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ABSTRACT 

 

Botryococcus braunii is a potential source of renewable energy due to high lipid 

yield and the ability of hydrocarbon excretion B. braunii 807/2 was successfully 

grown in outdoor paddle wheel driven raceway ponds for over 5 months. The growth 

of this alga in tubular photobioreactor (Biocoil) was also successful for up to a month, 

but was inhibited by high cell sticking to the coils. There was no significant 

difference in growth rate and biomass productivity between these two systems. The 

lipid productivity B. braunii culture in the open pond was 0.008 ± 0.004 g.L
-1

.day
-1 

 

at a specific growth rate of 0.06 ± 0.03 day
-1

, and the indoor culture was 0.04 g.L
-1 

.day
-1 

at growth rate of 0.04 ± 0.03 day
-1

. B. braunii was found to have highest 

photosynthesis under 30℃ at 100 μmol photons.m
-2

.s
-1

. Lower temperature (10℃) 

reduced photosynthesis by 58% at 6 mg.L
-1

 O2 and 84% at 2 mg.L
-1

 O2. B. braunii 

was light saturated at 100 μmol photons.m
-2

.s
-1

, and no significant photoinhibition 

was observed even under 1900 μmol photons.m
-2

.s
-1

. Photosynthesis was inhibited by 

40 to 80% when O2 was increased from 2 mg.L
-1

 to 6 mg.L
-1

. Interestingly increasing 

oxygen concentrations decreased the dark respiration rate. Increasing temperature by 

5℃ in open ponds increases lipid productivity, but had no effect on biomass 

productivity and growth rate. However, lowering pond depth by 5 cm (in winter) had 

no effect on growth and biomass/lipid yield. It was also found that aerating the pond 

reduces the O2 concentration and this can be potentially useful for reducing 

photoinhibition.  
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CHAPTER 1.  INTRODUCTION 

 

1 Introduction to algae 

The term ‘algae’ is Latin for "seaweed", and the world of algae contains a very large 

group of both prokaryotic and eukaryotic, mainly photosynthetic, organisms of 

different complexity, colour and shape (Borowitzka 2012). Generally, algae are plant 

like organisms but have no specialised organelles (i.e. roots, stem), but they may also 

include other features: containing chlorophyll a, carbon fixation through 

photosynthesis, and living aquatically or in moist environment (Borowitzka 2012). 

Algae are generally divided into microalgae and macroalgae. Microalgae are mostly 

microscopic. For example, a colony of Botryococcus is only 30-500 µm in diameter 

(Wolf 1983). On the other hand, some algae are macrospoic. For instance, the biggest 

alga in the world is a brown alga Macrocystis pyrifera (kelp), which can be longer 

than 50 m (Hoek et al. 1995).  

 

In old taxonomic systems, algae were divided into 4 divisions based on pigment: 

Rhodophyta, Heterokontophyta, Chlorophyta and Diatomaceae (Dixon 1973). But 

now, the taxonomy of algae has changed a lot due to further understanding of their 

ultrastructure and their genomes (Borowitzka 2012). In the new system, the 

eukaryotic algae are divided into: Glaucophyta, Rhodophyta, Cryptophyta, 

Heterokontophyta, Dinophyta, Haptophyta and Chlorophyta. Prokaryotic algae are 

the Cyanobacteria which is also known as blue-green algae. The algae not only have 

taxonomic diversity, but also they contain varieties of useful compounds. In the 

following section, the application of microalgae will be generally discussed. 

 

1.1 The application of microalgae  

1.1.1 Nutrients and healthy products for humans 

Protein source 

The same as any other organism, a certain part of microalgae biomass is protein. 

These microalgae proteins are generally rich in cysteine and methionine (Leveille et 

al. 1962). Microalgal amino acid composition can be very different depending on 
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species, growth condition and life cycle (Tindall et al. 1977; Wheeler and Stephens 

1977).  

 

Some microalgae such as Spirulina can have a very high protein content (Olguin et 

al. 1994). Therefore, microalgae can possibly be used as a substitute source of 

protein for human food or animal feed stock (Becker 2007). One advantage of 

microalgae is that they have higher protein content compared to other sources of 

biomass (Becker 2007). For example, Dunaliella salina protein content can be as 

high as 57%, which is higher than meat (43%), soybean (37%) and milk (26%) 

(Spolaore et al. 2006).  

 

To satisfy human food safety requirement, protein from algae must not have any 

negative side effects on human body. One potential issue with microalgae is the 

contamination with heavy metals. This is due to the fact that some microalgae can 

actively absorb heavy metals and accumulate them in the cell (Çetinkaya Dönmez et 

al. 1999). Luckily, heavy metal was not detected in animal tissue after feeding with 

microalgae (Yannai and Mokady 1985).  

 

Vitamins and derivates 

Similar to higher plants, some algae can biosynthesise vitamins (Hirschberg 1999). 

The content and types of vitamins have been previously reviewed by Borowitzka 

(1988b), and high value vitamins such as B12 and E, have the potential for 

commercialization (de Jesus Raposo et al. 2013). Some fresh water microalgae (i.e. 

Chlamydomonas reinhardii, Chlorella vulgaris and Scenedesmus obliquus) can 

release water soluble vitamins to the culture medium which can be collected and 

purified easily (Aaronson et al. 1977).  

 

One commercialized algae product is β-carotene, which is a derivative of vitamin A. 

Dunaliella salina has been grown as a commercial source of carotenoids for the last 

30 years (Borowitzka et al. 1984). The main uses of carotenoid are: a) strong 

antioxidants (Murthy et al. 2005; Sachindra et al. 2007; Hu et al. 2008), b) natural 

pigments in food and feed (Bauernfeind 1972) and c) potential anti-cancer function 

(Nishino et al. 2002; Hosokawa et al. 2004). The largest plant (lagoon) for β-carotene 
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production from D. salina is located in Western Australia, and the overall cost is 

very low compared to other microalgae production (Moulton et al. 1987; Borowitzka 

1991). 

 

Another commercialized product from algae is astaxanthin, this is a derivate of 

carotene and produced from Haematococcus pluvialis which has about 3% 

astaxanthin content in dry weight (Lorenz and Cysewski 2000a). Astaxanthin is used 

as: a) strong antioxidant in healthy products, and b) as additive in aquaculture feed to 

it improve fresh color of prawn and salmon (Higuera-Ciapara et al. 2006). For 

commercial production, 25,000L scale outdoor photobioreactor for Haematococcus 

pluvialis has been proposed, and the productivity of Haematococcus can be 9 -13 

g.m
-2

.day
-1

(Olaizola 2000). 

 

1.1.2 Application of lipid from microalgae 

Microalgae contains different lipids (i.e. free fatty acids, triglycerides and 

hydrocarbons). These compounds have a wide range of potential commercial 

applications:  

 

Biofuel production 

Some algae such as Botryococcus can produce long chain hydrocarbons (Marlowe et 

al. 1984). These hydrocarbons can be hydrocracked into shorter chain for producing 

fuels such as kerosene (Lupton and Traynor 2010). However, this is a very slow 

growing microalga and studies on achieving higher hydrocarbon productivity are still 

limited. Some growth and lipid productivity figures of this microalga will be 

introduced later in this chapter. 

 

On the other hand, triglycerides and fatty acids from other algae can be converted 

into biodiesel (hydrocarbon) by transesterification (de Boer et al. 2012). One of the 

main limitations for biodiesel production from microalgae is the overall lipid 

productivity (Griffiths and Harrison 2009). Therefore, there is a worldwide interest in 

enhance the lipid productivity of targeted species of microalgae. For instance, there 
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have also studies focused on genetic modification to alter of lipid synthesis 

metabolism in the microalgae (Sato and Moriyama 2007). 

 

Health and medical products  

Fatty acid from algae can be either saturated (SFAs), mono-unsaturated and 

polyunsaturated (PUFAs), and some of them can be use as health food products. For 

example, arachidonic acid (AA) and eicosapentaenoic acid (Cepák and Lukavský 

1994) are two important PUFAs for human nutrition which contain ω-6 and ω-3 

respectively. Additionally, several other products like docosahexaenoic acid (DHA), 

palmitoleic acid, oleic acid, linolenic acid, and palmitic acid are also commercially 

produced (Sousa et al. 2008; Plaza et al. 2009).  

 

Sterols are also useful products from microalgae (Avivi et al. 1967; Patterson 1971). 

Sterols can be used to synthesis steroid hormones and its derivates. For example, 

stigmasterol and cholesterol are two sterols which can be obtained from brown algae 

(Vahouny et al. 1983; Kanias et al. 1992) , green algae (Ikekawa et al. 1968) and red 

algae (Tsuda et al. 1957). 

 

Waxes 

Microalgae can be substitute waxe sources. For example, some algae like Euglena 

gracilis can synthesis wax esters from paramylon when shifted from aerobic to 

anaerobiosis (Inui et al. 1982), and the content can reach 50% of dry weight (Inui et 

al. 1982, 1983). The green alga Chroomonas salina was also found to produce wax 

ester when grown photoheterotrophically using glycerol (Antia et al. 1974). 

 

1.1.3 Application in agriculture 

Farming 

Algae can be added into soil as biofertilizers. Nitrogen is one of the most important 

elements in agriculture production. Furthermore a big proportion of farming is 

nitrogen limited (Vitousek and Howarth 1991). Usually, nitrogen is supplied as 

fertilizer like urea, or it can be naturally produced by N-fixing bacteria like 

Rhizobium (Peoples and Craswell 1992). Similarly, heterocystous nitrogen-fixing 
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blue-green algae (Cyanobacteria) can also produce nitrogen fertilizer (Benemann 

1979) which can be added into soil in a process known as algalization. Researchers 

have shown that, the algalization can increase the yield, nitrogen content, and the 

growth of rice (Aiyer et al. 1972), and even contribute to germination of seeds 

(Nanda et al. 1991). 

Algae can also be used as soil conditioners in agriculture to reduce soil erosion, 

enhance aeration and water retention (Borowitzka and Borowitzka 1988a). It has also 

been shown that the crust of blue-green algae covering the surface of soil can keep 

the moisture and minimize soil erosion (Booth 1941). Also in rice production, the 

existence of Azolla can provide extra oxygen to root system of rice and prevent the 

rise in pH by releasing more CO2 (Mandal et al. 1999).   

 

In addition, algae are also used as sources of plant growth regulators (PGRs) 

affecting the growth of plants. For example, plant hormones were found in a seaweed 

product (Crouch and Staden 1993).These hormones can adjust the growth similarly 

in algae and higher plants (Bradley 1991). For instance, it is shown that addition of 

microalgae biomass can enhance the growth rate and development of orchard (Virág 

et al. 2011). 

 

Aquaculture 

Algae have been used in aquaculture for many years. The application of several 

microalgae has been reviewed and evaluated by Borowitzka (1997). The algae are 

used mainly for 2 purposes in aquaculture: a) as a food source and b) as a feed 

additive. 

 

In natural environments, some fish and shellfish live on microalgae and other 

plankton. Therefore some microalgae can be grown as feed (e.g. prawn) (New 1990). 

However, the cost of algae biomass production is still very high compared to natural 

food resource, thus an economical culture needs to be established for wider 

application in aquaculture (Borowitzka 1997). 

 

Another application in aquaculture is feed additive, the algae containing carotenoids 

or other derivatives (e.g. astaxanthin) are fed to prawns (Yamada et al. 1990) and 
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salmon (Foss et al. 1984; Torrissen 1986) to make color of the meat more "red". One 

commercialized alga for astaxanthin production is Haematococcus pluvialis. The 

content of astaxanthin can be 1.5 - 3% of dry weight (Borowitzka 1992; Lorenz and 

Cysewski 2000b). β-carotene from Dunaliella salina (Sommer et al. 1991) are also 

used commercially as pigment in shrimp and other crustaceans industry. 

 

Livestock 

In animal production, algae have the potential to substitute the protein supplement 

from soybean or other grains. For the past decades, some trials on the feeding of 

chickens, sheep, cattle and pigs have been widely tested. It was found that ruminants 

like cattle and sheep feed on grass and can digest algae better than chickens because 

their digestion system can break cell wall easily (Mertens 1993; Wilson 1994). 

Various microalgae were used to feed the chickens. However, most microalgae 

showed a very poor feed efficiency ratio (feed consumed mass / weight gain mass) 

which was below 5:1. This is possibly due to insufficient digestion of unprocessed 

algae material (Borowitzka and Borowitzka 1988a). It was also found that 

microalgae can substitute up to 25% total protein from soybean, and such partial 

substitution by microalgae would not affect egg production of chicken (Lipstein et al. 

1980). However higher proportion of microalgae in the feed that can also limit the 

growth of chickens (Lipstein and Hurwitz 1980; Lipstein et al. 1980; Mokady et al. 

1980).  

 

Additionally, the feed can only be partially substituted by algae biomass (e.g. 

Chlorella), because the digestibility on carbohydrate decreased with higher algae 

material content in food (Hintz et al. 1966; Davis et al. 1975). One study finally that 

20% algae biomass was the highest content in food without a decrease in 

digestibility(Calderón Cortés et al. 1976). 

 

Pigs are the most successful animal with high algae material content feed (Witt et al. 

1962). From the tests with chickens, cattle and sheep, it can be noticed that any 

content beyond 20% algae biomass in feed will result in lower feed efficiency ratio. 

During a series of trials in Germany, results showed that there was no negative effect 
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on growth of pigs when the algae biomass (Scenedemus) was as high as 75% 

(soybean and fishmeal 25%) of total feed (Witt et al. 1962).  

1.1.4 Application in wastewater treatment 

During industrial and agricultural processes, waste residues containing heavy metals, 

nutrients and greenhouse gas are intensively generated. The following will introduce 

some applications of microalgae in waste treatment. 

 

Metal removal 

Fresh algae culture, pretreated (e.g. dried) algae biomass or immobilized algae 

biomass can absorb and accumulate heavy metal ions to very high concentrations 

(Gadd 1988; Gadd 1990). The application of algae in waste treatment including 

heavy metal, toxicant metal, and organic metal compounds has been summarized and 

introduced(1998). 

 

Heavy metals: Chlorella vulgaris is one of the species which can be used for waste 

water treatment. This alga can absorb metal ions of Cr, Fe, Cu, Zn, Pb and Hg 

(Mehta and Gaur 1999; Slaveykova and Wilkinson 2002; Li et al. 2012). Usually, the 

ion is rapidly absorbed by microalgae which is considered as a passive process, then 

the ion will be processed by the cell through metabolic activities (Trevors et al. 

1986). The absorption is affected by pH, and with each metal having its optimal 

uptake pH (Harris and Ramelow 1990). Higher cell density can lead to higher 

absorption efficiency (Mallick and Rai 1993). The cell wall absorption ability of 

Chlorella may due to the sugars, uronic acids, glucosamine and proteins on the cell 

wall which provide potential binding sites for heavy metals (Blumreisinger et al. 

1983; Darnall et al. 1986; Simmons et al. 1995). This means that dried or dead 

biomass which still contains those compounds can be also used for heavy metal 

removal. Furthermore, to reduce the need of harvesting the culture and cost for 

culture maintenance, immobilized culture algae in polyacrylamide matrices has also 

been proposed, and some studies have shown successful heavy metal removal by 

immobilized Chlorella (Harris and Ramelow 1990; Costa and Leite 1991; Robinson 

and Wilkinson 1994). 
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Toxicant metals: As, Sb, Bi are three toxic metals from industry and mining 

activities. If these metals leak to natural water, they can be accumulated through food 

chain which further threats food safety (Reglinski 1994). Some algae can 

bioaccumulate these metals, for example, Chlorella pyrenoidosa, Chlorella ovalis 

(green algae); Oscillatoria rubescens (blue-green algae); Phaeodactylum 

tricornutum, Phaeodactylum sp. and Skeletonema costatum (diatoms) are amongst 

species which can absorb these ions efficiently (Lunde 1973).  

 

Nutrient removal 

Removal of nitrogen and phosphate: The domestic sewage contain high loads of 

NH4
+
,
 
NO3

-
 and PO4

3-
 which can be used by algae as nutrients (Hemens and Mason 

1968). To avoid the harvesting step of the biomass processing, immobilized algae 

biomass has been proposed to remove N and P from sewage. For example, bead-

shaped K-carrageenan as matrix was used (Kierstan and Coughlan 1985) to 

immobilize microalgae such as Chlorella vulgaris (Lau et al. 1997) and Scenedesmus 

(Chevalier and de la Noüe 1985). In application of immobilized Chlorella vulgaris, it 

was found that over 90% of N and P in sewage were removed within 72h which is 

almost 2 times more efficient than free culture with no apparent inhibition on growth 

(Lau et al. 1997).   

 

Algal-bacterial BOD removal: In waste treatment, bacteria are grown to degrade 

organic compounds (Mitsui et al. 1985; Fetzner 1998). In this process, the sewage 

usually requires aeration to provide adequate O2 for bacteria growth. Microalgae can 

produce O2 by photosynthesis, and bacteria can release CO2 for algae growth. 

Therefore, a "photosynthetic aeration" between bacteria and algae can be established 

to maximise energy efficiency. There are some successful trials with this technique. 

For instance, several combinations of algae (e.g. Stichococcus minor, Chlorella sp., 

Scenedesmus quadricauda, Nostoc sp., Phormidium sp. and Scenedesmus obliquus ) 

and bacteria (e.g. alcanotrophic bacteria, Rhodococcus sp. and Kibdelosporangium 

aridum) have been tested to remove organic compounds and heavy metals with 

success (Safonova et al. 1999; Safonova et al. 2004). More importantly, the BOD and 

COD were reduced dramatically by 97% and 51%, respectively (Safonova et al. 

2004).  
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Flue gas 

During most industrial processes (e.g. power station), energy is gained by burning 

fossil fuel which releases large amount of CO2 mixed with SOx and NOx. Therefore 

people are proposing bioremediation to reduce green house gases in the atmosphere, 

and microalgae have shown great potential for removing atmospheric CO2 

(Moheimani 2005; Narasimhan 2010; Moheimani et al. 2012). In terms of using flue 

gas from a power station, dissolved CO2 and  NOx can be absorbed by algae as 

nutrients (Doucha et al. 2005). However, SOx can lower the pH of the medium, 

negatively affecting the medium alkalinity which results in lowered growth 

(Matsumoto et al. 1997). This means that in some cases, SOx will need to be 

removed before bioremediation (Yeh et al. 1985). CO2 bioremediation by microalgae 

has been studied intensively and these studies have shown that additional CO2 in 

algae culture with constant pH can increase biomass productivity (Goldman et al. 

1974; Moheimani and Borowitzka 2011). Additionally, CO2 fixation by microalgae 

can be closely related to biofuel production (Brennan and Owende 2010; Stephens et 

al. 2010), though the feasibility will depend on the scale (Borowitzka and 

Moheimani 2013b). 

 

1.2 Algae cultivation systems 

In biofuel production, the algae will need to be cultured in large scale bioreactors 

(Chen et al. 2011b). The main algae cultivation systems are open ponds and closed 

photobioreactors. In the following sections, several types of open systems and closed 

photobioreactros will be introduced in detail. 

 

1.2.1 Open ponds 

There are several types of open cultivation systems for growing algae; these systems 

can be natural, artificial, mixed and non-mixed. Those open systems are used for 

commercial production, because they can provide considerable capacity (large-scale) 

and low-cost operation. In the following section, several open pond cultivation 

systems are introduced: 
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Lakes and shallow pond 

Natural lakes, which has abundance in certain algae species, can be used as a natural 

systems for algae cultivation. For example, in the 1980's, Spirulina was harvested 

from Lake Texococo in Mexico (Ciferri 1983). Also, algae can be cultured in 

shallow pond. To date, the largest commercial algae production plants (~780 ha) are 

made of several shallow unmixed ponds in Western Australia  (Borowitzka and 

Hallegraeff 2007). This system is used for producing β -carotene from Dunaliella 

salina, and it is only mixed by wind and water flow through several ponds 

(Borowitzka and Borowitzka 1989). While such unmixed ponds can only provide 

very low productivity, but they can be operated at very low cost (Borowitzka 1999b). 

 

Inclined ponds 

The inclined ponds was originally developed in 1960s (Šetlík et al. 1970), and those 

ponds have a slope (large wide surface) for culture to flow. Then the culture is 

pumped up to circle, and the culture is drained into a tank where the culture is mixed 

and aerated during the night. The advantage of inclined system is that, firstly it can 

reduce the mixing cost, secondly it can reduce temperature change during the night, 

thirdly it has large surface to volume ratio. There has been several successful 

cultivations of Arthrospira (Fournadzhieva and Pillarsky 1993), Scenedemus (Becker 

1994) and Chlorella (Borowitzka 1999a) with inclined ponds, and those cultures can 

reach a productivity of 20 g.m
-2

.day
-1

 on average. 

 

Another inclined system is based on raceway type system, but the bottom is modified 

to a slope (Heussler 1985). Similarly, the culture at lower point is pumped to higher 

point to form flow. The advantage of this pond based inclined system is less 

evaporation, and it is easy to harvest biomass from the lower point of the pond where 

the culture accumulates.  

 

Circular central-pivot ponds and mixed ponds 

Circular central-pivot pond is based on a round pond built of concrete, and the 

culture is mixed by a rotating arm located at the centre, and the length of the arm can 

be as long as the radius of the pond. The advantage of this system is that it can 

provide very big capacity which is up to 50 m in diameter and good performance in 
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mixing; and there are several successful cultivations of Chlorella in Japan and 

Indonesia (Lee 2001). 

 

Mixed pond is similar to circular central-pivot pond, the main difference is the 

mixing system. The culture in mixed pond is mixed by aeration, therefore the 

productivity is usually low due to uneven mixing, and the main application of this 

system is aquaculture feed production (Borowitzka 1997). 

 

Raceway ponds  

Raceway ponds are the most widely used system for commercial algae production; 

the design and technique requirement have been summarized by Borowitzka (2005). 

This type of system is very economical for construction and maintenance, and it is 

more feasible compared to closed photobioreactors and most other open ponds 

(Jorquera et al. 2010).  

 

Raceway open ponds usually require circulation of 20-30 cm.s
-1

 to suspend the algae 

cells (Borowitzka and Moheimani 2013a). To mix the culture in raceway pond, 

several systems are commonly used, such as air lifts, Archimedes screws, propellers, 

pumps, water jets and paddles (Borowitzka and Moheimani 2013a). By far, the most 

favorable mixing system for raceway pond is the paddle-wheel due to its durability 

and low energy requirements (from 1-2 kW.ha
− 1

) (Boyd 1998), and several 

paddlewheels can be driven by only one motor at the same time (Dodd 1974). 

 

Paddle wheel-driven raceway ponds have been used extensively for many 

applications since WWII to now (Boussiba et al. 1988; Tredici and Materassi 1992). 

To date raceway open ponds have been shown to be suitable for mass cultivation of 

certain species of algae, for example, Chlorella, Spirulina, Tetraselmis, 

Porphyridium, Chaetoceros, Scenedesmus, Pleurochrysis, and Dunaliella are 

amongst the algae grown successfully in open ponds (Borowitzka 1999a; Borowitzka 

and Moheimani 2013a).  

 

On the other hand, one disadvantage of all open ponds is the potential of 

contamination. The main contaminants are other species of algae, fungi, bacteria and 
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protozoa (Sharma et al. 2007). Due to this issue, it can be hard to culture many 

species of algae in open ponds reliably for long term. One method for successful 

cultivation of algae in open ponds is by bioprospecting species which are capable of 

growth at extreme conditions. For example, D. salina can grow at very high salinity 

(Lee 1986; Borowitzka and Borowitzka 1989), and at such high salinity not many 

contaminants can grow in D. salina ponds. Similar method is also applied on other 

species, for example, Spirulina (high alkalinity) and Chlorella (high nutrients) 

(Borowitzka and Moheimani 2013a).  

 

1.2.2 Closed photobioreactors (PBR) 

Unlike open ponds, closed PBRs are mainly constructed using glass or plastic. The 

algae culture is re-circulated by either pump or airlift, and they can be both indoor 

and outdoor. The close PBR systems usually have the following advantages: 

 

1) PBRs have much larger illuminated surface than open ponds (surface area to 

volume ratio) which contributes to high volumetric productivity and high cell density 

(Borowitzka and Moheimani 2013a). 

 

2) PBRs have the potential of less contamination when the target is to grow a 

monoculture of algae (Lee 1986).  

 

3) PBRs can provide controlled conditions (e.g. light, temperature) to optimize the 

productivity of the culture.  

 

4) PBRs can reduce evaporation dramatically which will consume less water.  

 

On the other hand, PBRs may also have several disadvantages including: 

 

1) PBRs usually have poor mass transfer which can cause accumulation of high 

concentration of oxygen and limitation on CO2 supply (Torzillo et al. 1986; 

Richmond et al. 1993; Pulz 2001).  
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2) There is commonly over heating issues with PBR systems, this is due to the large 

illumination surface (Morita et al. 2001). This can alternatively result in using a large 

volume of fresh water for cooling PBRs. 

 

3) The mixing of PBR systems is limited, and PBR consume several times more 

energy than open ponds at same flow rate (Weissman et al. 1988). 

 

There are several types of closed photobioreactors: flat-plate photobioreactors (Sierra 

et al. 2008), tubular photobioreactors (Borowitzka 1999a), bubble column 

photobioreactors (Choi et al. 2003) and internally-illuminated photobioreactors 

(Ogbonna et al. 1999). 

 

Flat-plate photobioreactors 

In application of flat-plate photobipreactors, the algae are grown in a narrow 

chamber, and the wall chamber can be constructed with hard (e.g. glass) or soft 

transparent material (e.g. PVC, PETG). The flat-plate photobioreactors can be set 

both vertically and inclined, and this feature can allow the system use the light more 

efficiently. To use defuse and reflect light, flat-plate photobioreactors can be set at 

different angles which will also contribute to higher productivity (Tredici 2010). 

The mixing of flat-plate photobioreactors can be achieved by air bubbling, however, 

to achieve good mixing, the bubbling rate must be high enough. However, high 

aeration is energy intensive comparing to mixing system of ponds (Bassi et al. 2010). 

This system has another disadvantage of overheating which may also happen in other 

closed systems, therefore, water spray and heat exchangers are needed to adjust the 

temperature (Rodolfi et al. 2009). 

 

The advantage of flat-plate photobioreactors is the potential of scaling up, and one 

successful example is Flat Panel Airlift (FPA) photobioreactor (Degen et al. 2001). 

FPA can be used both indoors (Meiser et al. 2004; Schenk et al. 2008) and outdoors 

(Schenk et al. 2008). For industrial production, the FPA is modified to larger volume 

up to 180 L (Borowitzka and Moheimani 2013a). Furthermore, this FPA system cost 

less due to use of plastic membrane for construction.  
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Tubular photobioreactors  

The tubular photobioreactor is one of the PBRs preferred for commercial production 

(Tredici et al. 2009). They are usually constructed with plastic or glass tubes, and the 

circulation is provided by pump or air lift systems. Among several types of tubular 

PBR’s, the tubes are arranged in different ways: 

 

1) Horizontal (Gudin and Chaumont 1983; Molina et al. 2001). 

2) Vertical (Pirt et al. 1983; Borowitzka 1999a). 

3) Inclined (Tredici and Zittelli 1998; Ugwu et al. 2002).  

4) Conical (Watanabe and Saiki 1997). 

 

Like other PBRs, tubular photobioreactors have the same advantages as mentioned 

earlier in this section. However, a tubular photobioreactor also have some limitations 

on application.  

 

In some small diameter tubular photobioreactors, the final oxygen concentration can 

be supersaturated as high as 100 mg.L
-1

 (Weissman et al. 1988). As a result, the 

culture of outdoor tubular photobioreator is commonly photoinhibited (Zittelli et al. 

2013b).  

 

In some tubular closed photobioreactors with high tube diameter (12.5 cm), the light 

distribution inside the photobioreactor is not even. This means that the deeper part 

may receive less light due to the shade. This problem may be resolved by improving 

the mixing (Ugwu et al. 2003; Ugwu et al. 2005).  

 

Bubble column photobioreactors and internally-illuminated photobioreactors 

Airlift photobioreactors are mostly lab scale culture systems where the volume can 

be from 2L (Rasoul-Amini et al. 2011) to 60L (Sánchez Mirón et al. 2002). The 

system usually consists two parts: a cylinder container and the air pump, and the air 

is bubbled through the bottom of the reactor to provide turbulence which can further 

affect light intensity (Sánchez Mirón et al. 2000). One advantage of this system is the 

good gas-liquid mass transfer. As a result, the dissolved oxygen concentration can be 

lower than in other PBRs (Sánchez Mirón et al. 2002).  
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Internally-illuminated photobioreactors are also indoor facilities. This type of PBR 

usually has an artificial light source (e.g. light tube, LED) which is adjustable in 

irradiance (Ogbonna and Tanaka 2000) and light color (wave length) (Ogbonna and 

Tanaka 2000). The light source is located at the center surrounded by the 

photobioreactor (e.g. Biocoil) which can provide sufficient irradiance and the main 

purpose is to establish an high cell density and fast growing culture (Lee and Palsson 

1994). Another advantage of this system is that using LED light source can cover the 

high absorbance spectrum of algae, therefore the light transfer efficiency can be 

remarkably enhanced (Chen et al. 2011a). Additionally, different wave length can 

also contribute to more biosynthesis of certain compounds like hydrocarbon (Baba et 

al. 2012) and astaxanthin (Kim et al. 2009). 

 

1.3 Botryococcus braunii  

Botryococcus braunii is a fresh water green alga, and is a member of Chlorophyta, 

Trebouxiophyceae Class, Incertae sedis Order, Botryococcaceae Family.This 

colonial alga widely exists in fresh water (Chisti 1980). In 2004, it is found that 

Botryococcus Race A B and L form a monophyletic group whose closest relatives are 

in the Trebouxiophyceae(Senousy et al. 2004).  

 

The unique feature of Botryococcus braunii is the ability to accumulate hydrocarbons 

in the cell and release them to the external matrix (Metzger et al. 1990). It has been 

shown that the hydrocarbons in the cell are shorter in chain length than the 

hydrocarbons in the matrix (Largeau et al. 1980). As reported, the amount of B. 

braunii hydrocarbon can be as high as 86% of dry weight (Brown et al. 1969). This 

unique feature of Botryococcus made it a subject to many studies for bioenergy 

production. However, the low growth rate of B. braunii can limit its biomass and 

lipid productivity compared to other fast growing microalgae like Chlorella vulgaris, 

and Scenedesmus sp (Yoo et al. 2010). 
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1.3.1 Races and hydrocarbon 

There are four main races of Botryococcus braunii, and each race produces different 

hydrocarbons (race A, B, L and S) (Kawachi et al. 2012). In A race, the main product 

is odd-numbered hydrocarbon trienes and n-alkadienes (C25 to C30). However, in B 

race, main product is botryococcenes (CnH2n-10, n=30-37). L race only produces 

hydrocarbon chains of C40H78 (Chisti 1980). S race produces epoxy-n-alkane and 

saturated n-alkane chains with carbon numbers 18 and 20. Interestingly, the crude oil 

we are using today is partly from Botryococcus and its ancestors millions of years 

ago. Furthermore, Botryococcus is the source of C27, C29 and C31 alkanes found in oil 

shale (Lichtfouse et al. 1994). In most microalgae, the majority of oil product is 

either triglycerides or phospholipids. These lipids can be converted to biofuels (e.g. 

biodiesel) by biochemical conversion (Singh and Olsen 2011). On the other hand, 

one advantages of Botryococcus braunii is that its hydrocarbon can be directly 

hydrocracked into shorter chains such as octane (gasoline)s, diesel, kerosene (turbine 

fuel) and residual oil (Hillen et al. 1982). 

 

As Botryococcus can release hydrocarbons externally (Metzger et al. 1990), thus 

those external hydrocarbons can be continuously harvested by heptane solvent 

(Moheimani et al. 2013) or an aqueous-organic biphasic system (Zhang et al. 2013) 

which is also named as milking. The advantage of this method is that it is non-

destructive and has no effect on growth (Moheimani et al 2013). 

 

1.3.2 Medium for culturing Botryococcus braunii 

Several media are used to culture Botryococcus braunii, the content of these media is 

shown in Table 1. The main differences between these media are N, P, Fe source, 

trace elements and EDTA. As these media are used in cultivation of different strains 

of Botryococcus, a comparison can be made between them to find the optimal 

medium for a particular strain of Botryococcus.  
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1.3.3 Limits to growth and lipid production of Botryococcus braunii 

The productivity of any algae is limited by several limiting factors (Borowitzka 

1998). As shown in Figure 1, metabolites synthesis is photosynthesis dependent 

(Poulter and Hughes 1977). Therefore, CO2, light, temperature, oxygen and nutrient 

can be limiting factors of lipid and biomass productivity growth. In this section, 

potential Botryococcus braunii hydrocarbon production limiting factors will be 

discussed: 

 

 

Figure 1. Limiting factors to growth and lipid synthesis of Botryococcus braunii. 

 

1.3.3.1 Light 

Light is the main source of life on earth through the process of photosynthesis. The 

photosynthesis in algae is affected by light intensity (Brown and Richardson 1968). 

In outdoor mass culture, the availability of sunlight is the main growth and biomass 

productivity  limiting factor (Goldman 1979b). 

 

Light availability  

Light is the photosynthesis driver, and it is the main limiting factor of 

photosynthesis. As a matter of fact, irrespective of cultivation systems, when algae 

are grown in with sufficient nutrient and in optimal temperature, light becomes a 

leading limit to photosynthesis. The concept of light can contain two things: one is 

the availability of light to the cell, and the other is the light intensity.  

In a well mixed culture, each cell is under different irradiance and this due to cell 

density and the distance of cell to the water surface or vessel wall. Therefore, in a 

large scale production (open pond) system, the residence time of cells being in 
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contact with light can be increased by reducing cell density (Myers and Graham 

1959) and pond depth (Sukenik et al. 1991).  

 

Table 1. Media for culturing Botryococcus braunii.(Chu 1942; Watanabe et al. 2004; 

Dayananda et al. 2007) 

 

 CHU-13  

mg.L
-1

 

BG11  

mg.L
-1

 

BBM 

mg.L
-1

 

AF-6 

mg.L
-1

 

KNO3 400    

NaNO3  1500 250 140 

NH4NO3    22 

K2HPO4 80 40 74 5 

KH2PO4   17.5 10 

CaCl2 dihydrate 107 36 24 10 

MgSO4 heptahydrate 200 75 73 30 

Ferric Citrate 20   2 

Ferric ammonium citrate  6   

FeCl3 6H20    196 

Citric acid 100 6  2 

NaCl   25  

Na2CO3  20   

FeSO4   5  

EDTA  1 45  

Na2EDTA 2H2O    1000 

CoCl2 0.02   4 

H3BO3 5.72    

MnCl2 tetrahydrate 3.62   36 

ZnSO4 heptahydrate 0.44   22 

CuSO4 pentahydrate 0.16    

Na2MoO4 2H2O 0.084   2.5 

MES buffer    400 

0.072N H2SO4 One drop    

 

However, mixing in photobioreactors may not be efficient enough to guarantee that 

individual cell can have identical residence of time being exposure to light. In some 

studies on pond mixing, it was found that longer and the faster rotating paddle-wheel 

can improve mass transfer and culture mixing a lot, however, the energy cost will 
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increase and more powerful motor is required (Ahmad and Boyd 1988; Moore and 

Boyd 1992).  

 

Irradiance, O2 and photoinhibition 

The relationship between irradiance and photosynthesis can be shown by the 

photosysnthesis irradiance (PE) curve (see Figure 2). The increase in irradiance will 

result in an increase in the photosynthetic rate until photosynthesis reaches the light 

saturation point (Figure 2). Post light saturation point, any increase in irradiance will 

not increase the photosynthetic rate. As a matter of fact, at high light photoinhibition 

can occur (Figure 2). Photoinhibition can especially happened in outdoor cultivation 

in hot summer, sometime the pond may need to be either covered or the pond depth 

to be increased or the operating cell density to be increased to reduce light exposure 

to the cells to prevent photoinhibition.  

 

Photosynthesis is also affected by oxygen concentration (Krause et al. 1994), as 

oxygen can cause photorespiration especially in C3 plant like algae (Chollet and 

Ogren 1975; Lloyd et al. 1977). Oxygen is the by-product of photosynthesis and it 

can accumulate to high concentration in water (Weissman et al. 1988), therefore it 

can compete with carbon dioxide to bind with rubisco as rubisco is also an 

oxygenase (Hatch et al. 1971). Though CO2 tends to bind easier in this reaction, the 

high oxygen concentration makes photorespiration inevitable (Lorimer and Andrews 

1973). Therefore, it can be also predicted that aquatic plants can have more 

photorespiration due to accumulation of oxygen in water. On the other hand, absence 

of photorespiration can even be harmful to plants as this process is considered as 

protection to C3 plants from photooxidation (Kozaki and Takeba 1996). 
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Figure 2. The light response curve of photosynthesis (PE curve). The intercept of the vertical 

axis is the measurement of O2 uptake dye to dark respiration. Ic= light compensation point, Is = 

light saturation point, Ih = the irradiance point that photoinhibition occurs (Goldman 1980). 

 

In addition, algae photooxidative damage happens when oxygen captures an electron 

from NADP
+
 to form superoxide radical (O2

•−
) product which would shifted to H2O2 

(Mehler 1951; Strizh 2008). Though O2
•−

 and H2O2 are already toxic, according to 

Fenton reaction, with iron they can further form 
•
OH

-
 which is extremely toxic 

(Winterbourn 1995). As those compounds will continuously break photosynthesis 

membrane and photosynthesis pigments, carbon fixation can be inhibited 

dramatically (Kaiser 1976).  

 

In some closed photobioreactors, oxygen inhibition is a very serious problem as gas 

exchange can be very limited within the systems (Weissman et al. 1988). Even in 

open ponds, dissolved oxygen in the water could possibly inhibit photosynthesis 

(Sukenik et al. 1987). To date, there has been no feasible solution for reducing of the 

effect of O2 on the photosynthesis of algae or any other plant. One possible solution 

is to culture species with higher tolerance to high O2 concentrations. 

 

Effect of light on Botryococcus braunii 

In one study, three different Botryococcus braunii strains were grown under different 

irradiances (Li and Qin 2005), and the results showed that, irrespective of light, the 

specific growth rate and lipid content are very species dependant. Strains have their 

optimal irradiance for growth or lipid content. For instance, the Botryococcus JAP-
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836 (N-836 from Japanese National Institute of Environment) has highest specific 

growth rate under 300 W.m
-2

, however, it has its maximum lipid content at 100 W.m
-

2
. (Li and Qin 2005). Except the effect of light intensity on hydrocarbon production, 

longer illumination period can also increase the hydrocarbon content of 

Botryococcus (Lupi et al. 1994), and this can be easily achieved in an indoor 

cultivation system. The irradiance can also affect the size of the colony. When the 

light and nutrient were sufficient, the size of the colony increased; and when light 

decreased, the size of the colony of Botryococcus decreased and the culture produced 

less external hydrocarbon and polysaccharides (Zhang and Kojima 1998).  

 

The quality of light can also change the shape, hydrocarbon composition and carbon 

fixation of Botryococcus when grown using different light wave lengths (ie. blue = 

470nm, green = 525nm, red = 660nm) (Baba et al. 2012). The shape of the alga is 

more close to grape-shape with red light, and it is least unlike pear-shape under blue 

light. The hydrocarbon composition under red and blue light is almost identical, and 

they are both slightly higher than the composition under green light. The culture 

under blue light had the highest carbon fixation rate, which was 1.8 times higher than 

the culture under red light. However, Botryococcus grown using red light had a 

higher energy conversion efficiency than blue light. 

 

1.3.3.2 Temperature 

Like other organism, every species of algae has its optimum temperature. Growing 

algae at optimum temperature normally results in higher growth rate. Most algae can 

survive outside of their optimum growth temperature, but the range of temperature 

varies in different species. Living at different temperature can affect the alga’s 

metabolic rate, nutrient uptake rate, and chemical contents (Patrick 1969).  

 

Temperature can also influence accumulation of organic compounds. During the day, 

temperature affects both photosynthesis and respiration rates. Usually, higher 

temperature can raise the light saturation point, so the algae can transform more light 

to energy (Moss et al. 1961). Furthermore, within certain range, higher temperature 

can increase activity of enzymes which related to photosynthesis, sugar 

transformation and hydrocarbon synthesis. However, higher temperature can also 
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lead to a higher respiration rate, which means, at higher temperature, organism will 

consume more organic matter than at lower temperature (Banse 1976; Grobbelaar 

and Soeder 1985). During the night, and when there is no photosynthetic activity, 

cells will only respire to release energy for synthesis of other chemical to grow and 

repair. For instance, there has been some evidence that higher temperature can result 

in greater biomass loss at night due to more dark respiration (Torzillo et al. 1991). 

 

Another aspect of temperate is fluctuation; different temperature pattern will 

influence chemical content and growth (Mosser and Brock 1971; Daugherty and Bird 

1988). For instance, a bigger diurnal temperature range will benefit sugar 

accumulation in algae, as the algae produces more sugar during the day and 

consumes less during the night. While most algae can tolerate a relatively wide range 

of temperature variation, too much fluctuation may reduce the overall algae biomass 

productivity.  

 

Effect of temperature on Botryococcus braunii 

It was found that higher temperature can result in faster growth rate of some 

Botryococcus. Botryococus braunii 807/2 can grow faster at 25℃ than 20℃ (Ngoon 

2011a). In another study, the growth of B. braunii 807/1 under 18℃ and 25℃ are 

almost identical, but the culture grows much faster under 32℃ (Sushchik et al. 2003).  

On the other hand, the lipid content of Botryococcus is higher at lower temperature. 

For example, in one study, the B. braunii 807/2 under 20℃ has higher lipid content 

than at 25℃ (Ngoon 2011a). In another study, it was also found that the lipid content 

of B. braunii LB-807/1 at 25℃ was 4 times higher than at 32℃ (Kalacheva et al. 

2002).  

 

Furthermore, temperature can affect Botryococcus intercellular lipid composition 

(Sushchik et al. 2003). This study found that higher temperature can decrease the 

composition of unsaturated fatty acids (intracellular) in B. braunii LB-807/1, but has 

no effect on extracellular hydrocarbon composition.  
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1.3.3.3 Nutrients 

CO2 and pH 

CO2 is the carbon source converted to sugar in all photosynthetic organisms 

including algae. All algae mass cultures are generally carbon limited and addition of 

any extra inorganic carbon can increase the biomass productivity and photosynthetic 

rate(Goldman et al. 1974; Novak and Brune 1985). 

 

However, the CO2 also affect the medium pH. Uncontrolled addition of CO2 may 

most likely result in lowering the medium pH. This low pH can negatively affect 

algae growth or result in loss of culture (Brock 1973). When carbon dioxide is added 

to water, it is in a balance of CO2 + H2O ↔ H2CO3 ↔ H
+
 + HCO3

- 
↔ 2H

+
 + CO3

2-
, 

which can be affected by pH (de Rijck and Schrevens 1997). In lower pH, there is 

more H
+
, and the concentration of H2CO3 and dissolved CO2 will increase. At higher 

pH the concentration of HCO3
-
 will increase. Photosynthesis results in an increase in 

medium pH to as high as pH = 11 during the day due to CO2 uptake by the algae. 

This simply means that there is less available "C" for photosynthesis as algae can 

only utilise CO2 and HCO3
-
. This will also negatively affect the growth of targeted 

algae as not all algae are bicarbonate users. Furthermore, higher pH can influence 

precipitation of some of the trace minerals such as Mg, Ca.  

 

Effect of CO2 and pH on Botryococcus braunii 

In one study, enrichment of 0.3% CO2 reduced the doubling time of the culture from 

6 days to 2 days (Wolf et al. 1985a). That also resulted in shorter chain hydrocarbon 

production (C30-C32) rather than long chain hydrocarbons (C33-C34) (Wolf et al. 

1985a). Another trial of adding CO2 (2%) into Botryococcus culture resulted in 

increasing biomass yield and hydrocarbon content by 100% and 20% respectively 

(Ranga Rao et al. 2007). In some cases, the added CO2 can also increase the size of 

Botryococcus colony (Ge et al. 2011). 

 

On the other hand, excessive CO2 addition can reduce the pH. But in one application, 

the pH of the culture ranged within 7 ± 1with additional CO2 (20%) at an aeration 

rate of 0.2 vvm (Ge et al. 2011). This means that in the case of adding CO2 with in 

low percentage the culture pH does not need to be controlled using a pH stat system. 
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In an earlier study it was found that the optimal growth pH for Botryococcus braunii 

is pH 8, and the growth rate decreased by 50% at pH 6 (Belcher 1968).  

 

Nitrogen, phosphorus and iron 

Nitrogen is a very important element for algae, because it is the main element of 

protein synthesis (e.g. enzyme). The source of nitrogen can be organic and inorganic; 

some algae grow better with organic nitrogen but some grow better using ammonium 

or urea (Antia et al. 1975). Nitrogen uptake can also be effected by other conditions 

such as temperature (Reay et al. 1999) and light (Macisaac and Dugdale 1972). It is 

to be mentioned that, though higher concentration of nitrogen can lead to higher 

maximum cell density, excessive concentration of nitrogen can be toxic to algae 

(Abeliovich and Azov 1976).  

 

Phosphorus is more related in energy metabolism (e.g. ATP ADP), and also it is 

needed to synthesise DNA, RNA. Moreover, phospholipids are main part of cell 

membrane and plasma membrane. Similar to nitrogen, phosphorous uptake by algae 

is also light dependent (Azad and Borchardt 1970; Nalewajko et al. 1981). Usually, 

the N:P ratio is more important than concentration, which means, the growth of the 

alga is more affected by the N:P ratio rather than their individual concentration.  

 

Iron is an essential element involved in photosynthesis and other metabolic activities 

(Terry and Abadía 1986). The uptake of iron by algae can be affected by the 

concentration of other metal elements like Zn, Al and Ca (Santana-Casiano et al. 

1997). As an example, extra supplemental iron significantly increased the growth 

rate and biomass yield of Chlorella (Liu et al. 2008). 

 

Effect of N, P and Fe on Botryococcus braunii 

Deficiency of nitrogen can increase lipid content (Ben Amotz et al. 1985) and oleic 

acid concentration (Zhila et al. 2005; Choi et al. 2011) of Botryococcus braunii. 

However, excessive high nitrogen concentration in the medium can also inhibit  

Botryococcus hydrocarbon synthesis (Ohmori et al. 1984). It is also to be noted that 

some nitrogen sources can be toxic to the culture, for example, the use of NH4
+ 

can 

decrease the pH of the culture to very low level which causes permanent damage to 
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the cell (Lupi et al. 1994). Similarly, exposure to NH3 can also lead to decreasing 

hydrocarbon synthesis and carbon fixation. However, NH4
+ 

and
 
NH3 can increase the 

synthesis of some chemicals like alanine, glutamine and amino acids (Ohmori et al. 

1984). 

 

Extra P can increase hydrocarbon production; this is not a result of excessive nutrient 

but the changes of the N:P ratio (Casadevall et al. 1985). Additionally, Botryococcus 

can rapidly take up phosphate and store it intracellularly for later use (Casadevall et 

al. 1985), therefore this should be taken into account when studying nutrient 

consumption rates of Botryococcus. 

 

In one study, the result showed that high level of iron ion (0.74 mM) can increase the 

hydrocarbon content of 4 Botryococcus strains by 3 - 7%  (Yeesang and Cheirsilp 

2011). Iron can change the morphology of one Botryococcus (BOT-22 race B) strain. 

Under iron deficiency, the size of the cell is smaller and the shape is conical; with 

sufficient iron, the size of the cell is bigger and cells stick together to form bigger 

colonies, and the shape is elliptical (Tanoi et al. 2013).  

 

1.3.3.4 Effect of salinity on Botryococcus braunii 

Botryococcus is a fresh water alga. However at least one strain, showed growth at 

low salinity (34-85 mM) (Rao et al. 2007). The results showed that small amount of 

salt can double the content of oleic acid and carotenoids, and slight increase in 

biomass yield was also observed (Rao et al. 2007). 

 

1.3.3.5 Contamination organism and associated bacteria  

One challenge of algae cultivation for producing any product is to prevent 

contamination in open and closed cultivation systems (Scott et al. 2010). 

Contaminants can compete for nutrients, and some microorganism can release 

chemical compounds like algaecides to degrade other algae (Reim et al. 1974). In 

general contamination by other organisms lead to the lowering overall productivity 

of targeted product. 
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Some algae like Botryococcus may have associated bacteria. While the bacterial 

symbiont can compete for nutrient, those bacteria can potentially provide other 

compounds which benefit the algae. For example, some bacteria can secrete vitamins 

and organic chelating compounds which can boost the growth of associated algae 

(Haines and Guillard 1974). Bacteria can also provide carbon source to algae by 

releasing CO2 (Parker and Bold 1961). Therefore, the production of hydrocarbon was 

considered to be respective to co-existing microorganisms (Murray and Thomson 

1977). In one study on Botryococcus, the hydrocarbon to biomass ratio was increased 

from 5.6 to 24.2% with Corynebacterium sp (Wang and Xie 1996). 

 

In some studies, it was found that associated bacteria can also negatively affect 

hydrocarbon accumulation due to the degrading of bacteria (Chirc et al. 1985). For 

example, P. oleovorans is one of the Botryococcus associated bacteria which can 

degrade hydrocarbon (Jones 1972). Therefore, associated bacteria can be positive or 

negative to hydrocarbon production of Botryococcus and if a stable co-existence 

relationship can be built between the alga and microorganism, the growth, 

productivity and competitively to other contamination can be increased dramatically. 

 

1.3.3.6 Colony size of Botryococcus braunii 

Hydrocarbon production is highly related to the size of the Botryococcus. This is 

because there is more need of hydrocarbon when the cells try to stick together to 

form a colony or become bigger colonies (Zhang and Kojima 1998). Therefore, the 

factors which can affect colony size will also affect hydrocarbon production. 

 

There are two main factors which possibly affect colony size: one is the light, and the 

other one is hydrodynamic stress. The colony size will increase if there is sufficient 

light, nutrients and low cell density. But when the colony size becomes bigger, the 

hydrocarbon content decreased due to decreasing light availability caused by shading 

(Zhang and Kojima 1998; Sánchez Mirón et al. 1999). 

 

From the above it can be hypothesised that the Botryococcus colonies become bigger 

when the culture is stressed by strong light or sheer mixing. To accomplish this 
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protection behaviour, the culture will produce more hydrocarbon as this is the 

material required to build the extracellular matrix.  

 

1.4 Aims of this project 

As discussed above, due to the high hydrocarbon content Botryococcus braunii can 

potentially be grown for biofuel production. To be grown on large scale 

Botryococcus must be grown in mass cultures in open ponds or closed 

photobioreactors. Furthermore, the culture must be grown reliably for long term. To 

date, there is no report on a reliable long term growth of this alga on any culture 

system. The two main aims of this study are:  

 

a) To determine the potential of reliable long term cultivation of B. braunii in open 

ponds and closed photobioreactors.  

b) To identify limits to the growth of Botryococcus braunii.  

 

In Chapter 3, Botryococcus was grown in both open ponds and a tubular closed 

photobioreactor (Biocoil) to test the reliability of growth and to determine 

productivity.  

 

In Chapter 4, the limits to growth and lipid productivity (temperature, light and 

oxygen) of Botryococcus were studied.  

 

In Chapter 5, I discus some possible solutions to contamination and limited 

productivity of Botryococcus. Some further study plans are also discussed.
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CHAPTER 2.  MATERIALS AND METHODS 

 

2.1 Maintenance and source of strain 

Botryococcus braunii CCAP 807/2 was obtained from Culture Collection of Algae 

and Protozoa (CCAP), and maintained at the Murdoch University Algae R&D 

Centre. This strain was isolated by Jaworski in 1984, and originated from lake 

Grasmere, Cumbria, England (Hilton et al. 1988). Botryococcus braunii 807/2 was 

cultured using modified CHU-13 medium (Table 2). From the nuclear small subunit 

(18S) rRNAsequences , CCAP 807/2 has been identified as belonging to the A race 

of Botryococcus (Senousy et al. 2004).  

 

 Table 2. Modified CHU-13 Medium (Yamaguchi et al. 1987) 

 

Compound Concentration 

 (mg∙L-1) 

Stock Solution 

(Concentrated Time) 

KNO3 

K2HPO4 

CaCl2∙2H2O 

MgSO4∙7H2O 

400 

80 

107 

200 

×1000 

×1000 

×1000 

×1000 

Ferric Citrate 

Citric Acid 

20 

100 

×1000 

×1000 

Trace Element: 

CoCl2 

H3BO3 

MnCl2∙4H2O 

ZnSO4∙7H2O 

CuSO4∙5H2O 

Na2MoO4∙2H2O 

 

0.02 

5.72 

3.62 

0.44 

0.16 

0.084 

 

×1000 

×1000 

×1000 

×1000 

×1000 

×1000 

Adjust pH to 7.5 with KOH solution 

 

 

Stock cultures were maintained in 8L carboys and sub-cultured every 21 days, and 

grown at 23± 2℃. The cultures were continuously stirred using a magnetic stirrer at 

150 rpm. All cultures were also continuously aerated using an aquarium air pump. 
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Cool white fluorescence lights with a 12h:12h light:dark cycle were used to provide 

an irradiance of 300 µmol photons.m
-2

.s
-1

. 

 

250mL conical flasks with a culture volume of 200mL were also used for stock 

cultures (back up), and all cultures were sub-cultured every 30 days. Cultures were 

grown at constant 25℃ without stirring and aeration at an irradiance of 80 µmol 

photons∙m
-2
∙s

-1
 provided by cool white fluorescence tube (12h:12h  light:dark  cycle). 

 

 

2.1.1 Semi-continuous culture 

Semi-continuous mode was used to maintain the culture and study the productivity of 

the culture. In this mode, the culture was maintained at certain volume (Vculture) and 

cell density range between a cells.mL
-1 

and b cells.mL
-1 

where b>a.  

 

When the cell density of the culture reached b cells.mL
-1

, a certain volume (v) was 

harvested, and same volume of new fresh medium was added into the culture system 

resulting in a cell density. The harvesting volume V was calculated by Eq.1.: 

 

                 
a             

              
                  

Eq.1. 

 

2.1.2 Batch culture 

A batch culture is a closed system initiated by the inocultation of microaglae under 

certain environmental conditions (indoor or outdoor). Only a few generations of 

microalgae can grow before given nutrients are used up. In batch culture, fresh 

medium was only added at the beginning of the culture, then no more nutrient was 

added. During the whole period, the culture was mixed constantly by a magnetic stir 

bar (flask & carboy) or paddle wheel (open pond) at same rate, and cultured at same 

temperature and irradiance. 
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2.2 Analytical method 

2.2.1 Specific growth rate 

Cell density was determined by using Neubauer haemocytometer. Four replications 

were carried out for each count. The specific growth rate (μ) was calculated by Eq.2: 

 

  
         

t  t 
 

Eq.2. 

 

where t1 and t2 were the days that cell density N1 and N2 were determined.  

 

2.2.2 Biomass determination 

The total biomass was measured as dry weight and organic dry weight as follows: 

 

A Whatman GF/C (2.5cm diameter) filter was washed with deionised water three 

times, then dried at 75℃ overnight. The filter was then ashed at 450℃ for at least 

four hours. The filters were then stored in vacuum desiccators over KOH crystals 

until use.  

 

To measure the biomass yield, the pre-treated filter was first weighed (Mfilter) on an 

analytical balance with five decimal places. The filter was used to filter 5mL of well 

mixed culture. The filter was then dried at 75℃ overnight and weighed (Mfilter+algae). 

The dry weight was calculated using Eq.3.:  

 

 

         t                                           

Eq.3. 

 

After weighting, the filter was ashed at 450℃ for 5 h and then cooled in a vacuum 

desicator to room temperature over night. The filter was then weighed on analytical 

balance (Mash), and the organic dry weight was calculated using Eq.4.:  
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   a             t                                       

 Eq.4. 

 

2.2.3 Total lipid determination 

Total lipid determination was based on Bligh and Dyer (1959), modified by Kates 

and Volcani (1966) and adapted by Merz (1994). Five mL culture was filtered using 

Whatman 2.5 cm GF/C filters and stored at -5℃. Prior to determination, the filter 

was placed in a 4 mL test tube and thawed. About 2mL liquid nitrogen was then 

added into the test tube. After 30 minutes, a glass mortar was used to homogenize the 

filter with 1mL solvent mix (methanol : chloroform : DI water 2 : 1 : 0.8 v/v/v). The 

filter was then transferred to a 10 mL centrifuge tube. Another 4.7 mL extract solvent 

mix was used to rinsed the test tube and glass mortar and also transferred into the 

centrifuge tube. The extract was then centrifuged at 1248 x g (3000 rpm, r=12.5cm) 

for 10 min. The supernatant was then transferred to a 20 mL glass test tube with lid. 

Then the filter was extracted again with another 5.7 mL extract solvent, and the 

supernatant was also collected. 

 

Afterwards, the supernatants were combined and transferred into a 20 mL glass tube. 

3 mL DI water was added and well mixed by vortex. It was then followed by 

addition of 3 mL chloroform. The mixed solution was then kept in ~ 5℃ 
refrigerator 

(dark & cool) over night for phase separation. 

 

The next day, the extract in the glass tube had separated into two layers. The top 

layer was removed carefully, and several drops of toluene were added to remove any 

remaining water. The bottom layer was transferred into a pre-weighted 4 mL glass 

vial, and dried under a steam of nitrogen gas on a heating plate at 38℃ for 1 h. The 

vial was weighed on analytical balance to 5 decimal places. 

 

2.2.4 Chlorophyll determination 

The chlorophyll determination was based on the method of Jeffery and Humphrey 

(1975). Samples were extracted with 90% acetone and determined 

spectrophotomerically. Five mL culture was filtered onto a Whatman GF/C (2.5 
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diameter) filter and stored at -5℃ in the dark. Prior to extraction, the filter was 

placed in a 4 mL test tube and thawed to room temperature. Then the filter was 

homogenized with a glass mortar in 3 mL 90% ice cold acetone in a low light 

environment. The extract was then transferred into a 10 mL centrifuge tube with lid 

and centrifuged at 1248 x g (3000 rpm, r = 12.5 cm) for 10 min at 4℃. The 

absorbance of the supernatant was measured using a spectrophotometer with 1 cm 

path length cuvette (20mm × 15mm, LW) at 664 nm and 647 nm. The content of 

chlorophyll a and chlorophyll b was calculated from Eq 5 and Eq 6 :  

 

            a                                     

Eq 5 

 

                                              

Eq 6 

 

2.2.5  Total protein determination 

The total protein determination was based on Dorsey et al.(1978). Prior to 

determination, the following reagents were prepared: 

 

 

Biuret reagent:     Na2CO3               200 g.L
-1

 

                             NaOH                 40 g L
-1

 

                             NaK tartrate        200 g.L
-1

 

                             CuSO4·4H2O      50 g L
-1 

 

Folin-phenol reagent: Folin-phenol : dH2O 1:1 v 

 

Protain Standard: Bovine serum albumin fraction, 2.5 g.L
-1 

 

Table 3. Protein Standard Curve Samples: 

Protein            (µg) 0 50 100 150 200 250 300 350 
BSA V            (mL) 0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 
dH2O              (mL) 0.14 0.12 0.10 0.08 0.06 0.04 0.02 0.00 
Biuret reagent (mL) 5 5 5 5 5 5 5 5 

 

 



33 

 

5 mL culture was filtered onto Whatman 2.5 cm GF/C filters and stored at -5℃. Prior 

to determination, filter was placed in 4mL test tube and thawed to room temperature. 

When the filter reached room temperature, one spoon of liquid nitrogen was added 

into test tube and left for 30 minutes. A glass mortar was used to homogenize the 

filter with 1mL Biuret reagent. The content was then transferred to another 10mL 

centrifuge tube. Another 1 mL Biuret reagent was used to rinse the test tube and this 

was also transferred to the centrifuge tube. The volume in centrifuge tube was then 

topped up to 5.5 mL using extra Biuret reagent. 

 

The centrifuge tubes and standard protein samples (range between 0 to 350 µg ) were 

placed in a water bath at 100℃ for 60 min. After incubation, 0.5mL Folin-phenol 

reagent was immediately added into the tube and mixed well using a vortex stirrer. 

The centrifuge tubes were then placed in cold water bath (~ 4℃) to cool down and 

then they were allowed to equilibrate to room temperature. The samples were then 

centrifuged at 1248 x g (3000 rpm, r=12.5 cm) for 5 min, and the absorbance of the 

supernatant was measured at 660 nm. The protein content of samples was calculated 

using the standard curve. 

 

2.2.6 Total carbohydrate determination 

Total carbohydrate was determined based on the method of Kochert (1978) as 

modified by Ben-Amotz et al. (1985) and Mercz (1994). Five mL culture was filtered 

onto Whatman 2.5 cm GF/C filters and stored at -5℃ fridge. Prior to determination, 

the filter was placed in a 10mL centrifuge tube with lid and thawed to room 

temperate. The filter was homogenized with 0.5mL 1M H2SO4 and topped up with 

another 4.5 mL 1M H2SO4. Then the centrifuge tube was incubated in a water bath at 

100℃ for 1 h. When the centrifuge tube cooled to room temperature, it was 

centrifuged at 3000 rpm for 10 min, and then 2mL of supernatant was transferred to 

another centrifuge tube.   

 

Six glucose standards were prepared containing 0, 40, 60, 80, 120, 160 and 200 µg of 

glucose. Each standard was topped up with DI water to 2mL. Then, 1mL phenol 

solution (50 g.L
-1

) was added to each of the standards and the centrifuge tubes 
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containing 2mL sample supernatant. The samples were mixed well on a Vortex 

stirrer immediately. Then 5mL concentrated H2SO4 was added and mixed by shaking 

three times. When the centrifuge tubes cooled to room temperature, they were mixed 

again by shaking several times. The absorbance of the sample was measured at 485 

nm and the content of the carbohydrate calculated against the standard curve. 

 

2.2.7 External hydrocarbon determination 

External hydrocarbon determination was based on Eroglu and Melis (2010). 50 mL 

culture was centrifuged at 1248 x g (3000 rpm, r = 12.5cm) for 3 min, then the water 

layer was carefully removed. 8 mL heptane was added into the centrifuge tube, and 

the centrifuge tube was well mixed by vortex for 3 minutes. The heptane was then 

separated from the cells by addition of culture medium. The top heptane layer was 

carefully transferred into a pre-weighted 4mL glass vial. The glass vial was dried 

under a steam of nitrogen gas on a heating plate at 38℃. After evaporation for 1 h, 

the vial was weighed on an analytical balance to 5 decimal places.  

 

2.2.8 Biomass and lipid productivity determination 

In this study, changes in biomass productivity and lipid productivity were used to 

determine culture's capacity of producing organic compounds and lipid. Usually, 

productivity was calculated by the equation: Productivity = µ·Yield, where µ is the 

specific growth rate (Eq.2) However, this calculation was not suitable for my study, 

because the growth rate and productivity sometimes did not show a linear 

relationship. Also, the culture can accumulate more lipid when the growth rate was 

zero. Therefore, Eq 7 and Eq 8 were used for measuring biomass and lipid 

productivities. 

    a         t   t         a     
                                              

     
  

Eq 7 

 

            t   t         a     
                    

t  t 
 

Eq 8 
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2.2.9 Measurements of net photosynthetic and dark respiration rate 

A Rank Brothers (UK) polarographic Clark-type oxygen electrode was used to 

measure net photosynthesis and dark respiration rates. A temperature controlled 

water bath was connected to the glass chamber of the electrode to provide constant 

temperature, usually the water bath was turned on 30 min prior to an experiment. A 

Hanimex 150 slide projector with 150W, Syl-167 quartz halogen bulb was used to 

provide light to electrode chamber, and the irradiance was adjusted by changing the 

distance between electrode and projector. The electrode was calibrated by nitrogen 

gas and air saturated DI water. A Li-Cor model light meter was used to measure the 

irradiance of the chamber, and the irradiance of the front and back surface of the 

chamber was measured separately. Then the average irradiance of this chamber is 

calculated by taking the mean irradiance value of front and back. 

 

For net photosynthetic and respiration rate measurements, a sample in 10 mL 

centrifuge tube with lid was placed in water bath for at least 10 min. Afterwards, 3 

mL of this culture was added into the electrode chamber, and nitrogen gas was gently 

bubbled into the chamber to reduce oxygen concentration before measurement 

(usually the culture oxygen was higher than required). A fresh culture was used for 

each measurement at each temperature, irradiance and oxygen level. 

 

When measuring the respiration rate, two layers of thick black sheets were used to 

cover the electrode chamber, and all lights surrounding the chamber were turned off. 

 

2.2.10 Multi-parameter water quality sonde (YSI) 

Multiparameter Water Quality Sondes from YSI were used to record pH, temperature 

and dissolved oxygen in the ponds. The models used in this study were 600R and 

600XLM, both of them were initially calibrated by YSI company. Prior to each test, 

each sonde was calibrated with 3 pH buffers (pH 4, 7 and 10) and 100% saturated DI 

water (25℃). 
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2.3  Cultivation systems 

2.3.1 Paddle wheel driven raceway pond 

In this study, a paddle wheel driven raceway pond (2 m×0.5 m; L×W) with 

maximum volume of 200 L was used to culture B. braunii outdoors. The 4-paddle 

paddle wheel was operated at a rotating speed of 28 rpm and generated a flow rate of 

20 cm.s
-1

. pH was kept at a range of 7.0-7.5 by a CO2-stat system (Roche 8001 pH 

controller) with a solenoid switch connected to a CO2 gas cylinder. 

 

Prior to inoculation, the pond was pre-treated with hypochloride bleach for one 

week. The pond was then filled with tap water for another week to rinse off any 

chemical residua. Once the stock culture (see 2.1) was inoculated in to the pond with 

initial cell density of 100×10
5
 cells.mL

-1 
with 80L volume in the pond. The culture 

was initially kept in batch mode until reached stationary phase. The culture volume 

was then gradually increase to 200 L with cell density kept between 100×10
5
 and 

150×10
5
 cells.mL

-1
. Once at 200 L, the culture was operated at semi-continuous or 

batch mode according to required experiment.   

 

For routine maintenance, tap water was added every morning to compensate the 

evaporation. Some of the algae stuck (create thin biofilm) to the pond walls and 

paddlewheel, these biofilm were removed daily using water jet of soft brush.. A fish 

net was also used routinely to remove dead insect and other large particles from the 

culture. 

 

2.3.2 Biocoil 

A vertical helical tubular photobioreactor (airlift) with 40 L total volume was used to 

culture B. braunii in this study, the construction was based on the Biocoil design of 

Robinson et al. (1989). Air was supplied to the airlift from a Binford BLE-20 air 

compressor. The liquid velocity was regulated by an adjustable regulator at a range 

of 10-25 cm.s
-1

 with an aeration speed between 5-16 L.min
-1

. The water cooling 

system was set to 30℃ during all cultivation period. pH was kept at a range of 7.0-
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7.5 by a CO2-stat system (Roche 8001 pH controller) and a solenoid switch 

connected to a CO2 gas cylinder. 

 

Prior to inoculation, the Biocoil was pre-treated with hypochloride bleach for one 

week, then filled with tap water for one week to rinse off any chemicals. This step 

was repeated again as the tube surface is harder to clean. Once cleaned the Biocoil 

was inoculated using Botryococcus grown in open raceway pond. The culture Biocoil 

volume was 40 L with initial  cell density at 70-80×10
5
 cells.mL

-1
. Afterwards, the 

culture was grown either in semi-continuous or batch mode according to required 

experiment. 
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CHAPTER 3. OUTDOOR CULTURE  

 

3.1 Introduction  

Botryococcus braunii is a green alga which can accumulate very long chain 

hydrocarbons in the cell and release them to the external matrix and can accumulate 

a high concentrations of hydrocarbons (Metzger and Largeau 2005). Due to this 

feature, Botryococcus has a potential to be used as a raw material for biofuel 

production. However, for B. braunii culture to be successful for any purpose, the 

culture must be reliable and also productive for long periods when grown outdoors 

(Scott et al. 2010). 

 

While, there have been many reports on indoor cultivation of several strains of 

Botryococcus, experience in outdoor cultivation is limited to a small number of 

short-term studies. One study from India showed that B. braunii AP103 can be 

cultured in paddle wheel driven  raceway ponds outdoors for 15 days in batch mode 

(Dayananda et al. 2010). Another study also showed that 2 strains of B. braunii 

(strains LB-572, N-836) can be cultured in open circular and raceway ponds for 18 

days in batch mode (Ranga Rao et al. 2012). In Japan B. braunii BOT-22 also has 

been cultured in an outdoor tubular biophotoreactor for 60 days (diluted only once), 

and this is the longest record of outdoor culture of Botryococcus by far (Shimamura 

et al. 2012). However, these three examples of outdoor cultivation were too short 

(15-60 days to evaluate the long-term reliability and productivity of outdoor 

Botryococcus culture necessary for any potential commercial application of this alga. 

 

In this Chapter, Botryococcus braunii CCAP 807/2 first was cultured indoors in 

batch mode to study the growth and lipid production under indoor conditions.  The 

same strain then was cultured in a 1 m
2
 (up to 200L volume depending on depth) 

paddle wheel driven raceway pond and a closed helical tubular photobioreactor 

(Biocoil, 40L) outdoors to test the long-term reliability of the culture in these two 

cultivation systems. The cultures were periodically harvested at various times during 

this study to determine the productivity of the culture in semi-continuous culture. 
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3.2 Results 

3.2.1 Indoor batch culture of Botryococcus  

Botryococcus braunii CCAP 807/2 was cultured in a 5L carboy in batch mode under 

the growth conditions summarised in Chapter 2.1. The growth curve, specific growth 

rate, lipid content and lipid productivity are shown in Figure 3: 

 

Figure 3. Indoor batch culture of Botryococcus braunii CCAP 807/2  (a) Growth curve. (b) 

Specific growth rate. (c)Total lipid content. (d) Lipid productivity. Note: the data points for (b-

c) are calculated for the period between sampling. Data are mean ± stdev (n=4). 

 

 

For this indoor culture the culture was in exponential phase over the whole 20 days 

as cell density was still increasing by the end of this experiment (see Figure 3). The 

highest specific growth rate of 0.45 d
-1 

was observed immediately after inoculation 

between day 0 and 2. The specific growth then declined to an average specific 

growth rate of between day 2 and 15 of 0.04 ± 0.03 d
-1

. The highest lipid content of 
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the cultures was on day 15 (0.45±0.01 g.L
-1

), with the highest change in lipid 

between days 11 and 14, with a lipid productivity between days 11 and 14 of 0.04 

g.L
-1

.d
-1

.  

 

3.2.2 Outdoor culture    

The reliability of growth of B. braunii CCAP807/2 in a helical tubular 

biophotoreactor (Biocoil) and a paddle wheel-driven raceway pond (Figure 4) was 

compared over a period of 2 months under outdoor conditions in Perth Western, 

Australia (see chapter 2,  2.1). The raceway pond culture was continued for a further 

3 months.  

 

 

Figure 4.  40 L Biocoil-type tubular photobioreactor (Left) and 200L paddle-wheel driven 

raceway pond (Right) used in this study. 

 

Following inoculation the raceway pond culture initially grew very well with an 

average specific growth rate of 0.1 d
-1

. Once the raceway pond culture had been fully 

established in March 2011 the Biocoil-type closed tubular photobioreactor was also 

inoculated.  Growth in the open raceway pond and the Biocoil-type closed tubular 

photobioreactor between March and August 2011 (i.e. late autumn and winter) is 
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shown in Figure 5. Both cultures were initially grown in semi-continuous mode and 

then in batch mode.  

 

Botryococcus also grew reasonably well initially for 1 month in the Biocoil (Figure 5 

d. left of the vertical line on the graph) until the culture collapsed due to extensive 

sticking of cells on the tubes of the coil and in the degasser (Figure 6). The sudden 

high peak in cell numbers during this period of around 900×10
5
 cell.mL

-1
 (Figure 5d) 

was not a result of growth, but arose because the cells sticking inside the degasser 

box at the top of the airlift were resuspended when new water and medium were 

added. Following the culture collapse the Biocoil was cleaned and the culture 

reinoculated (Figure 5 d. right of the vertical line on the graph). Again the algae grew 

and reached a cell density of up to 600×10
5
 cell.mL

-1
, but the culture again collapsed 

because of cell sticking and no further experiments in the Biocoil were carried out. It 

also proved impossible to achieve accurate cell counts for the Biocoil culture due to 

the sticking problem and therefore the calculated growth rates must be considered of 

very limited accuracy and are likely to be underestimated. This may account for the 

fact that the calculated productivities in the Biocoil and the open pond were about the 

same (Figure 5e).  

 

In the raceway pond Botryococcus was grown for 5 months (Figure 5c). For a large 

part of this time the culture was effectively maintained in stationary phase with the 

main aim being to determine the stability of the culture outdoors. However, in the 

latter period (July to August) semi-continuous growth was again re-established to 

obtain data on the specific growth rate and productivities.  
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Figure 5. The long term growth of Botryococcus braunii CCAP807/2 in an open raceway pond 

and a Biocoil-type tubular photobioreactor.  (a) air temperature and (b) solar irradiances 

during this period. (c) Cell densities in raceway pond - (●)  Botryococcus, (○) contaminating 

organisms. (d) Cell density in Biocoil - (●) Botryococcus, (○) contaminating organisms. (e) 

Biomass productivity (AFDW) in open pond (●) and Biocoil (○). (f) Lipid productivity in pond. 

(g) Specific growth rate in open pond (●) and Biocoil (○). 
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Figure 6. Cells sticking and accumulating inside the Biocoil in the degasser box  

 

 

 

 

Figure 7. Contaminating organisms in outdoor culture. (a) Scenedesmus. (b) Amphipleura. (c) 

Dead cell. (d) Tetrallantos.   

 

 

While operating the raceway pond, the accuracy of sampling was found to be very 

important and somewhat difficult to achieve. This was because the cells regularly 
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adhered to the pond walls and in the corners of the pond. For more accurate sampling 

for cell counts, the pond wall was washed down regularly using a soft brush. 

Samples were usually taken in front of the paddle wheel after the culture had been 

mixed well and after topping up with fresh water to replace evaporative losses.  

 

On days with heavy rain, the paddle wheel was shut down to prevent overflow of the 

pond and subsequent culture losses. As Botryococcus is colonial, the cells/colonies 

quickly settled to the bottom of the pond when the paddle wheel was stopped and 

therefore any overflow from the pond was only medium and not algal cells. After 

rain, and prior to turning on the paddle wheel the excess water was carefully 

removed by siphoning and fresh nutrients (i.e. N and P) were added to compensate 

for the medium lost. To minimize contamination in the pond, the dead bodies of 

insects were removed regularly using a fish net. Also, the culture was maintained at 

relatively high cell density of 100 × 10
5
 cells.mL

-1
. It was also observed that when 

the percentage of contaminating organisms started to increase, shutting down the 

paddle wheel for 1-2 days and allowing the cells to settle on the bottom of the ponds 

had the effect of reducing the number of contaminating organisms. The main 

contaminating organisms were the green alga Scenedesmus, the diatom Amphipleura 

(Figure 7) and few protozoa such as Vorticella and Paramecium. 

 

From April to June, the culture was grown at batch mode. The cell density firstly 

increased from 150 × 10
5
 to 240 × 10

5
 cells.mL

-1
 at an average specific growth rate 

of  0.03 day
-1

, then gradually declined to 90 × 10
5
 cells.mL

-1
. At the time of lowest 

cell density, nutrients were added into the pond to increase biomass resulting in an 

increased specific growth rate of 0.09 day
-1 

until peaking at a cell density of 270 x 

10
5
 cells.mL

-1
. During this period of open pond cultivation, the culture almost 

collapsed 3 times in early April, beginning of May and late June with the cell density 

suddenly decreasing by 84%, 38%, and 82%, respectively. After each collapse, the 

culture was partially harvested and fresh medium was added and the culture 

recovered. Interestingly, prior to each collapse, the cell density of the culture was 

particularly high at 220×10
5
, 250×10

5 
 and 280×10

5
 cells.mL

-1
,
 
 respectively.  
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Because of the possible relationship between very high cell densities and culture 

collapse, the cell density was maintained at 100 - 150 × 10
5
 cells.mL

-1
 when the pond 

culture was grown semi-continuously during July and August (Figure 5c). During 

this period, the culture achieved a biomass productivity of 0.025 ± 0.012 g.L
-1

.day
-1

 

(Figure 5e), and a lipid productivity of 0.008 ± 0.004 g.L
-1

.day
-1 

(Figure 5f) at a 

specific growth rate of 0.06 ± 0.03 day
-1 

(Figure 5g). It is noticeable that when the 

culture was continuously harvested, both biomass and lipid productivity decreased 

after each dilution. For example, the lipid productivity in July was 0.008, 0.006 and 

0.004 g.L
-1

day
-1 

respectively (in date order), although the harvesting interval was the 

same.  

 

The culture was eventually terminated in late August as a result of a sudden 

explosion of Scenedesmus growth (Figure 5c). 

 

3.3 Discussion 

3.3.1 Reliability of Botryococcus culture 

Botryococcus was grown in open pond for 5 months and the Biocoil for 1 month. 

This is the longest time that Botryococcus has been grown outdoors. The reason for 

the failure of open pond is the sudden increase of contaminating organisms (mainly 

Scenedesmus), and the Biocoil failed twice due to serious cell sticking on the Biocoil 

tubes and in the degasser box.  

 

During 5 month of open pond cultivation, the culture partially collapsed three times, 

but was recovered each time. These partial culture collapses always coincided with 

very high cell densities and not with any changes in climatic conditions. It is possible 

that at these very high cell densities the culture became extremely nutrient limited, 

although light limitation also cannot be ruled out.  

 

On the basis of these results the following pond management strategies to maintain a 

stable culture are proposed: 

 

1) The cell density should be maintained at no more than 200×10
5
 cells.mL

-1
. 
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2) When a collapse happens, the culture needs to be partially harvested several times 

and the nutrient levels should be restored until the cell density increases again. For 

each partial harvesting step, the dilution rate should be less than 20%. The reason for 

this is that the culture is very vulnerable at this time, and a sudden decrease in cell 

density can cause an increase in contamination. 

 

3.3.2 Limitations on reliability 

Cell Sticking 

Botryococcus is a colonial alga which produces abundant extracellular 

polysaccharides and therefore cell sticking is normal behaviour of this alga (Wake 

and Hillen 1981; Fernandes et al. 1989), especially when the environment is 

unfavourable (Lee et al. 1995). On the other hand, the sticking cells can be removed 

relatively easily in an open pond, but not in a tubular photobioreactor such as the 

Biocoil.  

 

In the open pond, the cells adhered on the pond walls and the bottom corner of the 

pond. As the pond needed addition of water every day to compensate for the 

evaporative loss of water, the sticking cells on the pond walls could easily be washed 

off the walls by a water jet. The cells also stuck to and accumulated in the corners of 

the pond a result of relative slow flow at the corners. This problem can be solved by 

culturing the alga in raceway ponds with round corners to improve the flow pattern. 

This design feature is common in ponds used for commercial production (Sanchez et 

al. 2011). Furthermore, the installation of low rectifiers can improve the flow regime 

in the corners of the ponds (Shimamatsu 1987). However, it is important to note that 

the cell sticking in the open pond did not cause any culture collapse in my study.  

 

In the Biocoil however, it is not possible to remove the sticking cells and built-up 

biomass in the degasser box as the system was closed. As shown in Figure 5 (d) the 

cell density in the Biocoil had a sudden increase at one time, and it is likely that this 

extreme high cell density finally led to the culture collapse. Similarly, in the second 

trial the culture collapsed after a rise in cell density. Therefore, cell sticking was a 

problem in using the Biocoil for the culture of Botryococcus.  
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It may be possible to overcome this problem by a redesign of the photobioreactor. In 

the air lift part of the Biocoil and in the degasser box, the flow rate was relatively 

slower than in the plastic tube of the photostage. Therefore once some cells grow on 

the wall of the top degasser box (see Figure 6), more cells will stick afterwards. By 

increasing the flow rate and turbulence the algal cells should have less chance to 

stick. However, increased sheer due to mixing can potentially result in cell damage in 

some algae (Silva et al. 1987; Cherry 1988; Thomas and Gibson 1990; Hondzo and 

Lyn 1999; Barbosa et al. 2003). Whether this can be a problem is not known as the 

sensitivity of Botryococcus braunii to shear has not yet been studied. An alternative 

option may be to change the material of the box and tube, so that it is harder for the 

algae to stick to the surfaces of the photobioreactor. For example, many tubular 

photobioreactors are constructed of glass tubes(Zittelli et al. 2013a) and clear Teflon 

tubing was also trialled in the UK by Biotechna (Borowitzka, personal 

communication). However, the cost of such materials is extremely high, and 

hydrocarbon from Botryococcus for biofuel production is not a high value product. 

Closed photobioreactors, in particular tubular photobioreactors are therefore unlikely 

to be suitable culture systems for this alga. 

 

Contaminating organisms 

Contaminating organisms exist both in the open pond and the Biocoil, during the 

experimental period, the cell density of contamination organism in Biocoil was less 

than 1% than that of the Botryococcus, but due to the short period of Biocoil culture, 

it is impossible to predict if contamination in Biocoil would increase in long term 

and present a problem if the culture period could be extended.  

 

In the open pond the concentration of contaminating organisms was very low from 

March to beginning of August, and then it suddenly increased (Figure 5c). The 

contaminating organisms in August were the same as in March, which means that for 

some reason they suddenly grew faster.  

 

A possible explanation for this contamination boom is that the weather conditions in 

August were less favourable for the growth of Botryococcus, making the alga less 
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competitive. As it can be seen in (Figure 5 g) the specific growth rate in August was 

lower than in March, and the biomass productivity was also lower. The temperature 

in August was mostly below 20℃, and the optimum temperature for Botryococcus 

braunii 807/2 growth was 25℃ and lower temperatures reduced the growth rate 
 
(Li 

and Qin 2005). On the other hand, the optimal conditions for Scenedesmus which is 

one of the main contaminating organisms in the pond and for biomass productivity 

(Sánchez et al. 2008) and specific growth rate (Xin et al. 2011) are 20-25℃ at high 

irradiance (1900 µmol photons. m
-2

.s
-1

). Thus, the temperature in August was also 

unfavourable to the growth of Scenedesmus, however, the higher irradiance may 

have benefitted its growth. As shown in Chapter 4 (Figure 14), the specific growth 

rate of Botryococcus was not increased above the light saturation point (100 µmol 

photons. m
-2

.s
-1

). 

 

One interesting observation of this study was that the contaminating organisms could 

be reduced by allowing the Botryococcus (and the contaminating organisms) to settle 

on the bottom of the pond for 24 h or longer by turning off the paddle wheel. By 

effectively concentrating the Botryococcus in an unmixed environment is likely to 

have resulted in a localised increase in hydrocarbons and/or free fatty acids in the 

water. These hydrocarbons have been shown to have antibiotic activity (Metzger et 

al. 1989) and free fatty acids from B. braunii have also been shown to have an 

allelopathic effect on phytoplankton (Chiang et al. 2004). In fact, this may be one of 

the reasons that Botryococcus has evolved to secrete hydrocarbons and therefore 

presents a possible strategy for controlling contaminating organisms in long-term 

cultures of Botryococcus. An alternative might be to grown the alga at a higher cell 

density (above 100×10
5
 cells.mL

-1
), as higher cell densities should also result in an 

increase the concentration of hydrocarbons and/or free fatty acids in the medium to 

levels where they have effective allelopathic activity. 

 

3.3.3 Productivity of Botryococcus culture 

3.3.3.1 Productivity of indoor culture  

The maximum lipid productivity and specific growth rate of  my indoor 

Botryococcus 807/2 (Race A) batch culture was 0.04 g.L
-1

.d
-1

 and 0.45 d
-1

, no matter 
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the growth and lipid productivity, the result from my study was high compare to 

other result on identical and close strain.  By far, the highest lipid productivity and 

specific growth rate of B. braunii are reported as 0.15 g.L
-1

.d
-1

and 0.5 d
-1

 from a B. 

braunii Showa strain(Yoshimura et al. 2013). The following will mainly discuss the 

effect of growth condition and strain difference on lipid productivity and growth of 

Botryococcus. 

 

 

Growth condition and strains 

In comparison, one culture of B. braunii CCAP 807/2 in another study had a specific 

growth rate of 0.15 d
-1 

(Li and Qin 2005) which is 30% of my maximum result. 

Though the lipid yield was not given in the study, it is predictable that the lipid 

productivity would also be also lower than my result due to the much lower growth 

rate. The alga in this study was grown in flask without stirring and aeration, and this 

is the main difference from my culture. In addition, although the irradiance is 

different to mine, this result 0.15 d
-1 

was the highest growth rate under an optimized 

irradiance. In this case, it is predictable that culture mixing and aeration are the main 

factors affecting the growth here.  

 

From another report on a Botryococcus braunii which is close to B. braunii CCAP 

807/2, the lipid productivity of the batch culture is 0.016 g.L
-1

.d
-1

on average 

(Talukdar et al. 2013), and this is about 40% of my result. Also, this culture was 

grown without constant stirring and the irradiance was 35 µmol photons. m
-2

.s
-1 

which is only 12% of the irradiance for my culture. Besides, there was also no 

aeration to the culture in this study.  

 

In another study, B. braunii strain UTEX LB-572 (identical to CCAP 807/1), which 

is close to CCAP 807/2, showed a lipid productivity of 0.017 g.L
-1

.d
-1 

(Eroglu et al. 

2011) which was about 40% of my maximum result. In this study, the irradiance was 

50 µmol photons. m
-2

.s
-1

, and my study used 6 times higher light than this. Besides, 

the culture was stirred but not aerated.  
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Reports on this particular strain B. braunii CCAP 807/2 are very limited, therefore I 

can only compare my result to above studies. For all those cultures mentioned above, 

the temperature and medium are same, and the main differences between those 

studies and mine are lower irradiance and lack of aeration and stirring. However, it is 

hard to find out which factor here is the primary one due to limited data. Therefore, 

further studies on growth conditions in chapter 4 can help to answer this question. 

On the other hand, the range of lipid productivities from different B. braunii strains 

is huge. In one study, several B. braunii strains were cultured at identical conditions, 

and the lipid productivity can be calculated and shown as follows (Eroglu et al. 

2011): 

 

Strain Race 
Lipid productivity  

g.L-1.d-1 

Lipid content 

(dry weight) 

B. braunii var Showa B  33.9% 

B. braunii UTEX-2629 A 0.038 19.3% 

B. braunii Yamanaka A 0.024 18% 

B. braunii Kawaguchi-1 B 0.023 28.4% 

B. braunii UTEX-LB572 A 0.017 15.9% 

B. braunii UTEX-2441 A 0.010 16.7% 

 

Among those B. braunii strains, B. braunii var Showa had the highest lipid 

productivity and this is 4 times higher than UTEX-2441 which is grown under the 

same condition. Additionally when B. braunii var Showa was grown under optimal 

condition which is 850 µmol photons. m
-2

.s
-1

 irradiance and 30℃ temperature with 

0.2 - 5% CO2 enrichment, it can have a lipid productivity of 0.15 g.L
-1

.d
-1

and specific 

growth rate of 0.5 d
-1 

(Yoshimura et al. 2013). 

 

Many reports now on B. braunii have focussed on the optimal conditions for lipid 

yield, but a higher lipid yield may not lead to higher productivity because 

productivity is a function of both lipid yield and specific growth rate (lipid 

productivity = µ × lipid yield). For example, my strain B. braunii CCAP 807/2 has a 

higher lipid content at 20℃ than 25℃, but it grows lower at 20℃ than 25℃ (Ngoon 

2011b). Also from above table, although some strains like UTEX-2629 has lower 

lipid content than B. braunii Showa, the lipid productivity is higher and although 
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some strains like B. braunii Kawaguchi-1 have a higher lipid content than UTEX-

2629, the lipid productivity is lower. 

 

Drop in growth rate and lipid content 

During indoor batch culture period (see Figure 3), the maximum specific growth rate 

occurred only at the beginning of culture, then the rate decreased to a very low level 

and remained. At the beginning of the culture, the nutrients and irradiance are both 

sufficient, therefore the culture can grow faster. When the cell density was doubled, 

the irradiance for individual cells and nutrient concentration decreased a lot which 

further decreased the growth rate. Similarly, the highest growth rate of outdoor pond 

culture in March (see Figure 5) occurred on the day that the cell density of the 

culture was the lowest in the whole cultivation. In other words, there was more light 

available for each cell compared to higher cell density.  

 

In addition, if the drop of growth rate is a result of insufficient nutrients, then using 

more concentrated medium would improve the growth rate and productivity. 

However, excessive nutrients can be toxic for Botryococcus. In one study, the author 

found that extra high concentration of nitrogen, phosphate and iron can decrease the 

lipid yield; especially phosphate and iron can decrease the lipid content by half when 

their concentration was 2 times higher than original (Ruangsomboon 2012).  

 

On the other hand, it can be found that the lipid content drops (see Figure 3 c) from 

3
rd

-8
th
 day, then it went up again to an even higher content, but then lipid dropped for 

another time at the end of the batch mode. Similarly to my result, such pattern of 

lipid composition was also observed in another B. braunii strain. In one study of B. 

braunii indoor batch culture, the lipid content had a drop during day 12 - 15, then it 

increased from day 15 - 24, afterwards, the lipid content dropped for a second time 

from day 24 - 30 (Ashokkumar and Rengasamy 2012). Also in this study, the 

outdoor batch B. braunii culture also showed the same pattern when the first drop 

happened during day 6 - 9 and second drop happened during day 12 - 15 

(Ashokkumar and Rengasamy 2012). 
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Unfortunately, due to limited research on B. braunii, it is hard to explain the lipid 

drop, because it cannot be predicted if the missing lipid is a result of excretion or cell 

respiration. On the other hand, although we cannot find the reason for this 

phenomenon, if the culture can be harvested before the lipid drop, the culture would 

have a higher lipid productivity. Therefore, when B. braunii strain is grown semi-

continuously the harvesting interval should not be too long.  

 

3.3.3.2 Productivity of open pond and Biocoil 

According to the result shown in Figure 5, there is no statistical difference between 

overall biomass productivity of the open pond and the Biocoil. The biomass 

productivity of the open pond and the Biocoil were 0.07±0.06 g.L
-1

.day
-1 

 and 0.05

± 0.02 g.L
-1

.day
-1 

(t-Test, P = 0.19), respectively. However, the dayu-today 

productivity of the open pond is very variable. For example, the biomass productivity 

of the open pond on 24 March 2011 was 0.18 g.L
-1

.day
-1 

, and other productivity data 

of open pond were all in a range of 0.03 - 0.07 g.L
-1

.day
-1

. This extreme value was 

almost 3 times higher than the average of remaining data, this is because, this data is 

from the day which additional nutrient was added after a partiall culture collapse 

(see. 3.3.1). Therefore, this productivity was obtained under much higher nutrient 

than other routine harvesting, so this data should be removed for an 

equitable comparison. 

 

By removing the extreme data and recalculating, the biomass productivity of the 

open pond and the Biocoil were now 0.05±0.01 g.L
-1

.day
-1 

and 0.05±0.02 g.L
-

1
.day

-1
,
 
respectively (t-Test, P=0.48. Though there is no difference with cultivation of 

B. braunii, the Biocoil has higher productivity with other algae. In a comparison of 

Tetraselmis grown in the identical open pond and Biocoil in this study, the biomass 

productivity of the Biocoil was 5 time higher than the open pond (Raes et al. 2013). 

 

In Chapter 1, the main advantage to productivity in a tubular photobioreactor was 

stated to be the larger illuminated surface area. However, higher irradiance may not 

benefit B. braunii growth. In another two studies on Botryococcus, it was found that 

increasing irradiance at low range (30 - 100 w.m
-2

) can improve lipid productivity 
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and growth rate. However, irradiance higher than 100 W.m
-2 

does not bring any 

higher result and the productivity can be even lower (Li and Qin 2005; Qin and Li 

2006a). These two studies have very similar results to my study which the Biocoil 

with higher irradiance does not lead to higher productivity. Therefore, in Chapter 4, 

my study on effect of irradiance to growth of Botryococcus strain (CCAP 807/2) 

would help to further understand the relation between irradiance and productivity.  

 

Temperature (see. 2.3.2) and oxygen concentration (see. 2.3.1) are also two 

important factors that can affect Botryococcus growth, and these are further 

examined in Chapter 4. 

 

3.3.3.3 Productivity of outdoor open pond 

Outdoor productivity 

In my study, when race A B. braunii CCAP 807/2 was grown semi-continuously, 

lipid productivity of 0.008 ± 0.004 g.L
-1

.day
-1 

(Figure 5f) was observed. In 

comparison, when another strain of B. braunii AP103 was grown in outdoor open 

raceway pond at batch mode, lipid productivities of 0.033 g.L
-1

.day
-1 

(day 0 - 3) and 

0.083 g.L
-1

.day
-1

 (day 3 - 6 & 9 - 12) were found (Ashokkumar and Rengasamy 

2012). This lipid productivity was much higher than my result, but it is also 

noticeable that the growth condition of this study is very different from mine. In this 

study, the culture was grown at average temperature of 29℃ and irradiance of 208 

W.m
-2

 whereas my culture was grown at a range of 10 - 20℃ and irradiance of 300 - 

1000 W.m
-2

 (see Figure 5 a, b) suggesting that the low temperature was the main 

factor affecting my results. This is very similar to another study on B. braunii which 

found that low temperature and high irradiance both lower the growth rate (Li and 

Qin 2005). In detail, the specific growth rate of B. braunii UK strain under 20℃ was 

50% lower than at 25℃. Also when this B. braunii was grown at 300 W.m
-2

, it grew 

17% slower than at 100 W.m
-2

.  Of course, strain variation cannot be ruled out. 

 

In another study on B. braunii outdoor culture, A race B. braunii LB-572 

(CCAP807/1) and B race B. braunii N-836 were grown in circular pond and raceway 

pond at batch mode respectively. The average lipid productivity and other parameters 
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during the whole period was calculated from the result and shown as follows (Ranga 

Rao et al. 2012): 

 

Lipid productivity 

g.L-1.day-1 
Raceway pond Circular pond 

B. braunii LB-572 Race A 0.024 0.015 

B. braunii N-836 Race B 0.011 0.007 

Illumination surface m2.L-1 0.009 0.007 

Culture depth cm 12 14 

 

Due to lack of growth condition data (temperature and irradiance), it is not 

appropriate to compare this result to my data though this result is higher than my data 

indeed. But from the above table, it can be found that lipid productivity is very 

different between two strains. Also, there is big difference in lipid productivity 

between the two cultivation systems which the raceway pond has 60 - 70% higher 

result than circular pond. The illumination surface to volume ratio and depth of two 

systems are very close to each other, which means, the cultures in the two systems 

have an identical irradiance regime. Therefore, the main reason for the productivity 

difference is the mixing. In this study, the pond was mixed constantly at 15 rpm, 

however, the circular pond was only mixed manually every two days. This situation 

is very similar to the case that mentioned earlier in 3.3.3.1, which the mixed culture 

had a much higher productivity than stationary culture. 

 

3.3.4 Outdoor and indoor productivity 

For outdoor culture (see Figure 5 July-August), lipid productivity under semi-

continuous was only 10-45% of the maximum indoor productivity. By considering 

the growth condition within this period, the nutrient concentration was identical to 

indoor culture, so temperature, irradiance and mixing regime mainly affect the 

productivity.  

 

The outdoor temperature during July to August was about 10 - 20℃，in comparison, 

the indoor culture was grown at constant 25℃. As discussed earlier, the lower 
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temperature can decrease lipid productivity greatly. Also about the mixing, the 

indoor culture was aerated and the outdoor culture was mixed by paddle. Though no 

dissolved O2 data is available, it can be hypothesis that the indoor culture has better 

mass transfer rate due to abundant air bubbles.  

 

Also, it was found that there was a decrease in biomass productivity and lipid 

productivity after each harvesting. This can suggest that the culture may have lag 

phase in producing new lipid after each harvesting. In one study, the lipid 

productivity of a batch B. braunii LB-572 culture was higher at later days than earlier 

days (Ranga Rao et al. 2012). Therefore, harvesting interval can also affect lipid 

productivity where a short interval can lead to lower productivity. According to this, 

increase harvesting interval to 3-4 days (2-3 days in this study) may increase lipid 

productivity. 

 

3.4 Conclusion 

The reliability and productivity of cultures of B. braunii grown in an open raceway 

pond and a tubular Biocoil-type photobioreactor were compared. The open pond 

culture was more reliable and could be maintained for a much longer period than the 

Biocoil in which the culture crashed repeatedly. Cell sticking occurred in both 

systems but was a much more significant problem in the Biocoil where it could not 

be managed. In this study B. braunii was cultured in the raceway pond for a period of 

5 months, which is the longest time achieved for this alga so far by anyone. 

 

The indoor productivity was higher than other studies on closely related B. braunii 

strains, but this may result from differences in growth conditions. The productivity of 

the outdoor culture was very low when compared to the indoor culture or other 

outdoor cultures and therefore there is the potential for significant improvement of 

the operation and management of the outdoor culture to achieve higher 

productivities. Some of the limiting factors to growth and lipid productivity of  B. 

braunii are further studied in the next chapter. Also, studies on outdoor cultures 

suggest that it is very hard to achieve optimal conditions outdoor as some factors are 

not controllable.  
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CHAPTER 4.  LIMITS TO GROWTH 

 

4.1 Introduction 

One aim of this study is to increase the lipid productivity of Botryococcus braunii 

cultures. Considering that productivity (Pr) is a function of specific growth rate (µ) 

and yield (i.e., Pr [g.L
-1

.d
-1

] = µ [d
-1

] × Yield [g.L
-1

]), slow growth and/or low lipid 

yield can limit the lipid productivity of an alga. Botryococcus is a very slow growing 

alga with, for example, a doubling time of 6 days, which can be reduced to 2 days 

with 0.3% CO2 enrichment (Wolf et al. 1985b).  

 

The production of biomass and lipids on photoautotrophic algae requires energy from 

light and nutrients (see Figure 8). One potential way to increase biomass production 

and lipid yield in Botryococcus is by adding more nutrients such as N and P 

(Ruangsomboon 2012). However, the modified CHU-13 medium (see Chapter 2) 

used in this study already has 4 times the nutrient concentration of the original CHU-

13 medium and higher concentrations of N and P could be toxic to the culture 

(Ruangsomboon 2012). It is therefore unlikely that by adding more nutrient, there 

will be any further improvement in productivity. Additionally, even under this high 

amount of nutrients, the lipid productivity of Botryococcus outdoor culture was also 

very low (see Chapter 3, 3.2.2) when compared to indoor cultures.   

 

On the other hand, the provision of extra energy (light) could be one possible way to 

increase growth and lipid yield of Botryococcus. By optimizing the utilization of 

light energy in photosynthesis, the more the alga can use this energy in biomass 

production and lipid and hydrocarbon synthesis, especially as lipid and hydrocarbon 

biosynthesis is an energy intensive process for the alga. According to the literature,  

Botryococcus' hydrocarbon biosynthesis can consume 3% of energy fixed by 

photosynthesis (Gudin et al. 1984).   
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Figure 8. Simple schematic diagram of growth and lipid production in algae. 

 

 

This chapter focuses on selected factors that can affect growth and hydrocarbon 

formation in the alga. In Chapter 1, the main limiting factors for photosynthesis were 

shown to be light, temperature, oxygen, nutrient and CO2. As mentioned above, 

further increases in nutrients are likely to have little effect and may even be 

counterproductive due to toxicities. Furthermore, in this study CO2 was regularly 

added using a pH stat system so the culture should not be CO2 limited. Therefore, 

this chapter focuses on the effects of light, temperature and oxygen on Botryococcus 

braunii CCAP 807/2. The interaction of these three factors was also investigated. 

These studies were carried out on both indoor and outdoor cultures. 

 

4.2 Results  

4.2.1 Laboratory studies 

4.2.1.1 Irradiance and photosynthesis 

Net photosynthetic and dark respiration rates of Botryococcus braunii were 

determined using a Clark-type oxygen electrode as described in Chapter 2. These 

studies were carried out on cultures in exponential phase (cell density = 100×10
5
 

cells.mL
-1

). Initially a photosynthesis/irradiance (P/E) curve was determined under 4 

mg O2.L
-1

 (48.2% saturation at 25℃) oxygen concentration to determine the light 

saturation point (Ek) and the compensation point (Ec).  
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Figure 9. Photosynthesis-Irradiance (P/E) curve of Botryococcus braunii. Data are mean±range, 

n=3. 

 

 

As shown in Figure 9, the light saturation point was ~100 μmol photons.m
-2

.s
-1

 and 

the compensation point is ~ 40 μmol photons.m
-2

.s
-1

. The Pmax at 100 μmol 

photons.m
-2

.s
-1

 was 6200 µmol O2. mg chlorophyll
-1

.h
-1

. Furthermore, photosynthesis 

was not significantly inhibited even at 1900 μmol photons.m
-2

.s
-1

 which was an 

irradiance similar to that outdoors.  

 

4.2.1.2 Interaction of oxygen, temperature and irradiance on photosynthesis  

The interaction of irradiance, oxygen and temperature on net photosynthesis was 

investigated using a Clark type oxygen electrode at 10, 20, 30 and 40℃ at 3 

irradiances (dark, 100 μmol photons.m
-2

.s
-1

 (saturation point) and 1900 μmol 

photons.m
-2

.s
-1

 (over saturated), and at a high O2 concentration of 6 mg.L
-1 

(72.2% 

saturation at 25℃) and a low O2 concentration of 2 mg.L
-1 

(24.1% saturation at 

25℃). For each experiment, Botryococcus braunii was pre-cultured at 10, 20, 30 

and 40℃ for 48 h under 80 μmol photons.m
-2

.s
-1

 to fully adapt to the temperature, 

and the cell density was adjusted to 100×10
5
 cells.mL

-1 
by dilution or concentration 

(using centrifuge).  
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Figure 10. PE curves (net photosynthesis) at two oxygen concentrations of 2 mg.mL
-1

 oxygen 

(left graph) and 6 mg.mL
-1

 oxygen (right graph) at 4 temperatures. Data are mean (n=3), the 

range less than the size of the symbols and so is not shown in the graph. 

 

 

As in the previous experiment, no inhibition of photosynthesis at the very high 

irradiance of 1900 μmol photons.m
-2

.s
-1

 was observed (Figure 10). The optimum 

temperature for photosynthesis was 30℃ and photosynthesis was markedly reduced 

at the higher O2 concentration (Figure 10). The effects of oxygen concentration and 

temperature on the Pmax are summarized in Figure 11. Interestingly, increased [O2] at 

temperatures above 20℃ decreased the dark respiration rate. At the optimum 

temperature of 30℃ and 2 mg.mL
-1

 O2 the dark respiration rate was -24,000 µmol 

O2. mg chlorophyll
-1

.h
-1 

whereas at 6 mg L
-1

 oxygen it was only -5,800 µmol O2. mg 

chlorophyll
-1

.h
-1

. This is further discussed in section 4.3.2 below. 
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Figure 11. Effect of temperature on the maximum photosynthetic rate (Pmax) at low and high 

oxygen concentrations.  

 

 

The percent inhibition of net photosynthesis at 6 mg.L
-1

 oxygen compared with 2 

mg.L
-1

 oxygen in low and high light is shown in Figure 12 and clearly shows that the 

degree of inhibition at high oxygen concentration increases with temperature. At 

10℃ the combination of high light and low temperature greatly increases the 

inhibition of photosynthesis by increased oxygen concentration, whereas at 

temperatures above 20℃ the difference between low and high light is small. 

 

The effects of oxygen concentration on the photosynthetic rate of Botryococcus 

braunii (100×10
5
 cells.mL

-1
) was further examined at 25℃ over a wider series of 

oxygen concentrations and at 2 irradiances. This experiment confirmed the earlier 

findings of the inhibition of photosynthesis by increasing oxygen concentrations (see 

Figure 13): 
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Figure 12. Effect of temperature on percentage inhibition of maximum photosynthetic rate 

(Pmax) by an increase of oxygen concentration from of 2 mg.mL
-1

 oxygen to 6 mg.mL
-1

 oxygen at 

2 irradiances.   

 

 

 

Figure 13. Effect of oxygen concentration on Pmax(25℃). Data are mean ± range (n=3). 
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4.2.1.3 Long-term effect of  high irradiance  

The photosynthesis vs irradiance studies above showed that B. braunii 

photosynthesis was not inhibited at high irradiances. To further examine the effects 

of high irradiances as would be experienced in outdoor ponds on biomass and lipid 

productivity. Botryococccus braunii CCAP 807/2 was grown in a 1.5 L glass Schott 

bottles (100 mm diam. × 210 mm high) as a semi-continuous culture with a 

harvesting interval of 4 days at 100×10
5
 cells.mL

-1
 at 3 different irradiances. The 

light was evenly provided by cool white fluorescence lights tubes providing 

irradiances which either saturated photosynthesis or were supersaturating. The 

average irradiances in the flasks are shown in Table 4. 

 

Table 4. Irradiances in flasks for semi-continuous culture experiment. Average Irradiance = 

(Front Side Irradiance－Back Side Irradiance)×0.5 

 

Irradiance 

condition 

Average Irradiance 

μmol photons.m-2.s-1 

Front Side Irradiance 

μmol photons.m-2.s-1 

Back Side Irradiance 

μmol photons.m-2.s-1 

Saturated 89 200 22 

Over Saturated 250 600 100 

Over Saturated 440 1000 120 

 

 

The biomass productivity at 250 μmol photons.m
-2

s
-1

 was slightly higher than the 

productivity at 89 μmol photons.m
-2

.s
-1

. However, the productivity decreased slightly 

(but not significantly) at the highest irradiance of 440 μmol photons.m
-2

.s
-1

.  The 

specific growth rate was similar at 89 and 250 μmol photons.m
-2

.s
-1

, but was slightly 

reduced at 440 μmol photons.m
-2

.s
-1 

. One-way-ANOVA showed that here was no 

significant difference in specific growth rate and biomass productivity under the 

different irradiances (P=0.42(α=0.01) and P=0.37 (α=0.01), respectively). 
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Figure 14. Effect of long term high irradiance on biomasss productivity and specific growth 

rate. Triangles = specific growth rate, solid circles = biomass productivity. Data are mean ± range 

(growth rate n=3, productivity n=4). For each irradiance, the culture was harvested every 4 days for 3 

intervals. 

 

 

4.2.1.4 Effect oxygen concentration on oxygen uptake (respiration) in the dark 

In the experiments above it was observed that high oxygen concentrations appeared 

to inhibit oxygen uptake (respiration) in the dark. To further examine this unusual 

finding, the oxygen uptake rate in the dark at different oxygen concentrations was 

studied.  
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Figure 15. Dark oxygen uptake curve. The measurement error of oxygen electrode was very 

small, so no replication for this determination. 

 

 

Figure 15. shows that respiration in the dark decreased with increasing oxygen 

concentrations. In order to exclude possible methodological effects several different 

ways to adjust the oxygen concentrations were used. Firstly, the measurements were 

started at a low oxygen concentration and then the oxygen concentration was 

increased stepwise through photosynthesis by periodically exposing the culture in the 

electrode chamber to light (100 μmol photons.m
-2

.s
-1 

). Alternatively the experiment 

was started at the highest oxygen concentration which was then decreased stepwise 

by bubbling with nitrogen gas. Irrespective of the method used to change the oxygen 

concentration the results were the same.  

 

In order to see whether this effect of oxygen concentration on dark oxygen uptake 

was peculiar to this Botryococcus strain or whether other algae also showed this, the 

experiment was also carried out with a culture of the prymnesiopyte, Tisochrysis sp. 

(CS-177) (previously known as Tahitian Isochrysis (T-iso) - Bendif et al. 2013) from 

the CSIRO Australian National Algae Culture Collection. The culture was grown in a 

250 mL conical flask with f/2 medium (Guillard and Ryther 1962; Guillard 1962; 

1975) at 25℃ at 150 μmol photons m
-2

.s
-1

 on a 12:12 h light:dark cycle. 
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The experiment was carried out with Tisochrysis and B. braunii both at a cell density  

of 100 × 10
5
 cells.mL

-1
, at 25℃ , with the dark respiration rates measures as above. 

In both species dark oxygen uptake was similarly inhibited by increased oxygen 

concentrations (Figure 11). Correlation analysis with x = Tisochrysis, y = B. braunii, 

r = 1.1, showed no significant difference was found between two algae (p = 0.23, T-

test). (Figure 16) 

 

 

 

Figure 16. Effect of oxygen concentration on oxygen uptake (respiration) in the dark of 

Tisochrysis sp. and Botryococcus braunii. Data are mean ± range (n=3).  

 

 

4.2.2 Outdoor experiments 

Limits to the growth and productivity of B. braunii CCAP 807/2 also were 

investigated in outdoor cultures to test whether the outdoor productivity of this strain 

can be improved by reducing potential limits to growth (i.e. the light availability, 

growth temperature and O2 concentration). 
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4.2.2.1 Effect of pond depth 

Light affects the productivity of algae cultures and the amount of light received by 

algal cells in an open pond can be manipulated either by changing the pond depth or 

by altering the cell density in the pond. The aim of this study was to test how 

productivity of outdoor cultures of Botryococcus can be affected by pond depth 

(availability of light). 

 

Botryococcus braunii was cultured in two identical paddle-wheel driven raceway 

ponds with same cell density (100×10
5
 cells.mL

-1
) and the pH was maintained at 7-

7.5 by the addition of CO2 through a sparger in the pond using a pH-stat system. One 

pond was maintained at depth of 20 cm as control, and the other pond was operated 

at 15 cm depth in winter (June-July 2011). 

 

 

Figure 17. Effect of pond depth on biomass productivity (squares) and lipid productivity 

(circles) of B. braunii grown as semi-continuous cultures in 1 m
2
 raceway ponds in Perth, 

Western Australia. Data are mean ± range (n=3). This experiment was carried out from 29.06.2011 

to 16.07.2011 (Winterbourn) with three harvesting (dilution) intervals. Average daytime irradiance: 

286 ± 166 W.m-2; Average daytime temperature: 15 ± 3℃; Average night temperature: 10 ± 3℃. 

 

Figure 17 shows the biomass productivity and the lipid productivity at the two pond 

depths. No significant differences were found in biomass productivity (p=0.14, T-
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test) or lipid productivity (p=0.11, T-test) between the cultures grown at 15 or 20 cm 

depth. 

 

4.2.2.2 Effect of temperature 

Previous studies of algae cultures have shown that pond temperature can affect 

productivity (Moheimani and Borowitzka 2007; Converti et al. 2009) and that, 

especially in winter, temperature can be a major limiting factor. Therefore, the 

purpose of this experiment was to test how temperature affects biomass and lipid 

productivity in an outdoor pond culture. Botryococcus braunii was cultured in one 1 

m
2
 outdoor race way pond as a semi-continuous culture, a depth of 20cm and a cell 

density of 100 × 10
5
 cell.mL

-1
 from the 16.07.2011 to 04.08.2011. CO2 was added 

using a pH-stat system to maintain the pH between pH 7 - 7.5, and three aquarium 

heaters were put in the pond to adjust the temperature. The pond was firstly operated 

at constant 20℃ (24h) and partially harvested 4 times with a harvesting interval of 2 

days, then the temperature was increased to 25℃ (24h) and the culture was partially 

harvested another 4 times with the same interval. As the air temperature in this 

period was below the heater set value, the temperature of the pond was a constant 

20℃ or 25℃. Pond temperature was continuously monitored with a Tiny Tag 

temperature logger. 

 

The results show that the biomass productivity between 2 temperatures was not 

statistically different (p=0.27; T-test). The specific growth rates also were not 

significantly different (p=0.47; T-test). However, the lipid productivity at constant 

25℃ (24h) was slightly higher than the productivity at 20℃ (24h) (p=0.07; T-test).  
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Figure 18. Effect of temperature on biomass productivity (circle), lipid productivity (square),  

and specific growth rate (triangle). Data are mean ± range (n=4). The average daily total irradiance 

was 134 W.m-2.day-1 at 20℃ and at 81 W.m-2.day-1 at 25℃. 

 

 

4.2.2.3 Effect of oxygen concentration 

The laboratory experiments shown above show that high oxygen concentrations 

inhibit photosynthesis and thus reduce productivity, but it is impossible to reduce the 

oxygen concentration in large-scale algae cultures economically. 

 

However, the laboratory experiments also showed that that high oxygen 

concentrations inhibit dark respiration in Botryococcus (see 4.2.1.4). As biomass loss 

due to respiration at night can be very substantial in outdoor cultures (Torzillo et al. 

1991; Ogbonna and Tanaka 1996), and the observed reduction on respiration due to 

high oxygen concentrations can potentially result in an increase in the productivity. 

Therefore increasing culture oxygen content during night may be a possible strategy 

for long term cultivation to increase the daily net biomass production. 

 

The aim of this experiment therefore was to attempt to develop a method which can 

effectively increase dissolved oxygen in the pond during night. Here, 10 m of garden 

dripping hose (7 mm in diameter) was used as an air diffuser directly connected to an 

air compressor (BinFord, Model BLE-20,1100 kPa ). The total surface of the 
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dripping hose was about 0.22 m
2
, and the compressor pumped air into the pond 

continuously from 6 pm to 6 am (overnight).   

 

Two 1 m
2
 paddle wheel driven raceway ponds were operated in parallel with and 

without aeration at night. Initially both ponds were kept with no air addition for four 

harvest intervals of 2 days to stabilize the cultures, and following this air was then 

pumped into one of the ponds every night between 6pm and 6 am. The other pond 

was operated without air addition (control).  

 

As shown in Figure 19, before the air was added, the DO, pH and culture 

temperature (dissolved oxygen) of both ponds were identical. With air addition, the 

oxygen concentration stayed the same between the control pond and the pond with 

aeration at night or, in some nights, the oxygen concentration was actually lower in 

the aerated pond indicating that the aeration process used was ineffective in 

increasing the night oxygen concentration in the pond. The pH of the pond with 

added air was a slightly lower than the other pond during the night. The temperature 

of two ponds was the same over the whole experimental period.  

 



70 

 

Figure 19. Effect of aeration during the night on growth of Botryococcus. Oxygen, temperature 

and pH are from YSI sonde record (see Chapter 2, 2.2.10). At the left side of the vertical line, the two 

ponds were operated at the same condition without aeration. At the right part of border line, air was 

pumped into one pond during night. For the oxygen and pH graphs the solid line is the pond with 

pumped air, and the dotted line is the pond without pumped air. For the specific growth rate and the 

biomass productivity graphs the solid circle is the pond with added air during night, and the open 
circle is the control pond without aeration. Specific growth rate data are mean ± stdev (n=4), biomass 

productivity data are mean ± range (n=3). 
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The lower 2 graphs in Figure 19 show the specific growth rate and biomass 

productivity of the ponds. Not surprisingly, considering the ineffectiveness of the 

attempt to increase the oxygen content in the pond by aeration at night, there were no 

significant differences in either the growth rate or the biomass productivity between 

two ponds (Table 5). 

 

Table 5. T-test of effect of aeration at night 

one-tailed 

distribution, 

paired 

- Air + Air 

Specific 

growth 

rate 

Biomass 

productivity 

Specific 

growth rate 

Biomass 

productivity 

P Value 0.43 0.09 0.27 0.09 

 

 

4.2.3 Diurnal lipid synthesis and release  

The purpose of this experiment was to determine when in the diurnal cycle 

Botryococcus synthesises and releases lipid and hydrocarbon. This information 

potentially can be useful for the development of culture management and harvesting 

strategies for optimising lipid and hydrocarbon productivities.  

 

In this study, one outdoor open pond Botryococcus culture at exponential phase was 

sampled every two hours from 7 am to 9 pm, and another sample was taken at 7 am 

the next morning and total lipid and external hydrocarbon were determined.  

 

Figure 20 shows that the external hydrocarbon began to increase from 9:00 and 

peaked at 15:00, the time with the highest irradiance. After 15:00, the external 

hydrocarbon began to decrease gradually with decreasing irradiance to the same 

value as at 9:00 in the morning between 17:00 and 19:00, and decreased further after 

that. The external hydrocarbon increased slightly again by next morning at 7:00 to 

the same value as at 9:00 on the previous day. 
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Figure 20. Diurnal pattern of total lipid content and extracelluar hydrocarbon content. The open 

circle is total lipid (mean ± range (n=3)). The closed circle is external hydrocarbon (mean ± range 
(n=3)). This culture was started with a cell density of 160×105 cell.mL-1. 

 

 

The total lipid remained almost the same between 9:00 and 15:00 (Figure 20) and 

the fell by 40 ± 24% between 15:00 and 17:00. The total lipids then increased to the 

original values between 17:00 and 21:00 and remained unchanged during the rest of 

the night.    

 

 

4.3 Discussion  

4.3.1 Light 

When the PE curve (Figure 9) of Botryococcus was investigated, it is interesting that 

there is little inhibition of photosynthesis at an irradiance of 1900 μmol photons.m
-2 

.s
-1

 (~25% on average). In another study on B. braunii photosynthesis, two strains of 

A race B. braunii UTEX 572 and B. braunii UTEX 2441 both also showed very little 

photoinhibition (~8%) under an irradiance of 2000 μmol photons.m
-2

.s
-1 

(Yin et al. 
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2008). Therefore, this indicates that B. braunii strains can be grown at locations 

which have a high irradiance without significant photoinhibition. Secondly, for 

indoor cultures, using irradiances higher than the saturation point (Pmax) does not lead 

to higher growth (Qin and Li 2006a). This is supported by the fact that the specific 

growth rate and biomass productivity of B. braunii were almost identical under 

saturated and over saturated light in my study (see Figure 14). 

 

Several other algae have also been shown to tolerate high irradiances. For example, 

high light acclimated Dunaliella salina, was photoinhibited only at irradiances 

greater than 1500 μmol photons.m
-2

.s
-1 

(Baroli and Melis 1996) as does Spirulina 

platensis
 

(Jensen and Knutsen 1993; Vonshak et al. 1996). Similarly the 

coccolithophorid alga Pleurochrysis carterae, when high light acclimated only 

showed photoinhibition under an irradiance of 2300 μmol photons.m
-2

.s
-1 

(Moheimani and Borowitzka 2007). 

 

One possible reason for B. braunii lack of strong photoinhibition at high irradiances 

is that, the B. braunii colony size can become larger when irradiance increases 

(Zhang and Kojima 1998). As the colony size becomes larger, the average irradiance 

received by the algal cell will be reduced as has been shown in other studies (Verity 

et al. 1991; Li and Gao 2004). 

 

Several reports have shown that lower pond depth can improve the growth and 

productivity of the culture by increasing the average irradiance the algal cells 

receive. For example, with Spirulina, the volumetric biomass productivity at 15 cm 

pond depth was 28% higher than 20 cm pond depth (Olguín et al. 2003). Similarly, 

another study on Chlorella sp. showed that the volumetric productivity and specific 

growth rate at 2 cm depth were 280% and 267%  higher than the result at 10 cm 

depth, respectively (Liang et al. 2013). The lack of an effect of pond depth in my 

study can be attributed to two factors. Firstly, the experiment was carried out in 

winter (June) and the combined effect of lower temperatures and lower solar 

irradiation might mean that the increase in the average irradiance received by the 

cells in the shallower pond was still insufficient to enhance growth. Moheimani & 

Borowitzka (2007) also observed no effect of reducing pond depth in winter on the 
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growth of Pleurochrysis carterae at the same location as the present study. In 

summer, however, they did observe a significant stimulation of productivity at lower 

pond depth. The second possible reason for the lack of an effect of pond depth on B. 

braunii productivity is that the reduction in pond depth was insufficient to provide 

sufficient light to the algal cells.  

 

4.3.2 Temperature 

My study found that the maximum photosynthetic rate increased linearly with 

temperature between 10℃ and 30℃, and then declined rapidly at 40℃. Similarly Yin 

et al (2008) found that B. braunii strains UTEX 572 and UTEX 2441 also showed 

the maximum photosynthetic rates at 34℃ and 30℃ respectively, and higher 

temperatures caused dramatic photoinhibition. It should be noted that all these strains 

(CCAP 807/2, UTEX 572, UTEX 2441) are A race and it is not known whether these 

findings also apply to other B. braunii races.  

 

The decreasing of oxygen production by photosynthesis at higher temperature (40℃) 

can indicate two things: 1) the activity of PSI was inhibited. 2) oxygen was 

consumed in other pathways. In one study, when the temperature was increased from 

20℃ to 35℃, PSI had higher excitation energy (Weis 1985). Though this is a 

protection mechanism of the plant,  PSI is not inhibited. Another possibility is that 

photorespiration increased at temperatures higher than 35℃. Increased 

photorespiration at higher temperatures also has been found in other microalgae 

(Goldman 1979a; Burris 1980) and higher plants (Ku and Edwards 1977; Clark and 

Menary 1980). 

 

In the outdoor culture study, higher temperature only increased lipid productivity, but 

there were no significant changes in biomass productivity and specific growth rate 

(see Figure 18). Kalacheva et al (2002) observed similar results on a B race of B. 

braunii (LB 807/1). They found that: 1) there was no significant difference in 

biomass productivity between 18℃ and 25℃; 2) the intracellular lipid content 

changed by ＋50% and －23% under 25℃ and 18℃, respectively. 3) at 32℃, 

although biomass productivity was higher, lipid content was ~75% lower than at the 
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other two temperatures. In another study, also on B. braunii LB 807/1, the specific 

growth rate was identical at 18 and 25℃, but ~100% higher at 32℃ (Sushchik et al. 

2003). In another study on the same strain as used in my study (CCAP 807/2) a batch 

culture grown at 25℃ had a slightly higher lipid content than a culture grown at 20℃ 

at the end of the culture period, but the lipid content of the culture grown at 30℃ was 

~30% less than at 25℃. On the other hand, the optimal temperature for specific 

growth rate was found to be 25℃, and at 18℃ and 30℃ the specific growth rate was 

~50% and ~40% lower, respectively (Li and Qin 2005). 

 

Therefore according to above studies, it can be hypothesised that for my B. braunii 

(CCAP 807/1): 1) ~30℃ was the optimal temperature for maximum specific growth 

rate or biomass productivity ; 2) ~25℃ was the optimal temperature for lipid content 

and lipid productivity. Suboptimal temperature (i.e 20℃) reduces the lipid yield 

slightly, but superoptimal temperature (i.e. 30℃) dramatically decreases lipid 

productivity and yield. However, it needs to be noted that the temperature effect can 

vary among difference B. braunii strains. For example, it is also reported that 

maximum specific growth rate and lipid content was observed under 23℃ and 60 W 

m
−2

 for B. braunii CHN 357 (Qin and Li 2006b). 

 

4.3.3 Oxygen 

As shown in the results, higher oxygen can significantly inhibit net photosynthesis 

irrespective light and temperature. Also, it was found that high oxygen can inhibit the 

uptake of oxygen (i.e. respiration) in the dark. 

 

Firstly oxygen can affect the B. braunii photosynthetic rate dramatically (see Figure 

13). In another study of B. braunii photosynthesis, the net photosynthetic rate of a B. 

braunii culture at 25℃ was ~1000 µmol O2. mg chlorophyll a
-1

.h
-1

 (oxygen 

concentration was not given) (Yin et al. 2008) whereas in the present study it was 

~6000 µmol O2. mg chlorophyll
-1

.h
-1 

at 25℃ at an oxygen concentration of 8.5 mg. 

L
-1

 (see Figure 13). Considering the strong effect of oxygen concentration the 

difference between these two studies can be potentially attributed to differences in 

oxygen concentration. Although the authors did not provide any data for oxygen 
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concentration, it can be assumed that the oxygen in the culture was saturated or 

supersaturated after long time growth. In Figure 6, the relation between Pmax and 

oxygen concentration was very linear. Therefore when the graph was further 

extended, it can be calculated that the Pmax of my culture under 25℃ , 8.5 mg.L
-1

 

oxygen and 100 µmol photons.m
-2

.s
-1

 can be reduced to 1000 µmol O2. mg 

chlorophyll
-1

.h
-1

 by increasing the oxygen to ~9.1 mg.L
-1

. Therefore it can be 

hypothesized that the oxygen concentration in Yin's study was somewhere around 9 

mg.L
-1

 which was slightly super-saturated under that temperature (100% saturation 

under 25℃ is 8.3 mg.L
-1

). Differences in the irradiance used between the two studies 

is not likely to be the reason as my culture had almost identical photosynthetic rates 

under 100 and 400 μmol photons.m
-2

.s
-1 

(see Figure 10).   

 

Additionally, different algae has different sensitivity towards oxygen concentration. 

For example, Pmax (25℃ ) of Pleurochrysis carterae under lower oxygen (6 -10 

mg.L
-1

) was ~6 times higher than the rate under high oxygen (26 -32 mg.L
-1

) 

(Shiraiwa et al. 2004; Moheimani and Borowitzka 2007). However, not all algae are 

sensitive to oxygen. For example, Spirulina Platensis was reported that higher 

oxygen concentration (~20 mg.L
-1

) did not result in apparent inhibition of 

photosynthesis(Vonshak 1997). 

 

Also, the level of this oxygen induced inhibition changes upon temperature (see 

Figure 12). With increased temperature the inhibition was stronger, this phenomenon 

was also observed by another study on Pleurochrysis carterae which the inhibition 

of higher oxygen were 30%, 94% and 96% under the temperature of 10℃, 25℃ and 

32℃ respectively (Moheimani and Borowitzka 2007).  

 

The reason for oxygen induced photoinhibition has already been studied and also 

introduced in Chapter 1 (see 2.3.1) as O2 can cause photorespiration especially in C3 

plant like algae (Chollet and Ogren 1975; Lloyd et al. 1977), this is because O2 can 

compete with CO2 to bind with rubisco and RuBP to produce 3-PGA and 2-

phosphoglycolate as rubisco is also an oxygenase (Hatch et al. 1971) especially when 

O2 level is high(Lorimer and Andrews 1973). In addition, another reason for O2 

induced photoinhibition is that O2 can also capture the electron from NADP
+
 to form 
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superoxide radical (O2
•−

) which will shift to H2O2 (Mehler 1951; Strizh 2008) and 

extreme toxic 
•
OH

-
 (Winterbourn 1995), and those compounds can continuously 

break photosynthesis membrane and photosynthesis pigments (Kaiser 1976). 

Furthermore, under higher temperature, the activity of oxygenase and PSII can be 

increased which can further result in stronger photoinhibition and photorespiration 

(Janssen et al. 2003; Morris and Kromkamp 2003). 

 

To date, there has been no economically feasible solution for reducing of the effect 

of O2 on the photosynthesis of algae or any other plant. Also, the absence of 

photorespiration can even be harmful to alga as this process is considered as 

protection to C3 plants from photooxidation (Kozaki and Takeba 1996). Secondly, 

another very interesting finding of this study was that higher oxygen can inhibit the 

dark oxygen uptake rate (see Figure 15 and Figure 16), and this was both found in B. 

braunii and Tisochrysis sp (CS-177) (previously known as Tahitian Isochrysis (T-

iso) - Bendif et al. 2013) which means this phenomenon may not only be restricted to 

B. braunii. A study on Chlorella pyrenoidosa, Chlamydomonas reinhardtii, and 

Anabaena flos-aquae showed that the dark respiration was inhibited by high CO2 

(Bidwell 1977). However, in my experiments CO2 concentration  did not change 

significantly.  

 

The few available studies of the effects of oxygen concentration on dark respiration 

in algae and aquatic plants showed that increased [O2] results in increased dark 

respiration (Gessner and Pannier 1958; Owens and Maris 1964; McIntire 1966; 

Dromgoole 1978).  For example, the dark respiration of Pleurochrysis carterae was 

about three times higher under high oxygen (26-32 mg.L
-1

) than low oxygen (6-10 

mg.L
-1

) (Moheimani and Borowitzka 2007) which was just opposite of my study. 

Also in another study, the author also reported a series of aquatic plants and algae 

(i.e. Ranunculus pseudofluitans , Hippuris vulgaris, Callitriche obtusangula and 

Berula erecta etc.) had ~2-3 times higher respiration with increased oxygen from 1.5 

to 10mg.L
-1

 (Owens and Maris 1964).  

 

However, almost no reports on the inhibition of respiration by high oxygen 

concentrations in aquatic organisms can be found. The only one report which found 
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the same phenomenon to my result was in a nitrogen-fixation bacterium (Dilworth 

1961). In this study, it was found that the respiration of the bacterium Azotobacter 

vinelandii was reduced by 50% when oxygen partial pressure was increased from 

0.25 to 1 atmosphere pressure. In my study on B. braunii, increasing oxygen from 2 

mg.L
-1

 to 8 mg.L
-1

 caused ~70% (see  Figure 15) and ~50% (see Figure 16) drop in 

oxygen uptake rate on average in the dark. Interestingly, the two results had a very 

similar pattern, i.e. ~4 times higher oxygen can inhibit oxygen uptake by ~50%. The 

author pointed out that this finding may be peculiar to Azotobacter vinelandii 

(Pseudomonadales) and to date there are no other reports in related or unrelated 

bacteria. 

 

From above finding, it is tempting to speculate that there was Azotobacter vinelandii 

(or a similar bacterium) in my B. braunii CCAP 807/1 culture which was not axenic 

(the CCAP website also indicates this culture may contain bacteria) and that the 

observed effect of oxygen concentration was actually on bacterial respiration and not 

algal respiration. Various Pseudomonadales have been isolated from an A race B. 

braunii (LB-572) culture (Rivas et al. 2010) and included: Acinetobacter sp. and 

Pseudomonas sp.. Additionally, another nitrogen-fixation bacterium Rhizobium sp. 

was also isolated. Secondly, one study on co-culturing Azotobacter chroococcum and 

A race B. braunii showed that such algal-bacteria relation may exist in natural 

environment which can contribute to the CO2 balance in water (Jones 1972). As 

introduced earlier in Chapter 1 2.3.5, Botryococcus also may be associated with 

many other kinds of bacteria which can boost the growth of algae (Haines and 

Guillard 1974) or increase hydrocarbon production (i.e. Corynebacterium sp) (Wang 

and Xie 1996). Sometime, associated bacteria can also negatively affect hydrocarbon 

accumulation due bacterial degradation (Chirc et al. 1985).  

 

However, the effect of oxygen on respiration was also observed in Tisochrysis sp. 

and it is less likely that both cultures harbour the same, very unusual, bacterial 

population. A more probable mechanism for the observed results is likely to involve 

alternative respiration pathways and/or the action of various oxygenases (Lambers 

1985; Millar et al. 2011; Van Dongen et al. 2011; Moore et al. 2013). Time limitation 
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did not allow this phenomenon to be studied further and at this time no mechanism 

for the observed results can be proposed. 

 

The attempt to increase the oxygen in the pond during night by aeration to reduce 

night-time respiration of the culture and thus increase net biomass productivity over 

24 h was not successful. The oxygen during night was far from saturation this may 

be due to too big bubble size and the very short contact time of the air bubbles with 

the medium.  

 

However, the highest temperature during the day time was from 25℃ to 30℃, and 

the highest oxygen level is from 10-14 mg.L
-1

. As the oxygen solubility (saturated in 

DI water) at 25℃ is 8.3 mg.L
-1

, this means the pond was oxygen super saturated 

during the day time. It was  found that the addition of air in the pond can decrease the 

oxygen concentration as long as it is over saturated. For example, the oxygen can be 

decreased from 10 mg.L
-1 

to 9 mg.L
-1 

within 15 min. Therefore, this may be one 

economical way to remove oxygen from the water, and thus improve photosynthesis. 

 

4.3.4 Diurnal lipid 

The diurnal study showed that the content of external hydrocarbon and total lipid 

changed through a day, and this result suggests that the ideal harvesting time for 

highest lipid yield in a day is between 7:00 and 8:00 am (i.e. soon after sunrise).   

Temperature has no apparent effect on B. braunii external hydrocarbon content 

(Kalacheva et al. 2002) nor composition (Sushchik et al. 2003). On the other hand, 

the pattern of external hydrocarbon may relate to two aspects of solar irradiation: 1) 

the light intensity, and 2) UV. 

 

Firstly, exposure of  B. braunii cultures to increased irradiance can lead to an 

increase in the size of the colony resulting in decreased light available to the 

individual cells (Zhang and Kojima 1998). As the growth of matrix volume requires 

extra hydrocarbon increased light can result in a higher content of extracellular 

hydrocarbon. In Figure 20, it can be seen that the peak of external hydrocarbon was 

at the time when the solar irradiance reached maximum (13:00-17:00).  
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Secondly, strong UV can damage photosystem II of algae (Jones and Kok 1966). 

Generally, algae are more sensitive to short wave UV-B and UV-C, and are less 

affected by UV-A(Jokiel and York Jr 1984). Interestingly hydrocarbon can absorb 

UV (i.e. squalene, 190 nm ) (Eroglu and Melis 2010), and different chain length 

hydrocarbons have different absorbance peaks (Etzkorn et al. 1999). Therefore this 

may be one possible reason that B. braunii released more hydrocarbon externally in 

the afternoon. 

 

Another noticeable phenomenon is that the total lipid had a sudden drop between 

16:00 to 17:00, but the content of external hydrocarbon during this period barely 

changed from 0.05 to 0.04 g.L
-1 

on average, meaning that the drop in total lipid was 

due to the loss of intracellular lipid. One potential reason for the lipid loss is 

temperature, as it has been reported that temperature above 25℃ can dramatically 

reduce intracellular lipid in B. braunii (Kalacheva et al. 2002). The reduced part are 

mainly sterols, alcohols and free fatty acids, and the content of polar lipids and 

diacylglycerides remained the same.  

 

The UV and very high irradiances can lead to photoinhibiton, photodamage, and 

even damage to DNA (Sinha and Hader 2002). When such damage happens together, 

it activates repair mechanisms to protect the cell (i.e. PSII repair, chloroplast 

recovery) (Baroli and Melis 1996; Neidhardt et al. 1998) and such activity within the 

cell requires energy. Therefore, fatty acid are metabolized to gain energy during this 

process. Additionally, sterol may also take part in other metabolism resulting in their 

reduction (Heftmann 1971). In conclusion, the drop in lipid during the hottest period 

of day may indicate that B. braunii activated various repair mechanisms during the 

day. 
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4.4 Conclusion 

In general, increasing temperature from 20℃ to 25℃ had no effect on biomass 

productivity and specific growth rate (Kalacheva et al. 2002) (also see Figure 18), 

but this can increase lipid yield. As a result, the lipid productivity was increased 

(lipid productivity ≈ µ × lipid yield).  

 

On the other hand, though further increasing temperature to 30℃ can result in 43% 

higher growth rate, intracellular and extracellular lipid decreased by 75% and 40% 

(Kalacheva et al. 2002). Overall, the lipid productivity was still decreased (lipid 

productivity ≈ µ × lipid yield). Besides, it is still not known if this growth rate can 

be sustainable under this high temperature.  

 

Though the mechanism of change in lipid content and growth rate upon temperature 

was not clear yet, to optimize the lipid productivity, B. braunii should be grown at a 

temperature no higher than 25℃ and as B. braunii can tolerate higher irradiances, 

therefore it can be grown at locations with high irradiances. Although reducing 

oxygen can potentially improve lipid production, there is still no economically 

feasible way to achieve this on a large scale. 
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CHAPTER 5  CONCLUSIONS  

 

This study clearly showed that Botryococcus braunii 807/2 can be cultured reliably 

in an outdoor paddle wheel driven open raceway pond for as long as 5 months. This 

is by far the longest time that this alga has been grown under outdoor conditions with 

almost no contamination.  

 

Proper pond management and operation (see 3.3.1) were responsible for improving 

the growth performance of B. braunii. However, the culture collapsed partially twice 

in five months. The collapse was mainly due to two reasons: 1) Cell densities higher 

than 200×10
5
 cells.mL

-1
 which appears to cause nutrient starvation and light 

limitation. 2) Contamination by other organisms such as Scenedesmus. To eliminate 

contamination organism, the pond can be heated up during allowing Botryococcus to 

outcompete contaminating organisms. 

 

The results of this study also indicated that tubular closed photobiorectors (Biocoil) 

are not an ideal systems for B. braunii culture due to some limitations. 1) massive 

cell sticking in the degasser box which causes culture collapse and creates difficulties 

in accurate sampling. 2) The limited mass transfer in the Biocoil which can 

contribute to extreme high oxygen concentration. As shown in Chapter 4 (see 

4.2.2.2), high oxygen can increase photoinhibition which further affects lipid 

productivity. It was found that the Biocoil culture does not show a higher lipid 

productivity than open ponds (see 3.2.2), and as it is more costly it is not a suitable 

system for B. braunii culture. 

 

When the outdoor culture in open pond was grown semi-continuously, the culture 

has a very low lipid productivity compared to indoor culture. This means that there is 

still a lot room to improve outdoor lipid productivity. After studying limiting factors 

on photosynthesis of Botryococcus, it was concluded that the lipid productivity of my 

outdoor culture during the test period (Winterbourn) was mainly limited by 

temperature, high oxygen concentration and less by light.   
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It is clear that higher temperature can increase B. braunii lipid productivity (see 4.2.2) 

as, for example, by heating the pond to 25℃ during winter as 25℃ is the optimum 

temperature for lipid productivity of B. braunii (see. 4.3.2). On the other hand, light 

may not be a major limiting factor in my culture as B. braunii photosynthesis 

saturates at about 100 μmol photons.m
-2

.s
-1 

(see 4.2.1.1). Also, lowering pond depth 

by 5 cm in order to increase the average irradiance received by the algal cells did not 

improve biomass or lipid productivity (see 4.2.2). However it was observed that the 

oxygen in the pond was super saturated, and that pumping air into pond can remove 

some oxygen (see 4.2.2). The lipid and hydrocarbon content in the outdoor culture 

was found to show diurnal variation and the highest lipid content was observed early 

in the morning between 7:00-8:00am, and therefore this period would be ideal for 

routine harvesting which would also optimize lipid productivity. 

 

An important finding of this study is that high oxygen can inhibit dark oxygen uptake 

(i.e. respiration) in Botryococcus. The same was also observed with another alga, 

Tisochrysis sp. This has not been previously reported in aquatic plants, but 

unfortunately time limitation meant that this observation could not be studied further 

in detail.  

 

In concussion, to optimize outdoor Botryococcus lipid productivity, the following is 

proposed: 

1) Heating the pond to 25℃ during the cold season. 

2) Irradiance should be higher than 100 μmol photons.m
-2

.s
-1 

(100×10
5
 cells.mL

-1
). 

3) Pumping air into pond to reduce the oxygen concentration 
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5.1 Future direction 

 

To further improve the growth of B. braunii it would be very interesting to study: 

 

1) The growth of B. braunii during other seasons (between September (winter) to 

February (early summer)) to evaluate culture reliability over the whole year.  

 

2) The potential of increasing biomass productivity by reducing O2, possibly through 

aeration of the pond.  

 

3) To further study the mechanism(s) resulting in the inhibition of respiration 

(oxygen uptake) in the dark. Reducing the respiration rate may be one way to 

increase net productivity.  
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