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Abstract 12 

 13 

A variety of techniques have been used to monitor platypus populations to assess the impacts of the 14 

threats they face, but each technique has limitations.  In this study we investigated the novel use of 15 

in-stream microchip readers, to remotely monitor the movements of microchipped wild platypuses.  16 

Over 13 months, we recorded movements of 18 microchipped individuals past nine fixed locations in 17 

the Inglis Catchment in northwest Tasmania, using three units of which all were capable of detecting 18 

Trovan® unique microchips and two were additionally capable of detecting ISO microchips.  Each site 19 

was monitored one or two times, for durations of 8-39 days.  We undertook direction of movement 20 

investigations during two monitoring periods, by placing the antennas from two systems in the same 21 

creek within 3 m of each other.  In a total of 264 days of monitoring, 528 platypus observations were 22 

made from 18 individual platypuses, consisting of 13 of 18 (72%) platypuses captured at the 23 

monitoring sites within 16 months prior to monitoring, two platypuses captured at other sites in the 24 

same time period, and three of seven (43%) individuals microchipped 3-5 years previously.  This 25 

number of platypus observations, in combination with the stable number of platypuses observed per 26 

day, the range of movement behaviours recorded and the results of the direction of movement 27 

investigations, indicates that at appropriate sites, in-stream microchip readers are an effective 28 

method of monitoring the movements and survivorship of microchipped wild platypuses. 29 

 30 
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 32 

33 



Introduction 34 

Platypuses are semi-aquatic mammals that are found in association with lakes, rivers and streams in 35 

Eastern Australia (Grant and Temple-Smith 2003; Grant 2009).  Numerous observed and potential 36 

threats to platypus conservation have been reported, including habitat degradation, river flow 37 

alteration and disease (Grant and Temple-Smith 2003; Gust and Griffiths 2010, Serena & Williams 38 

2010), highlighting the importance of monitoring this cryptic species to assist with the development 39 

of conservation management plans.  Platypuses have been monitored using live capture-release 40 

studies, radiotelemetry, data loggers and, to a lesser extent, remote observational studies, camera 41 

traps and acoustic transmitters (Serena 1994; Bethge et al. 2003; Grant 2009; Gust and Griffiths 42 

2010; Griffiths et al. 2013). At the time of writing the use of acoustic transmitters has not been 43 

reported in detail, however, each of the other listed methods of monitoring platypuses has 44 

limitations (Grant 2009; Gust and Griffiths 2010).  For instance, while live capture studies provide 45 

detailed information on individuals, they are very labour intensive and often have low recapture 46 

rates - 36% of 271 males and 51% of 429 females over ~30 years in the Upper Shoalhaven River 47 

reported by Grant, (2004), and 58% of males and 73% of females over ~12 years near Melbourne and 48 

38% of males and 31% of females over 8 years in the Wimmera River reported by Serena and 49 

Williams (2013).  Low recapture rates make it difficult to follow individuals through time and may in 50 

part be a result of net avoidance (Griffiths et al. 2013).   Similarly, while radiotelemetry and 51 

dataloggers provide detailed information on activity patterns, their use is limited by battery life, 52 

problems associated with application of the device and difficulties of recapture for device retrieval 53 

(Serena 1994; Serena et al. 1998; Bethge, 2009).  Devices are most commonly applied by glueing 54 

them to the fur which can cause skin irritation (S.Munks, unpublished data), and although Bethge et 55 

al (2001) found that data loggers did not significantly increase platypus foraging metabolic rate in a 56 

captive situation, potential adverse effects of attaching a device of up to 4.4% bodyweight to a 57 

platypus remain unknown (Bethge 2003).  Camera traps can only be used to monitor animals when 58 

they move across land, not in water (Olsson Herrin, 2009) and, like observational studies and public 59 

surveys, do not enable individuals to be identified.   60 

 61 

The platypus is legally protected throughout its distribution (Gust and Griffiths, 2010) and is listed as 62 

Endangered in South Australia where it had a limited distribution at the time of European settlement 63 

(Grant 2009).  It is not listed under any other Australian state or federal threatened species 64 

legislation, is a species of “Least Concern” on the International Union for the Conservation of Nature 65 

and Natural Resources (IUCN) red list of threatened species and continues to have a similar 66 



distribution to that at the time of European settlement (Grant 2009).  However, because of the 67 

difficulties of monitoring platypuses described above, population declines are hard to identify and 68 

Grant (2009) suggested that the species could be more appropriately placed in the “Data Deficient” 69 

category by the IUCN. 70 

 71 

In-stream antennas capable of remotely detecting implantable animal transponders (microchips) are 72 

commonly used to monitor individuals within wild fish populations (Zydlewski et al. 2006).  Similarly, 73 

antennas are used out of water to monitor other species of wildlife such as penguins and bats which 74 

either pass through or can be directed to pass through a small aperture (e.g. cave openings, fence 75 

apertures) (Kerry et al. 1993; O’Donnell et al. 2011).   76 

 77 

Platypuses rest in burrows on land which they typically leave once a day to forage (Serena, 1994; 78 

Bethge, et al. 2009).  While out of their burrows platypuses tend to display foraging behaviour, diving 79 

to the water body floor to find prey interspersed with time on the water surface (Gust and 80 

Handasyde 1995).  Gust and Handasyde (1995) and Bethge et al. (2003) found a mean foraging 81 

durations of ~10 hr/day and 11.5 hr/day respectively.  During foraging trips, platypuses have been 82 

observed to move distances of a few hundred metres to several kilometres along rivers and/or 83 

streams and have been known to move over land to avoid obstructions such as waterfalls, culverts or 84 

meanders in rivers (Serena 1994; Gardner and Serena 1995; Gust and Handasyde 1995; Munday et al. 85 

1998; Mooney and Spencer 1999).  In this study, we investigate the novel use of in-stream microchip 86 

readers as a remote, long-term and relatively non-labour intensive method of monitoring 87 

microchipped wild platypuses as they move along waterways during foraging. 88 

 89 

Materials and methods 90 

A field study was performed between November 2011 and December 2012, using in-stream 91 

microchip reader units to monitor the movements of wild platypuses past nine specific sites (A-I) in 92 

the Inglis Catchment in northwest Tasmania (Fig. 1).  Each micro-chip reader unit (Units 1-3) 93 

consisted of an antenna capable of detecting microchips connected to a decoder (Trovan® LID 650; 94 

Trovan Ltd., Microchips Australia Pty. Ltd., Keysborough, Victoria) that stored microchip numbers and 95 

the date/time they were detected for subsequent download.  Unit 1 used a Trovan®ANT612 antenna, 96 

which is a 475 x 400 x 35 mm panel capable of detecting Trovan®Unique microchips passing within 97 

250 mm of its flat surface.  The antenna was placed on the floor of small waterways with the aim of 98 



detecting platypuses moving over the top of it (Fig. 2a).  Units 2 and 3 used Trovan®ANT C600 99 

antennas, which are open-ended cylinders (used as a swim-through tunnel) 600 x 300 x 10 mm 100 

(diameter x depth x thickness).  These antennas were placed with part of their circumference resting 101 

on the floor of small waterways, partly out of the water and with the water flowing through it, with 102 

the aim of detecting platypuses passing through the antenna (Fig. 2b).  Unit 2 was configured to 103 

optimally detect Trovan®Unique microchips (but also capable of detecting ISO microchips) while Unit 104 

3 was configured to optimally detect ISO microchips (but also capable of detecting Trovan®Unique 105 

microchips).  At most sites, rocks and/or pieces of wood found nearby were placed around the 106 

antenna in an attempt to discourage platypuses from moving around it.  Each unit was powered by a 107 

12 Volt battery.  In the early stages of the study, these batteries were changed and recharged daily; 108 

later the charge was maintained using a 135W Kyocera® Solar Panel and Plasmatronic® Dingo 20/20 109 

Solar Regulator (Fig. 3).   110 

 111 

A total of 31 platypuses had been microchipped in the Inglis Catchment before commencement of 112 

the in-stream microchip monitoring: 23 (10 adult males, two juvenile males and 11 adult females) 113 

between December 2007 and August 2008 with ISO microchips (Macgregor et al. 2010) and 8 (six 114 

adult males and two adult females) between August 2011 and November 2011 with Trovan Unique® 115 

microchips.  During the period of in-stream monitoring, a further 80 platypuses (39 adult males, 116 

three juvenile males, 36 adult females and two juvenile females) were microchipped with Trovan 117 

Unique® microchips bringing the total number of animals microchipped in the study area to 111 by 118 

the end of this study (Fig. 1). Sites to locate the micro-chip readers were selected where at least one 119 

platypus had been captured and microchipped since August 2011 and where a section of the creek 120 

was a similar width to that of the antennas and less than 25cm in depth.  Each site was monitored for 121 

one or two periods of 8-31d duration; the exact length of each monitoring period depended on the 122 

logistics involved in transport of equipment, stock rotation through paddocks (where fieldwork sites 123 

were adjacent to pasture), and periods of flood.    124 

 125 

Direction of movement investigations were performed in two 3-week monitoring periods (one at site 126 

D, one at site G) by placing the antennas from two monitoring units in the same creek within 3 m of 127 

each other (Fig. 2b).  A recording of the same microchip from two units within 1 min of each other 128 

was considered to reflect movement of a platypus along the creek.  Comparison of the time of 129 

recordings from the two units allowed us to determine the direction of movement of platypuses each 130 



time they were recorded.  When only one of the two units recorded a microchip, examination of the 131 

direction of movement on previous and subsequent recordings allowed us to determine if the 132 

recording missed was due to the platypus turning around when it encountered the first antenna, or 133 

whether the passage of a platypus went undetected by one of the units.   134 

 135 

The microchip reader units monitor constantly until a microchip is detected, after which monitoring 136 

is suspended for a pre-set wait time before continuous monitoring is recommenced.  During the two 137 

first monitoring periods (which were at Site A), wait times of 0.1, 1 and 5 s were tested on different 138 

days.  Subsequently, at the other sites, the wait time was set at 10 s. 139 

 140 

Data from the microchip readers were used to determine two parameters.  The first parameter was a 141 

‘microchip recording’, which was defined as a single record of a microchip where one unit was in 142 

place, or a record of the same microchip from the two units and within 1 min during the direction of 143 

movement investigation.  In order to avoid over-representation of observations of any platypuses 144 

that might backtrack briefly for any reason as they move along a creek and be recorded more than 145 

once in a particular passage, a second parameter of “platypus observation” was used.  Any two 146 

microchip recordings of the same platypus separated by <30 min (from a single unit or from two 147 

units in the same creek) were classed as a single platypus observation.  The same principle was 148 

applied to any number of microchip recordings for the same platypus where consecutive intervals 149 

were <30 min.  So when a platypus observation consisted of multiple microchip recordings, the total 150 

duration of the event may have been >30 min.   151 

 152 

A day of monitoring was defined as an in-stream microchip reader unit monitoring one waterway for 153 

24 h, or two units monitoring the same waterway within 3 m of each other for 24 h. 154 

 155 

A type III mixed-model ANOVA test (with day of monitoring period and site as random factors) was 156 

carried out to test for an effect of time and monitoring site on the daily number of platypus 157 

observations.  A second type III mixed-model ANOVA test (with day of monitoring period and 158 

platypus identity as random factors) tested for daily and individual platypus differences in activity 159 

patterns.  Statistical analysis of results was performed using Statistica 8.0 (Stat Soft Inc. Tulsa OK, 160 

USA). 161 



 162 

Results 163 

In a total of 264 days of monitoring, 528 platypus observations were made of 18 individual 164 

platypuses (9 males, 9 females) (Table 1).  Three of the seven platypuses (43%) originally captured in 165 

2007-8 and identified with ISO microchips, were detected at sites monitored in this study by units 2 166 

and 3 (all at site G). Of the 18 platypuses  captured since August 2012 at Sites A-I, and identified with 167 

a Trovan®Unique microchip, 13 (72%) were detected at the site of their capture.  Two other 168 

platypuses microchipped in the associated health study were also detected: one at Site E ~200 m 169 

from the site of its capture in the same creek but separated by a small farm dam, and one at Site A, 170 

~8 km by waterway from the site of its capture.   171 

 172 

The mean number of times that individual platypuses were observed per day over the duration of 173 

each monitoring period is shown in Fig. 3 (the nine platypuses detected over two monitoring periods 174 

are each represented twice).  In general, female platypuses were observed more frequently than 175 

males.  Fig. 4 shows examples of the patterns of observations that were recorded.  Two platypuses 176 

showed a very regular pattern of observation timings, one female with a 24 h cycle and one male 177 

with a 48 h cycle; other individuals showed less regular patterns.   Mixed-model ANOVA (with day of 178 

monitoring period and site as random factors) showed that the number of platypus observations 179 

varied between sites (F8,225 = 34.07, p<0.001); there was a noticeably greater number of platypus 180 

observations at site I where four microchipped individuals were monitored.  However, there was no 181 

effect of length of time that the sites were monitored (F30,225 = 0.44, p>0.99).  Mixed-model ANOVA 182 

(with day of monitoring period and platypus identity as random factors) showed that the number of 183 

platypus observations varied between individual platypuses (F17,497 = 11.39, p<0.001), but 184 

importantly there was no effect of length of time that the sites were monitored (F30,497 = 0.68, 185 

p=0.90).   186 

 187 

The incidence of multiple microchip recordings was reduced from 100% at the two shortest wait 188 

times (0.1 s and 1 s), to only 8% when the wait time was set at 10 s (Table 2).  For those multiple 189 

observations that occurred when the wait time was set at 10 s, both the swim-over panel and the 190 

swim-through tunnels recorded similar incidences (Table 3).   191 

 192 



Data from eight days of one of the direction of movement investigations is shown in Fig. 5 to 193 

illustrate how the results have been interpreted.  As shown in Table 4, of 48 passages of a platypus in 194 

the direction of movement investigations, 41 (85%) were detected by both antennas and seven were 195 

only detected by one of the antennas (six by the flat panel antenna and one by the swim through 196 

antenna).  On one occasion a platypus turned around after encountering the antenna (swim through 197 

antenna).  The minimum time between two passings of a platypus in opposite directions during the 198 

two monitoring periods where direction of movement could be determined was 1 h 15 min 24 s. 199 

 200 

Discussion 201 

Results of this study indicate that in-stream microchip readers are an effective method of detecting 202 

microchipped wild platypuses at appropriate sites.  Importantly, during the 13 months of the study, 203 

the detection rates of platypuses microchipped at the monitoring sites (72% of the platypuses 204 

microchipped in 2011-2012 and 43% of those microchipped in 2007-2008) were similar to the 205 

recapture rates achieved during repeated live capture studies performed by Grant (2004) over ~30 206 

years and Serena & Williams (2013) in two areas over ~8 and 12 years.  The results of the direction of 207 

movement investigations, the absence of a significant effect of length of monitoring on the number 208 

of platypus observations at each site and for each individual platypus, and the regular and frequent 209 

observations from two platypuses further reinforce our conclusion.   210 

 211 

Suggested causes of failure to recapture certain individuals during longitudinal live capture studies 212 

have focussed on a likely high degree of mobility of certain individuals, including individuals with 213 

large ranges, individuals with a nomadic or roving breeding strategy, non-breeding individuals unable 214 

to find a vacant home range, and transient occupation of an area (Grant, 2004; Bethge, 2009; Serena 215 

& Williams, 2013).  Such explanations would be consistent with certain platypuses not being 216 

detected in this study.  The range of frequency and regularity of observations from the 18 platypuses 217 

that were detected is also consistent with the findings of previous studies.  Firstly, a range of 218 

behaviour patterns have been observed using radiotracking and dataloggers - some very regular, 219 

others less so (Gardner and Serena 1995; Bethge et al. 2009).  Secondly, radiotracking has shown 220 

platypuses using certain parts of their home ranges more frequently than others (Gardner and 221 

Serena 1995; Gust and Handasyde, 1995).  Lastly, a long-term mark-recapture study found that the 222 

home ranges of male platypuses were significantly larger than those of females (Serena and Williams, 223 

2013).  The variation of frequency of observations for those individuals that were detected in this 224 

study (Fig. 3) is likely to be a result of the differing home range sizes of the individuals (affected in 225 



particular by their sex) and the position of the antenna within each platypus’s home range.  It should 226 

be noted that we did not attempt to determine whether platypuses ever left the water to avoid the 227 

antennas and this remains a possible explanation, at least in part, for the failure to detect certain 228 

platypuses and for the variability in detection frequency in those that were detected. 229 

 230 

The observation at Site G of three platypuses microchipped in 2008 is of particular importance.  This 231 

observation reveals that these individuals were still present at the sites, despite not being re-trapped 232 

during the associated health study (four nights of trapping at that site between August 2011 to 233 

December 2012; Macgregor et al., unpublished data).  Without the use of the in-stream antennas, 234 

the continued presence of these animals would not have been known. 235 

 236 

The direction of movement investigations suggested that microchipped platypuses were recorded on 237 

93% of occasions that they passed an antenna. Of the remaining 7% of passages, it was not possible 238 

to determine if the absence of a recording was due to the equipment failing to detect a microchip 239 

that passed within its read range or due to platypuses leaving the water to move around the 240 

antennas.  While comparison of Unit 1 with Units 2 and 3 may indicate that the flat panel (pass-over) 241 

antennas are more efficient than the circular (pass-through) antennas, the differences in efficacy of 242 

the two antennae designs is not great.  Furthermore, the ability of the pass-through antennas to 243 

detect both ISO and Trovan Unique microchips will be important at many survey locations.   244 

 245 

We observed signs that on some occasions the antennas appear to alter platypus behaviour.  Firstly, 246 

in the six weeks of our direction of movement investigations we identified one platypus turning 247 

around after encountering an antenna.  Secondly, we observed multiple microchip recordings over 248 

periods longer than would be expected for a platypus moving through the read range of the 249 

antennas.  Such multiple microchip recordings may have been produced by a platypus moving very 250 

slowly past an antenna or moving up and down a short section of creek during foraging.  However, it 251 

may also indicate that some platypuses spent time investigating the antennas, since sight or touch 252 

may alert platypuses to presence of the antennas.  Platypus 23 appeared to investigate the antenna 253 

at Site C, despite this antenna being covered in river substrate, suggesting that platypuses may sense 254 

the electric field produced by the antenna using electroreceptors in their bill that are usually used to 255 

detect prey (Scheich et al. 1986).   256 



 257 

A read-wait time of 10 s after a microchip was detected was settled on for this study, to reduce time 258 

platypuses might be aware of the electric field and reduce the number of multiple microchip readings 259 

evident when shorter wait times were tested.  The time taken for a platypus to pass through the field 260 

of the antenna when moving at normal speed along a creek is likely to always be greater than 0.1 and 261 

1 s and may even be longer than 5 s.  However, it is unlikely that a platypus moving normally should 262 

take longer than 10 s to pass over/through an antenna.   263 

 264 

We considered consecutive microchip recordings separated by <30 min as not independent to ensure 265 

that we did not overanalyse our data.  The choice of any particular interval could be debated but we 266 

chose 30min as a likely maximum time that a platypus would spend either foraging in a section of a 267 

narrow creek or investigating the antenna.  The use of a figure close to this is supported by the 268 

following points: 1) clusters of three or more microchip readings separated by up to several minutes 269 

were observed on several occasions, indicating that the platypuses were not simply moving in a 270 

straight line up the creek and were sometimes returning and passing back over/through antennae; 271 

and 2) the shortest interval between return journeys during apparently normal behaviour during the 272 

direction of movement investigations was 1hr 15min 24s.  However, it is likely that whatever time 273 

delay is chosen, occasionally two platypus observations will be miscounted as one, or a single 274 

platypus observation will be miscounted as more than one. 275 

 276 

The use of in-stream microchip readers does not overcome all of the obstacles facing platypus 277 

monitoring.  Importantly it is only applicable in relatively small creeks; although it may be that 278 

experimentation with antenna design may allow this method to work in wider and deeper creeks.  279 

Other limitations of in-stream microchip readers are that they only provide information about 280 

platypus movements at certain locations, they provide no information on the observed individuals’ 281 

health except that they are alive, and a live capture and release study is required to microchip 282 

individuals before the units can be used.  Also, while the equipment is robust it is possible that the 283 

antennas could be moved or even damaged by fast flowing water if not secured adequately and 284 

there is potential for the electronics in the decoders to be damaged by waterlogging if placed in a 285 

position where floodwater may reach.  However, as a platypus monitoring technique, this method 286 

comprises a unique set of advantages:  it is reliable, remote and relatively non-labour intensive; 287 

requires only the routine implantation of a microchip; and can be used repeatedly or left in the field 288 



to monitor the same animal over periods of years.  We believe that in-stream microchip readers will 289 

allow important new data to be gathered in many areas of platypus conservation research and assist 290 

in more reliably categorising the species according to threatened species schedules.  Because 291 

platypuses have routinely been identified in research project with microchips for over two decades, it 292 

will be possible to use the technique to study platypuses captured in previous research projects, 293 

which may not have anticipated ongoing monitoring, as well as those in prospective studies.   294 

Specifically, we think in-stream antennas will assist in gathering information on platypus short- and 295 

long-term habitat use and home ranges, population demographics, survivorship and longevity, as 296 

well as the safety of new research techniques and net avoidance during live capture studies.  We also 297 

think that survivorship and movement monitoring will aid the impact assessment of disease, 298 

including mucormycosis, and human land use practices.  299 

 300 
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Tables 396 

 397 

Table 1.  Numbers of microchipped platypuses in the study area and detected in this study.  398 

 399 

 Adult 
male 

Juvenile 
male 

Adult 
female 

Juvenile 
female 

Total  

Number of platypuses with ISO microchips 
implanted at monitored sites(2007-2008) 
 

4 0 3 0 7 

Number of platypuses with ISO microchips 
detected at the site of their capture in this 
study 
 

3 0 0 0 3 

      
Number of platypuses with Trovan® 
Unique microchips implanted at 
monitored sites (Aug 2011-Dec 2012) 
 

8 0 10 0 18 

Number of platypuses with Trovan® 
Unique microchips detected at the site of 
their capture in this study 
 

5 0 8 0 13 

      
Number of platypuses with Trovan® 
Unique microchips implanted away from 
monitoring sites (Aug 2011-Dec 2012) 
 

37 3 28 2 70 

Number of platypuses with Trovan® 
Unique microchips detected away from 
their capture site in this study 

1 0 1 0 2 

 400 

  401 



Table 2. Percentage of platypus observations that were classified as single or multiple 402 

microchiprecordings for different reader wait times. 403 

 404 

Wait time n observations Single recordings Multiple 
recordings 

Duration of 
multiple microchip 

recordings* 
0.1 s  17 0 % 100 % 2 – 7 s 
1 s 1 0 % 100 % 2 – 7 s 
5 s 7 57 % 43 % 5 – 33 s 
10 s 503 92 % 8 % 10 s - 110 min 
     

* Although the minimum interval between two platypus observation was set at 30 min, where consecutive intervals were 405 
<30 min, consecutive recordings were not considered independent and were classed as one platypus observation.  The 406 
longest total duration of a single platypus observation was 110 min and consisted of ten sequential microchip recordings.  407 
 408 

 409 

 410 

 411 

 412 

 413 

414 



Table 3. Percentage of platypus observations that were single or multiple microchip recordings for 415 

different antenna(s) when the wait time was set at 10 s. 416 

 417 

Antenna(s) in creek n observations Single recordings Multiple 
recordings 

Flat panel only 400 91% 9% 
Circular only 52 94% 6% 
    
    

 418 
 419 

420 



Table 4. Number of times a platypus turned around when encountering an antenna and number of 421 

times an antenna failed to detect a platypus moving past it during direction of movement 422 

investigations. 423 

 424 

  Number of observations 
  Unit 1 Unit 2 Unit 3 
Site D n obs 19 17*  
Platypus # 26 (20 d) failed 1+ 5  
 Turned around 0 1  
Site G n obs  28 27 
Platypus #1 (22 d) failed  0 1 
 Turned around  0 0 
 % failures 5% 10% 3.6% 
 % turn arounds 0% 2% 0% 

 425 

*Excluding the first recording by Unit 2 at site D which could not be characterised. 426 
+Excludes one occasion when the batteries were changed late and the one supplying unit 1 (which drew more power than 427 

unit 2) had run out of power. 428 

 429 

430 



Figure legends 431 

 432 
Fig. 1.  Locations of platypus capture and monitoring sites in the Inglis Catchment, Tasmania, a) red 433 

dots: animals identified with Trovan Unique® microchips (August 2011–December 2012), letters: sites 434 

monitored using in-stream antennae between November 2011 and December 2012; b) purple dots: 435 

animals identified with ISO microchips (December 2007–August 2008), letters: sites monitored using 436 

in-stream antennae capable of detecting ISO microchips between November 2011 and December 437 

2012.   438 

 439 

a. b. 



 440 

 441 
Fig. 2. Showing the three Units placed in the field.  a) Unit 1, the ANT612 flat panel antenna (arrow) 442 

in the creek at Site A, and b) Units 2 and 3 (C600 swim-through tunnels) placed in line at Site G. 443 

444 

b. 

a. 



 445 

                            Male                             Female 446 

Fig. 3. Mean number of platypus observations/day for each platypus organised from largest to 447 
smallest with positive standard deviation error bars. 448 
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 452 

 453 
 454 

Fig. 4.  Observations over 10 days at three sites (A-C) showing three individuals (platypus #7, #17 and 455 

#23) that were recorded regularly and two that were recorded only once or twice (platypus #5 and 456 

#6). 457 
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