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Abstract 

Fires are features of ecological communities in much of Australia; however, very little is still known 

about the potential impact of fire on plant diseases in the natural environment. Phytophthora 

cinnamomi is an introduced soil-borne plant pathogen with a wide host range, affecting a large 

proportion of native plant species in Australia and other regions of the world, but its interaction with 

fire is poorly understood. An investigation of the effects of fire on P. cinnamomiactivity was 

undertaken in the Stirling Range National Park of south-western Australia, where fire is used as a 

management tool to reduce the negative impact of wildfires and more than 60% of the park is infested 

with, and 48% of woody plant species are known to be susceptible to, P. cinnamomi. At eight sites 

confirmed to be infested with P. cinnamomi, the proportion of dead and dying susceptible species was 

used as a proxy for P. cinnamomi activity. Subset modelling was used to determine the interactive 



effects of latest fire interval, average fire interval, soil water-holding capacity and pH on P. 

cinnamomiactivity. It was found that the latest and average fire interval were the variables that best 

explained the variation in the percentage of dead and dying susceptible species among sites, indicating 

that fire in P. cinnamomi-infested communities has the potential to increase both the severity and 

extent of disease in native plant communities. 

Additional keywords: Phytophthora dieback, Stirling Range National Park, susceptible. 

 

Introduction 

Phytophthora cinnamomi Rands is a threat to a wide range of plants and ecosystems worldwide and is 

recognised as a Key Threatening Process to the Australian environment (Environment Australia 

2001). In natural ecosystems, propagules of P. cinnamomi are not uniformly distributed, but occur in a 

mosaic distribution and are found in the highest concentrations at the surface of unsuberised roots 

belonging to susceptible species (Dawson et al. 1985) and high inoculum loads occur in the soil 

surrounding the collars of already infected plants, such as Banksia species (Shearer et al. 2010). 

Movement of the pathogen occurs downslope in subsurface water flow (Podger 1999) and laterally by 

root-to-root contact (Hill et al. 1994). The cryptic nature of this pathogen makes it difficult to measure 

the effects of the disease and its spread. 

Naturally occurring fire and prescribed burning are important disturbance factors that may complicate 

the management of Phytophthora dieback in native Australian ecosystems. There are many 

confounding factors when studying the effect of fire on vegetation, including the time since fire, fire 

frequency (Watson and Wardell-Johnson 2004), fire intensity (Lamont et al. 2007), fire-survival 

strategies of vegetation (Fisher et al. 2009), as well as changes in chemical and physical properties of 

the soil. These factors may also affect survival or virulence of any soil-borne pathogen; however, little 

is known of the effect of fire on pathogens, such as Phytophthora spp., and their interaction with the 

host after fire. Fire can affect disease activity by directly affecting the pathogen’s survival and 

development (Weste 1974; Schwartz et al. 1995; Moritz and Odion 2005) or, indirectly, by affecting 



the plant (Marks et al. 1975) and/or microbial community (Treseder et al. 2004) or the physical 

environment (Podger and Brown 1989; Shearer and Tippett 1989; Bishop et al. 2010). Furthermore, 

plants stressed by fire, low nutrients, drought or defoliation are more likely to succumb to disease 

(Schoeneweiss 1975). 

Studies of the interactions between Phytophthora and fire are rare (Beh et al. 2012). In Tasmania, 

impacts from P. cinnamomi were found to be greater with increasing vegetation height and age 

associated with the absence of fire (Brown et al. 2002), whereas in the USA, an increase in the 

incidence of P. cinnamomi in relation to fuel-reduction treatments has been observed in forest soils 

(Meadows et al. 2011). One study has been established to monitor the impact of fire 

and Phytophthora in shallow soil communities in south-western Australia (Clarke 2009), but no 

results have been published. Burrows (1985) and Robinson and Bougher (2003) proposed moderate to 

high fire intensities as a means to reduce susceptible hosts of P. cinnamomi and, thereby, control its 

spread and impact. 

Within the Stirling Range National Park (SRNP) in south-western Australia, 48% of woody plant 

species, mainly from the Proteaceae, Ericaceae and Fabaceae, are susceptible to P. 

cinnamomi (Shearer et al. 2004), whereas 21 of 33 taxa of conservation significance assessed for risk 

of extinction were threatened by inappropriate fire regimes (Barrett et al. 2008). Furthermore, in 

contrast to other studies, observations within SRNP Threatened Ecological Communities have noted 

high levels of disease impact in more frequently burnt sites (Barrett and Gillen 1997; Barrett 

2000; Barrett 2005). 

Prescribed burning is used extensively in south-western Australia, including the SRNP, to reduce the 

likelihood of devastating wildfires (Bowman 2003; Burrows 2008; Wilson et al. 2014). Plant 

community composition following fire is influenced by fire frequency, intensity and scale, the life-

history attributes of the species present, environmental interactions affecting seedling emergence and 

survival niche, including climate conditions, predation and disease, and the pool of species that can 

reach the site (Noble and Slatyer 1980; Keith et al. 2002). Fires in heathlands provide the only 

regeneration opportunities for many species (Cheal 2000) and the period immediately after fire is 



when most regeneration occurs (Bell et al. 1984; Keith et al. 2002). Studies of post-fire vegetation 

dynamics in a variety of fire-prone ecosystems consistently report an increase in species richness in 

the first few years after fire, which then stabilises or declines (Bell and Koch 1980; Watson and 

Wardell-Johnson 2004; Burrows 2008). Species abundances are also typically greater in the early 

years after fire (Hobbs and Atkins 1990; Burrows and Wardell-Johnson 2003; Yates et al. 2003). 

Therefore, deviations from these two patterns, particularly if the changes are largely due to a lack of 

species susceptible to Phytophthora, would be indicative of the presence of the pathogen. 

Because it is not known whether fire exacerbates the activity and spread of P. cinnamomi, an 

investigation of the effect of fire on P. cinnamomi activity on susceptible plant species at infested sites 

of SRNP was undertaken. Our results will have relevance for those involved in conservation of 

biodiversity in regions where fire is used as a management tool. 

 

Materials and methods 

Experimental design and vegetation survey 

More than 60% of Stirling Range National Park, Western Australia (34°23ʹS, 118°08ʹE), has been 

determined to be infested with P. cinnamomi (CALM 1999); our eight sites were chosen within areas 

mapped as infested on the eastern side of the park. These sites were monitored between April 2005 

and April 2006 to determine the effects of the pathogen on survival of susceptible plant species after 

fire (Table 1). The fire history and soil characteristics of each site were also recorded. 

At each site, four 5 × 5 m quadrats were randomly located. A species-area curve determined 25 m2 as 

an adequate quadrat size (data not shown). A detailed count of the number of individuals of species 

belonging to families known to be susceptible to P. cinnamomi (Proteaceae, Ericaceae, Fabaceae, 

Myrtaceae and Xanthorrhoeaceae), as well as known susceptible species from the genera Acacia(A. 

baxteri, A. browniana and A. chrysocephala), Hibbertia (H. argentea, H. hemignostaand H. 

recurvifolia), Calectasia (C. grandiflora) and Patersonia (P. occidentalis), was undertaken within 

each quadrat in April 2006. The groups assessed represented the majority of species occurring within 



the survey sites, with the exception of the families Restionaceae and Cyperaceae. All individual plants 

were scored as alive, dead (brown and dry, no leaves) and dying (displaying disease symptoms: 

wilting, chlorosis and/or lesions), identified as seeders or resprouters and determined if known to be 

susceptible to P. cinnamomi (Groves et al. 2003; Sage et al. 2004; O’Gara et al. 2005; Department of 

Environment and Conservation website 

(http://www.dec.wa.gov.au/pdf/projects/dieback/dieback_indicators.pdf, accessed December 2012); 

Project Dieback website (http://www.dieback.net.au/pages/1382/susceptible-species accessed 

December 2012); NM and SB, pers. obs.). The proportion of dead and dying susceptible species was 

used as a proxy for P. cinnamomi activity. This was supported by confirmation of the presence of P. 

cinnamomi from dead and dying plants and surrounding soil. To calculate this value, the number of all 

dead and dying individuals of susceptible species was summed for each site and divided by the 

summed total of all live (asymptomatic) and dead and dying (symptomatic) individuals of susceptible 

species on each site. This resulted in a dependent variable of proportion of dead and dying susceptible 

species, with a single value for each of the eight sites. 

Fire history and soil characteristics 

A fire history for each site was obtained from fire maps of SRNP held by Department of Conservation 

and Land Management (now Department of Parks and Wildlife), to determine the latest fire interval 

and average fire interval for each site. Because fire maps extended only back to 1972, the latter 

variable was the average time between the two most recent fires. 

Soil properties are critical to plant survival, so water-holding capacity (which influences water 

availability to plants) and soil pH (which influences nutrient availability to plants) were measured 

because we considered these important soil variables influencing survivorship. Furthermore, P. 

cinnamomi requires free soil moisture for active dispersal via motile zoospores and prefers neutral to 

acidic soils (Erwin 1983; Zentmyer 1983). To obtain these two soil variables, soil samples of 200–

500 g were collected from depths between 50 and 300 mm. These were stored in zip-lock plastic bags 

and placed in insulated containers before processing in the laboratory. Soil texture was determined by 

sieving fractions (gravel >2 mm, <2 mm sand >500 µm, <500 µm silt >63 µm, and clay <63 µm) of a 

http://www.dec.wa.gov.au/pdf/projects/dieback/dieback_indicators.pdf
http://www.dieback.net.au/pages/1382/susceptible-species


500-g dry sample, following the method of Weil (1993). Water-holding capacity was determined by 

sieving (2 mm) 250 g dried soil samples, which were then weighed, flooded and then allowed to drain 

freely for 24 h before weighing again. 

Phytophthora cinnamomi sampling, isolation and identification 

To confirm the presence of P. cinnamomi at each site, soil was collected from the base of several 

symptomatic and dead plants to a depth of 300 mm and stored in zip-lock bags in insulated containers. 

At room temperature, soil was baited with rose petals in containers flooded with deionised water. 

After 4–7 days, the rose petals were blotted dry and plated onto NARPH, a Phytophthora-selective 

medium (Hüberli et al. 2001) for isolation at 25 ± 2°C. The isolates were stored on half-strength 

potato dextrose agar (PDA) (Becton Dickinson and Co., Franklin Lake, NJ, USA) at 20 ± 2°C. 

To determine whether plant deaths that occurred during the study were caused by P. cinnamomi, stem 

(from around ground level) and root material was collected to isolate P. cinnamomi from dead and 

dying plants. As much material as possible of the stem and root from each dead plant was surface 

sterilised by dipping into 70% ethanol and immediately flamed, dried and plated onto Phytophthora-

selective media NARPH (Hüberli et al. 2000) for isolation, and incubated in the dark at 25 ± 2°C for 

3–5 days. Once clean, isolates were stored on PDA at 20 ± 2°C. 

Confirmation of P. cinnamomi was achieved using microscopic identification of typical P. 

cinnamomi morphological characteristics by comparison with a known specimen of P. cinnamomi. 

Molecular confirmation was achieved by extracting DNA from selected 10-day-

old Phytophthora isolates and the rDNA was extracted using an Utraclean® 15 DNA purification kit 

(MO BIO Laboratories, Carlsbad, CA, USA). The polymerase chain reaction (PCR) mixture and 

reactions were carried out as described by Cooke et al. (2000) and Barber et al. (2005), using DC6 

primer and the universal primer ITS4. Sequence data were analysed using Sequence Navigator 

version 1.01™ (Perkin Elmer Applied Biosystems, Waltham, MA, USA) and their identity was 

established by comparison with known Phytophthora sequences in GenBank. 

 



Statistical analysis 

To determine whether sites differed in their plant species richness or abundance, or percentage of live 

plants, seeder species or susceptible species, chi-square analyses were conducted using the average for 

each variable as the expected value at each site. To determine whether fire had a significant effect 

on P. cinnamomiactivity (identified as the proportion of dead and dying individuals of susceptible 

species on each site), best-subset modelling, a method that assesses all possible combinations of the 

predictor variables (Burnham and Anderson 2002), was conducted to identify which models provided 

the best predictor(s) of P. cinnamomiactivity. Only four predictor variables (latest fire interval, 

average fire interval, water-holding capacity (%) and pH H2O; Table 1) were used to avoid over-

fitting models (Maloney et al. 2012). Each model was run as a generalised linear model with a normal 

distribution and identity link function. The ratio of sample size to parameters was low in the best-

subset models, so the second-order bias-corrected form of Akaike’s information criterion (AICc) was 

used as the basis for all model selection (Burnham and Anderson 2002) and all models with an 

AICc value within Δ3 of the minimum AICc value were considered as having good support., The 

Akaike weight (Wi) was calculated to determine the probability that each model was the best model 

and, for all well supported models, a multiple regression model was run to see how much variation 

was explained by these models. 

 

Results 

Fire history and soil characteristics 

Time of latest fire varied from 1 year at Chester Pass West to more than 30 years at the Chester Pass 

EastA site, with five of the sites being burnt within the past 5 years. Average fire interval from the 

latest two fires ranged from ~8 years for half of the sites, to between 14 and 30+ years for the 

remaining sites (Table 1). Soil pH was similar for all sites (~5.8), with the exception of Success Ridge 

with a pH ~5. Soil water-holding capacity was also similar for most sites (between 27% and 39%), 

with the exception of the long-unburnt Success Ridge TrackA site at 70% (Table 1). 



Phytophthora cinnamomi 

Symptomatic plants were present in all quadrats and P. cinnamomi was positively identified from soil 

and infected plant-tissue samples from all vegetation survey sites. The percentage of identified 

susceptible species was high, ranging between 43% and 67% across the sites. Of these susceptible 

species, between 5.93% (Chester Pass Road EastA) and 31.59% (Yungermere Peak) were recorded as 

showing symptoms of disease (dead or dying) (Table 2). 

Vegetation surveys 

The percentage of species recorded was adequately represented as determined from species-area 

curves, with a substantive reflection of the complete flora occurring within the plant communities 

studied (data not presented). Of the total 146 species identified in the survey, 56% were known to be 

susceptible to P. cinnamomi, 15% resistant and 29% unknown, whereas 66% were obligate seeder 

species, 23% resprouter species, 3% facultative sprouter-seeder species and 8% were of unknown fire-

response strategy. Of the plants surveyed, 68% of resprouters and 85% of seeders were considered to 

be susceptible to P. cinnamomi. 

Sites did not differ in terms of species richness (χ2
7 = 10.43, P = 0.166) but did differ significantly in 

terms of plant abundance (χ2
7 = 1211.49, P < 0.001; Table 2). The 14-year post-fire sites at Bluff 

Knoll Road and Success Ridge Track had much higher than average abundances, whereas most sites 

≤5 years post-fire (except Bluff Knoll Road) had much lower abundances than average. Neither the 

percentage of seeder species (χ2
7 = 1.03, P = 0.994), nor the percentage of susceptible species 

(χ2
7 = 13.47, P = 0.061) differed significantly among the sites. However, the percentage of dead or 

dying susceptible species did differ significantly among the sites (χ2
7 = 40.42, P < 0.001), the long-

unburnt Chester Pass Road East site having a much lower percentage than average and the sites ≤3 

years post-fire (except Chester Pass Road West) having much higher percentages than average (Table 

2). 

 

 



Predictor model 

The two fire variables, namely, the latest fire interval and average fire interval, were the variables that 

best explained the variation in the percentage of dead and dying susceptible species among sites. A 

model with both the latest fire interval and average fire interval was the best-supported model, with a 

36.4% chance of being the best model. Latest fire interval alone was in the next-best-supported 

model, with a 26.9% chance of being the best model, and average fire interval alone was also well 

supported, with a 13.3% chance of being the best model (Table 3). Unsurprisingly, the summed model 

weights for each variable supported the hypothesis that the fire variables were the best predictors of 

the percentage of dead and dying susceptible species. Summed model weights for the two fire 

variables, namely, the latest fire interval (76.2%) and average fire interval (60.2%), were much more 

influential than was pH H2O (16.4%) and soil water-holding capacity (10.1%). 

 

Discussion 

Latest fire interval and average fire interval were the variables that best explained the variation in the 

percentage of dead and dying susceptible species among sites, with sites burnt within 5 years of the 

survey having up to 31.59% of individual susceptible species that were dead or dying, compared with 

a low of 5.93% in a site unburnt for more than 30 years. It is likely that, immediately after fire, sites 

will be more open with wetter and warmer conditions for longer periods of time. This, coupled with 

the presence of germinants and surviving, but potentially stressed, susceptible species makes ideal 

conditions for the pathogen. Furthermore, after fire, some of these soils were found to be more 

stimulatory to P. cinnamomichlamydospore and sporangia production and to have increased microbial 

activity (Moore 2005), and these factors may also contribute to increased P. cinnamomiactivity post-

fire. 

In the current study, sites did not differ significantly in terms of species richness, and abundances 

were greater at sites unburnt for at least 5 years. Other studies on fire have shown that both latest and 

average fire interval influence species richness (Watson and Wardell-Johnson 2004) and that species 



richness and abundance typically increase in the first 3–5 years post-fire (Bell and Koch 1980; Hobbs 

and Atkins 1990; Burrows and Wardell-Johnson 2003; Yates et al. 2003; Burrows 2008), after which 

species richness stabilises or declines. Furthermore most regeneration in heathlands is confined to the 

period immediately post-fire (Bell et al. 1984; Keith et al. 2002), when an increase in abundance is 

particularly true of members of the Proteaceae (Lamont et al. 1999). However, both the abundance 

and species richness of susceptible species have been shown to decline with infestation by P. 

cinnamomi in Banksia woodlands of south-western Australia (Bishop et al. 2010). Thus, our finding 

that neither abundance nor species richness increased post-fire is consistent with increased post-fire P. 

cinnamomi activity causing increased mortality in susceptible species. 

To further support the finding of increased disease post-fire, Podger and Brown (1989) concluded that 

disease caused by P. cinnamomi in remote forest was dependent on logging or fire disturbance for 

persistence. In Tasmania, they showed that the pathogen was not recovered from 34 sites in 

undisturbed forest or remote wilderness, but was frequently recovered from logged forest degraded by 

repeated burning, recently burnt forest along road verges and disturbed forest recovering from fire. In 

the present study, the longer-unburnt sites have been burnt previously at average fire intervals of >16 

years. Major disturbance to these longer-unburnt communities in the past 50 years has remained 

relatively low, resulting in greater plant abundances and the lowest proportion of dead or dying 

susceptible species (<11.5%). In contrast, the reduced species abundance in recently burnt sites along 

with larger proportions of dead or dying susceptible species may also have been influenced by the 

previous fire interval and is consistent with fire disturbance and disease (Podger and Brown 1989). 

Fire in Phytophthora-infested communities has the potential to increase both the severity and extent 

of disease in native plant communities, and impinge on the regeneration capabilities of susceptible 

species, particularly obligate-seeder species, given the high level of susceptibility reported in the 

present study. Because many of these obligate seeders are canopy dominant, changes in density will 

affect the vegetation structure in the long-term (Bradstock et al. 1996). Soil seed banks may persist 

and provide a means of disease evasion, at least in the short term, for species with persistent seed 

banks, whereas species with transient and short-lived soil seed banks or canopy-stored seeds will be 



more rapidly depleted (Meney et al.1994; Keith et al. 2002). There was little indication that changes 

in community composition could be reversed, owing to a reduction in juvenile survivorship and the 

high proportion of existing resprouters that were diseased. Because time since fire can be a strong 

driver of ecosystem structure and species composition, Moritz and Odion (2005) hypothesised that 

certain successional stages will be more prone to infection than are others. Therefore, future 

management of recurring fires and soil-borne disease may mediate stability, or continuing decline, of 

susceptible species. It is also likely that the predicted change in climate in the south-west of Western 

Australia (Bates et al. 2008), with longer drier periods, will result in more frequent fires, which in turn 

could exacerbate plant deaths when conditions are warm and wet. The likely increase in P. 

cinnamomi activity post-fire has important implications for the future of plant communities affected 

and threatened by infestation from P. cinnamomi, and land managers should consider this interaction 

when developing management practices. 
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Table 1.  Summary of fire history and soil characteristics for the eight study sites in Stirling 

Range National Park, Western Australia 

Average fire interval was calculated from the latest two fires, and soil pH (s.d.) is the mean of four 

samples; n.a., s.d. not available because n = 1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table 2.  Summary of predominantly Proteaceae, Fabaceae, Ericaceae, Myrtaceae and 

Xanthorrhoeaceae plant species in 100-m2 vegetation-survey quadrats in Stirling Range 

National Park, Western Australia, in relation to fire strategy and susceptibility to Phytophthora 

cinnamomi 

Total n = 146 species 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table 3.  Summary of best-subset modelling statistics ranking all models from the one that 

explains the most variation in the percentage of dead and dying plant species susceptible 

to Phytophthora cinnamomi to the one that explains the least 

Corrected Akaike’s information criterion (AICc), number of variables in the model (k) and the Akaike 

weight (Wi) are shown along with adjusted r2 and probability of resulting multiple regression for the 

models with the highest Wi 
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