Text Line Segmentation using MPP and APP 

(Section 5.3) 

 

 

 

 

 

 

 

Figure C.1 Text line segmentation using MPP. 
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Figure C.1 Text line segmentation using MPP (continue). 
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Figure C.2 Text line segmentation using APP. 
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Figure C.2 Text line segmentation using APP (continue). 
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Appendix D. Sample Results of Character Segmentation (Section 6.3) 

 

 

 

 

 

 

 

 

 

Figure D.1 Character segmentation. 

 




