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Abstract 

There are a wide variety of animal reservoirs of the zoonotic bacterium Coxiella burnetii (C. 

burnetii), and ticks may play a significant role in the natural transmission cycle of this pathogen. 

Recently, domestic dogs have been implicated as reservoirs of C. burnetii. Dogs are the primary 

hosts of Rhipicephalus sanguineus (R. sanguineus), and C. burnetii has previously been detected 

in these ticks. The objectives of this study were to identify and record R. sanguineus ticks 

collected from dogs in Australia, and to investigate the prevalence of C. burnetii in these ticks. 

Subsequent to this, the bacterial microbiome of R. sanguineus ticks was investigated. The IS1111a 

transposase element gene was targeted using qPCR to detect C. burnetii DNA in R. sanguineus. 

The Ion Torrent™ Next-Generation Sequencing platform was used to sequence bacterial 16S 

rDNA in the ticks. In this study, 2,577 R. sanguineus ticks were morphologically identified and 

recorded in the Northern Territory, South Australia and Western Australia. There was no positive 

detection of C. burnetii in a subset of 31 R. sanguineus ticks by qPCR. Next-generation 

sequencing of the universal bacterial 16S rRNA gene revealed that a Coxiella sp. was present in 

53/59 (90%) tick pools. The sequences were compared to GenBank submissions and a 100% 

match was obtained to a Coxiella sp. from R. sanguineus in the Philippines. A phylogenetic 

analysis of this Coxiella sp. showed that it does not group with the pathogenic C. burnetii. This 

Coxiella sp. may be a non-pathogenic endosymbiont of R. sanguineus, and future investigations 

could aim to assess the role of Coxiella endosymbionts in R. sanguineus, and whether this 

bacterium causes cross-reactivity in immunologic assays used for the diagnosis of Q fever in 

people. 

 

 

 



iii 

 

List of Abbreviations 

A  adenine or adenosine  

bp  base pair  

BP before present 

BSA bovine serum albumen 

C  cytosine or cytidine  

CT cycle threshold 

CVBD canine vector-borne disease 

DNA  deoxyribonucleic acid  

dNTP  deoxynucleoside triphosphate  

et al.  and others  

g gram 

G  guanine or guanosine  

gDNA genomic DNA 

GIS geographic information system 

h  hour  

IT Ion Torrent 

L litre 

mg  milligram  

MID multiplex identifier 

min  minute  

mL  millilitre  

mm millimetre 

mM  millimolar  

mod modified 

μ  micro  

μg  microgram  

μL  microlitre  

NGS next generation sequencing 

No./n number 

NTC no-template control  

OR odd ratio  

OTU  operational taxonomic unit 

PCR  polymerase chain reaction  

M picomolar 

mol  picomole  

qPCR quantitative PCR 

R reverse 

rDNA ribosomal deoxyribonucleic acid 

RFLP restriction fragment length polymorphism 

RH relative humidity  

RNA  ribonucleic acid  

rpm  revolutions per minute  



iv 

 

RR risk ratio 

rRNA ribosomal ribonucleic acid 

s  second  

sp./spp.  species  

T  thymine or thymidine  

Taq  Thermus aquaticus DNA polymerase  

U  unit  

w/v   weight of solute per volume of solvent  

x times 

3'  hydroxyl-terminus of DNA molecule  

5'  phosphate-terminus of DNA molecule  

~  approximately  

& and 

$  dollars  

>  greater than  

< less than 

-  negative  

 trademark 

®  registered trademark  

%  percent  

°C  degree Celsius  

 

 

 

 

 

  

  



v 

 

Table of Contents 

Declaration ...................................................................................................................................... i 

Abstract ......................................................................................................................................... ii 

List of Abbreviations ................................................................................................................... iii 

Table of Contents ........................................................................................................................... v 

Acknowledgements ........................................................................................................................ x 

CHAPTER 1: INTRODUCTION ............................................................................................... 1 

1. Introduction ................................................................................................................................ 2 

1.1 The medical and economic impacts of the vaccine-preventable disease Q fever ................ 2 

1.2 A review of the transmission of C. burnetii to humans ....................................................... 4 

1.2.1 The association between livestock and human Q fever outbreaks led to the discovery 

of C. burnetii ................................................................................................................ 4 

1.2.2 Current understanding of how C. burnetii is transmitted to humans ............................ 5 

1.2.3 Q fever from wildlife and companion animals – How the risks of Q fever acquisition 

may have been traditionally understated ..................................................................... 6 

1.2.3.1 Coxiella burnetii detected in Australian fauna – native and introduced species ... 6 

1.2.3.2 Coxiella burnetii detected in companion animals overseas and in Australia ........ 7 

1.3 Could ticks play a role in the transmission of C. burnetii? .................................................. 8 

1.3.1 Polymerase chain reaction – A more sensitive and specific method for bacterial 

detection than traditional methods ............................................................................... 9 

1.3.1.1 The detection of C. burnetii in ticks ................................................................... 10 

1.3.1.2 The detection of C. burnetii in R. sanguineus ..................................................... 12 

1.3.1.3 The detection of C. burnetii in Australian ticks .................................................. 12 

1.3.2 First and Second Generation sequencing technologies – Tools to investigate genomes 

and metagenomes....................................................................................................... 13 



vi 

 

1.3.2.1 Bacterial identification, characterisation and genomics ...................................... 15 

1.3.2.2 The microbiome of ticks and the application of molecular tools to invertebrates

 ........................................................................................................................................ 16 

1.3.3 Transmission studies ................................................................................................... 17 

1.4 The brown dog tick (Rhipicephalus sanguineus) ............................................................... 19 

1.4.1 Arrival and distribution of R. sanguineus in Australia ............................................... 20 

1.4.2 The identification of R. sanguineus ............................................................................ 22 

1.5 Detection of C. burnetii in R. sanguineus ticks ................................................................. 26 

CHAPTER 2: MATERIALS AND METHODS ..................................................................... 27 

2. Materials & Methods ............................................................................................................... 28 

2.1 Tick collection ................................................................................................................... 28 

2.2 Tick identification .............................................................................................................. 29 

2.3 Sample mapping and selection ........................................................................................... 29 

2.4 DNA extraction .................................................................................................................. 30 

2.5 PCR .................................................................................................................................... 31 

2.5.1 Coxiella burnetii qPCR assays .................................................................................... 31 

2.5.2 Universal bacterial 16S qPCR assays ......................................................................... 31 

2.6 Gel electrophoresis ............................................................................................................. 32 

2.7 Tick pooling for Ion Torrent sequencing ........................................................................... 33 

2.8 Ion Torrent sequencing ...................................................................................................... 33 

2.8.1 Fusion-tag qPCR ......................................................................................................... 34 

2.8.2 PCR purification ......................................................................................................... 34 

2.8.3 Relative PCR quantification........................................................................................ 35 

2.8.4 Absolute quantification ............................................................................................... 35 



vii 

 

2.8.5 OT2 ............................................................................................................................. 36 

2.8.6 Ion Torrent PGM ......................................................................................................... 36 

2.9 Sequence analysis .............................................................................................................. 36 

2.9.1 Sequence deconvolution and quality filtering ............................................................. 36 

2.9.2 QIIME ......................................................................................................................... 36 

2.9.3 MEGAN ...................................................................................................................... 37 

CHAPTER 3: RESULTS .......................................................................................................... 38 

3. Results ...................................................................................................................................... 39 

3.1 Morphological identification of Ixodidae removed from dogs. ......................................... 39 

3.2 Distribution of R. sanguineus in Australia ......................................................................... 47 

3.3 Coxiella burnetii qPCR assays ........................................................................................... 49 

3.4 Next Generation sequencing .............................................................................................. 53 

3.4.1 Universal bacterial 16S qPCR assays ......................................................................... 53 

3.4.2 PCR purification ......................................................................................................... 54 

3.4.3 Ion Torrent sequencing results .................................................................................... 54 

3.4.4 Sequencing results ...................................................................................................... 56 

CHAPTER 4: DISCUSSION AND CONCLUSIONS ............................................................ 65 

4. Discussion ................................................................................................................................ 66 

4.1 Rhipicephalus sanguineus identification ........................................................................... 66 

4.2 Distribution of R. sanguineus ticks in Australia. ............................................................... 68 

4.3 The detection of C. burnetii in R. sanguineus .................................................................... 69 

4.4 Identification of Coxiella sp. in the microbiome of R. sanguineus .................................... 70 

4.5. The study’s limitations ...................................................................................................... 74 

4.6 Future research directions .................................................................................................. 75 



viii 

 

4.7 Conclusion ......................................................................................................................... 77 

REFERENCES ........................................................................................................................... 78 

References .................................................................................................................................... 79 

Appendix A. ............................................................................................................................... 102 

Table A.1: Metadata spreadsheet. .......................................................................................... 102 

Table A.2: Number of overall submissions from each state and territory. ............................ 129 

Appendix B. ............................................................................................................................... 130 

Table B.1: Mapping file with MID-tag combinations ........................................................... 130 

Table B.2: Relative quantification CT values and pooling volume for Darwin and Perth samples 

with Bact16S27F/338R primers .................................................................................. 133 

Table B.3: Relative quantification CT values and pooling volume for Perth samples with 

Bact16S27F/338R primers ........................................................................................... 134 

Table B.4: Relative quantification CT values and pooling volume for Palmerston samples with 

Bact16S27F/338R primers. .......................................................................................... 135 

Table B.5: Absolute Quantification CT values and calculations for final volume. ................ 136 

Figure B: Absolute quantification standard curve. ................................................................ 137 

Appendix C. ............................................................................................................................... 138 

Figure C.1: Amplification plot for Darwin undiluted DNA samples with Bact16S27F/338R 

primers. ........................................................................................................................ 138 

Figure C.2: Amplification plot for Perth undiluted DNA samples with Bact16S27F/338R 

primers. ........................................................................................................................ 139 

Figure C.3: Amplification plot for Palmerston undiluted DNA samples with Bact16S27F/338R 

primers. ........................................................................................................................ 140 

Appendix D. ............................................................................................................................... 141 

Table D.1: Percent of Coxiella spp. reads for each sample. .................................................. 141 



ix 

 

Table D.2: Legend for taxonomic assignment in QIIME. ..................................................... 143 

  

 

 

 

 

 

 

 



x 

 

Acknowledgements 

The work presented for this theses was conducted with the funds provided by the Australian 

Companion Animal Health Foundation (ACAHF). Experiments were performed at Murdoch 

University, and in the State Agricultural Biotechnology Centre (SABC). Thank you to the 

contributors (listed below), as well as members of the general public, who volunteered their time 

and effort to collect the enormous number of ticks that were received and used for this project.  

Animal Management In Rural & Remote Indigenous Communities (AMRRIC) 

Australian National Insect Collection (ANIC), CSIRO 

Animal Protection Society 

Coral Coast Veterinary Hospital 

DermCare Vet 

Foothills Animal Hospital 

Forbes Street Veterinary Clinic 

Katherine Veterinary Care 

Lake Road Veterinary Clinic 

Marlin Coast Veterinary Hospital 

Mt Helena Veterinary Clinic 

Murdoch University Veterinary Hospital 

Palmerston Veterinary Hospital 

PARAP Veterinary Hospital 

Redgum Vet & Pet Boarding 

Sydney Animal Hospitals 

Turramurra Veterinary Hospital 

University of Sydney 

 

I would like to thank and express my gratitude to my primary supervisor Professor Peter Irwin, 

and co-supervisor Dr. Charlotte Oskam, for their incredible amount of support and guidance over 

the course of this project. Thank you for your constant encouragement, enthusiasm, and kindness.  

An enormous thank you to the amazing research assistant at the Vector and Water-Borne 

Pathogen Research Group, Alexander Gofton. I am so grateful for all your help, advice, and all 

that you have taught me throughout this project.  

A warm thank you to Professor Una Ryan and to all the team at the Vector and Water-Borne 

Pathogen Research Group for their support and advice throughout the year. It has been a pleasure 

to work with such a wonderful group of people. A special mention and thank you is owed to Dr. 

Rongchang Yang, who provided the positive controls and primer sets for the experimental work.  



xi 

 

To my dear friend Tamara, thank you so much for your support and encouragement throughout 

the most difficult times this year, and for the laughs at the best of times. 

To my devoted partner Bronson, thank you for your endless support, and for enduring this 

challenging year with me.  

 

 

 

 



1 

 

 

 

 

 

CHAPTER 1: INTRODUCTION 

 

 

 

 

 



2 

 

1. Introduction 

The zoonotic disease known as ‘Q fever’ is caused by infection with (Coxiella burnetii) C. 

burnetii, and is preventable by vaccination, but remains an unfortunate burden every year for 

hundreds of people in Australia and around the world (Gidding et al. 2009). Increased reports of 

human Q fever outbreaks unrelated to associations with domestic livestock emphasise the need 

for a better understanding of how this disease is transmitted, so that susceptible individuals can 

be made aware of the risks, and more effective strategies implemented to prevent Q fever 

outbreaks. The primary objective of this project was to detect the zoonotic pathogen C. burnetii 

in (Rhipicephalus sanguineus) R. sanguineus ticks in Australia, with the secondary aim to 

describe the bacterial microbiome of R. sanguineus. 

The aim of this first chapter is to review the literature pertaining to the medical and economic 

impacts of Q fever, and to briefly describe the risk factors associated with the transmission of C. 

burnetii to humans, with reference to the history of its discovery and to recent outbreaks of the 

disease associated with domestic livestock. The detection of C. burnetii in wild and companion 

animals in Australia and overseas is discussed, with emphasis on the implication of the brown 

dog tick, R. sanguineus, as a vector of C. burnetii, and a potential source of zoonotic infection. 

New molecular tools used to investigate the presence of C. burnetii DNA and the broader bacterial 

microbiome in R. sanguineus are also described, with reference to recently published literature. 

Finally, the distribution of R. sanguineus in Australia is described, as well as the morphological 

identification of this important ectoparasite of dogs.    

1.1 The medical and economic impacts of the vaccine-preventable disease Q 

fever 

Australia is the only country that has a licensed and registered Q fever vaccine. In 1994 the 

Australian government-funded Q fever vaccination program included all abattoir workers, and 

was extended to include farmers in 2002 (Morrissey, Cotton, and Ball 2014). As a result, the 
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number of notifications of Q fever has reduced since 2002, yet hundreds of cases are still reported 

every year (Morrissey, Cotton, and Ball 2014). The number of cases of Q fever reported from 

January to October this year by the National Notifiable Diseases Surveillance System in Australia 

is 364 (Australia, Department of Health. 2014). In 2011 the vaccination program was extended to 

the families of farmers, and to others employed in the livestock-rearing industry. However, after 

12 months the vaccination program for farmers ceased, and the program is now only in place for 

abattoir workers (reviewed in Morrissey, Cotton, and Ball 2014). Humans infected with the 

zoonotic disease Q fever are commonly asymptomatic, and the mild form of the disease is 

characterised by flu-like symptoms, fever and severe headaches (Mertens and Samuel 2007). 

However, the disease can be life-threatening in some patients with an acute onset of 

meningoencephalitis or myocarditis, or in chronically infected patients who develop endocarditis 

or hepatitis. People with previous cardiac valve defects, immunocompromised patients, and 

pregnant women are at greater risk of chronic Q fever (Maurin and Raoult 1999). 

Not only can Q fever have a significant influence on the health and well-being of patients, the 

financial implications of the disease on national productivity are also considerable. An economic 

evaluation by Kermode et al. (2003) considered the financial impacts of Q fever, such as the cost 

to the Australian government (annual estimate of $1.3 million in 1999 for WorkCover claims), 

and common-law actions against employers in the meat industry (as high as $1.1 million reported 

for a legal settlement). The study concluded that increasing the uptake of Q-fever vaccination 

among meat and agricultural industry workers is a cost-effective public health strategy (Kermode 

et al. 2003), ushering in the vaccination policy change referred to earlier. An understanding of 

how human acquisition of C. burnetii occurs is important so that people can be made aware of the 

risks of exposure, and the appropriate recommendations can be made to protect against infection.  
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1.2 A review of the transmission of C. burnetii to humans 

1.2.1 The association between livestock and human Q fever outbreaks led to the 

discovery of C. burnetii 

The risk of exposure to C. burnetii has long been recognised as a risk factor for abattoir workers 

and people working in the agricultural sector. Less than one hundred years ago, the causative 

agent of Q fever was identified as C. burnetii, following outbreaks of the illness among workers 

in the meat industry. Q (query) fever was first described by Derrick (1937), who conducted an 

epidemiological and microbiological investigation in Queensland, Australia, which aimed to 

identify the causative agent of a disease outbreak among abattoir workers in 1935. Similar cases 

were reported as early as 1933, in Brisbane, Queensland. The prominent clinical symptoms 

observed in patients during that outbreak included an acute onset of fever, headache, shivers, 

rigor, and vomiting. The study revealed that guinea-pigs could acquire Q fever via inoculation 

with patient blood and urine samples, and that the guinea-pigs acquired immunity to the disease 

after a single exposure. However, Derrick (1937) was incorrect in assuming that the pathogen in 

question was a virus, after attempts to cultivate and to visualise the microorganism using 

microscopy from infected guinea-pig tissues failed. In 1937, Derrick sent infected guinea pig liver 

to Dr. F. M. Burnet in Melbourne, who transferred the infection to mice, and was successful in 

discovering rickettsial-like bodies in their spleens (Derrick 1937). Q fever was similarly observed 

in America by Cox (1941), at the Rocky Mountain Laboratory in Hamilton, Montana, USA, who 

was able to culture the rickettsial-like bacteria in embryonated eggs, and with his colleague Davis, 

managed to isolate the microorganism from ticks collected at Nine Mile Creek in Montana. Cox 

later showed that the bacterium responsible for causing Q fever, although morphologically similar 

to rickettsia, was significantly different, and suggested it should therefore be placed into a separate 

genus. Thus the aetiological agent of Q fever, C. burnetii, was named in honour of Cox and Burnet 

((Philip 1948). Although Derrick was unable to identify the pathogen responsible for causing Q 

fever, he was the first person to describe the disease, and although a fuller knowledge exists on Q 

fever today, its name remains unchanged 77 years later. 
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1.2.2 Current understanding of how C. burnetii is transmitted to humans 

Q fever, or coxiellosis, is a zoonosis that is considered to occur worldwide, except in New 

Zealand, which is believed to be C. burnetii free since serological surveys have produced negative 

results in tested cattle, sheep, dogs and humans (Hilbink et al. 1993; Kaplan and Bertagna 1955). 

The risk of exposure to C. burnetii has traditionally been considered an occupational risk for 

abattoir workers and farmers, as humans can acquire an infection with C. burnetii from contact 

with domestic ruminants, such as cattle and sheep, as well as from their infected products (Raoult, 

Marrie, and Mege 2005). Inhalation of dust particles contaminated with C. burnetii is thought to 

be the most common route of infection (Toman, Heinzen, and Samuel 2012). Due to this nature 

of transmission, C. burnetii could potentially be used as a biological weapon in aerosolised form, 

as a contaminant of food and water, or possibly even in mail (reviewed in Madariaga et al. 2003).  

Epidemics of Q fever have usually been associated with direct or indirect contact with infected 

animals and their products. A recent outbreak of Q fever in the Netherlands between 2007 and 

2010 is the largest reported community outbreak of Q fever (Vellema and van den Brom 2014). 

A total of 3,523 human cases were notified in this period of the epidemic (Roest et al. 2011), and 

it is thought that the outbreak in the community was associated with a high number of abortions 

in dairy goats and sheep in the area (Vellema and van den Brom, 2014; Roest et al. 2011). 

Conditions such as abortion, premature delivery, stillbirth, and weak offspring have been 

associated with C. burnetii infection of the uterus of pregnant sheep and goats (reviewed in 

Agerholm 2013).  

Other potential sources of infection associated with infected domestic livestock include barnyards 

(Thomas et al. 1995), contaminated straw (van Woerden et al. 2004), and consumption of 

contaminated milk (Hatchette et al. 2001), due to high numbers of C. burnetii organisms in urine, 

faeces, conception products, and milk, respectively, of infected animals (reviewed in Madariaga 

et al. 2003). Infection with C. burnetii is widely recognized as an occupational hazard for people 

who work with or around birth products of livestock of infected animals, including farmers, 
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veterinarians, and zoo and slaughterhouse workers (Toman, Heinzen, and Samuel 2012). 

Accounts of C. burnetii transmission via sexual contact (Milazzo et al. 2001), vertical 

transmission (Raoult, Fenollar, and Stein 2002), and nosocomial acquisition (Weber and Rutala 

2001) are rare. Person-to-person transmission has been reported (Mann et al. 1986), however this 

is considered to be unlikely as it was reported in an endemic setting (reviewed in Madariaga et al. 

2003). Madariaga et al. (2003) included ticks as a rare transmission route of Coxiella (i.e. from 

tick bite to humans) although no reference was made to any studies that have reported such a 

finding. A later review by Thompson, Dennis and Dasch (2005) found that transmission of C. 

burnetii to species of mammals is well documented, however, considered the epidemiological 

evidence for direct transmission of C. burnetii to humans by ticks is lacking, based on only several 

anecdotal observations. Although C. burnetii has been detected in ticks, they are not generally 

considered as significant vectors of the disease to humans (Toman, Heinzen, and Samuel 2012).   

1.2.3 Q fever from wildlife and companion animals – How the risks of Q fever 

acquisition may have been traditionally understated 

As discussed in the previous sections, the main risk factor for acquiring C. burnetii is considered 

to be contact with products from infected livestock. However, wild animals and companion 

animals have also been associated with human Q fever outbreaks. The risk factors for human Q 

fever acquisition may extend to the exposure to other potential animal reservoirs of the bacterium, 

as C. burnetii has been detected in a range of different species of wildlife, domestic and 

companion animals. 

1.2.3.1 Coxiella burnetii detected in Australian fauna – native and introduced species 

Not only are domestic livestock, such as sheep, goats, and cattle, reservoirs of C. burnetii, other 

species of animal have also been identified as potential reservoirs of C. burnetii. This is not 

surprising given that native Australian ticks act as the invertebrate reservoir for C. burnetii. A 

number of studies in Australia have detected the presence of C. burnetii in native Australian 

wildlife, such as Western barred bandicoots (Bennett et al. 2011), kangaroos (Barralet and Parker, 
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2004; Banazis et al. 2010; Potter et al. 2011) common northern bandicoots, dingoes, and brushtail 

possums (Cooper et al. 2012). Exposure to C. burnetii has also been detected in introduced wild 

animals in Australia, such as feral cats, foxes, and feral pigs (Cooper et al. 2012).  

1.2.3.2 Coxiella burnetii detected in companion animals overseas and in Australia 

The role of companion animals, such as cats and dogs, in the transmission and maintenance of C. 

burnetii is uncertain at the present time. Following reports of human Q fever outbreaks associated 

with infected dogs in Nova Scotia, a retrospective investigation in this region of Canada aimed to 

identify the risk factors associated with human Q fever acquisition. The study found that the 

strongest risk factors for C. burnetii infection were exposure to stillborn kittens, newborn kittens, 

and parturient cats. Other significant risk factors identified included working on a farm, 

slaughtering and dressing animals, and contact with cats, cattle and sheep. Serological evidence 

was also presented, whereby cats’ placentas were found to have high titers of antibodies to C. 

burnetii antigens (Marrie et al. 1988). More recently in Australia, Kopecny et al. (2013) evaluated 

C. burnetii seroreactivity of 27 cats living in the same breeding cattery, and investigated the C. 

burnetii infection using molecular and histological methods. The study was prompted by a Q 

fever outbreak in a small animal veterinary hospital in Sydney, Australia, among nine veterinary 

personnel and a cat owner, after a caesarean section was performed on a cat. Strong seropositivity 

results were obtained for this cat, and the seroprevalence of the 27 cats tested from the cattery 

was 26% (Kopecny et al. 2013). 

A family of three contracted Q fever after exposure to a parturient dog (Buhariwalla, Cann, and 

Marrie 1996) and in California, a high seroprevalence rate (66%) was reported in 316 stray dogs 

tested for C. burnetii (Willeberg et al. 1980). More recently, in Australia, Cooper et al. (2011) 

investigated the seroprevalence of C. burnetii in blood samples collected from domestic dogs in 

veterinary clinics in Townsville, Queensland. This study established that 101 canine samples 

collected between 2006 and 2007 had an overall seropositivity of 21.8%. A retrospective study 

was also conducted on 100 samples that were collected from the same region in 1984-1985, and 
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these samples were found to have a seropositivity of 16.0%. The samples were either positive for 

phase I or phase II antigens, and small number of samples was positive to both. The dog owners 

participated in a questionnaire to establish risk factors, and included data such as location of dog’s 

residence, its food sources (commercial products or home-made diets and meat), and level of 

exposure to ticks, domestic farm animals, and wildlife. The only factor that was found to have a 

positive association with seropositivity for phase II antigen was contact with wildlife, with a 

reported risk ratio (RR) of 2.3, and an odds ratio (OR) of 3.0. Factors that were found to have a 

positive association with seropositivity against phase I antigen were contact with wildlife (RR 

2.4, OR 2.9), contact with ticks (RR 2.7, OR 2.9), and contact with farm animals (RR 2.2, OR 

2.4). A positive association with seropositivity against either or both phase I or II antigens was 

obtained for contact with wildlife (RR 2.2, OR 2.8), farm animals (RR 1.9, OR 2.4), and pregnant 

animals (RR 1.9, OR 2.4). Importantly, this study provided evidence of C. burnetii infection in 

domestic dogs in Australia, established that seropositivity for C. burnetii was higher in serum 

samples collected from 2006-2007 than the serum samples collected in 1984-1985, and suggested 

that ticks may play a role in the epidemiology in this location (Cooper et al. 2011). The evidence 

of C. burnetii exposure in Australian dogs described above has prompted this present 

investigation, which aims to detect C. burnetii in R. sanguineus ticks on dogs. Rhipicephalus 

sanguineus may play a key role in the transmission of C. burnetii to dogs, together with a variety 

of other vertebrates that this tick may use as vertebrate sources of its blood meal.    

1.3 Could ticks play a role in the transmission of C. burnetii? 

Vectors can be defined as arthropods, or other invertebrates, that serve as a host and carrier of 

parasites that are physiologically dependent on the host organism for survival (obligatory 

parasitism) (Bogtish et al. 2013). Not only is the tick itself an obligatory parasite, dependent on a 

vertebrate host for survival, but it may also transmit microorganisms which depend on the tick 

for the completion of their life cycle (Bogtish et al. 2013). In order for the tick to be a vector that 

maintains a certain disease, it must transmit the causative agent vertically (transstadially or 

transovarially to their progeny) and horizontally (via tick bite or in faeces) to susceptible animals 
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(Kazar 2005). The main arthropod vectors of canine vector-borne diseases (CVBDs) are ticks, 

fleas, and sand flies, which can transmit a variety of pathogenic microorganisms such as viruses, 

bacteria, protozoa, and helminths, and these can cause significant health problems in dogs, and in 

humans if the pathogen is zoonotic. Some of the major bacterial CVBDs with zoonotic potential 

include granulocytic anaplasmosis (caused by Anaplasma phagocytophilum) thrombocytic 

anaplasmosis (Anaplasma platys), monocytic ehrlichiosis (Ehrlichia canis), borreliosis (Borrelia 

burgdorferi, Borrelia garinii, and Borrelia afzelli), and rickettsiosis (Rickettsia rickettsii), all of 

which have been reported to be zoonotic (Irwin 2014), and all can be transmitted by ticks. Tick-

associated pathogens, including C. burnetii, can be identified using a variety of techniques, such 

as xenoculture (injection of infected tissue into mice) and molecular methods including 

conventional PCR and Sanger sequencing, and qPCR/real-time PCR. The identification of tick-

associated pathogens, as well as epidemiological studies, can provide evidence to implicate ticks 

as vectors of suspected pathogens. However, transmission studies that demonstrate vertical and 

horizontal transmission of a pathogen by a tick species are required in order to confirm whether 

the tick is a competent vector of the pathogen of interest. The following sections will review the 

literature pertaining to the detection and identification of C. burnetii in ticks, including R. 

sanguineus  ̧primarily through the use of molecular tools, and will provide an overview of the 

sequencing technology that can be applied to investigate the bacterial microbiome of ticks.  

1.3.1 Polymerase chain reaction – A more sensitive and specific method for bacterial 

detection than traditional methods  

Polymerase chain reaction was developed in the 1980s (Mullis and Faloona 1987), and is one of 

the most widely used molecular techniques to detect microorganisms in clinical specimens 

(Padmanabhan et al. 2013). PCR is a highly sensitive method in comparison to serological 

methods (Fournier, Marrie, and Raoult 1998), and has been used to identify C. burnetii in various 

types of samples, including clinical, environmental, animal faeces, and tissues of ticks (Fenollar, 

Fournier, and Raoult 2004). There are many different primer sequences that can be designed to 

target and amplify defined DNA fragments of the C. burnetii genome (Fenollar, Fournier, and 
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Raoult 2004). Insertion elements such as IS1111 and htpAB are most commonly used, as they 

occur in the genome in many copies (19 and 20, respectively), and this increases the sensitivity 

of the PCR assay (Klee et al. 2006). The com1 (CBU1910) gene, 5S and 23S rDNA genes, 

riboflavin synthase genes, and GDP-fucose synthase genes, are other targets that have been used 

to design C. burnetii-specific primers (Reeves et al. 2005).  

1.3.1.1 The detection of C. burnetii in ticks 

According to a review by Maurin and Raoult (1999), C. burnetii has been detected in more than 

40 different species of tick, and the tick species that have been most frequently implicated as 

potential vectors of C. burnetii belong to the genera Ixodes, Rhipicephalus, Amblyomma, and 

Dermacentor (Parola and Raoult 2001). Different PCR assays, such as conventional PCR, PCR-

Restriction Fragment Length Polymorphism (RFLP), and qPCR, have been used to detect C. 

burnetii DNA in ticks, and have used various primer sets in single-plex, multi-plex, and nested 

PCR approaches. Several studies that have detected C. burnetii DNA in ticks with these varied 

approaches are outlined in Table 1.1. The study by Spitalska and Kocianova (2002) used both 

traditional methods (haemocyte tests) and PCR to detect C. burnetii in Ixodes ricinus, 

Dermacentor marginatus, and Haemaphysalis concinna. This study demonstrated that haemocyte 

tests have lower sensitivity and specificity than PCR, as 30.64% (72/235) ticks were reported to 

be positive by the haemocyte tests, but only 2.55% (6/235) were positive by PCR, indicating false 

positivity of the haemocyte test, and false negatives from the haemocyte tests were also confirmed 

by PCR (Spitalska and Kocianova 2002). Spyridaki et al. (2002) also demonstrated that nested 

PCR was more sensitive for the detection of C. burnetii DNA than isolation of C. burnetii using 

a shell-vial culture system (Raoult, Torres, and Drancourt 1991), with 7/80 positives for C. 

burnetii obtained from nested PCR, as opposed to 2/80 positives for the shell-vial isolation in R. 

sanguineus ticks (Spyridaki et al. 2002). The increased sensitivity and specificity of PCR assays 

is a major advantage over traditional methods for bacterial detection, however, false positives can 

also be reported in qPCR assays, as demonstrated in the study by Sprong et al. (2011) (Table 1.1).  
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The investigation by Sprong et al. (2011) aimed to assess the prevalence of C. burnetii in ticks 

collected from vegetation and animals in Netherlands following Q fever outbreaks in previous 

years (Schimmer et al. 2011). Initially, multiplex qPCR assays were carried out with primer sets 

that targeted the multi-copy transposon element IS1111, outer membrane protein coding gene 

(Com1), and the isocitrate dehydrogenase gene (Icd) on questing Ixodes ricinus ticks. Signal was 

detected for the IS1111 transposon element in 20/1,891 ticks, but no signals were reported for the 

Com1 nor Icd targets. The qPCR products were visualised by gel electrophoresis, and the products 

did not correspond with the expected size of the IS element. These samples were retested with 

single-plex qPCR assays with only IS1111 primers, and the samples were confirmed as negative 

for C. burnetii, and the IS1111 signal in the initial multiplex qPCR assay was considered as a 

false-positive result. Adult ticks (genus and species not specified by the study) collected from 

domestic animals and livestock were also tested for C. burnetii DNA in single-plex qPCR assays 

targeting the IS1111 and Com1 genes, and five positives were obtained (one from a cat, and four 

from sheep) for IS1111, while there was no amplification for the Com1 gene (Sprong et al. 2011). 

This study demonstrates that the IS1111 target has a greater sensitivity in qPCR assays compared 

with the Com1 gene, as there are multiple copies of IS1111 in the C. burnetii genome, but also 

showed that false-positives can occur with this primer, and so it is important to confirm the size 

of the PCR product with gel electrophoresis.   

Table 1.1: Detection of C. burnetii in ticks with PCR methodology. 

PCR Assay Reference Tick Species Location Host Gene 

Target of 

C. burnetii 

Conventional 

PCR 

Satta et al. 

(2011) 

R. sanguineus 

R. turanicus 

Sardinia, 

Italy 

Dog 

Goat 

superoxide 

dismutase 

gene 

PCR-RFLP  Spitalska and 

Kocianova 

(2002) 

Ixodes ricinus 

Dermacentor 

marginatus  

Haemaphysalis 

concinna 

Slovakia 

and 

Hungary 

Questing 

ticks  

Com1 gene, 

Msp I and 

Sau3AI 

restriction 

sites 

Single-plex 

real-time 

qPCR 

Sprong et al. 

2011 

Adult ticks 

(species not 

specified) 

Netherlands Cat 

Sheep 

IS1111 

transposon 

element 
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Nested PCR 

and 

PCR-RFLP 

Spyridaki et 

al. (2002) 

R. sanguineus 

Hyalomma 

spp. 

Cyprus  Goat 

Sheep 

Plasmids   

PCR-Reverse 

Line Blot 

(PCR-RLB) 

Toledo et al. 

(2009) 

R. sanguineus  

H. lusitanicum 

D. marginatus 

R. pusillus 

R. sanguineus 

Central 

Spain 

Sheep 

Deer 

Horses 

Foxes 

Questing 

ticks 

IS1111 

transposon 

element 

 

1.3.1.2 The detection of C. burnetii in R. sanguineus  

The studies by Satta et al. (2011), Spyridaki et al. (2002), and Toledo et al. (2009) outlined 

previously in Table 1.1 are examples of investigations that have detected C. burnetii DNA in R. 

sanguineus ticks from a variety of geographic locations. The proportion of R. sanguineus ticks 

positive for C. burnetii DNA reported in these studies is low. Toledo et al. (2009) reported 2/38 

R. sanguineus collected from a variety of wild animals were positive for C. burnetii DNA (these 

C. burnetii positive R. sanguineus ticks were collected from foxes), and no positives were 

obtained from the 106 R. sanguineus ticks collected from cats and dogs. Spyridaki et al. (2002) 

collected 20 R. sanguineus from goats, and 80 from sheep, and found that overall, 7/80 from the 

sheep were positive for C. burnetii DNA. Satta et al. (2011) collected a total of 1,045 R. 

sanguineus from dogs (n = 965), sheep (n = 45), goats (n = 20), cattle (n = 10), and hedgehogs (n 

= 5). The DNA extractions of these ticks were mixed (pooled), and the resulting number of pools 

were 193 for dogs, 9 for sheep, 4 for goats, 2 for cattle, and 1 for hedgehogs. Of these R. 

sanguineus pools, 9 from the dogs, and 1 from the sheep were positive for C. burnetii DNA. These 

studies demonstrate the detection of C. burnetii DNA in R. sanguineus ticks collected from a 

variety of animals, including sheep, foxes, and dogs, using PCR methodology, but suggests that 

this bacterium is present in a small proportion of the R. sanguineus tick population.  

1.3.1.3 The detection of C. burnetii in Australian ticks  

In Australia, a significant amount of evidence has been obtained to support an animal-tick cycle 

of C. burnetii involving bandicoots and Haemaphysalis humerosa (Thompson, Dennis, and Dasch 
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2005). As H. humerosa can also feed occasionally on cattle (Derrick 1944; Smith 1940), the tick-

bandicoot cycle could theoretically maintain the Q fever infection in cattle herds, but has not been 

proven (Thompson, Dennis, and Dasch 2005). Coxiella burnetii has been detected in other 

Australian ticks as well, by a variety of traditional and molecular techniques, and examples of 

such studies are outlined in Table 1.2. DNA sequencing is another molecular tool that can be used 

to identify pathogens and other microorganisms, and it is this technology of genome sequencing 

that enabled primers and probes to be developed for PCR methodology. The following section 

will provide a brief overview of DNA sequencing technology, and its applications for bacterial 

discovery, and how it has been applied in the research of bacteria associated with ticks.   

Table 1.2: Detection of C. burnetii in ticks found in Australia  

Tick species Location Host Method of detection Reference  

Haemaphysalis 

humerosa 

Queensland  

 

 

 

 

Western 

Australia 

Bandicoot 

 

 

 

 

 

 

Guinea-pig 

inoculation  

 

 

 

qPCR 

Smith (1940) 

Derrick and Smith 

(1940) 

Smith and Derrick 

(1940) 

Bennett et al. (2011) 

Ixodes 

holocyclus 

Queensland Bandicoot Real-time PCR 

DNA sequencing 

Cooper et al. (2013) 

Amblyomma 

triguttatum 

Queensland Kangaroo 

 

 

Kangaroo, 

goat, sheep 

Real-time PCR 

DNA sequencing 

Isolated by mouse 

and guinea-pig 

inoculation  

Cooper et al. (2013) 

Pope, Scott, and 

Dwyer (1960) 

 

 

McDiarmid et al. 

(2000) 

Bothriocroton 

auruginans 

Victoria Wombat PCR  

Sequencing 

Vilcins, Old, and 

Deane (2009) 

 

1.3.2 First and Second Generation sequencing technologies – Tools to investigate 

genomes and metagenomes 

DNA sequencing and genomics are relatively new scientific disciplines. Sanger sequencing was 

the first commercial DNA sequencing application, and was developed in the 1970s (Sanger, 

Nicklen, and Coulson 1977). This first generation sequencing technology by Applied Biosystems 
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(ABI Prism 310, later replaced ABI Prism 3700 with 96-well capillaries) was used as the main 

tool for the human genome project. In the 2000s, the second, or more commonly known as next 

generation sequencing (NGS) platforms were developed, such as the 454/Roche, Illumina/Solexa 

and SOLiD platforms, as well as benchtop sequencers including the Ion Torrent Personal Genome 

Machine (PGM) (Life Technologies), MiSeq (Illumina), GS Junior (Roche/454). The same basic 

principles apply across all NGS platforms, which sets them apart from first generation sequencing, 

in that DNA libraries are amplified in vitro, the DNA is sequenced by synthesis, and DNA 

templates are sequenced simultaneously in a massively parallel fashion (Anderson and Schrijver 

2010). The main advantages of NGS platforms over traditional Sanger sequencing is the high-

throughput (which refers the amount of DNA sequence that can be read with each sequencing 

reaction), they are more cost-effective, and are less laborious (Mardis 2011). Despite the 

advantages of NGS, Sanger sequencing is still used today. Sanger sequencing has been optimised 

to reduce the run times through the use of nucleotide-specific fluorescent dyes (Smith et al. 1985), 

polyacrylamide gels in capillary electrophoresis (Swerdlow and Gesteland 1990), and automatic 

laser fluorescence detection (Smith et al. 1986). The main limitation of NGS is that the read 

lengths are shorter, and the accuracy is not as high as Sanger sequencing, but will depend on the 

sequencing chemistry used (Morey et al. 2013). The key factors that define NGS platforms 

include the read length, throughput, read accuracy, read depth (number of times each base is 

sequenced in independent events), and cost per base (Morey et al. 2013). A discussion of the 

sequencing chemistries, and the advantages and disadvantages of the various NGS platforms is 

beyond the scope of this introduction. Next generation sequencing and Sanger sequencing has 

been the subject of many reviews, which can be referred to for more information (Mardis 2013; 

Rizzo and Buck 2012; Morey et al. 2013). Next generation sequencing technologies have a wide 

variety of applications including variant discovery, genome assembly, transcriptome analyses, 

and classification and gene discovery in metagenomic studies (Metzker 2010). In the following 

sections, the application of DNA sequencing to bacterial identification and characterisation of 

bacterial microbiomes is discussed.    
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1.3.2.1 Bacterial identification, characterisation and genomics 

Bacterial identification was historically based on colony growth time and morphology, Gram 

staining, fermentation, and biochemical tests. However, most microbes are difficult, or too 

dangerous, to culture under laboratory conditions (Sharpton 2014). DNA sequencing has enabled 

the species identification and genetic diversity to be determined and characterised of previously 

uncultured microbial communities. Before next generation sequencing technologies were 

available, sequencing of prokaryotic genomes was accomplished with Sanger shotgun sequencing 

(Sanger and Coulson 1975; Sanger, Nicklen and Coulson 1977).  

Due to the advantages of NGS over Sanger sequencing as mentioned above, NGS technologies 

are replacing Sanger sequencing for sequencing of small sized genomes and environmental 

metagenomics (reviewed in Wooley, Godzik, and Friedberg 2010). Genomics involves the 

analysis of genomic DNA (gDNA) from an individual organism or cell, whereas metagenomics 

is the analysis of gDNA from polymicrobial specimens (Padmanabhan et al. 2013). Studies of all 

copies of a single gene, such as 16S ribosomal DNA (rDNA), in a polymicrobial specimen have 

been named metagenomic studies (Hunter et al. 2012a). The 16S rRNA gene is universally 

distributed, and is used in NGS to study the bacterial evolution, ecology, and phylogenetic 

relationships between taxa, bacterial diversity in the environment, and the relative abundance of 

taxa of various ranks (Hugenholtz, Goebel, and Pace 1998). The classification of ribosomal RNA 

genes was originally proposed by Woese and Fox (1977), and the 16S rRNA gene has been used 

to study and characterise the bacterial community compositions in a variety of microbial samples 

derived from animals, and from host-free samples such as soils and ocean environments (Mizrahi-

Man, Davenport, and Gilad 2013). The 16S rRNA gene is ubiquitous among prokaryotic 

microorganisms, and has a high degree of functional conservation, and the mutations in this gene 

enable the study of prokaryotic evolution (Woese 1987). The 16S rRNA gene has conserved 

regions that allows for primers to be designed to enable amplification of majority of bacterial 

taxa, but also contains nine hypervariable regions (V1-V9), which enable taxa to be distinguished 

(Clarridge 2004).  
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Sanger sequencing was used in a phylogenetic study by Weisburg et al. (1989) to obtain 16S 

rRNA sequences for C. burnetii (which was classified as a rickettsial organism at the time) and 

other bacterial species. A phylogenetic analysis of these sequences demonstrated that C. burnetii 

is more closely related to Legionella species than Rickettsia species, which resulted in the 

reclassification of C. burnetii (Weisburg et al. 1989). Table 1.3 below demonstrates the current 

classification of C. burnetii. Since the first publication of the complete genome sequence of the 

Nine Mile strain (Davis et al. 1938) in 2003 (Seshadri et al. 2003), more isolates have been 

published (Beare et al. 2009; Karlsson et al. 2014; Sidi-Boumedine 2014). Although C. burnetii 

was first discovered in Australia, a genome sequence for C. burnetii from Australia was only 

recently sequenced, and was identified as a novel strain (AuQ01) of C. burnetii (Walter et al. 

2014).  

Table 1.3: Classification of C. burnetii (adapted from Toman, Heinzen, and Samuel 2012).  

 

 

 

 

 

1.3.2.2 The microbiome of ticks and the application of molecular tools to invertebrates 

Massively parallel sequencing, or NGS, has enabled shorter regions of the 16S rRNA gene to be 

sequenced at a greater depth, and at a lower cost (Tringe and Hugenholtz 2008). Next generation 

sequencing of the 16S rRNA gene has been applied to study the bacterial microbiome of ticks, 

including R. sanguineus, and these high-throughput sequencing approaches have revealed a high 

amount of bacterial diversity of individual ticks  (Clay et al. 2008; Heise, Elshahed, and Little 

2010). A recent study conducted in the Middle East employed a 16S rRNA sequencing approach 

using the 454 pyrosequencing platform (Roche) to describe the bacterial community in 

PHYLUM PROTEOBACTERIA 

CLASS Gammaproteobacteria 

ORDER Legionellales 

FAMILY Coxiellaceae 

GENUS Coxiella 

SPECIES Coxiella burnetii 
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Rhipicephalus species. Lalzar et al. (2012) reported that the bacterial diversity of R. sanguineus 

was low, and was dominated by a Coxiella sp. Rickettsia spp. were also identified, however the 

prevalence was low compared to Coxiella. A novel Coxiella sp. was present, and dominant in all 

187 of the ticks tested. The Coxiella sp. was significantly more abundant in female versus male 

ticks, and was stable during the questing season. The study also demonstrated that the Coxiella 

sp. could be vertically transmitted in R. sanguineus, as indicated by the presence of Coxiella 

bacteria in the adults, eggs, and larvae (Lalzar et al. 2012). Although there is only one species that 

has been formally classified in the Coxiella genus (C. burnetii), Coxiella sp., also described as 

Coxiella endosymbionts, have been identified in R. sanguineus ticks previously using PCR and 

direct sequencing, and although closely related to C. burnetii, have a homology of <98% 

(Bernasconi et al. 2002).  

1.3.3 Transmission studies 

In order for ticks to be confirmed as a vector of a pathogen, transmission studies must be 

conducted to ascertain whether the tick can transmit the pathogen to susceptible animals, and 

whether they are capable of maintaining the pathogen throughout its life cycle. A list of pathogens 

that have been detected in R. sanguineus, which may be transmitted by this tick, is provided in 

Table 1.4. The most important human pathogens transmitted by R. sanguineus are Rickettsia 

conorii, which causes Mediterranean spotted fever, and R. rickettsii, which causes Rocky 

Mountain spotted fever (Piranda et al. 2011).  

Table 1.4: List of pathogens that may be transmitted by R. sanguineus (adapted from Dantas-

Torres 2008).  

Pathogen  Associated disease  Reference 

Anaplasma marginaleb  Bovine anaplasmosis  Parker and Wilson (1979) 

Anaplasma platysaa 

(formerly Ehrlichia platys) 

 Canine cyclic 

thrombocytopenia 

 Simpson et al. (1991) 

Babesia caballiib  Equine babesiosis  Enigk (1943) 

Babesia canis  Canine babesiosis  Regendanz and Muniz 

(1936) 

Babesia gibsoni  Canine babesiosis  Sen (1933) 
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Cercopithifilaria grassi 

(formerly Dipetalonema 

grassi) 

 Canine filariosis  Bain et al. (1982) 

Coxiella burnetii  Q fever  Mantovani and Benazzi 

(1953) 

Dipetalonema 

dracunculoides  

Canine filariosis  Olmeda-Garcı´a et al. 

(1993) 

Ehrlichia canis Canine monocytic 

ehrlichiosis  

Groves et al. (1975) 

Hepatozoon canis  Canine hepatozoonosis  Nordgren and Craig (1984) 

Leishmania infantuma (syn. 

Leishmania chagasi)  

Canine visceral 

leishmaniasis 

 Blanc and Caminopetros 

(1930) 

Mycoplasma haemocanis 

(formerly Haemobartonella 

canis)  

Canine haemobartonellosis  Seneviratna et al. (1973) 

Rangelia vitalliaa  Nambiuvu or peste de 

sangue  

Loretti and Barros (2005) 

Rickettsia conorii  Mediterranean spotted fever  Brumpt (1932) 

Rickettsia rickettsii  Rocky Mountain spotted 

fever 

 Parker et al. (1933) 

Theileria equib (formely 

Babesia equi) 

 Theileriosis  Enigk (1943) 

a Despite the evidence indicating that R. sanguineus can be a vector of these pathogens, further 

research is needed to prove it; b R. sanguineus ticks seldom bite hosts other than dogs and thus its 

role in the transmission of these pathogens in nature is probably minor (Dantas-Torres 2008). 

Only a few studies have investigated R. sanguineus as a potential vector of C. burnetii. A study 

by Mantovani and Benazzi (1953) conducted in Teramo, Italy, aimed to isolate C. burnetii from 

naturally infected dogs that were associated with a human Q fever outbreak on a farm. 

Complement-fixation tests provided positive results for C. burnetii in three dogs that had been 

collected from farms associated with human Q fever outbreaks. One of the dogs that tested 

positive for C. burnetii, and a control (negative for C. burnetii) dog were infested with R. 

sanguineus, which were collected from the dogs at 5-7 day intervals. The dogs’ blood, material 

from engorged R. sanguineus, and R. sanguineus eggs were used to inoculate guinea pigs, in order 

to demonstrate and detect C. burnetii infection. Positive results for C. burnetii were obtained by 

complement-fixation tests in the guinea pigs, and were matched with pathological lesions 

(enlarged spleen), for the tick extract, the dog’s blood extract, and the tick egg extract, from the 

infected dog. All results for the control were negative. The positive result of C. burnetii from the 

tick egg extract may suggest that R. sanguineus is capable of transovarial transmission of C. 
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burnetii (Mantovani and Benazzi 1953), however further investigations are necessary to ascertain 

whether the pathogen can be maintained throughout the tick’s life cycle to implicate it as a vector 

of this disease. As one of the infected dogs in the study had been observed at the farm feeding on 

foetal membranes of sheep (which tested positive for C. burnetii) the authors suggested that 

infected foetal membranes from cattle and sheep may have provided the source of infection for 

other animals in the herd, as well as to humans and dogs (Mantovani and Benazzi 1953). A 

limitation of the study was that it did not demonstrate the transmission of C. burnetii from infected 

ticks to susceptible animals, therefore did not demonstrate that R. sanguineus is a competent 

vector of C. burnetii.      

1.4 The brown dog tick (Rhipicephalus sanguineus)  

Ticks are haematophagous ectoparasites of vertebrates, and the vertebrate host’s blood is their 

only source of food (Sonenshine 2005). When searching for a host, unfed R. sanguineus can hunt, 

but can also use an ambush strategy, where they exhibit what is described as questing behaviour 

(Dantas-Torres 2010). Rhipicephalus sanguineus, like other ixodids (hard ticks), undergo four 

developmental stages in its life cycle: egg, larval stage, single nymph stage, and adult. 

Rhipicephalus sanguineus is a three-host tick, whereby each life stage feeds on a new host, and 

all life-stages prefer to feed on the same host species (Figure 1.1) (Dantas-Torres 2010a).   
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Figure 1.1: Three-host tick life-cycle. This figure demonstrates the life-cycle of R. sanguineus 

(adapted from Barker and Walker 2014).  

Rhipicephalus sanguineus ticks are widely distributed throughout the world, occurring mainly 

within latitudes 35oS and 50oN (Dantas-Torres 2008). As with all ticks, the distribution of R. 

sanguineus is closely correlated with both the climate and the distribution of its primary host, in 

this case the domestic dog, Canis lupus familiaris (C. familiaris). Rhipicephalus ticks are 

considered to have originated in Africa 14 Mya, and subsequently dispersed into Europe and Asia 

(Murrell, Campbell, and Barker 2001; Otranto et al. 2014).   

1.4.1 Arrival and distribution of R. sanguineus in Australia 

It is uncertain when R. sanguineus was introduced into Australia. Two hypotheses considered are; 

(1) that the ticks were introduced on their canine hosts during European settlement (in the last 

250 years) through one or more ports in Australia (Seddon 1968) or; (2) potentially with the 

introduction of semi-domesticated dogs (dingoes) from SE Asia across the land bridges 
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approximately 5,000 years BP.  Interestingly however, R. sanguineus is rarely found on dingoes 

today (Oskarsson et al. 2012). It is generally recognised that R. sanguineus is prevalent throughout 

the year in tropical and sub-tropical regions, and their development is dependent on temperature 

and relative humidity (RH) and is most efficient at 20-35 C and 35-96% RH (Koch and Tuck 

1986). A limiting factor for the establishment of R. sanguineus in cold climates is exposure to 

temperatures less than 10 oC (Dantas-Torres et al. 2010b), however R. sanguineus can also be 

found in Mediterranean climates (Dantas-Torres 2010a). Rhipicephalus sanguineus is well-

adapted to live within human dwellings (Dantas-Torres 2010a), which could assist its survival in 

temperate zones that experience cold winter temperatures. In Australia, the distribution of R. 

sanguineus is thought to occur rarely in temperate climates, but it is reportedly abundant in areas 

with high levels of rainfall and humidity in northern Australia, and extending into semi-arid inland 

areas (Roberts, 1965).  

The current geographical distribution of R. sanguineus in Australia is anecdotal, uncertain in its 

accuracy, and in need of investigation, since the most recent Australian distribution map for the 

brown dog tick is nearly 50 years old (Roberts 1965) and a systematic study of the geographical 

distribution of R. sanguineus in Australia has never been conducted. The distribution reported by 

Roberts (1965), depicted in Figure 1.2, showed R. sanguineus in northern regions of Australia; in 

the Northern Territory, Queensland, northern Western Australia, and north-eastern New South 

Wales (Roberts 1965).  
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Figure 1.2: Distribution of R. sanguineus in Australia, indicated by the dotted line (adapted 

from Roberts, 1965). 

1.4.2 The identification of R. sanguineus 

There is currently no absolute consensus on the taxonomy and classification of R. sanguineus, 

largely due to the absence (presumed lost) of the type specimen, which was described by 

Latreille (1806). Rhipicephalus sanguineus is widely distributed throughout the world and there 

are 17 species of tick that are considered to be morphologically similar to the description of R. 

sanguineus (Gray et al. 2013). Together, these 17 Rhipicephalus species are referred to as the 

“R. sanguineus group,” and include the following species: R. aurantiacus, R. bergeoni, R. 

boueti, R. camicasi, R. guilhoni, R. leporis, R. moucheti, R. pumilio, R. pusillus, R. 

ramachandrai, R. rossicus, R. sanguineus sensu stricto (s.s.), R. schulzei, R. sulcatus, R. 

tetracornus, R. turanicus, and R. ziemanni (Dantas-Torres et al. 2013).  

There are two textbooks that describe the morphology of Australian ticks; by Roberts (1970), and 

more recently by Barker and Walker (2014). The tome Australian Ticks (Roberts, 1970) has been 
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widely used by Australian parasitologists for tick species identification for over 40 years. Barker 

and Walker (2014) advised that their text can be used for species identification of the 16 species 

(5 species of argasids or ‘soft ticks,’ and 11 species of ixodids) that are thought to infest Australian 

domestic animals and humans. This is a relatively small number of tick species compared with 

the 59 species of Ixodidae and Argasidae ticks described by Roberts (1970). Furthermore, in a 

departure from the dichotomous key used by Roberts (1970), Barker and Walker (2014) list the 

morphological characteristics of the tick species in a tabular format. Both books provide tick 

species illustrations for comparison. Barker and Walker (2014) only described adult instars 

(except for Otobius megnini), whereas Roberts (1970) often described the morphology of 

immature ticks (larvae and nymphs), and included some in keys. Diagrams of female and male R. 

sanguineus are provided in Figures 1.3 and 1.4, respectively, with key morphological features 

used for species identification labelled (Barker and Walker 2014).  
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Figure 1.3: Dorsal view of female R. sanguineus (adapted from Barker and Walker, 2014). 
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Figure 1.4: Ventral view of male R. sanguineus (adapted from Barker and Walker, 2014). 
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1.5 Detection of C. burnetii in R. sanguineus ticks 

The initial and overarching aim of this project was to detect C. burnetii in R. sanguineus ticks 

collected from dogs in Australia. The experimental work is divided into four stages with the 

following aims: 

1. To identify R. sanguineus ticks using a key of tick morphology (Roberts 1970). 

2. To map the R. sanguineus collection locations using GIS software. 

3. To detect C. burnetii in R. sanguineus ticks collected. 

4. To investigate the bacterial microbiome in R. sanguineus collected. 

 

The DNA sequencing will be conducted using the Ion Torrent™ sequencing platform, and 

Coxiella-specific primers will be used for the detection of Coxiella species, and the microbiome 

will be assessed using primers that target the 16S rRNA gene in bacteria.   

The hypotheses that will be tested by the experimental work are as follows:  

1. Ticks that feed on dogs in Australia are predominantly R. sanguineus. 

2. Rhipicephalus sanguineus is mainly distributed throughout tropical and sub-tropical 

climates in northern Australia. 

3. Coxiella burnetii is present in R. sanguineus collected from dogs.  

4. Rhipicephalus sanguineus ticks harbour a diverse community of bacteria that makes up 

their microbiome.  
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2. Materials & Methods 

2.1 Tick collection 

In response to a nationwide advertisement requesting ticks, individual tick specimens (n = 3,276) 

were collected from dogs by various persons throughout Australia (see Acknowledgements) 

during 2012-2014, with the majority collected during the 2012/14 tick seasons. The total number 

of instars collected and identified from each state and territory are listed in Table 2.1. The ticks 

collected for this study were removed from dogs using gloves and forceps, and preserved in 70% 

ethanol until use. For each submission received, the source, approximate geographic location, and 

date of collection was recorded (Appendix A, Table A.1); additional notes on the dog breed and 

clinical signs were not consistently recorded. The number of submissions for each State and 

Territory are listed in Appendix A, Table A.2.   

Table 2.1: Number of ticks collected from seven states and territories in Australia between 

1996 and 2014. 

Australian 

State/Territory 

Larvae 

(n) 

Nymphs 

(n) 

Males 

(n) 

Females 

(n) 

Total 

New south 

Wales 

(NSW) 

2 190 74 299 565 

Northern 

Territory (NT) 

30 239 919 845 2033 

Queensland 

(QLD) 

0 29 2 29 60 

South Australia 

(SA) 

1 40 199 95 335 

Tasmania 

(TAS) 

16 5 0 36 57 

Victoria (VIC) 0 0 0 5 5 

Western 

Australia 

(WA) 

7 25 97 91 220 

Total 56 528 1,291 1,401 3,276 
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2.2 Tick identification 

Ticks were removed from 70% ethanol and examined in separate petri dishes. The ticks were 

counted, and the developmental stages and species were identified and recorded into a meta-

database (see Appendix A, Table A.1). Forceps and all other instruments used to handle the ticks 

were cleaned with DNA AWAY™ (Molecular Bio-Products Inc., San Diego, CA) between 

samples, and surfaces were sterilised with DNA-ExitusPlus™ (AppliChem, Darmstadt, 

Germany). After morphological identification, ticks were stored in 70% ethanol at 4 C. Species 

identification of the ticks was based on the morphological features outlined in the Australian tick 

morphology key by Roberts (1970).  

Photographs of the ticks were taken with an Olympus SC30 digital camera (Olympus, Center 

Valley, PA, United States) and analysis getIT software (Olympus, Center Valley, PA, United 

States) at a magnification ranging between 0.67X to 4.5X. An Olympus SZ61 stereomicroscope 

(Olympus, Center Valley, PA, United States) was used with a SCHOTT KL 1500 LED (SCHOTT 

AG Mainz, Germany) light source.  

2.3 Sample mapping and selection 

The collection sites of R. sanguineus ticks were mapped using ArcGIS (Esri, Redlands, CA, USA) 

using the location information provided for the samples. Where possible, the samples were 

mapped to a specific address, otherwise, the next most specific information was used. The 

geographic locations of the ticks were used as the basis for grouping (pooling) the ticks for DNA 

extraction. Male and female ticks for the DNA extraction were selected from three locations: 

Darwin (NT), Palmerston (a suburb of Darwin), and Perth (WA) (Table 2.2).    
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Table 2.2: Number of ticks extracted from Darwin, Palmerston and Perth 

Geographic location Number of male 

R. sanguineus 

ticks extracted 

Number of female 

R. sanguineus ticks 

extracted 

Total 

Darwin  20 20 40 

Palmerston 18 18 36 

Perth 15 16 31 

Total 53 54 107 

2.4 DNA extraction 

DNA was isolated from individual adult male (n = 53) and female (n = 54) ticks. Prior to DNA 

extraction, ticks were washed in fresh 70% ethanol, surface sterilized in 10% hypochlorite 

solution, and rinsed in sterile water. Ticks were first mechanically crushed, then enzymatically 

lysed as described below. Briefly, specimens were placed into 2 mL safelock tubes (Eppendorf, 

Germany), each containing a 5 mm steel bead (QIAGEN, Hilden, Germany). Female ticks were 

cut into segments with a sterile scalpel before added to the tube. The tubes that contained ticks 

and beads were flash frozen in liquid nitrogen for 1 min then mechanically crushed by shaking 

the tube at 40 oscillations per second for 1 min in the TissueLyser™ system (QIAGEN, Hilden, 

Germany). The tubes were centrifuged at 10,000 rpm for 1 min before the addition of 270 µL 

ATL buffer (QIAGEN, Hilden, Germany) and 30 µL Proteinase K (QIAGEN, Hilden, Germany), 

and incubated on an oscillating platform (400 rpm) at 50Cfor approximately 16 h (overnight). 

 

After mechanical and enzymatic lysis, genomic DNA (gDNA) was extracted from the ticks using 

a QIAmp Blood and Tissue kit (QIAGEN, Hilden, Germany) using QIAGEN supplementary 

protocol “Purification of total DNA from insects using the DNeasy® Blood & Tissue Kit” and 

DNA was eluted in 65μL of buffer AE. Extraction controls were run in parallel with the DNA 

extractions in order to assess the amount of cross contamination and provide a background 

bacterial profile of the laboratory. 
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2.5 PCR 

2.5.1 Coxiella burnetii qPCR assays 

A C. burnetii specific primer set was used in this study to target C. burnetii DNA. The primer 

name, primer sequence, amplicon size, and annealing temperature is described in Table 2.3. A 

two-step qPCR assay for the IS1111 primer set (Banazis et al. 2010) was performed in 25 µL 

volumes, and consisted of 0.mol of each primer, 0.25 mM of each dNTP, 2.5 µL of 10x buffer 

(5 PRIME), 1 U of Taq DNA polymerase (5 PRIME, Hilden, Germany), 2 mM of magnesium 

chloride, 0.3 mol IS1111a probe (5’-CCCACCGCTTCGCTCGCTAA-3’: 5’ label 6-FAM; 3’ 

label BHQ-1) (Banazis et al. 2010), and 5 µL of undiluted DNA extract. The qPCR assay was 

performed using the StepOneTM Real-Time PCR machine (version 2.1, Applied Biosystems, 

Foster City, CA, USA) with an initial hold cycle (50 C, 2 min), then one cycle of denaturation 

(95 C, 5 min), followed by 50 cycles of denaturation (95 C, 20 s), and annealing and extension 

(60 C, 45 s). No-template controls were included for each assay, and a positive control was 

included that comprised DNA extracted from the Q-Vax™ vaccine (CSL, Parkville, Australia) 

(Banazis et al. 2010). 

2.5.2 Universal bacterial 16S qPCR assays 

Extracted DNA from male and female R. sanguineus ticks from Darwin (n = 40), Palmerston (n 

= 36), and Perth (n = 31) were screened by real-time qPCR for bacterial DNA. Bacterial DNA 

was amplified using the universal bacterial 16S primers 27F-mod and 338R (Turner et al. 1999) 

(Table 2.3). No-template controls (NTCs) were included for each qPCR assay. The qPCR 

reactions were carried out in 25 µL volumes, consisting of 2.5 µL of 10x buffer (5 PRIME), 2 

mM magnesium chloride (5 PRIME), 0.25 mM of each deoxyribonucleoside triphosphate (dNTP) 

(FisherBiotec, Wembley, WA, Australia), 1 µL of 1 mg/mL Bovine Serum Albumen (BSA), 0.6 

µl of 5x SYBR green dye (Life Technologies, Carlsbad, CA, USA), 0.4 µM of each primer 

(Integrated DNA Technologies, Coralville, IA, USA), 0.625 U of Taq DNA polymerase (5 

PRIME, Hilden, Germany), and 2 µL gDNA. Quantitative PCR reactions were performed using 
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the StepOneTM Real-Time PCR machine (version 2.1, Applied Biosystems, Foster City, CA, 

USA) with one cycle of denaturation (95 C, 5 min), followed by 35 cycles of denaturation (95 

C, 30 s), annealing (55 C, 30 s), and extension (72 C, 45 s). 

 

Table 2.3: Primer sets and PCR conditions for DNA amplification 

Gene target Primer name and sequence (5’-3’ 

orientation) 

Amplicon 

size 

(bases) 

Annealing 

Temperat-

ure 

Referen-

ce 

16S rRNA 

gene (V1 

and V2 

hyper-

variable 

regions) 

Universal 27F mod* = 

AGAGTTTGATCCTGGCTYAG 

 

Universal 338R = 

TGCTGCCTCCCGTAGGAGT 

~312 (see 

results) 
55 C *This 

study 

C. burnetii 

IS1111a 

transposase 

gene 

IS1111aF = 

GTTTCATCCGCGGTGTTAAT  

 

IS1111aR = 

TGCAAGAATACGGACTCACG 

498 60 ° C 

 

Banazis 

et al. 

2010. 

GenBank 

accession 

no. 

M80806. 

Ion Torrent 

™ A/P1 

sequences 

IT A primer =  

CCATCTCATCCCTGCGTGTCT

CCGACTCAG 

 

IT P1 primer =  

CCTCTCTATGGGCAGTCGGTG

AT 

>400 55 C Ion 

Torrent 

™ 

 

2.6 Gel electrophoresis 

PCR products were run on 2% (w/v) agarose gel electrophoresis. The agarose was dissolved in 1x 

TAE buffer and stained with 1x Gel Red (FisherBiotech, Wembley, WA, Australia). A 100 bp 

molecular weight ladder (Promega, Madison, WI, USA) was used to determine the size of all PCR 

products. The DNA was visualised using Ultra-Violet transillumination and an AlphaDigiDoc 

transillumination system (BioRad, Hercules, CA, USA).      
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2.7 Tick pooling for Ion Torrent sequencing 

Ticks from the same submissions were pooled in 5 µL volumes for each DNA extraction, which 

resulted in 59 tick pools overall (see Table 2.4).  

Table 2.4: Tick pools for sequencing 

Geographic 

location 

Male tick pools 

(n) 

Female tick 

pools (n) 

Total 

Darwin  9 9 18 

Palmerston 11 11 22 

Perth 6 13 19 

Total 26 33 59 

 

2.8 Ion Torrent sequencing 

A Life Technologies® Ion Torrent semiconductor sequencing platform was used to sequence the 

hyper-variable regions V1 and V2 in the bacterial 16S rDNA gene from tick pools (n = 59). The 

Ion Torrent equipment and reagents were supplied by Life Technologies (Foster City, CA), and 

were used per manufacturer’s instructions. Fusion-tag primers consisted of universal bacterial 

16S 27F mod and 338R primer sequences, a unique 6-8 bp-long multiplex identifier (MID) tag 

specific for each sample in both the forward and reverse primers (see Appendix B, Table B.1), 

and the Ion Torrent sequencing adapters (ITA/P1, Table 2.3). The fusion-tag primer architecture 

is outlined in Figure 2.1.   
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Figure 2.1: Fusion-tag primer architecture. 16S 27F: universal bacterial 16S forward primer; 

16S 338R: universal bacterial 16S reverse primer; F MID tag: forward primer MID tag; R MID 

tag: reverse primer MID tag; A Adapter: sequencing adapter for forward primer; P1 adapter: 

sequencing adapter for reverse primer.  

2.8.1 Fusion-tag qPCR  

The fusion-tag qPCR was setup in a DNA-free lab (Cooper and Poinar 2000). Each reaction 

mixture was a 25 µL volume, and consisted of 2.5 µL of 10x buffer (5 PRIME, Hilden, Germany), 

0.5 µL of 25 mM magnesium chloride, 0.04 µg/µL BSA, 0.25 µM of dNTPs, 0.12x of SYBR 

green (Life Technologies), 0.625 U Taq DNA polymerase (5 PRIME, Hilden, Germany), 1 µL 

for each forward and reverse primer, and sterile water was added to make the volume up to 25 

µL. The forward and reverse primers were added in a particular combination so as to generate a 

unique sample-specific tag to enable the pooled sequences to be matched back to the individual 

sample for the analysis. Undiluted DNA for all samples was added in 2 µL volumes to the 

reaction. Two NTCs were included, one from the fusion-tag PCR setup lab, and one for the DNA 

setup hood. Thermal cycling equipment and conditions used for the fusion-tag qPCR were as for 

the 16S qPCR (see Section 2.5.2, Table 2.3).  

2.8.2 PCR purification 

Based on cycle threshold (CT) values and slopes of the curves that resulted from the fusion-tag 

qPCR assays, tick pools were pooled into equimolar ratios. The pools that resulted (n = 9) were 
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purified with the Agencourt® Ampure XP Bead DNA Purification protocol (Beckman Coulter 

Genomics, USA) with the modification that a 1.2 ratio was used over the standard 1.8. This was 

done in order to remove large primer dimer sequences over 100 bp in length. A 2% agarose gel 

was run for 1 h at 76 volts for the pre- and post-Ampure products, and a with 50 bp molecular 

weight ladder (Promega, Madison, WI, USA) was included, to ensure that primer dimer was 

removed, and that the product was retained.    

2.8.3 Relative PCR quantification 

The nine fusion-tag pools were diluted to 1/1000 and a qPCR was carried with the IT A/P1 primers 

listed in Table 2.3, Section 2.5.2. The qPCR reactions were performed in 25 µL volumes, which 

consisted of 0.4 µM of each primer, 12.5 µL of 2x PowerSYBR (Life Technologies, Carlsbad, 

CA, USA), and was made up to 23 µL with sterile water, and 2 µL of the 1/1000 dilution was 

added. The qPCR was performed with the StepOneTM Real-Time PCR machine (version 2.1, 

Applied Biosystems, Foster City, CA, USA) with one cycle of denaturation (95 C, 5 min), 

followed by 35 cycles of denaturation (95 C, 30 s), and annealing and extension (60 C, 45 s). 

2.8.4 Absolute quantification 

The nine fusion-tag pools were pooled into one final mixture in equimolar ratios based on the CT 

values from the relative quantification PCR assay (see Appendix B, Tables B.2 - B.4). The 

following dilutions were made for the sample: 1/100; 1/1000; 1/2000; 1/4000; 1/8000; 1/16000; 

1/32000; and 1/64000. Serial dilutions of a 152 bp synthetic oligonucleotide were also included 

in the assay as follows: 103; 104; 105; 106; 107; 108; and 109. The sample dilutions and the standards 

were run under the same conditions as per section 2.8.3. The CT values that resulted from the 

assay were used to plot a standard curve (see Appendix B, Table B.5 and Figure B) so that the 

copy number of the sample could be estimated.  
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2.8.5 OT2 

Emulsion PCR was conducted on the Ion OneTouch™ ES (enrichment system) instrument (Life 

Technologies, Carlsbad, CA, USA) with the Ion PGM™ Template OT2 400 kit (Life 

Technologies, Carlsbad, CA, USA). The reaction was carried out using 100 M of library DNA 

and the protocol was followed as per manufacturer’s instructions.  

2.8.6 Ion Torrent PGM 

The DNA fusion-tag library was sequenced using an Ion™ PGM instrument (Life Technologies, 

Carlsbad, CA, USA) with an Ion™ PGM 400 sequencing kit (Life Technologies, Carlsbad, CA, 

USA), and a 316 v2 sequencing chip, following the manufacturer’s protocol ‘Ion PGM™ 

Sequencing 400 Kit - For use with the Ion Personal Genome Machine® (PGM™) System and the 

Ion 314™ Chip v2, Ion 316™ Chip v2, and Ion 318™ Chip v2.’  

2.9 Sequence analysis 

2.9.1 Sequence deconvolution and quality filtering 

The Ion Torrent reads were imported into the Geneious software package version 7.1.7 

(Biomatters Ltd., NZ) in a FASTQ file format, and deconvoluted. Sequences with 100% matched 

primers were identified, annotated, and extracted. Sequences less than 100 bp and greater than 

419 bp in length were excluded and sequences with mismatches were excluded from the analysis. 

The MID tags were identified and the corresponding sample number was assigned. The primers 

were removed (trimmed), and the sequences were renamed for UPARSE (Edgar 2013). A FASTQ 

file from Geneious was imported into the program UPARSE, which was used to discard low 

quality reads, chimeric sequences, and less than five sequences per unique read were removed.     

2.9.2 QIIME 

The open source software ‘Quantitative Insights Into Microbial Ecology’ (QIIME) (Caporaso et 

al. 2010) was used to assign operational taxonomic units (OTUs) to the unique sequences for each 
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tick sample ID using the curated database GreenGenes (available at http://greengenes.lbl.gov/). 

The percent composition of each taxa and bar graphs were generated in QIIME.  

2.9.3 MEGAN 

The annotated and filtered sequences in Geneious were also imported as a FASTA file into YABI 

(Hunter, Macgregor, et al. 2012), where the sequence similarity was compared to the non-curated 

NCBI GenBank nucleotide submissions. These BLAST files were imported into MEtaGenome 

ANalyzer (MEGAN) version 5.6.0 (Huson et al. 2007) to visualise the closest species match for 

the sequences.        
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3. Results  

3.1 Morphological identification of Ixodidae removed from dogs. 

Four genera (Amblyomma, Haemaphysalis, Ixodes, and Rhipicephalus of ixodids were identified 

from n = 3,276 ticks collected from dogs. One species of Amblyomma (A. triguttatum), two 

species of Haemaphysalis (H. bancrofti and H. longicornis), three species of Ixodes (I. cornuatus, 

I. holocyclus, and I. tasmani), and one species of Rhipicephalus (R. sanguineus) ticks matched 

the descriptions by Roberts (1970), and were recorded (Appendix A, Table A.1), and photographs 

of specimens from each species are presented in Figures 3.1 – 3.7. The number of instars recorded 

for each species are reported in Table 3.1. As noted by others previously, Ixodes holocyclus and 

I. cornuatus were difficult to distinguish based on the whether the cornua were well-defined and 

blunt vs. mildly rounded, and therefore identification was primarily based on the leg colour 

observed in the ticks. Ixodes holocyclus were observed to have light yellow 2nd and 3rd pairs of 

legs, and dark brown 1st and 4th pairs of legs (see Figure 3.4), whereas all four pairs of legs in I. 

cornuatus were brown (see Figure 3.5). This morphological feature has recently been supported 

by Barker and Walker (2014) as an additional feature that can assist morphological identification 

of I. holocyclus and I. cornuatus.  
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Figure 3.1: Morphological features used to identify male R. sanguineus ticks. A and C. dorsal 

view; B and D. ventral view; E. lateral view.  

 

C. D. 

E. 

B. A. 
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Figure 3.2: Morphological features used to identify female R. sanguineus ticks. A and C. 

dorsal view; B and D. ventral view; E. lateral view. 

 

A. B. 

C. 

E. 

D. 
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Figure 3.3: Morphological features used to identify female A. t. triguttatum ticks. A and C. 

dorsal view; B, D and E. ventral view; E. lateral view. 
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D. 

C. 

E. 

F. 
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Figure 3.4: Morphological features used to identify female I. holocyclus ticks. A and C. dorsal 

view; B. ventral view. 

A. 

B. 

C. 
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Figure 3.5: Morphological features used to identify female I. cornuatus ticks. A and C. dorsal 

view; B. ventral view. 

 

A. 

B. 
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Figure 3.6: Morphological features used to identify female H. longicornis ticks. A and C. 

dorsal view; B and D. ventral view; E. lateral view. 

 

D. 

C. 

E. 

B. A. 
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Figure 3.7: Morphological features used to identify female H. bancrofti ticks. A and C. dorsal 

view; B and D. ventral view; E. lateral view. 

 

E. 

C. D. 

B. A. 
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Table 3.1: Number of instars for seven tick species identified.  

Tick species Larvae (n) Nymphs (n) Males (n) Females (n) 

Amblyomma triguttatum 

(triguttatum) 

0 5 0 4 

Haemaphysalis bancrofti 0 0 0 1 

Haemaphysalis longicornis 2 150 0 60 

Ixodes cornuatus 0 0 0 4 

Ixodes holocyclus 0 72 76 279 

Ixodes tasmani 16 2 0 27 

Rhipicephalus sanguineus 38 299 1,215 1,025 

Total 56 528 1,291 1,401 

Net Total 3,276 

 

3.2 Distribution of R. sanguineus in Australia 

The focus for this study was to detect C. burnetii in R. sanguineus, therefore only the R. 

sanguineus (n = 2,577) recordings were mapped (Figure 3.8). The majority of these ticks were 

collected from NT (n = 2,033), and the collection sites mapped to ten geographic locations. Fewer 

were collected from SA (n = 335) and WA (n = 210) at two and five geographic locations, 

respectively (Table 3.2). A large number of ticks were collected from Indigenous communities in 

all three states (Appendix A, Table A.1). The collection sites from WA were mainly distributed 

along the western coastline of the State. Overall, the latitude ranged between 12° 37’ S and 32° 

22’ S, and the longitude ranged between 122° 20’ E and 137° 86’ E for the R. sanguineus ticks 

recorded and mapped in this study. 

 



48 

 

 

Figure 3.8: Locations of R. sanguineus specimens in this study. Collection sites are indicated 

by the red points.   

Table 3.2: Number of R. sanguineus recorded for 17 geographical locations from NT, SA, 

and WA, with latitude and longitude reported. 

State Location Number of R. sanguineus 

recordings 

Latitude and longitude 

(decimal value)* 

Northern 

Territory  

Darwin 489 

 

Min: (-12.440034, 130.856539);  

Max: (-12.379233,   

130.8708950) 

Katherine 132 

 

(-14.470843, 132.283503) 

Knuckey 

Lagoon 

7 (-12.426825, 130.934141) 

Lake Nash 50 (-20.981094, 137.861604) 

Mutitjulu 429 

 

Min: (-25.3523, 131.0667)  

Max: (-25.351457, 131.063954) 

Nyirripi 67 (-22.6475681, 130.54944939) 
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Palmerston 756 

 

Min: (-12.509025, 130.994619)   

Max: (-12.480066, 130.984006) 

Tennant Creek 14 (-19.648306, 134.186642) 

Yuelamu 6 (-22.257958, 132.204607) 

Yuendumu 83 (-22.253296, 131.795945) 

NT Total 2033 

 

 

South 

Australia 

Coober Pedy 28 Min: (-29.037845, 134.723814) 

–  

Max: (-29.037845, 134.723814) 

Oodnadatta  307 (-27.546529, 135.447026) 

SA Total 335  

Western 

Australia 

Cable Beach 26 (-17.950181, 122.196423) 

Carnarvon  42 (-24.871625, 113.675619) 

Karratha  6 (-20.736709, 116.846295) 

Kurnangki & 

Minardi 

70 (-18.194272, 125.568678) 

Perth 66 Min: (-32.221725, 116.0072) 

Max: (-31.7848, 115.7678) 

WA Total 210  

* Minimum and maximum latitude (in decimal form) is reported for geographic locations 

where >1 submissions were received. 

3.3 Coxiella burnetii qPCR assays 

A highly specific hydrolysis probe qPCR assay was used to determine the presence or absence of 

C. burnetii DNA in R. sanguineus samples from Darwin (n = 40), Palmerston (n = 36), and Perth 

(n = 31). Amplification was observed in both of the 102 and 105 copy number positive controls 

for the Perth samples, and all R. sanguineus samples, including the NTC and extraction control, 

from Perth failed to amplify (see Figure 3.9). These results indicated that failure of amplification 

in R. sanguineus samples was due to the absence of detectable C. burnetii DNA, as the 

amplification observed in the positive controls ruled out PCR failure as the cause of no 

amplification. The qPCR products were run on a 2% agarose gel to confirm the absence of 
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amplified DNA. Consequently, no C. burnetii DNA was detected in R. sanguineus samples tested 

from Perth (0/31). The amplification plot in Figure 3.10 for the samples from Darwin shows that 

amplification was observed in only the 105 C. burnetii positive control, and fluorescence was not 

observed in the samples, NTC or extraction control, or the 102 C. burnetii positive control. 

Likewise, amplification was observed for the 105 C. burnetii positive control in the Palmerston 

qPCR assay (Figure 3.11), and no amplification was detected in the 102 positive control. A small 

amount of fluorescence was detected for 7 samples from Palmerston.  
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Figure 3.9: The amplification plot obtained for the Coxiella burnetii qPCR assay for R. 

sanguineus samples from Perth. Amplification curves for the positive controls are labelled for 

105 and 102 copy numbers.  

105 102 
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Figure 3.10: The amplification plot obtained for the C. burnetii qPCR assay for R. 

sanguineus samples from Darwin. Amplification curve for the positive control is labelled for 

105 copy numbers. 

 

 

 

 

 

105 



53 

 

 

Figure 3.11: The amplification plot obtained for the C. burnetii qPCR assay for R. 

sanguineus samples from Palmerston. Amplification curve for the positive control is labelled 

for 105 copy numbers. 

3.4 Next Generation sequencing 

3.4.1 Universal bacterial 16S qPCR assays 

Initial assays of universal bacterial 16S qPCR that were performed with the Universal 27F mod* 

and Universal 338R primers on the DNA extracted from the sub-set of R. sanguineus from Darwin 

(n = 40), Palmerston (n = 36), and Perth (n = 31) were used to screen samples for bacterial DNA 

before sequencing library preparation. Amplification was observed in all undiluted DNA extracts 

(see Appendix C, Figures C.1 - C.3). Nineteen samples from Darwin and 2 samples from Perth 

had suboptimal PCR efficiency indicating the presence of PCR inhibitors in the sample. However, 

105 
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serial dilutions (1:10 and 1:100) of the samples that were carried out to dilute potential PCR 

inhibitors did not improve PCR efficiency, and so undiluted samples were used for sequencing 

library preparation. Amplification was also observed in no-template and extraction controls, 

however this is likely due to the presence of ubiquitous environmental bacteria.  

3.4.2 PCR purification 

Purification of the fusion-tag qPCR products successfully reduced the amount of primer dimer 

and short sequences in the samples, as shown in Figure 3.12. Fluorescent bands between 300-350 

bases indicates the presence of fusion-tag qPCR products, which is most apparent in lanes 2-6 

and 11-15, and the florescent bands smaller than this indicates the presence of primer dimer and 

short sequences. Primer dimer appears to be absent in the post-Ampure products (lanes 11-19). 

 

Figure 3.12: Gel electrophoresis (2%) image of pre- and post-Ampure 16S rRNA qPCR 

products. Lanes 2-10 contain the pre-Ampure PCR products; lanes 11-19 contain the post-

Ampure products; Lanes 1 and 10 contain a 50 bp ladder. 

3.4.3 Ion Torrent sequencing results 

The loading density (number of wells containing live ion sphere particles) for the 316 chip was 

85 % (see Figure 3.13). This resulted in 5,393,643 reads with 100% enrichment, of which 20% 

were polyclonal. Following the removal of polyclonal reads and low quality reads, the total 

  1    2     3     4      5     6      7     8      9    10    11   12   13    14    15   16   17   18   19   20     
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number of usable reads was 4,268,908. The mean read length was 234 bp, while the median and 

mode read lengths were 302 bp and 371 bp respectively, as depicted in Figure 3.14. The majority 

of reads obtained above 300 bp indicated that the fusion-tagged products had been sequenced, 

with some short reads obtained that were less than 100 bp, which were potentially primer dimer 

and reads that did not sequence the entire length.  

 

Figure 3.13: Bead loading density on Ion Torrent 316 chip using 400bp V2 chemistry 
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Figure 3.14: Read length histogram obtained from the Ion Torrent server.  

3.4.4 Sequencing results 

The 4,268,908 reads were imported into Geneious (version 7.1.7), where the Universal 16S 27F 

mod and 338R primer pairs and MID tags were identified, annotated, and trimmed. Of these reads, 

the Universal 27F mod primer was identified in 3,572,585 of the reads, and both universal 

bacterial 27F mod and 338R were found in 1,238,135 reads. The reads with a 100% match for the 

forward and reverse primer were extracted, trimmed, and assigned sample IDs based on the 

matching MID tags in Geneious. Reads less than 100 and greater than 419 bases in length were 

excluded, resulting in 1,048,827 reads that were imported and quality filtered in UPARSE. After 

< 5 sequences per unique read and chimeras were removed, 387,193 reads were assigned OTUs 

in UPARSE at a 97% level. Final filtered sequences had an average nucleotide length of 312 bases 

(Table 3.3). 
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Table 3.3: Sequencing statistics for bacterial 16S rDNA reads.  

Statistics on sequences No. of reads 

Initial sequences 4,268,908 

Barcode & size filtering 1,048,827 

Unique reads 311,862 

Unique reads >5 (singleton + chimera removal) 

13,835 

OTUs 1,194 

Min seq length nt 100 

Average seq legnth nt 312 

Max seq length nt 419 

 

The taxonomy was assigned to the OTUs in QIIME, and it was found that Coxiella DNA 

sequences were present in 16/18 (89%) tick pools from Darwin, 18/22 (82%) tick pools from 

Palmerston, and 19/19 (100%) tick pools from Perth (Table 3.4). All Coxiella DNA sequences 

grouped to one OTU (OTU #3). The average percentage of Coxiella DNA reads was highest for 

Perth (55.62%), followed by Darwin (18.27%), and Palmerston had the lowest average (17.34%). 

The percent of Coxiella reads for each tick pool, extraction control, and NTC are included in 

Appendix D, Table D.1. The NTCs for the fusion-tag setup lab and for the DNA extraction hood 

had 0% Coxiella DNA reads. The Darwin extraction control also had 0% Coxiella DNA reads, 

however the Palmerston extraction control and Perth extraction control had Coxiella DNA reads 

detected in 0.1% and 0.2% of the total bacterial DNA reads, respectively. The top ten most 

abundant bacterial phyla reads from Darwin, Palmerston, and Perth samples are reported in Table 

3.5. Figure 3.15 displays the bacterial composition in male and female ticks from the three 

localities sampled, and the NTC and extraction controls.    
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Table 3.4: The number of Coxiella DNA sequences for the Coxiella OTU (UPARSE), and 

the presence or absence of three unique Coxiella sequences (Geneious) indicated, for all 

samples and negative controls.   

Sample ID Coxiella OTU_3  R. sanguineus 

Unique 

Sequence 1 

R. sanguineus 

Unique 

Sequence 2 

R. sanguineus 

Unique 

Sequence 3 

136RSM 1438       

198RSF 520       

259RSF 292       

259RSM 3       

260RSF 259       

260RSM 120       

261RSF 0       

261RSM 13       

262RSF 15       

262RSM 1       

263RSM 137       

264RSF 5       

264RSM 1114       

265RSF 737       

265RSM 1185       

266RSF 1821       

266RSM 313       

267RSF 116       

267RSM 910       

282RSF 6287       

285RSF 8560       

286RSM 407       

637RSF 0       

640RSF 65       

640RSM 57       

641RSF 371       

641RSM 78       

644RSF 0       

644RSM 1       

646RSF 9       

646RSM 460       

647RSF 401       

649RSF 46       

649RSM 12       

650RSF 14       

650RSM 657       
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651RSM 1       

652RSF 1       

652RSM 16       

653RSF 31       

653RSM 2       

654RSF 1       

654RSM 5       

655RSF 104       

656RSM 22       

695RSM 1693       

696RSF 947       

697RSF 973       

697RSM 1285       

698RSF 560       

699RSF 432       

699RSM 316       

76RSF 1364       

770RSF 2008       

770RSM 836       

879RSF 702       

880RSF 1443       

881RSF 683       

882RSF 3126       

Clean Lab NTC 0       

Cryptick Lab 

NTC 
0       

Darwin 

Extraction 

Control 

0       

Palmerston 

Extraction 

Control 

3       

Perth Extraction 

Control 

3       

Check represents presence; cross represents absence.  
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Table 3.4: Percent of Coxiella reads, range and number of positive samples for R. sanguineus 

from Darwin, Palmerston, and Perth.  

Location and Sex Average % of 

Coxiella Reads (%) 

Range (%) Number of 

samples positive 

for Coxiella 

Darwin Males 16.22 0.00 – 48.00 8/9 

Darwin Females 20.31 0.00 – 91.40  8/9 

Palmerston Males 12.78 0.00 – 64.90  9/11 

Palmerston Females 21.9 0.00 – 86.40  9/11 

Perth Males 47.77 11.80 – 81.40  6/6 

Perth Females 59.25 7.90 – 99.20  13/13 

 

 

Table 3.5: Top ten phyla associated with R. sanguineus from Darwin, Palmerston and Perth. 

Darwin % Palmerston % Perth % 

Staphylococcus 35.91 Coxiella 17.34 Coxiella 55.62 

Coxiella 18.27 Staphylococcus 14.23 Clostridiaceae 4.56 

Streptococcus 5.71 Corynebacterium 8.90 Weeksellaceae 4.25 

Xanthomonadaceae 5.09 Variovorax 8.10 Propionibacterium 2.83 

Veillonella 4.15 Propionibacterium 5.66 Xanthomonadacea

e 

2.78 

Corynebacterium 3.22 Herbaspirillum 3.13 Staphylococcus 2.70 

Variovorax 2.92 Enterobacteriaceae 2.39 Variovorax 1.46 

Propionibacterium 1.49 Chryseobacterium 2.23 Ralstonia 1.18 

Streptophyta 1.41 Veillonella 1.99 Bacillus 1.06 

Pelomonas 1.37 Pelomonas 1.96 Planococcaceae 0.99 
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Figure 3.15: Bacterial diversity for male and female tick pools from Darwin, Palmerston, 

and Perth, generated in QIIME. Column 1 = Palmerston male; column 2 = Darwin male; 

column 3 = Darwin female; column 4 = Perth female; column 5 = NTC; column 6 = extraction 

controls; column 7 = Perth male; column 8 = Palmerston female. Red: Coxiella sp. The legend 

for other bacterial phyla is included in Appendix D, Table D.2.     

In order to identify and further characterise the Coxiella sp. present in the tick pools, the most 

abundant unique sequences were queried against GenBank in Geneious (version 7.1.7), and a 

100% match was obtained for the Coxiella sp. DNA present in R. sanguineus ticks to an 

uncultured Coxiella sp. (accession number JX185722) (Table 3.6). Three unique Coxiella sp. 

sequences were obtained in the most abundant reads (denoted as R. sanguineus sequence 1, 2, and 

3). Two of the unique Coxiella sequences ‘R. sanguineus sequence 1’ and R. sanguineus sequence 

3,’ and an R. sanguineus Coxiella sp. sequence (accession number D84559), and a C. burnetii 

sequence (accession number AY342037) were aligned against ‘R. sanguineus sequence 2’ (Figure 

3.17). One single nucleotide polymorphism (SNP) was identified in ‘R. sanguineus sequence 1,’ 

and two SNPs were identified in ‘R. sanguineus 3.’ The most variability observed in the R. 

sanguineus Coxiella sp. and C. burnetii sequence occurred between bases 111-122.  

     1                 2                 3                4                5                  6                 7                 8 

59.25% 

47.77% 

21.90% 
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Figure 3.16: Phylogenetic relationships between Coxiella 16S rRNA sequences obtained 

from R. sanguineus. Built in Geneious version 7.1.7. 
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Table 3.6: Top ten matches from NCBI for R. sanguineus sequence 3 

Sequence description Accession number Percent match 

Uncultured Coxiella sp. clone 

D23C 16S ribosomal RNA 

gene, partial sequence 

JX185722 100.0 

Uncultured Coxiella sp. clone 

D23E 16S ribosomal RNA 

gene, partial sequence 

JX185723 99.8 

Coxiella endosymbiont of 

Rhipicephalus turanicus isolate 

DGGE gel band 11.3 16S 

ribosomal RNA gene, partial 

sequence 

JQ480822 99.7 

Uncultured Coxiella sp. clone 

D25B 16S ribosomal RNA 

gene, partial sequence 

JX185724 99.4 

Uncultured Coxiella sp. clone 

D25C 16S ribosomal RNA 

gene, partial sequence 

JX185725 98.8 

Coxiella sp. (Rhipicephalus 

sanguineus symbiont) gene for 

16S rRNA, partial sequence 

D84559 98.6 

Uncultured Coxiella sp. clone 

1357 16S ribosomal RNA gene, 

partial sequence 

EU143670 96.9 

Uncultured Coxiella sp. clone 

1358 16S ribosomal RNA gene, 

partial sequence 

EU143669 96.7 

Coxiella burnetii strain ATCC 

VR-615 16S ribosomal RNA 

gene, partial sequence 

>gi|296245391|gb|HM208383.1| 

Coxiella burnetii culture-

collection ATCC:VR-615 16S 

ribosomal RNA gene, partial 

sequence 

NR_104916 96.2 

Coxiella burnetii RSA 493 

strain RSA 493 16S ribosomal 

RNA, complete sequence 

NR_074154 96.2 
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                    1          11         21         31         41         51         61         71         81         91                  

                    |          |          |          |          |          |          |          |          |          |                   

R. sanguineus Seq 2 ATTGAACGCT AGCGGCATGC CTAACACATG CAAGTCGAAC GGCAGCGGGN GGGAGCTTGC TCCCTGACGG CGAGTGGCGG ACGGGTGAGT AACACGTAGG 

R. sanguineus Seq 1 .......... .......... .......... .......... .........N .......... .......... .......... .......... .......... 

R. sanguineus Seq 3 .......... .......... .......... .......... .........G .......... .......... .......... .......... .......... 

Coxiella sp. (RS)   .......... .......... .......... .......... .........N .......... .......... .......... .......... .......... 

C. burnetii (VR145) .......... .......... T......... .......... .......C.N .......... ......G... .......... .......... ..TG...... 

 

                    101        111        121        131        141        151        161        171        181        191                  

                    |          |          |          |          |          |          |          |          |          |        

R. sanguineus Seq 2 AATCTACCTT AATTATAATA GTTAGTGGGG GATAACCCGG GGAAACTCGG GCTAATACCG CATAATCTCT TCAAAGCAAA GCGGGGGATC TTCGGACCTC 

R. sanguineus Seq 1 .......... .......... .......... .......... .......... .......... .......... .......... .......... .......... 

R. sanguineus Seq 3 .......... .......... .......... .......... .......... .......... .......... .......... .......... .......... 

Coxiella sp. (RS)   .........C .T.ANNNNNN NN........ .......... .......... .......... .......... .......... .......... .......... 

C. burnetii (VR145) .......... NNNNNNNNNN NG........ .......T.. .......... .......... .......... .......... .......... .......... 

  

                   201        211        221        231        241        251        261        271        281        291                  

                    |          |          |          |          |          |          |          |          |          |        

R. sanguineus Seq 2 GTGCTATGAG ATGAGCCTGC GTCGGATTAG CTAGTTGGTA GGGTAATGGC CTACCAAGGC GAGCGATCCG TAGCTGGTCT GAGAGGACGA TCAGCCACAC 

R. sanguineus Seq 1 .......... .......... .......... .......... .......... .......... ..N....... .......... .......... .......... 

R. sanguineus Seq 3 .......... .......... .......... .......... .......... .......... ..N....... .......... .......... .......... 

Coxiella sp. (RS)   .......... .......... .......... .......... .......... .......... ..N....... .......... .......... .......... 

C. burnetii (VR145) .......A.. ........A. .......... ..T......G .......... .......... ..N....... .......... .......... .......... 

 

                    301        311        321                    

                    |          |          |        

R. sanguineus Seq 2 TGGGACTGAG ACACGGCCCA G 

R. sanguineus Seq 1 .......... .......... . 

R. sanguineus Seq 3 .......... .......... . 

Coxiella sp. (RS)   .......... .......... . 

C. burnetii (VR145) .......... .......... . 

 

Figure 3.17: An alignment of three unique R. sanguineus Coxiella sequences with a Coxiella sp. endosymbiont and C. burnetii. R. sanguineus Seq 1: 18,164 

sequences, 319 bp; R. sanguineus Seq 2: 2,141 sequences, 320 bp; R. sanguineus Seq 3: 1,547 sequences, 320 bp; Coxiella sp. (RS): Coxiella sp. Rhipicephalus 

sanguineus symbiont, Accession No. D84559; C. burnetii (VR145): Coxiella burnetii strain VR145, Accession No. AY342037; [.] denotes a conserved nucleotide; 

and [N] denotes a deletion.   
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4. Discussion  

4.1 Rhipicephalus sanguineus identification 

The first aim of the experimental work for this study was to identify the tick species removed 

from dogs. All 3,276 ticks collected from dogs were morphologically identified using the 

Australian tick identification key outlined by Roberts (1970). Of the 3,276 ticks that were 

examined, it is not surprising that the majority (79%) were R. sanguineus, as dogs are the known 

primary hosts of these ticks. Although dogs are not the preferred host of the other six tick species 

identified (A. t. triguttatum, H. bancrofti, H. longicornis, I. cornuatus, I. holocyclus, and I. 

tasmani), these ticks have been previously recorded as using dogs as their mammalian hosts in 

Australia (Roberts 1970).  

Unlike most genera in the key presented by Roberts (1970), which are arranged in a dichotomous 

form, only a description of the morphology for R. sanguineus is provided for the genus 

Rhipicephalus, as this was considered to be the only Rhipicephalus sp. present in Australia at the 

time Roberts authored the key. However, the nomenclature of the genus Boophilus (Curtice 1981) 

has since changed to Rhipicephalus (Boophilus), supported by recent molecular evidence that has 

demonstrated these two genera as paraphyletic (Murrell and Barker 2003). Although the 

nomenclature of Boophilus microplus (Canestrini 1887) described in Roberts (1970) has now 

changed to Rhipicephalus australis (Estrada-Pena et al. 2012), this did not impose a limitation to 

the identification of R. sanguineus in this study as R. sanguineus was morphologically 

distinguished from R. australis due to the presence of festoons.  

Given that the ticks examined in this present study were collected in Australia, it seemed 

appropriate to use the Australian tick key by Roberts (1970) to morphologically identify these 

ticks. Therefore, the species identification of R. sanguineus in this study is limited to an Australian 

context, as the morphological features were observed to match the descriptions provided by 

Roberts (1970) who described the morphology of Australian tick species. Even though R. 

sanguineus and R. australis are considered to be the only Rhipicephalus spp. present in Australia 
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at the current time (Barker and Walker 2014), it is possible that other tick species could be 

inadvertently introduced into this country as a result of international movements of animals and 

humans. 

On a global scale, there are considered to be 17 species of Rhipicephalus in the so-called “R. 

sanguineus group” that share similar morphological features, and can be difficult to differentiate 

(Gray et al. 2013). Several of these species require a more detailed examination of finer 

anatomical features than are outlined by Roberts (1970) for species differentiation. A more recent 

and comprehensive description of Rhipicephalus spp. has been provided by Walker, Keirans, and 

Horak (2000), and the morphology of the specimens were illustrated with scanning electron 

micrographs (SEMs), and the finer morphological features of the ticks are described. Walker, 

Keirans, and Horak (2000) noted the similarity between R. sanguineus, R. sulcatus, and R. 

turanicus, and these species require a detailed morphological comparison of the scutal punctation 

patterns, genital aperture shape, adanal plate shape, and spiracular plate shape to be differential.  

Despite efforts to classify and identify tick species based solely on morphology, the recent use of 

molecular tools to investigate tick taxonomy and phylogeny has provided rapid insight into the 

classification and evolutionary relationships between taxa. A recent study by Dantas-Torres et al. 

(2013) has provided evidence that there may be more than one species, or sub-species, of R. 

sanguineus and R. turanicus that may not be identified through the use of the currently published 

tick morphology keys. Inaccuracies in morphological tick species identification can compromise 

the validity of the results obtained, and inferences made, in research investigations. Thus, accurate 

species identification is important in order to gain a high level of certainty in studies that report 

tick host recordings, distribution patterns, and species-specific pathogens. This emphasises the 

need for future studies that use both a morphological and molecular approach to investigate the 

taxonomy of R. sanguineus ticks and other Rhipicephalus spp., and this approach would improve 

the accuracy of tick species identification.  
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4.2 Distribution of R. sanguineus ticks in Australia. 

The second aim of this project was to record the distribution of R. sanguineus ticks collected in 

this study, and this was achieved for the substantial number of R. sanguineus ticks that were 

obtained (n = 2,577) (see Figure 3.8 in Section 3.2). The majority of the R. sanguineus ticks that 

were recorded matched the distribution range for R. sanguineus developed nearly 50 years ago 

(see Figure 1.2 in Section 1.4.1). However, 20% of the R. sanguineus ticks recorded in this study 

occurred south of the 1965 distribution range. Although there have been many anecdotal 

observations in the last 50 years of R. sanguineus occurring south of the range described by the 

1965 distribution map (Roberts, 1965), there have been no recent publications of the distribution 

of R. sanguineus in Australia, and this study has provided a substantial number of recordings for 

R. sanguineus that challenge the distribution range. The specimens recorded for SA and WA 

outside the distribution range in this study suggest that the distribution of R. sanguineus in 

Australia has extended further south of this limit and it seems probable that this tick species is 

well-established throughout a much more extensive range. Rhipicephalus sanguineus ticks are 

prevalent throughout the year in tropical and subtropical areas, but in temperate climates are less 

active during cooler climates in winter (Papadopoulos et al. 1996), and this may explain why R. 

sanguineus ticks have more often been observed and recorded in the tropical and sub-tropical 

areas of Australia.   

Another possible explanation of the R. sanguineus ticks recorded outside the Roberts (1965) 

distribution range in this study is that there may be different species of R. sanguineus in Australia. 

Returning to the study by Dantas-Torres et al. (2013), two paraphyletic lineages of R. sanguineus 

were identified: the tropical (northern) lineage, which were identified as R. sanguineus sensu lato 

(Walker, Keirans, and Horak 2000); and the temperate (southern) lineage, which were similar, 

but not identical, in morphology to R. sanguineus. Previous molecular studies of R. sanguineus 

have also identified these two divergent lineages (Burlini et al. 2010; Levin et al. 2012), and these 

lineages have previously been suggested to represent two different species (Nava et al. 2012). The 

southern lineage OTU, as well as three other OTUs, were identified by Dantas-Torres et al. 
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(2013), who hypothesised that these are undescribed species under the names R. sanguineus, and 

R. turanicus. Furthermore, the 50 R. sanguineus ticks included in the study by Dantas-Torres et 

al. (2013) from NSW in Australia were morphologically and genetically identified as R. 

sanguineus s.l., and corresponded with the tropical lineage. Interestingly, the R. sanguineus 

(Rhipicephalus sp. II) OTU identified that corresponded with the temperate lineage were collected 

from Spain, Portugal, and Italy, all of which experience Mediterranean climates. Future 

morphological and molecular investigations could be conducted on the R. sanguineus ticks 

recorded in Perth, south-west Western Australia, which has a Mediterranean climate, to elucidate 

whether these ticks belong to the southern lineage, and whether there is more than one species of 

R. sanguineus in Australia.     

4.3 The detection of C. burnetii in R. sanguineus  

The third aim of the project was to detect C. burnetii in R. sanguineus ticks collected from dogs, 

and there was no C. burnetii DNA detected in the R. sanguineus extractions from Perth (0/31). 

Although qPCRs were also done on a subset of ticks from Darwin (n = 40) and Palmerston (n = 

36) with C. burnetii-specific primers, the qPCR assay from Palmerston exhibited a small increase 

in fluorescence signal between cycles 34-40 above the threshold level. Fluorescence was also 

detected in the NTC, therefore the fluorescence observed in the samples from Palmerston due to 

amplification of C. burnetii DNA is unlikely. However, further gel electrophoresis assays should 

be conducted to confirm whether this is amplification of specific products. 

In order to amplify only C. burnetii DNA in R. sanguineus ticks, the primers that were used in 

the qPCR assays in this study targeted the IS1111a transposase gene, and this IS element gene 

target in C. burnetii has been shown to be specific for C. burnetii amplification via standard PCR 

assays (Reeves et al. 2005), and highly specific hydrolysis probe qPCR assays (Banazis et al. 

2010). The failure to detect C. burnetii in R. sanguineus ticks in this study only applies to the 

subset of ticks tested, and is not an assessment of the overall prevalence of C. burnetii in the R. 

sanguineus population from the localities selected. Furthermore, the latter inference cannot be 
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made in this study as the ticks that were collected were not random samples. Previous studies that 

have reported C. burnetii in R. sanguineus ticks have reported only a small percentage of C. 

burnetii positive ticks tested in the studies (Satta et al. 2011; Spyridaki et al. 2002; Toledo et al. 

2009), therefore a larger sample size of ticks tested may be required to increase the chance of 

detecting C. burnetii DNA in R. sanguineus ticks, if it is indeed present in R. sanguineus in 

Australia. Future studies could aim to assess the overall prevalence of C. burnetii in R. 

sanguineus, as these ticks may transmit this pathogenic bacterium among animal reservoirs, 

however, transmission studies are also required to confirm this. Although dogs have been 

implicated as reservoirs of C. burnetii (Buhariwalla, Cann, and Marri 1996; Cooper et al. 2011), 

further studies should be conducted to confirm the prevalence of C. burnetii in dogs.   

4.4 Identification of Coxiella sp. in the microbiome of R. sanguineus 

Finally, the fourth aim of the project was to assess the bacterial microbiome of R. sanguineus. 

This aim was achieved by sequencing the 16S rRNA gene (V1 and V2 hypervariable regions), 

and the results are presented in Tables 3.4 – 3.6 and Figures 3.15 – 3.17. An interesting finding 

was that a Coxiella sp. (but importantly not C. burnetii) was present in a high proportion of the 

tick pools overall (53/59), and this is the first report of a Coxiella sp. detected in R. sanguineus in 

Australia. Coxiella spp. that are distinct from C. burnetii have been previously detected in 

Rhipicephalus spp. (Bernasconi et al., 2002; Noda, Munderloh, and Kurtti 1997). Furthermore, 

Coxiella endosymbionts that have been identified previously in R. sanguineus ticks found 

elsewhere by 16S rDNA sequencing (Bernasconi et al., 2002; Noda, Munderloh, and Kurtti 1997), 

and were detected in a smaller proportion (3/24) (Bernasconi et al. 2002) of R. sanguineus ticks 

collected from dogs compared with the findings of the present study. 

The three unique Coxiella sequences obtained in this study are likely to have been obtained from 

a single Coxiella sp., as they differed only by 1-2 SNPs in the 16S rDNA sequences, which could 

represent errors introduced by the Ion Torrent™ PGM. Ion Torrent™ PGM insertion and deletion 

errors can occur due to inaccurate flow-calls, which have been reported to occur at a rate of 2.84% 
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(Bragg et al. 2013). The Coxiella sp. sequence (R. sanguineus sequence 3) obtained in this present 

study matched 100% to a Coxiella sp. sequence submitted to GenBank (accession number 

JX185722) by Ybañez (2013), and these sequences were obtained from R. sanguineus ticks in 

Cebu, Philippines. The >99% matches of ‘R. sanguineus sequence 3’ to other Coxiella sp. 

sequences (accession numbers JX185723, JQ480822, and JX185724, see Table 3.6) were also 

submitted by Ybañez (2013). As noted in the literature review, Rhipicephalus sanguineus ticks 

were introduced into Australia only relatively recently (likely within the last 250 years during 

European settlement), but the lineage of these ticks is has not been confirmed by any current 

study. The 100% match between the Coxiella sp. obtained in this study and the Coxiella sp. from 

R. sanguineus in the Philippines may be a reflection of the origin of this Coxiella endosymbiont, 

and hence R. sanguineus in Australia. The origin of this tick species would be better inferred by 

a phylogenetic study of these ticks from different geographic regions.  

Staphylococcus spp. were the most abundant genera of the total bacterial reads obtained for 

Darwin ticks (35.91%), second-most for Palmerston (14.23%), but only 2.7% of the bacterial 

reads were Staphylococcus spp. for Perth ticks. Staphylococcus spp. are commonly found on 

human and animal skin, including dogs (Stepanovic et al. 2001), so the detection of 

Staphylococcus spp. in R. sanguineus ticks could be due to contact of these ticks with the skin 

microbiota of dogs, or contamination in the laboratory from humans, as the NTCs and extraction 

controls were also found to contain Staphylococcus spp. reads. Staphylococcus pseudintermedius 

has been found to constitute about 90% of staphylococci isolated from canine healthy carriers and 

of dogs with underlying skin disease (Griffeth et al. 2008; Fazakerley et al. 2009). If the 

Staphylococcus spp. detected in R. sanguineus in this study is due to contact with dog microbiota, 

then the higher proportion of ticks that were found to contain Staphylococcus in the tropics 

(Darwin and Palmerston) may reflect the epidemiology of this bacterium, and could be 

investigated in the future. Other animal and human skin and/or gastrointestinal bacterial species 

identified in the most abundant reads of the ticks were Streptococcus, Propionibacterium, and 

Veillonella, and these bacteria were also found in the NTCs and extraction controls. Therefore, 
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these may also be acquired from contact with dog skin, or represent contamination in the 

laboratory, and may not be representative of the microbiome of the ticks.   

Ubiquitous environmental bacteria were also present in the most abundant reads of the tick 

samples, NTCs, and extraction controls, and included Xanthomonadaceae, Variovorax, 

Clostridiaceae, Herbaspirillum, Streptophyta, Pelomonas, Planococcaceae, Chryseobacterium, 

and Clostridiaceae. These environmental bacterial reads in the ticks may represent bacteria within 

the tick’s microbiome that have been acquired from the environment, or may be present due to 

laboratory contamination. If the environmental bacteria had been acquired by the ticks from the 

original collection environment, the bacteria could be specific to that particular environment, 

however, a recent study by Hawlena et al. (2013) that quantified the effects of vertebrate host-

related, arthropod-related, and environmental factors on the bacterial community composition of 

ticks and fleas found that environmental factors did not impact the bacterial community 

composition. The ticks and fleas in their study were collected over a range of conditions and sites, 

but only arthropod-related variables, such as the species and life stage, were significant variables 

that accounted for the variation in bacterial composition. However, geographic differences have 

been detected in other tick-associated bacterial communities (Wielinga et al., 2006; Clay et al., 

2008). Hawlena et al. (2013) observed minor effects of host traits on the microbial community 

composition, and hypothesised that this may be due to dominant endosymbionts in microbiome 

of ticks that are vertically transmitted. 

Another possible explanation of the presence of environmental DNA in the tick pools, extraction 

controls, and NTCs in this study is that this may also be due to contamination of DNA extraction 

kits, which have been recently shown to contain contaminating environmental DNA (Salter et al. 

2014). Other sequencing studies of bacteria in ticks (Carpi et al. 2011; Vayssier-Taussat et al. 

2013; Egyed and Makrai 2014), and other arthropods such as mosquitoes (Valiente Moro et al. 

2013) have demonstrated the presence of environmental and skin bacteria, but whether this is due 
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to laboratory contamination, bacteria acquired by the ticks from the environment, or vertical 

transmission to their progeny, is currently unknown.   

Rhipicephalus sanguineus ticks are of veterinary and medical significance as they have been 

reported to transmit pathogens, such as Ehrlichia canis (Groves et al. 1975) and Hepatozoon canis 

(Nordgren and Craig 1984) to dogs, and Rickettsia conorii (Brumpt 1932) and Rickettsia rickettsii 

(Parker et al. 1933) to humans. There were no sequences detected in this current study that belong 

to the order Rickettsiales. A small number of Rickettsiella sequences were obtained for one tick 

pool and an extraction control (sample ID 699RSM, 2 sequences, 0.1% of reads; Perth extraction 

control, 11 sequences, 0.6% of reads). The detection of a higher number of Rickettsiella sp. in the 

Perth extraction control compared to the one tick pool may represent contamination of the lab 

with this bacterium, as no other tick pools were found to have Rickettsiella. Rickettsiella are 

closely related to Coxiella, and have been re-classified in the family Coxiellaceae (Leclerque and 

Kleespies 2008). The genus Rickettsiella contains three recognised arthropod pathogenic species 

Rickettsiella popilliae, R. grylli, and R. chironomid (Cordaux et al. 2007), and Rickettsiella spp. 

have been previously detected in Ixodes spp. (Anstead and Chilton 2014; Leclerque and Kleespies 

2012) . In Australia, Vilcins et al. (2009) identified Rickettsiella in I. tasmani ticks collected from 

Koalas on Phillip Island, and the closest sequence matches (>99%) were obtained for R. 

melolonthae and R. Myrmeleo spp. to the 16S Rickettsiella sequences. Rickettsiella spp. are under 

study as potential insect control agents (Leclerque and Kleespies 2012), but it has not been 

established whether ticks are capable of transmitting this bacterium to its vertebrate hosts, or 

whether it can cause disease in vertebrates. Given that Rickettsiella is an arthropod pathogen, the 

detection of this bacterium within a tick pool from Perth could be indicative of its presence in the 

tick’s microbiome, however, as sequences of this bacterium were also identified in an extraction 

control, the possibility of laboratory contamination cannot be ruled out.  



 

74 

  

4.5. The study’s limitations 

An early aim of this project was to determine the prevalence of C. burnetii in ticks removed from 

dogs. As noted previously, a larger number of ticks collected randomly would have to be analysed 

in order to provide robust data of prevalence. The ticks were collected from domestic dogs and 

submitted on a voluntary basis. This sampling method is classified as a convenience sampling, or 

non-probability sampling. Therefore, probability based inferential statistics could not be applied 

in this study as the assumption of random independent samples that are representative of the study 

population of interest is violated. Thus, no relationships between the ticks’ bacterial composition 

and variables such as life-stage or geographical location can be inferred with any certainty using 

statistical methods, and inferences with regard to the overall prevalence of C. burnetii in the R. 

sanguineus population could not be made. The original aim was therefore amended to the 

‘detection’ of Coxiella in ticks. 

A second limitation pertains to the morphological identification of ticks. If other Rhipicephalus 

spp. in the R. sanguineus group have been introduced into Australia, and were present in the ticks 

collected from dogs in this study, the possibility of misidentification of some of these ticks cannot 

be excluded. A detailed morphological examination of the scutal punctuation patterns, genital 

aperture shape, adanal plate shape, and spiracular plate shape based on the description by Walker, 

Keirans, and Horak (2000) was not applied in this study. However, even if such morphological 

examinations had been carried out in this study, the recent evidence (Dantas-Torres et al., 2013) 

that there is potentially more than one species most similar to R. sanguineus and R. turanicus, 

which did not match the morphology outlined by Walker, Keirans, and Horak (2000), uncertainty 

would still remain of the species identification based only on morphology. Thus, the species 

identification of ticks in this study is limited to the descriptions by Roberts (1970). This highlights 

the need for a combined morphological and molecular approach for tick identification.  

A limitation with regard to bacterial identification is that OTUs assigned at a 97% similarity level 

did not resolve the species of most bacteria obtained in the sequencing dataset. Therefore, only a 
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broad assessment of bacterial genera present in the ticks was gained. Although the NGS approach 

using the universal bacterial 16S rRNA gene target has provided a large dataset of bacterial genera 

present in the ticks, it cannot determine whether the abundant skin and environmental bacterial 

reads were representative of the ticks’ microbiome, or whether these reads that were obtained are 

due to laboratory contamination, as they were also found in the negative controls.   

4.6 Future research directions 

Although Roberts’ tick key has been the gold standard for the morphological identification of 

ticks in Australia for many years, molecular tools can and should now be used to aid tick 

identification. Molecular tools are providing new insights into the identity of tick taxa, and the 

evolutionary relationships among tick species, and should be used to strengthen standard tick 

morphology keys, as novel species are identified and ticks are reclassified. It is clear from recent 

studies overseas that the taxonomy of R. sanguineus requires future morphological and molecular 

clarification, and such investigations could be conducted on R. sanguineus found in Australia. 

Phylogenetic analyses could provide insight into the possible origin of these introduced ticks in 

Australia. For example, one approach for a molecular investigation of the R. sanguineus 

taxonomy and phylogeny could be to target the mitochondrial genetic markers such as the 12S 

mitochondrial rDNA or cytochrome c oxidase subunit 1 (cox1) genes in Rhipicephalus spp. DNA 

for species-specific identification (Szabo et al. 2005; Burlini et al. 2010; Levin et al. 2012; Nava 

et al. 2012; Dantas-Torres et al. 2013).  

The R. sanguineus ticks recorded in this study south of the range of the Roberts (1965) R. 

sanguineus distribution map suggest that an update of the R. sanguineus distribution in Australia 

is required. Future distribution modelling is required for R. sanguineus recordings in order to 

establish the current distribution of these ticks. However, the taxonomic issues referred to above 

should first be investigated and resolved to enable more accurate recordings and reliable 

distribution models to be generated. 
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Determination of prevalence requires the population to be randomly sampled. Collection of 

random samples of ticks from domestic animals in a study population is difficult: it would require 

that every individual in the study population of interest has an equal chance of being selected. A 

method for obtaining random samples of ticks can be obtained for questing ticks in the 

environment by flagging (Carpi et al. 2011), and such studies are able to draw statistical inferences 

regarding average bacterial diversity of instars in a study population. Future studies could aim to 

assess the overall prevalence of C. burnetii in R. sanguineus, and other bacterial species associated 

with R. sanguineus based on random samples, in order to gain an overall consensus of the bacterial 

profile of these ticks from different geographic regions. Such studies would be important to better 

understand the epidemiology of tick-borne pathogens, and could enable risk assessments for tick-

associated pathogens in geographic areas to be made. 

The finding of Coxiella DNA closely related to, yet distinct from, C. burnetii in R. sanguineus 

ticks is an interesting finding. Little is known about the functions of symbiotic Coxiella-like 

bacteria in ticks, but it has been proposed that they may synthesise nutrients that can be used by 

arthropod hosts (Jasinskas, Zhong, and Barbour 2007), and may be beneficial to the tick host (Wu 

et al. 2006). Previous studies have shown that Coxiella endosymbionts can be transmitted 

transovarially (Reeves 2005; Clay 2008), which indicates that ticks may act as reservoirs of 

Coxiella endosymbionts, as they are capable of maintaining the bacteria in their population in 

nature. It is also uncertain whether Coxiella sp. bacterium is pathogenic, and few studies have 

implied that these bacteria have a role in disease in animals (Shivaprasad et al. 2008). It is unclear 

whether R. sanguineus are reservoirs of C. burnetii, and future studies could aim to investigate 

the roles of Coxiella symbionts in the life strategies and life-cycle of R. sanguineus, and their 

pathogenicity. Transovarial and transtadial transmission studies could be conducted to investigate 

the maintenance of this bacterium in the R. sanguineus life-cycle.  
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4.7 Conclusion 

The primary aim of this project was to investigate the zoonotic pathogen C. burnetii in R. 

sanguineus ticks collected from dogs in Australia, and this was achieved for a subset of the overall 

R. sanguineus ticks collected in the study. The bacterial microbiome of these ticks was assessed, 

and a Coxiella endosymbiont was identified as a dominant bacterium in majority of the samples; 

this may be the first report of this Coxiella sp. in R. sanguineus in Australia. Given that this 

Coxiella sp. was found to be a dominant bacterium in the microbiome of R. sanguineus ticks 

tested in this study, future research could aim to investigate whether this bacterium is prevalent 

throughout the R. sanguineus population, and investigations should also determine whether this 

bacterium causes cross-reactivity in immunologic assays for C. burnetii. Future research should 

aim to investigate the role of this Coxiella sp. in R. sanguineus, to assess whether this bacterium 

is a non-pathogenic endosymbiont of R. sanguineus, and to determine whether this bacterium is 

harmful to dogs or other animals. Rhipicephalus sanguineus was found to be the predominant tick 

species collected from dogs, and a large number of recordings for this tick was obtained in this 

study. The R. sanguineus ticks were recorded mostly within northern and central Australia, in 

areas that experience mostly tropical and sub-tropical climates, however 20% of the overall R. 

sanguineus ticks were recorded in the southern parts of Australia. This finding suggests that the 

distribution of R. sanguineus is more extensive than has previously been considered.    
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Appendix A.  

Table A.1: Metadata spreadsheet.  

Samp-le 
ID# 

Tube ID# Genus Species #L # N # M # F State Postcode City/Town Local Info Latitude Longitude Location Collector 

PI 048 48IHF Ixodes holocyclus 0 0 0 5 VIC       ANIC, 

CSIRO 

PI 076 76RSF Rhipicephalus sanguineus 0 0 0 1 WA 6162 Beaconsfield N/A -32.067527 115.764181 Perth Member of 
public 

PI 136 136RSM Rhipicephalus sanguineus 0 0 5 0 WA 6150 Murdoch N/A -32.062085 115.832701 Perth Murdoch 

University 
Veterinary 

Hospital 

PI 136 136RSN Rhipicephalus sanguineus 0 1 0 0 WA 6151 Murdoch N/A -32.062085 115.832701 Perth Murdoch 

University 
Veterinary 

Hospital 

PI 151 151IHF Ixodes holocyclus 0 0 0 1 NSW       Turramurra 
Vet 

Hospital 

PI 154 154IHF Ixodes holocyclus 0 0 0 3 NSW       Turramurra 

Vet 
Hospital 

PI 154 154IHN Ixodes holocyclus 0 1 0 0 NSW       Turramurra 

Vet 
Hospital 

PI 155 155IHF Ixodes holocyclus 0 0 0 1 NSW       Turramurra 

Vet 
Hospital 

PI 156 156IHF Ixodes holocyclus 0 0 0 1 NSW       Turramurra 

Vet 

Hospital 

PI 158 158IHN Ixodes holocyclus 0 1 0 0 NSW       Turramurra 

Vet 

Hospital 

PI 167 167RSF Rhipicephalus sanguineus 0 0 0 5 WA 6765 N/A Kurnangki -18.194272 125.568678 Kurnangki 
& Minadri 

Aboriginal 
Reserve 

PI 168 168RSF Rhipicephalus sanguineus 0 0 0 3 WA 6765 N/A Kurnangki -18.194272 125.568678 Kurnangki 

& Minadri 

Aboriginal 

Reserve 

PI 169 169RSF Rhipicephalus sanguineus 0 0 0 8 WA 6765 N/A Kurnangki -18.194272 125.568678 Kurnangki 
& Minadri 

Aboriginal 
Reserve 
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PI 169 169RSM Rhipicephalus sanguineus 0 0 10 0 WA 6765 N/A Kurnangki -18.194272 125.568678 Kurnangki 

& Minadri 

Aboriginal 

Reserve 

PI 170 170RSF Rhipicephalus sanguineus 0 0 0 5 WA 6765 N/A Kurnangki -18.194272 125.568678 Kurnangki 
& Minadri 

Aboriginal 
Reserve 

PI 170 170RSM Rhipicephalus sanguineus 0 0 13 0 WA 6765 N/A Kurnangki -18.194272 125.568678 Kurnangki 

& Minadri 

Aboriginal 

Reserve 

PI 172 172RSF Rhipicephalus sanguineus 0 0 0 4 WA 6765 N/A Minardi -18.194272 125.568678 Kurnangki 
& Minadri 

Aboriginal 
Reserve 

PI 172 172RSM Rhipicephalus sanguineus 0 0 4 0 WA 6765 N/A Minardi -18.194272 125.568678 Kurnangki 

& Minadri 

Aboriginal 

Reserve 

PI 173 173RSF Rhipicephalus sanguineus 0 0 0 3 WA 6765 N/A Minardi -18.194272 125.568678 Kurnangki 
& Minadri 

Aboriginal 
Reserve 

PI 173 173RSM Rhipicephalus sanguineus 0 0 2 0 WA 6765 N/A Minardi -18.194272 125.568678 Kurnangki 

& Minadri 

Aboriginal 

Reserve 

PI 174 174RSL Rhipicephalus sanguineus 7 0 0 0 WA 6765 N/A Minardi -18.194272 125.568678 Kurnangki 
& Minadri 

Aboriginal 
Reserve 

PI 175 175RSF Rhipicephalus sanguineus 0 0 0 2 WA 6765 N/A Minardi -18.194272 125.568678 Kurnangki 

& Minadri 

Aboriginal 

Reserve 

PI 175 175RSM Rhipicephalus sanguineus 0 0 4 0 WA 6765 N/A Minardi -18.194272 125.568678 Kurnangki 
& Minadri 

Aboriginal 
Reserve 

PI 176 176IHF Ixodes holocyclus 0 0 0 1 TAS       Forbes St 

Vet Clinic 

PI 177 177ITF Ixodes tasmani 0 0 0 3 TAS       Forbes St 

Vet Clinic 

PI 178 178ITF Ixodes tasmani 0 0 0 1 TAS       Forbes St 

Vet Clinic 

PI 179 179ITF Ixodes tasmani 0 0 0 1 TAS       Forbes St 

Vet Clinic 

PI 180 180ICF Ixodes cornuatus 0 0 0 1 TAS       Forbes St 

Vet Clinic 

PI 181 181(ORIG) Ixodes cornuatus + 

holocyclus 

0 0 0 2 TAS       Forbes St 

Vet Clinic 

PI 182 182ITF Ixodes tasmani 0 0 0 1 TAS       Forbes St 

Vet Clinic 

PI 184 184ITF Ixodes tasmani 0 0 0 1 TAS       Forbes St 

Vet Clinic 

PI 185 185(ORIG) Ixodes cornuatus 0 0 0 1 TAS       Forbes St 

Vet Clinic 

PI 186 186ITF Ixodes tasmani 0 0 0 1 TAS       Forbes St 

Vet Clinic 

PI 187 187(ORIG) Ixodes cornuatus 0 0 0 1 TAS       Forbes St 

Vet Clinic 

PI 198 198RSF Rhipicephalus sanguineus 0 0 0 1 WA 6150 Murdoch N/A -32.062085 115.832701 Perth Murdoch 

University 
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Veterinary 

Hospital 

PI 203 203IHF Ixodes holocyclus 0 0 0 1 NSW       Member of 
public 

PI 209 209IHF Ixodes holocyclus 0 0 0 1 NSW       Member of 

public 

PI 211 211IHF Ixodes holocyclus 0 0 0 4 NSW       Member of 
public 

PI 211 211HLF Haemaphysalis longicornis 0 0 0 1 NSW       Member of 

public 

PI 211 211IHM Ixodes holocyclus 0 0 2 0 NSW       Member of 
public 

PI 211 211HLN Haemaphysalis longicornis 0 4 0 0 NSW       Member of 

public 

PI 212 212IHF Ixodes holocyclus 0 0 0 8 NSW       Member of 
public 

PI 212 212HLF Haemaphysalis longicornis 0 0 0 2 NSW       Member of 

public 

PI 212 212IHM Ixodes holocyclus 0 0 7 0 NSW       Member of 
public 

PI 212 212HLN Haemaphysalis longicornis 0 3 0 0 NSW       Member of 

public 

PI 213 213IHF Ixodes holocyclus 0 0 0 2 NSW       Member of 

public 

PI 213 213HLF Haemaphysalis longicornis 0 0 0 2 NSW       Member of 

public 

PI 213 213HLN Haemaphysalis longicornis 0 8 0 0 NSW       Member of 

public 

PI 214 214IHF Ixodes holocyclus 0 0 0 11 NSW       Member of 

public 

PI 214 214HLF Haemaphysalis longicornis 0 0 0 3 NSW       Member of 

public 

PI 214 214IHM Ixodes holocyclus 0 0 5 0 NSW       Member of 

public 

PI 214 214HLN Haemaphysalis longicornis 0 7 0 0 NSW       Member of 

public 

PI 215 215IHF Ixodes holocyclus 0 0 0 2 NSW       Member of 

public 

PI 215 215HLF Haemaphysalis longicornis 0 0 0 1 NSW       Member of 

public 

PI 215 215IHM Ixodes holocyclus 0 0 3 0 NSW       Member of 

public 

PI 215 215HLN Haemaphysalis longicornis 0 4 0 0 NSW       Member of 

public 
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PI 221 221IHF Ixodes holocyclus 0 0 0 1 NSW       Member of 

public 

PI 221 221HLN Haemaphysalis longicornis 0 9 0 0 NSW       Member of 
public 

PI 227 227IHF Ixodes holocyclus 0 0 0 1 QLD       Member of 

public 

PI 235 235IHF Ixodes holocyclus 0 0 0 1 NSW       Member of 
public 

PI 236 236IHF Ixodes holocyclus 0 0 0 2 NSW       Member of 

public 

PI 236 236IHM Ixodes holocyclus 0 0 2 0 NSW       Member of 
public 

PI 236 236IHN Ixodes holocyclus 0 7 0 0 NSW       Member of 

public 

PI 236 236HLN Haemaphysalis longicornis 0 1 0 0 NSW       Member of 
public 

PI 237 237IHF Ixodes holocyclus 0 0 0 14 NSW       Member of 

public 

PI 237 237HLF Haemaphysalis longicornis 0 0 0 1 NSW       Member of 
public 

PI 237 237IHM Ixodes holocyclus 0 0 2 0 NSW       Member of 

public 

PI 237 237IHN Ixodes holocyclus 0 20 0 0 NSW       Member of 

public 

PI 237 237HLN Haemaphysalis longicornis 0 2 0 0 NSW       Member of 

public 

PI 238 238IHF Ixodes holocyclus 0 0 0 5 NSW       Member of 

public 

PI 238 238HLF Haemaphysalis longicornis 0 0 0 1 NSW       Member of 

public 

PI 242 242IHF Ixodes holocyclus 0 0 0 11 NSW       Member of 

public 

PI 242 242IHN Ixodes holocyclus 0 1 0 0 NSW       Member of 

public 

PI 243 243IHF Ixodes holocyclus 0 0 0 6 NSW       Member of 

public 

PI 244 244IHF Ixodes holocyclus 0 0 0 13 NSW       Member of 

public 

PI 244 244HLF Haemaphysalis longicornis 0 0 0 1 NSW       Member of 

public 

PI 244 244IHN Ixodes holocyclus 0 4 0 0 NSW       Member of 

public 
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PI 259 259RSF Rhipicephalus sanguineus 0 0 0 3 NT 831 Blackwell 2/60 

Hudson 
Terrace 

-12.480066 130.984006 Palmerston PARAP Vet 

Hospital 

PI 259 259RSM Rhipicephalus sanguineus 0 0 2 0 NT 831 Blackwell 2/60 

Hudson 

Terrace 

-12.480066 130.984006 Palmerston PARAP Vet 

Hospital 

PI 260 260RSF Rhipicephalus sanguineus 0 0 0 2 NT 832 Gunn 17 

Camfield St 

-12.484288 130.993234 Palmerston PARAP Vet 

Hospital 

PI 260 260RSM Rhipicephalus sanguineus 0 0 3 0 NT 832 Gunn 17 

Camfield St 

-12.484288 130.993234 Palmerston PARAP Vet 

Hospital 

PI 261 261RSF Rhipicephalus sanguineus 0 0 0 2 NT 830 Woodroffe 52 Gunter 

Circuit 

-12.499222 130.980538 Palmerston PARAP Vet 

Hospital 

PI 261 261RSM Rhipicephalus sanguineus 0 0 3 0 NT 830 Woodroffe 52 Gunter 

Circuit  

-12.499222 130.980538 Palmerston PARAP Vet 

Hospital 

PI 262 262RSF Rhipicephalus sanguineus 0 0 0 3 NT 830 Palmerston Palmerston 

Veterinary 

Hospital, 7 
Rolyat 

Street 

-12.481763 130.986142 Palmerston PARAP Vet 

Hospital 

PI 262 262RSM Rhipicephalus sanguineus 0 0 5 0 NT 830 Palmerston Palmerston 

Veterinary 
Hospital, 7 

Rolyat 

Street 

-12.481763 130.986142 Palmerston PARAP Vet 

Hospital 

PI 263 263RSF Rhipicephalus sanguineus 0 0 0 2 NT 832 Bakewell 10 Rail 

Close 

-12.497515 130.989012 Palmerston PARAP Vet 

Hospital 

PI 263 263RSM Rhipicephalus sanguineus 0 0 3 0 NT 832 Bakewell 10 Rail 
Close 

-12.497515 130.989012 Palmerston PARAP Vet 
Hospital 

PI 264 264RSF Rhipicephalus sanguineus 0 0 0 1 NT 810 Alawa 37 Bald 

Circuit 

-12.381569 130.871371 Darwin PARAP Vet 

Hospital 

PI 264 264RSM Rhipicephalus sanguineus 0 0 1 0 NT 810 Alawa 37 Bald 
Circuit 

-12.381569 130.871371 Darwin PARAP Vet 
Hospital 

PI 265 265RSF Rhipicephalus sanguineus 0 0 0 4 NT 820 Bayview 25 Latrobe 

St 

-12.440944 130.856539 Darwin PARAP Vet 

Hospital 

PI 265 265RSM Rhipicephalus sanguineus 0 0 4 0 NT 820 Bayview 25 Latrobe 
St 

-12.440944 130.856539 Darwin PARAP Vet 
Hospital 

PI 266 266RSF Rhipicephalus sanguineus 0 0 0 26 NT 820 Darwin Darwin 

Sailing 

Club 

-12.429577 130.836378 Darwin PARAP Vet 

Hospital 

PI 266 266RSM Rhipicephalus sanguineus 0 0 34 0 NT 820 Darwin Darwin 

Sailing 

Club 

-12.429577 130.836378 Darwin PARAP Vet 

Hospital 
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PI 266 266RSN Rhipicephalus sanguineus 0 2 0 0 NT 820 Darwin Darwin 

Sailing 
Club 

-12.429577 130.836378 Darwin PARAP Vet 

Hospital 

PI 267 267RSF Rhipicephalus sanguineus 0 0 0 6 NT 820 Parap 85 May st -12.432338 130.850156 Darwin PARAP Vet 

Hospital 

PI 267 267RSM Rhipicephalus sanguineus 0 0 7 0 NT 820 Parap 85 May st -12.432338 130.850156 Darwin PARAP Vet 
Hospital 

PI 268 268RSN Rhipicephalus sanguineus 0 4 0 0 NT 820 Bayview 11 

Castlemain 

close 

-12.440034 130.85853 Darwin PARAP Vet 

Hospital 

PI 272 272IHF Ixodes holocyclus 0 0 0 1 NSW       Member of 

public 

PI 279 279IHF Ixodes holocyclus 0 0 0 1 NSW       Member of 

public 

PI 280 280IHF Ixodes holocyclus 0 0 0 1 NSW       Member of 

public 

PI 280 280IHN Ixodes holocyclus 0 2 0 0 NSW       Member of 

public 

PI 282 282RSF Rhipicephalus sanguineus 0 0 0 1 WA 6149 Bull Creek 7 Sellars 

Way 

-32.054589 115.866256 Perth Member of 

public 

PI 285 285RSF Rhipicephalus sanguineus 0 0 0 1 WA 6149 Bull Creek 7 Sellars 

Way 

-32.054589 115.866256 Perth Member of 

public 

PI 286 286RSM Rhipicephalus sanguineus 0 0 1 0 WA 6149 Bull Creek 7 Sellars 

Way 

-32.054589 115.866256 Perth Member of 

public 

PI 289 289IHN Ixodes holocyclus 0 2 0 0 TAS       Forbes St 

Vet Clinic 

PI 290 290IHF Ixodes holocyclus 0 0 0 2 TAS       Forbes St 

Vet Clinic 

PI 293 293IHF Ixodes holocyclus 0 0 0 1 TAS       Forbes St 
Vet Clinic 

PI 308 308ATF Amblyomma triguttatum 

(triguttatum) 

0 0 0 1 WA       Mt Helena 

Vet Clinic 

PI 309 309ATN Amblyomma triguttatum 
(triguttatum) 

0 1 0 0 WA       Mt Helena 
Vet Clinic 

PI 310 310ATN Amblyomma triguttatum 

(triguttatum) 

0 1 0 0 WA       Mt Helena 

Vet Clinic 

PI 311 311ATN Amblyomma triguttatum 

(triguttatum) 

0 3 0 0 WA       Mt Helena 

Vet Clinic 

PI 312 312ATF Amblyomma triguttatum 

(triguttatum) 

0 0 0 1 WA       Mt Helena 

Vet Clinic 

PI 314 314IHF Ixodes holocyclus 0 0 0 1 TAS       Forbes St 
Vet Clinic 

PI 316 316ITF Ixodes tasmani 0 0 0 2 TAS       Forbes St 

Vet Clinic 
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PI 316 316IHN Ixodes holocyclus 0 1 0 0 TAS       Forbes St 

Vet Clinic 

PI 316 316ITN Ixodes tasmani 0 1 0 0 TAS       Forbes St 
Vet Clinic 

PI 318 318ITF Ixodes tasmani 0 0 0 1 TAS       Forbes St 

Vet Clinic 

PI 322 322RSF Rhipicephalus sanguineus 0 0 0 2 NT 850 N/A 21 Bernard 
St 

-14.464497 132.262021 Katherine Katherine 
Vet Care 

PI 322 322RSM Rhipicephalus sanguineus 0 0 4 0 NT 850 N/A 21 Bernard 

St 

-14.464497 132.262021 Katherine Katherine 

Vet Care 

PI 322 322RSN Rhipicephalus sanguineus 0 2 0 0 NT 850 N/A 21 Bernard 
St 

-14.464497 132.262021 Katherine Katherine 
Vet Care 

PI 323 323RSF Rhipicephalus sanguineus 0 0 0 3 NT 850 N/A N/A -14.464497 132.262021 Katherine Katherine 

Vet Care 

PI 323 323RSM Rhipicephalus sanguineus 0 0 4 0 NT 850 N/A N/A -14.464497 132.262021 Katherine Katherine 
Vet Care 

PI 324 324RSF Rhipicephalus sanguineus 0 0 0 2 NT 850 N/A 3 Neal St -14.464497 132.262021 Katherine Katherine 

Vet Care 

PI 324 324RSM Rhipicephalus sanguineus 0 0 3 0 NT 850 N/A 3 Neal St -14.464497 132.262021 Katherine Katherine 
Vet Care 

PI 325 325RSF Rhipicephalus sanguineus 0 0 0 1 NT 850 N/A N/A -14.464497 132.262021 Katherine Katherine 

Vet Care 

PI 325 325RSN Rhipicephalus sanguineus 0 3 0 0 NT 850 N/A N/A -14.464497 132.262021 Katherine Katherine 

Vet Care 

PI 326 326RSF Rhipicephalus sanguineus 0 0 0 4 NT 850 N/A N/A -14.464497 132.262021 Katherine Katherine 

Vet Care 

PI 326 326RSM Rhipicephalus sanguineus 0 0 2 0 NT 850 N/A N/A -14.464497 132.262021 Katherine Katherine 

Vet Care 

PI 327 327RSF Rhipicephalus sanguineus 0 0 0 6 NT 850 Katherine East 40 Acacia 

Dr 

-14.470843 132.283503 Katherine Katherine 

Vet Care 

PI 327 327RSM Rhipicephalus sanguineus 0 0 5 0 NT 850 Katherine East 40 Acacia 

Dr 

-14.470843 132.283503 Katherine Katherine 

Vet Care 

PI 327 327RSN Rhipicephalus sanguineus 0 2 0 0 NT 850 Katherine East 40 Acacia 

Dr 

-14.470843 132.283503 Katherine Katherine 

Vet Care 

PI 328 328RSF Rhipicephalus sanguineus 0 0 0 7 NT 850 N/A N/A -14.464497 132.262021 Katherine Katherine 

Vet Care 

PI 328 328RSM Rhipicephalus sanguineus 0 0 13 0 NT 850 N/A N/A -14.464497 132.262021 Katherine Katherine 

Vet Care 

PI 329 329RSF Rhipicephalus sanguineus 0 0 0 13 NT 850 N/A N/A -14.464497 132.262021 Katherine Katherine 

Vet Care 

PI 329 329RSM Rhipicephalus sanguineus 0 0 10 0 NT 850 N/A N/A -14.464497 132.262021 Katherine Katherine 

Vet Care 

PI 330 330RSF Rhipicephalus sanguineus 0 0 0 17 NT 850 N/A N/A -14.464497 132.262021 Katherine Katherine 

Vet Care 
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PI 330 330RSM Rhipicephalus sanguineus 0 0 17 0 NT 850 N/A N/A -14.464497 132.262021 Katherine Katherine 

Vet Care 

PI 330 330RSN Rhipicephalus sanguineus 0 3 0 0 NT 850 N/A N/A -14.464497 132.262021 Katherine Katherine 
Vet Care 

PI 331 331RSF Rhipicephalus sanguineus 0 0 0 2 NT 850 N/A N/A -14.464497 132.262021 Katherine Katherine 

Vet Care 

PI 331 331RSM Rhipicephalus sanguineus 0 0 7 0 NT 850 N/A N/A -14.464497 132.262021 Katherine Katherine 
Vet Care 

PI 349 349IHF Ixodes holocyclus 0 0 0 1 NSW       DermCare 

Vet 

PI 350 350IHF Ixodes holocyclus 0 0 0 1 NSW       DermCare 
Vet 

PI 351 351IHF Ixodes holocyclus 0 0 0 1 NSW       DermCare 

Vet 

PI 352 352IHF Ixodes holocyclus 0 0 0 1 NSW       DermCare 
Vet 

PI 353 353IHF Ixodes holocyclus 0 0 0 1 NSW       DermCare 

Vet 

PI 354 354IHF Ixodes holocyclus 0 0 0 1 NSW       DermCare 
Vet 

PI 355 355IHF Ixodes holocyclus 0 0 0 1 NSW       DermCare 

Vet 

PI 356 356(ORIG) Ixodes holocyclus 0 0 0 1 NSW       DermCare 

Vet 

PI 360 360IHF Ixodes holocyclus 0 0 0 4 QLD       DermCare 

Vet 

PI 360 360HLN Haemaphysalis longicornis 0 1 0 0 QLD       DermCare 

Vet 

PI 361 361IHM Ixodes holocyclus 0 0 1 0 QLD       DermCare 

Vet 

PI 365 365IHF Ixodes holocyclus 0 0 0 1 NSW       DermCare 

Vet 

PI 369 369IHF Ixodes holocyclus 0 0 0 1 NSW       DermCare 

Vet 

PI 370 370IHF Ixodes holocyclus 0 0 0 1 NSW       DermCare 

Vet 

PI 371 371IHF Ixodes holocyclus 0 0 0 1 NSW       DermCare 

Vet 

PI 372 372IHF Ixodes holocyclus 0 0 0 1 QLD       DermCare 

Vet 

PI 373 373IHF Ixodes holocyclus 0 0 0 1 NSW       DermCare 

Vet 

PI 374 374IHF Ixodes holocyclus 0 0 0 1 QLD       DermCare 

Vet 
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PI 375 375IHF Ixodes holocyclus 0 0 0 1 QLD       DermCare 

Vet 

PI 376 376IHN Ixodes holocyclus 0 2 0 0 QLD       DermCare 
Vet 

PI 376 376HLN Haemaphysalis longicornis 0 2 0 0 QLD       DermCare 

Vet 

PI 378 378IHF Ixodes holocyclus 0 0 0 1 NSW       DermCare 
Vet 

PI 379 379IHF Ixodes holocyclus 0 0 0 3 NSW       DermCare 

Vet 

PI 380 380IHN Ixodes holocyclus 0 3 0 0 NSW       DermCare 
Vet 

PI 380 380HLN Haemaphysalis longicornis 0 11 0 0 NSW       DermCare 

Vet 

PI 381 381IHF Ixodes holocyclus 0 0 0 1 NSW       DermCare 
Vet 

PI 382 382IHF Ixodes holocyclus 0 0 0 1 NSW       DermCare 

Vet 

PI 383 383IHF Ixodes holocyclus 0 0 0 2 NSW       DermCare 
Vet 

PI 384 384IHF Ixodes holocyclus 0 0 0 1 NSW       DermCare 

Vet 

PI 384 384IHN Ixodes holocyclus 0 4 0 0 NSW       DermCare 

Vet 

PI 384 384HLL Haemaphysalis longicornis 2 0 0 0 NSW       DermCare 

Vet 

PI 384 384HLN Haemaphysalis longicornis 0 9 0 0 NSW       DermCare 

Vet 

PI 385 385IHF Ixodes holocyclus 0 0 0 2 NSW       DermCare 

Vet 

PI 395 395IHF Ixodes holocyclus 0 0 0 2 NSW       DermCare 

Vet 

PI 396 396IHF Ixodes holocyclus 0 0 0 3 NSW       DermCare 

Vet 

PI 398 398IHF Ixodes holocyclus 0 0 0 1 NSW       DermCare 

Vet 

PI 399 399RSM Rhipicephalus sanguineus 0 0 1 0 WA 6726 CABLE 

BEACH 

N/A -17.950181 122.196423 Cable 

Beach 

Member of 

public 

PI 400 400RSM Rhipicephalus sanguineus 0 0 1 0 WA 6726 CABLE 

BEACH 

N/A -17.950181 122.196423 Cable 

Beach 

Member of 

public 

PI 401 401RSF Rhipicephalus sanguineus 0 0 0 1 WA 6726 CABLE 

BEACH 

N/A -17.950181 122.196423 Cable 

Beach 

Member of 

public 

PI 401 401RSN Rhipicephalus sanguineus 0 1 0 0 WA 6726 CABLE 

BEACH 

N/A -17.950181 122.196423 Cable 

Beach 

Member of 

public 
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PI 402 402RSF Rhipicephalus sanguineus 0 0 0 1 WA 6726 CABLE 

BEACH 

N/A -17.950181 122.196423 Cable 

Beach 

Member of 

public 

PI 403 403RSF Rhipicephalus sanguineus 0 0 0 1 WA 6726 CABLE 
BEACH 

N/A -17.950181 122.196423 Cable 
Beach 

Member of 
public 

PI 403 403RSM Rhipicephalus sanguineus 0 0 2 0 WA 6726 CABLE 

BEACH 

N/A -17.950181 122.196423 Cable 

Beach 

Member of 

public 

PI 403 403RSN Rhipicephalus sanguineus 0 18 0 0 WA 6726 CABLE 
BEACH 

N/A -17.950181 122.196423 Cable 
Beach 

Member of 
public 

PI 575 575IHF Ixodes holocyclus 0 0 0 1 NSW       Member of 

public 

PI 577 577IHF Ixodes holocyclus 0 0 0 1 NSW       Member of 
public 

PI 579 579IHF Ixodes holocyclus 0 0 0 1 NSW       Member of 

public 

PI 580 580IHF Ixodes holocyclus 0 0 0 2 QLD       Member of 
public 

PI 580 580IHM Ixodes holocyclus 0 0 1 0 QLD       Member of 

public 

PI 599 599IHF Ixodes holocyclus 0 0 0 1 NSW       Member of 
public 

PI 600 600IHF Ixodes holocyclus 0 0 0 1 NSW       Member of 

public 

PI 601 601IHF Ixodes holocyclus 0 0 0 1 NSW       Member of 

public 

PI 602 602IHF Ixodes holocyclus 0 0 0 1 NSW       Member of 

public 

PI 603 603IHF Ixodes holocyclus 0 0 0 1 NSW       Member of 

public 

PI 604 604IHF Ixodes holocyclus 0 0 0 1 NSW       Member of 

public 

PI 606 606IHF Ixodes holocyclus 0 0 0 1 NSW       Member of 

public 

PI 607 607IHF Ixodes holocyclus 0 0 0 1 NSW       Member of 

public 

PI 608 608RSF Rhipicephalus sanguineus 0 0 0 6 WA 6714 Karratha N/A -20.736709 116.846295 Karratha Member of 

public 

PI 609 609IHF Ixodes holocyclus 0 0 0 1 QLD       Member of 

public 

PI 612 612IHF Ixodes holocyclus 0 0 0 5 NSW       Member of 

public 

PI 612 612HLF Haemaphysalis longicornis 0 0 0 3 NSW       Member of 

public 

PI 612 612IHM Ixodes holocyclus 0 0 9 0 NSW       Member of 

public 
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PI 612 612HLN Haemaphysalis longicornis 0 4 0 0 NSW       Member of 

public 

PI 613 613IHF Ixodes holocyclus 0 0 0 4 NSW       Member of 
public 

PI 613 613HLF Haemaphysalis longicornis 0 0 0 1 NSW       Member of 

public 

PI 613 613IHM Ixodes holocyclus 0 0 3 0 NSW       Member of 
public 

PI 613 613HLN Haemaphysalis longicornis 0 5 0 0 NSW       Member of 

public 

PI 614 614IHF Ixodes holocyclus 0 0 0 2 NSW       Member of 
public 

PI 614 614HLF Haemaphysalis longicornis 0 0 0 1 NSW       Member of 

public 

PI 614 614IHM Ixodes holocyclus 0 0 4 0 NSW       Member of 
public 

PI 614 614HLN Haemaphysalis longicornis 0 4 0 0 NSW       Member of 

public 

PI 615 615IHF Ixodes holocyclus 0 0 0 1 NSW       Member of 
public 

PI 615 615HLF Haemaphysalis longicornis 0 0 0 1 NSW       Member of 

public 

PI 615 615HLN Haemaphysalis longicornis 0 3 0 0 NSW       Member of 

public 

PI 616 616IHF Ixodes holocyclus 0 0 0 4 NSW       Member of 

public 

PI 616 616IHM Ixodes holocyclus 0 0 1 0 NSW       Member of 

public 

PI 616 616HLN Haemaphysalis longicornis 0 6 0 0 NSW       Member of 

public 

PI 617 617IHF Ixodes holocyclus 0 0 0 20 NSW       Member of 

public 

PI 617 617HLF Haemaphysalis longicornis 0 0 0 4 NSW       Member of 

public 

PI 617 617IHM Ixodes holocyclus 0 0 6 0 NSW       Member of 

public 

PI 617 617HLN Haemaphysalis longicornis 0 8 0 0 NSW       Member of 

public 

PI 618 618IHF Ixodes holocyclus 0 0 0 15 NSW       Member of 

public 

PI 618 618HLF Haemaphysalis longicornis 0 0 0 4 NSW       Member of 

public 

PI 618 618IHM Ixodes holocyclus 0 0 7 0 NSW       Member of 

public 
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PI 618 618HLN Haemaphysalis longicornis 0 16 0 0 NSW       Member of 

public 

PI 619 619IHF Ixodes holocyclus 0 0 0 1 NSW       Member of 
public 

PI 619 619HLN Haemaphysalis longicornis 0 2 0 0 NSW       Member of 

public 

PI 620 620HLF Haemaphysalis longicornis 0 0 0 2 NSW       Member of 
public 

PI 620 620IHF Ixodes holocyclus 0 0 0 1 NSW       Member of 

public 

PI 620 620HLN Haemaphysalis longicornis 0 2 0 0 NSW       Member of 
public 

PI 621 621IHF Ixodes holocyclus 0 0 0 20 NSW       Member of 

public 

PI 621 621HLF Haemaphysalis longicornis 0 0 0 6 NSW       Member of 
public 

PI 621 621IHM Ixodes holocyclus 0 0 2 0 NSW       Member of 

public 

PI 621 621HLN Haemaphysalis longicornis 0 8 0 0 NSW       Member of 
public 

PI 622 622IHF Ixodes holocyclus 0 0 0 14 NSW       Member of 

public 

PI 622 622HLF Haemaphysalis longicornis 0 0 0 6 NSW       Member of 

public 

PI 622 622IHM Ixodes holocyclus 0 0 5 0 NSW       Member of 

public 

PI 622 622HLN Haemaphysalis longicornis 0 9 0 0 NSW       Member of 

public 

PI 623 623IHF Ixodes holocyclus 0 0 0 9 NSW       Member of 

public 

PI 623 623HLF Haemaphysalis longicornis 0 0 0 4 NSW       Member of 

public 

PI 623 623IHM Ixodes holocyclus 0 0 5 0 NSW       Member of 

public 

PI 623 623HLN Haemaphysalis longicornis 0 9 0 0 NSW       Member of 

public 

PI 624 624IHF Ixodes holocyclus 0 0 0 3 NSW       Member of 

public 

PI 624 624HLF Haemaphysalis longicornis 0 0 0 3 NSW       Member of 

public 

PI 624 624IHM Ixodes holocyclus 0 0 1 0 NSW       Member of 

public 

PI 624 624HLN Haemaphysalis longicornis 0 7 0 0 NSW       Member of 

public 
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PI 625 625HLN Haemaphysalis longicornis 0 2 0 0 NSW       Member of 

public 

PI 626 626HLF Haemaphysalis longicornis 0 0 0 1 NSW       Member of 
public 

PI 626 626IHM Ixodes holocyclus 0 0 1 0 NSW       Member of 

public 

PI 626 626HLN Haemaphysalis longicornis 0 1 0 0 NSW       Member of 
public 

PI 627 627IHF Ixodes holocyclus 0 0 0 2 NSW       Member of 

public 

PI 627 627HBF Haemaphysalis bancrofti 0 0 0 1 NSW       Member of 
public 

PI 627 627HLF Haemaphysalis longicornis 0 0 0 1 NSW       Member of 

public 

PI 627 627IHM Ixodes holocyclus 0 0 6 0 NSW       Member of 
public 

PI 628 628IHM Ixodes holocyclus 0 0 3 0 NSW       Member of 

public 

PI 628 628HLN Haemaphysalis longicornis 0 1 0 0 NSW       Member of 
public 

PI 629 629IHF Ixodes holocyclus 0 0 0 1 NSW       Member of 

public 

PI 631 631IHF Ixodes holocyclus 0 0 0 2 NSW       Member of 

public 

PI 632 632IHF Ixodes holocyclus 0 0 0 1 NSW       Member of 

public 

PI 637 637RSF Rhipicephalus sanguineus 0 0 0 2 NT 830 Farrar N/A -12.480219 130.997607 Palmerston Palmerston 

Vet 

Hospital 

PI 640 640RSF Rhipicephalus sanguineus 0 0 0 4 NT 810 Alawa 11 Young 
Cres 

-12.379233  130.870895 Darwin Parap Vet 
Hospital 

PI 640 640RSM Rhipicephalus sanguineus 0 0 2 0 NT 810 Alawa 11 Young 

Cres 

-12.379233  130.870895 Darwin Parap Vet 

Hospital 

PI 641 641RSF Rhipicephalus sanguineus 0 0 0 13 NT 810 Coconut 
Grove 

20 Orchard 
Rd 

-12.396794 130.847718 Darwin Parap Vet 
Hospital 

PI 641 641RSM Rhipicephalus sanguineus 0 0 17 0 NT 810 Coconut 

Grove 

20 Orchard 

Rd 

-12.396794 130.847718 Darwin Parap Vet 

Hospital 

PI 641 641RSN Rhipicephalus sanguineus 0 5 0 0 NT 810 Coconut 
Grove 

20 Orchard 
Rd 

-12.396794 130.847718 Darwin Parap Vet 
Hospital 

PI 644 644RSF Rhipicephalus sanguineus 0 0 0 46 NT 820 Parap 1/6 

Drysdale St 

-12.433179 130.844498 Darwin Parap Vet 

Hospital 

PI 644 644RSM Rhipicephalus sanguineus 0 0 63 0 NT 820 Parap 1/6 
Drysdale St 

-12.433179 130.844498 Darwin Parap Vet 
Hospital 
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PI 646 646RSF Rhipicephalus sanguineus 0 0 0 14 NT 810 Rapid Creek N/A -12.387231 130.864402 Darwin Parap Vet 

Hospital 

PI 646 646RSM Rhipicephalus sanguineus 0 0 17 0 NT 810 Rapid Creek N/A -12.387231 130.864402 Darwin Parap Vet 
Hospital 

PI 646 646RSN Rhipicephalus sanguineus 0 1 0 0 NT 810 Rapid Creek N/A -12.387231 130.864402 Darwin Parap Vet 

Hospital 

PI 647 647RSF Rhipicephalus sanguineus 0 0 0 1 NT 830 Driver 24 Driver 
Ave 

-12.484239 130.977186 Palmerston Parap Vet 
Hospital 

PI 647 647RSM Rhipicephalus sanguineus 0 0 2 0 NT 830 Driver 24 Driver 

Ave 

-12.484239 130.977186 Palmerston Parap Vet 

Hospital 

PI 649 649RSF Rhipicephalus sanguineus 0 0 0 6 NT 830 Gray 13 
Mianorelli 

Crt 

-12.487317 130.984983 Palmerston Palmerston 
Vet 

Hospital 

PI 649 649RSM Rhipicephalus sanguineus 0 0 4 0 NT 830 Gray 13 
Mianorelli 

Crt 

-12.487317 130.984983 Palmerston Palmerston 
Vet 

Hospital 

PI 650 650RSF Rhipicephalus sanguineus 0 0 0 2 NT 830 Gray N/A -12.384847 130.872981 Darwin Palmerston 

Vet 
Hospital 

PI 650 650RSM Rhipicephalus sanguineus 0 0 3 0 NT 830 Gray N/A -12.384847 130.872981 Darwin Palmerston 

Vet 
Hospital 

PI 651 651RSM Rhipicephalus sanguineus 0 0 3 0 NT 830 Driver 24 Driver 

Ave 

-12.480219 130.997607 Palmerston Palmerston 

Vet 

Hospital 

PI 651 651RSN Rhipicephalus sanguineus 0 2 0 0 NT 830 Driver 24 Driver 

Ave 

-12.480219 130.997607 Palmerston Palmerston 

Vet 

Hospital 

PI 652 652RSF Rhipicephalus sanguineus 0 0 0 3 NT 830 Woodroffe  N/A -12.504958 130.981903 Palmerston Palmerston 

Vet 

Hospital 

PI 652 652RSM Rhipicephalus sanguineus 0 0 3 0 NT 830 Woodroffe  N/A -12.504958 130.981903 Palmerston Palmerston 
Vet 

Hospital 

PI 653 653RSF Rhipicephalus sanguineus 0 0 0 1 NT 832 Rosebery 57 Kenbi 
Place 

-12.508809 130.994663 Palmerston Palmerston 
Vet 

Hospital 

PI 653 653RSM Rhipicephalus sanguineus 0 0 1 0 NT 832 Rosebery 57 Kenbi 

Place 

-12.508809 130.994663 Palmerston Palmerston 

Vet 
Hospital 

PI 654 654RSF Rhipicephalus sanguineus 0 0 0 4 NT 830 Driver N/A -12.487233 130.972637 Palmerston Palmerston 

Vet 
Hospital 
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PI 654 654RSM Rhipicephalus sanguineus 0 0 1 0 NT 830 Driver N/A -12.487233 130.972637 Palmerston Palmerston 

Vet 
Hospital 

PI 655 655RSF Rhipicephalus sanguineus 0 0 0 5 NT 830 Woodroffe  N/A -12.487233 130.972637 Palmerston Palmerston 

Vet 

Hospital 

PI 656 656RSL Rhipicephalus sanguineus 3 0 0 0 NT 832 Rosebery 1/59 Kenbi 

Place 

-12.509025 130.994619 Palmerston Palmerston 

Vet 

Hospital 

PI 656 656RSM Rhipicephalus sanguineus 0 0 2 0 NT 832 Rosebery 1/59 Kenbi 
Place 

-12.509025 130.994619 Palmerston Palmerston 
Vet 

Hospital 

PI 659 659RSF Rhipicephalus sanguineus 0 0 0 15 NT 872 Mutitjulu 
(East of 

Uluru) 

N/A -25.351457 131.063954 Mutitjulu Sydney 
Animal 

Hospital 

PI 659 659RSM Rhipicephalus sanguineus 0 0 16 0 NT 872 Mutitjulu 

(East of 
Uluru) 

N/A -25.351457 131.063954 Mutitjulu Sydney 

Animal 
Hospital 

PI 659 659RSN Rhipicephalus sanguineus 0 20 0 0 NT 872 Mutitjulu 

(East of 
Uluru) 

N/A -25.351457 131.063954 Mutitjulu Sydney 

Animal 
Hospital 

PI 660 660RSF1 Rhipicephalus sanguineus 0 0 0 17 NT 872 Mutitjulu 

(East of 

Uluru) 

N/A -25.351457 131.063954 Mutitjulu Sydney 

Animal 

Hospital 

PI 660 660RSF2 Rhipicephalus sanguineus 0 0 0 5 NT 872 Mutitjulu 

(East of 

Uluru) 

N/A -25.351457 131.063954 Mutitjulu Sydney 

Animal 

Hospital 

PI 660 660RSM Rhipicephalus sanguineus 0 0 17 0 NT 872 Mutitjulu 

(East of 

Uluru) 

N/A -25.351457 131.063954 Mutitjulu Sydney 

Animal 

Hospital 

PI 660 660RSN Rhipicephalus sanguineus 0 11 0 0 NT 872 Mutitjulu 
(East of 

Uluru) 

N/A -25.351457 131.063954 Mutitjulu Sydney 
Animal 

Hospital 

PI 661 661RSF1 Rhipicephalus sanguineus 0 0 0 13 NT 872 Mutitjulu 
(East of 

Uluru) 

N/A -25.351457 131.063954 Mutitjulu Sydney 
Animal 

Hospital 

PI 661 661RSF2 Rhipicephalus sanguineus 0 0 0 2 NT 872 Mutitjulu 

(East of 

Uluru) 

N/A -25.351457 131.063954 Mutitjulu Sydney 

Animal 

Hospital 

PI 661 661RSM Rhipicephalus sanguineus 0 0 38 0 NT 872 Mutitjulu 

(East of 
Uluru) 

N/A -25.351457 131.063954 Mutitjulu Sydney 

Animal 
Hospital 
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PI 661 661RSN Rhipicephalus sanguineus 0 26 0 0 NT 872 Mutitjulu 

(East of 
Uluru) 

N/A -25.351457 131.063954 Mutitjulu Sydney 

Animal 
Hospital 

PI 663 663IHF Ixodes holocyclus 0 0 0 1 QLD       Member of 

public 

PI 674 674IHF Ixodes holocyclus 0 0 0 1 WA       Member of 
public 

PI 688 688IHF Ixodes holocyclus 0 0 0 1 QLD       Member of 

public 

PI 695 695RSM Rhipicephalus sanguineus 0 0 1 0 WA 6110 Southern 
River 

109 Terrirt 
Pl 

-32.119577 115.957193 Perth Animal 
Protection 

Society 

PI 696 696RSF Rhipicephalus sanguineus 0 0 0 2 WA 6110 Southern 

River 

109 Terrirt 

Pl 

-32.119577 115.957193 Perth Animal 

Protection 
Society 

PI 697 697RSF Rhipicephalus sanguineus 0 0 0 4 WA 6164 Attwell 29 Minyon 

Circuit 

-32.130633 115.86281 Perth Animal 

Protection 
Society 

PI 697 697RSM Rhipicephalus sanguineus 0 0 1 0 WA 6164 Attwell 29 Minyon 

Circuit 

-32.130633 115.86281 Perth Animal 

Protection 

Society 

PI 698 698RSF Rhipicephalus sanguineus 0 0 0 1 WA 6164 Attwell 29 Minyon 

Circuit 

-32.130633 115.86281 Perth Animal 

Protection 

Society 

PI 699 699RSF Rhipicephalus sanguineus 0 0 0 2 WA 6110 Southern 
River 

109 Terrirt 
Pl 

-32.119577 115.957193 Perth Animal 
Protection 

Society 

PI 699 699RSM Rhipicephalus sanguineus 0 0 1 0 WA 6110 Southern 
River 

109 Terrirt 
Pl 

-32.119577 115.957193 Perth Animal 
Protection 

Society 

PI 718 718IHN Ixodes holocyclus 0 1 0 0 QLD       Member of 
public 

PI 719 719IHF Ixodes holocyclus 0 0 0 3 QLD       Member of 

public 

PI 720 720IHF Ixodes holocyclus 0 0 0 1 QLD       Member of 
public 

PI 721 721IHN Ixodes holocyclus 0 1 0 0 QLD       Member of 

public 

PI 723 723IHN Ixodes holocyclus 0 1 0 0 QLD       Member of 
public 

PI 724 724IHN Ixodes holocyclus 0 2 0 0 QLD       Member of 

public 

PI 726 726IHF Ixodes holocyclus 0 0 0 3 QLD       Member of 
public 
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PI 726 726IHN Ixodes holocyclus 0 6 0 0 QLD       Member of 

public 

PI 727 727IHN Ixodes holocyclus 0 1 0 0 QLD       Member of 
public 

PI 728 728IHF Ixodes holocyclus 0 0 0 2 QLD       Member of 

public 

PI 728 728IHN Ixodes holocyclus 0 1 0 0 QLD       Member of 
public 

PI 729 729IHF Ixodes holocyclus 0 0 0 1 QLD       Member of 

public 

PI 730 730IHN Ixodes holocyclus 0 10 0 0 QLD       Member of 
public 

PI 731 731IHF Ixodes holocyclus 0 0 0 1 QLD       Member of 

public 

PI 732 732IHF Ixodes holocyclus 0 0 0 3 QLD       Member of 
public 

PI 732 732IHN Ixodes holocyclus 0 1 0 0 QLD       Member of 

public 

PI 733 733IHF Ixodes holocyclus 0 0 0 1 QLD       Member of 
public 

PI 736 736ITF Ixodes tasmani 0 0 0 1 TAS       Forbes St 

Vet Clinic 

PI 737 737ITF Ixodes tasmani 0 0 0 1 TAS       Forbes St 

Vet Clinic 

PI 738 738ITF Ixodes tasmani 0 0 0 1 TAS       Forbes St 

Vet Clinic 

PI 740 740ITF Ixodes tasmani 0 0 0 1 TAS       Forbes St 

Vet Clinic 

PI 741 741ITF Ixodes tasmani 0 0 0 1 TAS       Forbes St 

Vet Clinic 

PI 744 744ITF Ixodes tasmani 0 0 0 1 TAS       Forbes St 

Vet Clinic 

PI 745 745ITF Ixodes tasmani 0 0 0 1 TAS       Forbes St 

Vet Clinic 

PI 746 746ITF Ixodes tasmani 0 0 0 1 TAS       Forbes St 

Vet Clinic 

PI 747 747ITF Ixodes tasmani 0 0 0 1 TAS       Forbes St 

Vet Clinic 

PI 748 748ITF Ixodes tasmani 0 0 0 2 TAS       Forbes St 

Vet Clinic 

PI 749 749IHF Ixodes holocyclus 0 0 0 1 QLD       Member of 

public 
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PI 750 750RSF Rhipicephalus sanguineus 0 0 0 2 WA 6701 Carnarvon 12 Bassett 

Way 

-24.871625 113.675619 Carnarvon Coral Coast 

Vet 
Hospital 

PI 751 751RSM Rhipicephalus sanguineus 0 0 2 0 WA 6701 Carnarvon 12 Bassett 

Way 

-24.871625 113.675619 Carnarvon Coral Coast 

Vet 

Hospital 

PI 752 752RSF Rhipicephalus sanguineus 0 0 0 1 WA 6701 Carnarvon 12 Bassett 

Way 

-24.871625 113.675619 Carnarvon Coral Coast 

Vet 

Hospital 

PI 753 753RSF Rhipicephalus sanguineus 0 0 0 6 WA 6701 Carnarvon 12 Bassett 
Way 

-24.871625 113.675619 Carnarvon Coral Coast 
Vet 

Hospital 

PI 753 753RSM Rhipicephalus sanguineus 0 0 4 0 WA 6701 Carnarvon 12 Bassett 
Way 

-24.871625 113.675619 Carnarvon Coral Coast 
Vet 

Hospital 

PI 754 754RSF Rhipicephalus sanguineus 0 0 0 19 WA 6701 Carnarvon 12 Bassett 

Way 

-24.871625 113.675619 Carnarvon Coral Coast 

Vet 
Hospital 

PI 754 754RSM Rhipicephalus sanguineus 0 0 8 0 WA 6701 Carnarvon 12 Bassett 

Way 

-24.871625 113.675619 Carnarvon Coral Coast 

Vet 
Hospital 

PI 770 770RSF Rhipicephalus sanguineus 0 0 0 2 WA 6025 Craigie N/A -31.7848 115.7678 Perth Murdoch 

Uni Vet 

Hospital 

PI 770 770RSM Rhipicephalus sanguineus 0 0 37 0 WA 6025 Craigie N/A -31.7848 115.7678 Perth Murdoch 

Uni Vet 

Hospital 

PI 776 776HLF Haemaphysalis longicornis 0 0 0 1 NSW       Member of 

public 

PI 777 777RSF Rhipicephalus sanguineus 0 0 0 24 NT 830 Palmerston 

(15 mile) 
Indigenous 

Village 

N/A -12.48809722 131.0116806 Palmerston AMRRIC 

PI 777 777RSM Rhipicephalus sanguineus 0 0 21 0 NT 830 Palmerston 
(15 mile) 

Indigenous 

Village 

N/A -12.48809722 131.0116806 Palmerston AMRRIC 

PI 777 777RSN Rhipicephalus sanguineus 0 1 0 0 NT 830 Palmerston 

(15 mile) 

Indigenous 

Village 

N/A -12.48809722 131.0116806 Palmerston AMRRIC 

PI 778 778RSF Rhipicephalus sanguineus 0 0 0 19 NT 830 Palmerston 

(15 mile) 

N/A -12.48809722 131.0116806 Palmerston AMRRIC 
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Indigenous 

Village 

PI 778 778RSM Rhipicephalus sanguineus 0 0 17 0 NT 830 Palmerston 
(15 mile) 

Indigenous 

Village 

N/A -12.48809722 131.0116806 Palmerston AMRRIC 

PI 778 778RSN Rhipicephalus sanguineus 0 1 0 0 NT 830 Palmerston 

(15 mile) 

Indigenous 

Village 

N/A -12.48809722 131.0116806 Palmerston AMRRIC 

PI 779 779RSF Rhipicephalus sanguineus 0 0 0 29 NT 830 Palmerston 

(15 mile) 

Indigenous 
Village 

N/A -12.48809722 131.0116806 Palmerston AMRRIC 

PI 779 779RSM Rhipicephalus sanguineus 0 0 6 0 NT 830 Palmerston 

(15 mile) 
Indigenous 

Village 

N/A -12.48809722 131.0116806 Palmerston AMRRIC 

PI 779 779RSN Rhipicephalus sanguineus 0 2 0 0 NT 830 Palmerston 

(15 mile) 
Indigenous 

Village 

N/A -12.48809722 131.0116806 Palmerston AMRRIC 

PI 780 780RSF Rhipicephalus sanguineus 0 0 0 33 NT 830 Palmerston 

(15 mile) 

Indigenous 

Village 

N/A -12.48809722 131.0116806 Palmerston AMRRIC 

PI 780 780RSM Rhipicephalus sanguineus 0 0 17 0 NT 830 Palmerston 

(15 mile) 

Indigenous 
Village 

N/A -12.48809722 131.0116806 Palmerston AMRRIC 

PI 781 781RSF1 Rhipicephalus sanguineus 0 0 0 13 NT 830 Palmerston 

(15 mile) 

Indigenous 
Village 

N/A -12.48809722 131.0116806 Palmerston AMRRIC 

PI 781 781RSF2 Rhipicephalus sanguineus 0 0 0 4 NT 830 Palmerston 

(15 mile) 
Indigenous 

Village 

N/A -12.48809722 131.0116806 Palmerston AMRRIC 

PI 781 781RSN Rhipicephalus sanguineus 0 1 0 0 NT 0830 Palmerston 

(15 mile) 
Indegenous 

Village 

N/A -12.48809722 131.0116806 Palmerston AMRRIC 

PI 781 781RSL Rhipicephalus sanguineus 1 0 0 0 NT 830 Palmerston 
(15 mile) 

N/A -12.48809722 131.0116806 Palmerston AMRRIC 
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Indigenous 

Village 

PI 781 781RSM Rhipicephalus sanguineus 0 0 8 0 NT 830 Palmerston 
(15 mile) 

Indigenous 

Village 

N/A -12.48809722 131.0116806 Palmerston AMRRIC 

PI 782 782RSF Rhipicephalus sanguineus 0 0 0 33 NT 830 Palmerston 

(15 mile) 

Indigenous 

Village 

N/A -12.48809722 131.0116806 Palmerston AMRRIC 

PI 782 782RSM Rhipicephalus sanguineus 0 0 69 0 NT 830 Palmerston 

(15 mile) 

Indigenous 
Village 

N/A -12.48809722 131.0116806 Palmerston AMRRIC 

PI 782 782RSN Rhipicephalus sanguineus 0 1 0 0 NT 830 Palmerston 

(15 mile) 
Indigenous 

Village 

N/A -12.48809722 131.0116806 Palmerston AMRRIC 

PI 783 783RSF Rhipicephalus sanguineus 0 0 0 56 NT 830 Palmerston 

(15 mile) 
Indigenous 

Village 

N/A -12.48809722 131.0116806 Palmerston AMRRIC 

PI 783 783RSM Rhipicephalus sanguineus 0 0 53 0 NT 830 Palmerston 

(15 mile) 

Indigenous 

Village 

N/A -12.48809722 131.0116806 Palmerston AMRRIC 

PI 784 784RSF Rhipicephalus sanguineus 0 0 0 23 NT 830 Palmerston 

(15 mile) 

Indigenous 
Village 

N/A -12.48809722 131.0116806 Palmerston AMRRIC 

PI 784 784RSM Rhipicephalus sanguineus 0 0 8 0 NT 830 Palmerston 

(15 mile) 

Indigenous 
Village 

N/A -12.48809722 131.0116806 Palmerston AMRRIC 

PI 784 784RSN Rhipicephalus sanguineus 0 1 0 0 NT 830 Palmerston 

(15 mile) 
Indigenous 

Village 

N/A -12.48809722 131.0116806 Palmerston AMRRIC 

PI 785 785RSF Rhipicephalus sanguineus 0 0 0 17 NT 830 Palmerston 

(15 mile) 
Indigenous 

Village 

N/A -12.48809722 131.0116806 Palmerston AMRRIC 

PI 785 785RSL Rhipicephalus sanguineus 13 0 0 0 NT 830 Palmerston 
(15 mile) 

N/A -12.48809722 131.0116806 Palmerston AMRRIC 
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Indigenous 

Village 

PI 785 785RSM Rhipicephalus sanguineus 0 0 15 0 NT 830 Palmerston 
(15 mile) 

Indigenous 

Village 

N/A -12.48809722 131.0116806 Palmerston AMRRIC 

PI 785 785RSN Rhipicephalus sanguineus 0 46 0 0 NT 830 Palmerston 

(15 mile) 

Indigenous 

Village 

N/A -12.48809722 131.0116806 Palmerston AMRRIC 

PI 786 786RSF Rhipicephalus sanguineus 0 0 0 35 NT 830 Palmerston 

(15 mile) 

Indigenous 
Village 

N/A -12.48809722 131.0116806 Palmerston AMRRIC 

PI 786 786RSL Rhipicephalus sanguineus 1 0 0 0 NT 830 Palmerston 

(15 mile) 
Indigenous 

Village 

N/A -12.48809722 131.0116806 Palmerston AMRRIC 

PI 786 786RSM Rhipicephalus sanguineus 0 0 37 0 NT 830 Palmerston 

(15 mile) 
Indigenous 

Village 

N/A -12.48809722 131.0116806 Palmerston AMRRIC 

PI 786 786RSN Rhipicephalus sanguineus 0 1 0 0 NT 830 Palmerston 

(15 mile) 

Indigenous 

Village 

N/A -12.48809722 131.0116806 Palmerston AMRRIC 

PI 787 787RSF Rhipicephalus sanguineus 0 0 0 12 NT 830 Palmerston 

(15 mile) 

Indigenous 
Village 

N/A -12.48809722 131.0116806 Palmerston AMRRIC 

PI 787 787RSL Rhipicephalus sanguineus 1 0 0 0 NT 830 Palmerston 

(15 mile) 

Indigenous 
Village 

N/A -12.48809722 131.0116806 Palmerston AMRRIC 

PI 787 787RSM Rhipicephalus sanguineus 0 0 3 0 NT 830 Palmerston 

(15 mile) 
Indigenous 

Village 

N/A -12.48809722 131.0116806 Palmerston AMRRIC 

PI 788 788RSF Rhipicephalus sanguineus 0 0 0 29 NT 0872 Mutitjulu 

Indigenous 
Community 

N/A -25.3523 131.0667 Mutitjulu AMRRIC 

PI 788 788RSM Rhipicephalus sanguineus 0 0 26 0 NT 0872 Mutitjulu 

Indigenous 
Community 

N/A -25.3523 131.0667 Mutitjulu AMRRIC 



 

 

  

1
2
3

 

PI 788 788RSN Rhipicephalus sanguineus 0 1 0 0 NT 0872 Mutitjulu 

Indigenous 
Community 

N/A -25.3523 131.0667 Mutitjulu AMRRIC 

PI 789 789RSF Rhipicephalus sanguineus 0 0 0 19 NT 0873 Mutitjulu 

Indigenous 

Community 

N/A -25.3523 131.0667 Mutitjulu AMRRIC 

PI 789 789RSM Rhipicephalus sanguineus 0 0 28 0 NT 0873 Mutitjulu 

Indigenous 

Community 

N/A -25.3523 131.0667 Mutitjulu AMRRIC 

PI 790 790RSF Rhipicephalus sanguineus 0 0 0 35 NT 0874 Mutitjulu 
Indigenous 

Community 

N/A -25.3523 131.0667 Mutitjulu AMRRIC 

PI 790 790RSM Rhipicephalus sanguineus 0 0 15 0 NT 0874 Mutitjulu 
Indigenous 

Community 

N/A -25.3523 131.0667 Mutitjulu AMRRIC 

PI 791 791RSF Rhipicephalus sanguineus 0 0 0 28 NT 0875 Mutitjulu 

Indigenous 
Community 

N/A -25.3523 131.0667 Mutitjulu AMRRIC 

PI 791 791RSM Rhipicephalus sanguineus 0 0 23 0 NT 0875 Mutitjulu 

Indigenous 
Community 

N/A -25.3523 131.0667 Mutitjulu AMRRIC 

PI 792 792RSF Rhipicephalus sanguineus 0 0 0 24 NT 0876 Mutitjulu 

Indigenous 

Community 

N/A -25.3523 131.0667 Mutitjulu AMRRIC 

PI 792 792RSM Rhipicephalus sanguineus 0 0 19 0 NT 0876 Mutitjulu 

Indigenous 

Community 

N/A -25.3523 131.0667 Mutitjulu AMRRIC 

PI 792 792RSN Rhipicephalus sanguineus 0 2 0 0 NT 0876 Mutitjulu 

Indigenous 

Community 

N/A -25.3523 131.0667 Mutitjulu AMRRIC 

PI 793 793RSF Rhipicephalus sanguineus 0 0 0 2 NT 0877 Yuendumu 293km NW 
of Alice 

Springs 

-22.253296 131.795945 Yuendumu AMRRIC 

PI 793 793RSL Rhipicephalus sanguineus 1 0 0 0 NT 0877 Yuendumu 293km NW 
of Alice 

Springs 

-22.253296 131.795945 Yuendumu AMRRIC 

PI 793 793RSM Rhipicephalus sanguineus 0 0 30 0 NT 0877 Yuendumu 293km NW 

of Alice 

Springs 

-22.253296 131.795945 Yuendumu AMRRIC 

PI 793 793RSN Rhipicephalus sanguineus 0 22 0 0 NT 0877 Yuendumu 293km NW 

of Alice 
Springs 

-22.253296 131.795945 Yuendumu AMRRIC 
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PI 794 794RSF Rhipicephalus sanguineus 0 0 0 11 NT 0878 Yuendumu 293km NW 

of Alice 
Springs 

-22.253296 131.795945 Yuendumu AMRRIC 

PI 794 794RSM Rhipicephalus sanguineus 0 0 17 0 NT 0878 Yuendumu 293km NW 

of Alice 

Springs 

-22.253296 131.795945 Yuendumu AMRRIC 

PI 795 795RSF Rhipicephalus sanguineus 0 0 0 12 NT 0879 Nyirripi 160km 

WSW of 

Yuendumu 

-22.6475681 130.5494494 Nyirripi AMRRIC 

PI 795 795RSM Rhipicephalus sanguineus 0 0 43 0 NT 0879 Nyirripi 160km 
WSW of 

Yuendumu 

-22.6475681 130.5494494 Nyirripi AMRRIC 

PI 795 795RSN Rhipicephalus sanguineus 0 12 0 0 NT 0879 Nyirripi 160km 
WSW of 

Yuendumu 

-22.6475681 130.5494494 Nyirripi AMRRIC 

PI 796 796RSF Rhipicephalus sanguineus 0 0 0 2 NT 0880 Yuelamu (Mt 

Allan) 

290km NW 

of Alice 
Springs 

-22.257958 132.204607 Yuelamu AMRRIC 

PI 796 796RSM Rhipicephalus sanguineus 0 0 4 0 NT 0880 Yuelamu (Mt 

Allan) 

290km NW 

of Alice 
Springs 

-22.257958 132.204607 Yuelamu AMRRIC 

PI 798 798RSF Rhipicephalus sanguineus 0 0 0 7 NT 0860 Ali Curung via Tennart 

Creek 

-19.648306 134.186642 Tennant 

Creek 

AMRRIC 

PI 798 798RSM Rhipicephalus sanguineus 0 0 7 0 NT 0860 Ali Curung via Tennart 
Creek 

-19.648306 134.186642 Tennant 
Creek 

AMRRIC 

PI 823 823IHF Ixodes holocyclus 0 0 0 1 NSW       Lake Rd 

Vet Clinic 

PI 828 828HLF Haemaphysalis longicornis 0 0 0 1 NSW       Member of 
public 

PI 828 828HLN Haemaphysalis longicornis 0 1 0 0 NSW       Member of 

public 

PI 829 829HLF Haemaphysalis longicornis 0 0 0 2 NSW       Member of 
public 

PI 830 830HLF Haemaphysalis longicornis 0 0 0 4 NSW       Member of 

public 

PI 831 831HLF Haemaphysalis longicornis 0 0 0 2 NSW       Member of 
public 

PI 832 832HLF Haemaphysalis longicornis 0 0 0 1 NSW       Member of 

public 

PI 833 833HLN Haemaphysalis longicornis 0 1 0 0 NSW       Member of 
public 

PI 834 834(ORIG) Amblyomma triguttatum 

(triguttatum) 

0 0 0 1 WA       Member of 

public 



 

 

  

1
2
5

 

PI 836 836RSF Rhipicephalus sanguineus 0 0 0 21 SA 5734 Oodnadatta N/A -27.546529 135.447026 Oodnadatta Redgum 

Vet and 
Boarding 

PI 836 836RSM Rhipicephalus sanguineus 0 0 46 0 SA 5734 Oodnadatta N/A -27.546529 135.447026 Oodnadatta Redgum 

Vet and 

Boarding 

PI 836 836RSN Rhipicephalus sanguineus 0 3 0 0 SA 5734 Oodnadatta N/A -27.546529 135.447026 Oodnadatta Redgum 

Vet and 

Boarding 

PI 837 837RSF Rhipicephalus sanguineus 0 0 0 1 SA 5723 Coober Pedy N/A -29.037845 134.723814 Coober 
Pedy 

Redgum 
Vet and 

Boarding 

PI 837 837RSM Rhipicephalus sanguineus 0 0 1 0 SA 5723 Coober Pedy N/A -29.037845 134.723814 Coober 
Pedy 

Redgum 
Vet and 

Boarding 

PI 838 838RSF Rhipicephalus sanguineus 0 0 0 5 SA 5723 Coober Pedy N/A -29.037845 134.723814 Coober 

Pedy 

Redgum 

Vet and 
Boarding 

PI 838 838RSM Rhipicephalus sanguineus 0 0 18 0 SA 5723 Coober Pedy N/A -29.037845 134.723814 Coober 

Pedy 

Redgum 

Vet and 
Boarding 

PI 838 838RSN Rhipicephalus sanguineus 0 1 0 0 SA 5723 Coober Pedy N/A -29.037845 134.723814 Coober 

Pedy 

Redgum 

Vet and 

Boarding 

PI 839 839RSF Rhipicephalus sanguineus 0 0 0 1 SA 5734 Oodnadatta N/A -27.546529 135.447026 Oodnadatta Redgum 

Vet and 

Boarding 

PI 840 840RSF Rhipicephalus sanguineus 0 0 0 1 SA 5723 Coober Pedy N/A -29.037845 134.723814 Coober 

Pedy 

Redgum 

Vet and 

Boarding 

PI 840 840RSM Rhipicephalus sanguineus 0 0 1 0 SA 5723 Coober Pedy N/A -29.037845 134.723814 Coober 
Pedy 

Redgum 
Vet and 

Boarding 

PI 841 841RSF Rhipicephalus sanguineus 0 0 0 19 SA 5734 Oodnadatta N/A -27.546529 135.447026 Oodnadatta Redgum 
Vet and 

Boarding 

PI 841 841RSM  Rhipicephalus sanguineus 0 0 47 0 SA 5734 Oodnadatta N/A -27.546529 135.447026 Oodnadatta Redgum 

Vet and 

Boarding 

PI 841 841RSN Rhipicephalus sanguineus 0 33 0 0 SA 5734 Oodnadatta N/A -27.546529 135.447026 Oodnadatta Redgum 

Vet and 
Boarding 
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PI 842 842RSM Rhipicephalus sanguineus 0 0 2 0 SA 5734 Oodnadatta N/A -27.546529 135.447026 Oodnadatta Redgum 

Vet and 
Boarding 

PI 843 843RSF Rhipicephalus sanguineus 0 0 0 40 SA 5734 Oodnadatta N/A -27.546529 135.447026 Oodnadatta Redgum 

Vet and 

Boarding 

PI 843 843RSM Rhipicephalus sanguineus 0 0 70 0 SA 5734 Oodnadatta N/A -27.546529 135.447026 Oodnadatta Redgum 

Vet and 

Boarding 

PI 843 843RSN Rhipicephalus sanguineus 0 2 0 0 SA 5734 Oodnadatta N/A -27.546529 135.447026 Oodnadatta Redgum 
Vet and 

Boarding 

PI 844 844RSF Rhipicephalus sanguineus 0 0 0 7 SA 5734 Oodnadatta N/A -27.546529 135.447026 Oodnadatta Redgum 
Vet and 

Boarding 

PI 844 844RSL Rhipicephalus sanguineus 1 0 0 0 SA 5734 Oodnadatta N/A -27.546529 135.447026 Oodnadatta Redgum 

Vet and 
Boarding 

PI 844 844RSM Rhipicephalus sanguineus 0 0 14 0 SA 5734 Oodnadatta N/A -27.546529 135.447026 Oodnadatta Redgum 

Vet and 
Boarding 

PI 844 844RSN Rhipicephalus sanguineus 0 1 0 0 SA 5734 Oodnadatta N/A -27.546529 135.447026 Oodnadatta Redgum 

Vet and 

Boarding 

PI 850 850RSF Rhipicephalus sanguineus 0 0 0 3 NT  Kalaluk Coconut 

Grove  

-12.398 130.852 Darwin AMRRIC 

PI 850 850RSL Rhipicephalus sanguineus 10 0 0 0 NT  Kalaluk Coconut 
Grove  

-12.398 130.852 Darwin AMRRIC 

PI 850 850RSM Rhipicephalus sanguineus 0 0 4 0 NT  Kalaluk Coconut 

Grove  

-12.398 130.852 Darwin AMRRIC 

PI 850 850RSN Rhipicephalus sanguineus 0 1 0 0 NT  Kalaluk Coconut 
Grove  

-12.398 130.852 Darwin AMRRIC 

PI 851 851RSF Rhipicephalus sanguineus 0 0 0 9 NT 872 Lake Nash = 

Alpurrurulam 

N/A -20.981094 137.861604 Lake Nash AMRRIC 

PI 851 851RSM Rhipicephalus sanguineus 0 0 14 0 NT 872 Lake Nash = 
Alpurrurulam 

N/A -20.981094 137.861604 Lake Nash AMRRIC 

PI 852 852RSF Rhipicephalus sanguineus 0 0 0 3 NT 872 Lake Nash = 

Alpurrurulam 

N/A -20.981094 137.861604 Lake Nash AMRRIC 

PI 852 852RSM Rhipicephalus sanguineus 0 0 3 0 NT 872 Lake Nash = 
Alpurrurulam 

N/A -20.981094 137.861604 Lake Nash AMRRIC 

PI 853 853RSF Rhipicephalus sanguineus 0 0 0 10 NT 872 Lake Nash = 

Alpurrurulam 

N/A -20.981094 137.861604 Lake Nash AMRRIC 

PI 853 853RSM Rhipicephalus sanguineus 0 0 9 0 NT 872 Lake Nash = 
Alpurrurulam 

N/A -20.981094 137.861604 Lake Nash AMRRIC 
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PI 853 853RSN Rhipicephalus sanguineus 0 2 0 0 NT 872 Lake Nash = 

Alpurrurulam 

N/A -20.981094 137.861604 Lake Nash AMRRIC 

PI 854 854RSM Rhipicephalus sanguineus 0 0 1 0 NT 820 Bagot N/A -12.415 130.856 Darwin AMRRIC 

PI 854 854RSN Rhipicephalus sanguineus 0 32 0 0 NT 820 Bagot N/A -12.415 130.856 Darwin AMRRIC 

PI 855 855RSF Rhipicephalus sanguineus 0 0 0 7 NT 828 Knuckey 

Lagoon 

N/A -12.426825 130.934141 Knuckey 

Lagoon 

AMRRIC 

PI 856 856RSN Rhipicephalus sanguineus 0 15 0 0 NT  Minmarama N/A -12.41118055 130.8491806 Darwin AMRRIC 

PI 858 858ITF Ixodes tasmani 0 0 0 1 TAS       Forbes St 

Vet Clinic 

PI 859 859ITF Ixodes tasmani 0 0 0 1 TAS       Forbes St 

Vet Clinic 

PI 860 860ITN Ixodes tasmani 0 1 0 0 TAS       Forbes St 

Vet Clinic 

PI 863 863ITL Ixodes tasmani 5 0 0 0 TAS       Forbes St 

Vet Clinic 

PI 864 864ITF Ixodes tasmani 0 0 0 1 TAS       Forbes St 

Vet Clinic 

PI 865 865ITF Ixodes tasmani 0 0 0 1 TAS       Forbes St 
Vet Clinic 

PI 866 866ITF Ixodes tasmani 0 0 0 1 TAS       Forbes St 

Vet Clinic 

PI 867 867ITL Ixodes tasmani 11 0 0 0 TAS       Forbes St 
Vet Clinic 

PI 870 870RSF Rhipicephalus sanguineus 0 0 0 13 NT 820 Bagot N/A -12.415 130.856 Darwin AMRRIC 

PI 870 870RSM Rhipicephalus sanguineus 0 0 13 0 NT 820 Bagot N/A -12.415 130.856 Darwin AMRRIC 

PI 870 870RSN Rhipicephalus sanguineus 0 4 0 0 NT 820 Bagot N/A -12.415 130.856 Darwin AMRRIC 

PI 871 871RSF Rhipicephalus sanguineus 0 0 0 9 NT 820 Bagot N/A -12.415 130.856 Darwin AMRRIC 

PI 871 871RSM Rhipicephalus sanguineus 0 0 18 0 NT 820 Bagot N/A -12.415 130.856 Darwin AMRRIC 

PI 871 871RSN Rhipicephalus sanguineus 0 3 0 0 NT 820 Bagot N/A -12.415 130.856 Darwin AMRRIC 

PI 872 872RSF Rhipicephalus sanguineus 0 0 0 18 NT 820 Bagot N/A -12.415 130.856 Darwin AMRRIC 

PI 872 872RSM Rhipicephalus sanguineus 0 0 13 0 NT 820 Bagot N/A -12.415 130.856 Darwin AMRRIC 

PI 872 872RSN Rhipicephalus sanguineus 0 7 0 0 NT 820 Bagot N/A -12.415 130.856 Darwin AMRRIC 

PI 873 873RSF Rhipicephalus sanguineus 0 0 0 10 NT 820 Bagot N/A -12.415 130.856 Darwin AMRRIC 

PI 873 873RSM Rhipicephalus sanguineus 0 0 12 0 NT 820 Bagot N/A -12.415 130.856 Darwin AMRRIC 
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PI 873 873RSN Rhipicephalus sanguineus 0 2 0 0 NT 820 Bagot N/A -12.415 130.856 Darwin AMRRIC 

PI 874 874RSF Rhipicephalus sanguineus 0 0 0 8 NT 820 Bagot N/A -12.415 130.856 Darwin AMRRIC 

PI 874 874RSM Rhipicephalus sanguineus 0 0 17 0 NT 820 Bagot N/A -12.415 130.856 Darwin AMRRIC 

PI 875 875RSF Rhipicephalus sanguineus 0 0 0 29 NT 0820 Palmerston 

Indigenous 

Village 

N/A -12.48809722 131.0116806 Palmerston AMRRIC 

PI 875 875RSM Rhipicephalus sanguineus 0 0 33 0 NT 0820 Palmerston 

Indigenous 

Village 

N/A -12.48809722 131.0116806 Palmerston AMRRIC 

PI 875 875RSN Rhipicephalus sanguineus 0 1 0 0 NT 0820 Palmerston 
Indigenous 

Village 

N/A -12.48809722 131.0116806 Palmerston AMRRIC 

PI 879 879RSF Rhipicephalus sanguineus 0 0 0 1 WA 6122 Byford N/A -32.221725 116.0072 Perth Foothills 

Animal 
Hospital 

PI 880 880RSF Rhipicephalus sanguineus 0 0 0 1 WA 6112 Armadale Foothills 

Animal 
Hospital, 23 

Thomas St 

-32.154628 116.016502 Perth Foothills 

Animal 
Hospital 

PI 881 881RSF Rhipicephalus sanguineus 0 0 0 1 WA 6112 Armadale Foothills 
Animal 

Hospital, 23 

Thomas St 

-32.154628 116.016502 Perth Foothills 
Animal 

Hospital 

PI 882 882RSF Rhipicephalus sanguineus 0 0 0 1 WA 6112 Armadale Foothills 
Animal 

Hospital, 23 

Thomas St 

-32.154628 116.016502 Perth Foothills 
Animal 

Hospital 

PI 883 883(ORIG) Amblyomma triguttatum 

(triguttatum) 

0 0 0 1 WA       Foothills 

Animal 

Hospital 

SUM    56 528 1291 1401         

TOTAL                
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Table A.2: Number of overall submissions from each state and territory. 

State/Territory Number of 

Submissions 

New South Wales (NSW) 105 

Northern Territory (NT) 71 

Queensland (QLD) 23 

South Australia (SA) 9 

Tasmania (TAS) 34 

Victoria (VIC) 1 

Western Australia (WA)  43 

Total 286 
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Appendix B.  

Table B.1: Mapping file with MID-tag combinations  

#SampleID BarcodeSequence RBarcodeSequence Genus Species Pooling Sex HostGenus HostSpecies PostCodeAus GeoLocation OriginalTubeID F_Tag R_Tag 

264RSM TATGCGAC ACTGTG Rhipicephalus sanguineus 1xMale Male Canis lupis 0810 Darwin PI 264 F441 R37 

640RSM TATGCGAC AACAAC Rhipicephalus sanguineus 2xMale Male Canis lupis 0810 Darwin PI 640 F441 R38 

646RSM TATGCGAC ACTTGA Rhipicephalus sanguineus 2xMale Male Canis lupis 0810 Darwin PI 646 F441 R39 

650RSM TATGCGAC GGTGTT Rhipicephalus sanguineus 2xMale Male Canis lupis 0830 Darwin PI 650 F441 R40 

641RSM TATGCGAC AGAAGA Rhipicephalus sanguineus 2xMale Male Canis lupis 0810 Darwin PI 641 F441 R41 

265RSM TATGCGAC TTGAAG Rhipicephalus sanguineus 1xMale Male Canis lupis 0820 Darwin PI 265 F441 R42 

644RSM TATGCGAC AACTTG Rhipicephalus sanguineus 5xMale Male Canis lupis 0820 Darwin PI 644 F441 R43 

267RSM TATGCGAC AAGACA Rhipicephalus sanguineus 3xMale Male Canis lupis 0820 Darwin PI 267 F441 R44 

266RSM TGATCGAC ACTGTG Rhipicephalus sanguineus 2xMale Male Canis lupis 0820 Darwin PI 266 F442 R37 

264RSF TGATCGAC AACAAC Rhipicephalus sanguineus 1xFemale Female Canis lupis 0810 Darwin PI 264 F442 R38 

640RSF TGATCGAC ACTTGA Rhipicephalus sanguineus 1xFemale Female Canis lupis 0810 Darwin PI 640 F442 R39 

646RSF TGATCGAC GGTGTT Rhipicephalus sanguineus 2xFemale Female Canis lupis 0810 Darwin PI 646 F442 R40 

650RSF TGATCGAC AGAAGA Rhipicephalus sanguineus 2xFemale Female Canis lupis 0830 Darwin PI 650 F442 R41 

641RSF TGATCGAC TTGAAG Rhipicephalus sanguineus 2xFemale Female Canis lupis 0810 Darwin PI 641 F442 R42 

265RSF TGATCGAC AACTTG Rhipicephalus sanguineus 1xFemale Female Canis lupis 0820 Darwin PI 265 F442 R43 

644RSF TGATCGAC AAGACA Rhipicephalus sanguineus 2xFemale Female Canis lupis 0820 Darwin PI 644 F442 R44 

267RSF AGCTCGAC ACTGTG Rhipicephalus sanguineus 2xFemale Female Canis lupis 0820 Darwin PI 267 F443 R37 

266RSF AGCTCGAC AACAAC Rhipicephalus sanguineus 2xFemale Female Canis lupis 0820 Darwin PI 266 F443 R38 

697RSM AGCTCGAC ACTTGA Rhipicephalus sanguineus 1xMale Male Canis lupis 6164 Perth PI 697 F443 R39 

695RSM AGCTCGAC GGTGTT Rhipicephalus sanguineus 1xMale Male Canis lupis 6110 Perth PI 695 F443 R40 
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699RSM AGCTCGAC AGAAGA Rhipicephalus sanguineus 1xMale Male Canis lupis 6110 Perth PI 699 F443 R41 

136RSM AGCTCGAC TTGAAG Rhipicephalus sanguineus 5xMale Male Canis lupis 6150 Perth PI 136 F443 R42 

286RSM AGCTCGAC AACTTG Rhipicephalus sanguineus 1xMale Male Canis lupis 6149 Perth PI 286 F443 R43 

770RSM AGCTCGAC AAGACA Rhipicephalus sanguineus 6xMale Male Canis lupis 6025 Perth PI 770 F443 R44 

879RSF ATCATGAC ACTGTG Rhipicephalus sanguineus 1xFemale Female Canis lupis 6122 Perth PI 879 F444 R37 

880RSF ATCATGAC AACAAC Rhipicephalus sanguineus 1xFemale Female Canis lupis 6112 Perth PI 880 F444 R38 

881RSF ATCATGAC ACTTGA Rhipicephalus sanguineus 1xFemale Female Canis lupis 6112 Perth PI 881 F444 R39 

882RSF ATCATGAC GGTGTT Rhipicephalus sanguineus 1xFemale Female Canis lupis 6112 Perth PI 882 F444 R40 

697RSF ATCATGAC AGAAGA Rhipicephalus sanguineus 2xFemale Female Canis lupis 6164 Perth PI 697 F444 R41 

698RSF ATCATGAC TTGAAG Rhipicephalus sanguineus 1xFemale Female Canis lupis 6164 Perth PI 698 F444 R42 

696RSF ATCATGAC AACTTG Rhipicephalus sanguineus 2xFemale Female Canis lupis 6110 Perth PI 696 F444 R43 

699RSF ATCATGAC AAGACA Rhipicephalus sanguineus 2xFemale Female Canis lupis 6110 Perth PI 699 F444 R44 

76RSF TATATGAC ACTGTG Rhipicephalus sanguineus 1xFemale Female Canis lupis 6162 Perth PI 076 F445 R37 

198RSF TATATGAC AACAAC Rhipicephalus sanguineus 1xFemale Female Canis lupis 6150 Perth PI 198 F445 R38 

282RSF TATATGAC ACTTGA Rhipicephalus sanguineus 1xFemale Female Canis lupis 6149 Perth PI 282 F445 R39 

285RSF TATATGAC GGTGTT Rhipicephalus sanguineus 1xFemale Female Canis lupis 6149 Perth PI 285 F445 R40 

770RSF TATATGAC AGAAGA Rhipicephalus sanguineus 2xFemale Female Canis lupis 6025 Perth PI 770 F445 R41 

Darwin 
Extraction 
Control 

TATATGAC TTGAAG ExControl ExControl ExControl ExControl ExControl ExControl ExControl ExControl ExControl F445 R42 

Perth 
Extraction 
Control 

TATATGAC AACTTG ExControl ExControl ExControl ExControl ExControl ExControl ExControl ExControl ExControl F445 R43 

Palmerston 
Extraction 
Control 

TATATGAC AAGACA ExControl ExControl ExControl ExControl ExControl ExControl ExControl ExControl ExControl F445 R44 

Clean Lab 
NTC 

ACGCTGAC ACTGTG NTControl NTControl NTControl NTControl NTControl NTControl NTControl NTControl NTControl F446 R37 

Cryptick 
Lab NTC 

ACGCTGAC AACAAC NTControl NTControl NTControl NTControl NTControl NTControl NTControl NTControl NTControl F446 R38 
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649RSM TCTCTGAC ACTGTG Rhipicephalus sanguineus 2xMale Male Canis lupis 0830 Palmerston PI 649 F447 R37 

654RSM TCTCTGAC AACAAC Rhipicephalus sanguineus 1xMale Male Canis lupis 0830 Palmerston PI 654 F447 R38 

260RSM TCTCTGAC ACTTGA Rhipicephalus sanguineus 1xMale Male Canis lupis 0832 Palmerston PI 260 F447 R39 

262RSM TCTCTGAC GGTGTT Rhipicephalus sanguineus 3xMale Male Canis lupis 0830 Palmerston PI 262 F447 R40 

651RSM TCTCTGAC AGAAGA Rhipicephalus sanguineus 2xMale Male Canis lupis 0830 Palmerston PI 651 F447 R41 

259RSM TCTCTGAC TTGAAG Rhipicephalus sanguineus 1xMale Male Canis lupis 0831 Palmerston PI 259 F447 R42 

656RSM TCTCTGAC AACTTG Rhipicephalus sanguineus 1xMale Male Canis lupis 0832 Palmerston PI 656 F447 R43 

653RSM TCTCTGAC AAGACA Rhipicephalus sanguineus 1xMale Male Canis lupis 0833 Palmerston PI 653 F447 R44 

652RSM TCAGTGAC ACTGTG Rhipicephalus sanguineus 2xMale Male Canis lupis 0830 Palmerston PI 652 F448 R37 

261RSM TCAGTGAC AACAAC Rhipicephalus sanguineus 2xMale Male Canis lupis 0830 Palmerston PI 261 F448 R38 

263RSM TCAGTGAC ACTTGA Rhipicephalus sanguineus 2xMale Male Canis lupis 0832 Palmerston PI 263 F448 R39 

649RSF TCAGTGAC GGTGTT Rhipicephalus sanguineus 3xFemale Female Canis lupis 0830 Palmerston PI 649 F448 R40 

654RSF TCAGTGAC AGAAGA Rhipicephalus sanguineus 2xFemale Female Canis lupis 0830 Palmerston PI 654 F448 R41 

655RSF TCAGTGAC TTGAAG Rhipicephalus sanguineus 2xFemale Female Canis lupis 0830 Palmerston PI 655 F448 R42 

260RSF TCAGTGAC AACTTG Rhipicephalus sanguineus 1xFemale Female Canis lupis 0832 Palmerston PI 260 F448 R43 

647RSF TCAGTGAC AAGACA Rhipicephalus sanguineus 1xFemale Female Canis lupis 0830 Palmerston PI 647 F448 R44 

262RSF ATAGTGAC ACTGTG Rhipicephalus sanguineus 2xFemale Female Canis lupis 0830 Palmerston PI 262 F449 R37 

637RSF ATAGTGAC AACAAC Rhipicephalus sanguineus 1xFemale Female Canis lupis 0830 Palmerston PI 637 F449 R38 

259RSF ATAGTGAC ACTTGA Rhipicephalus sanguineus 2xFemale Female Canis lupis 0831 Palmerston PI 259 F449 R39 

653RSF ATAGTGAC GGTGTT Rhipicephalus sanguineus 1xFemale Female Canis lupis 0832 Palmerston PI 653 F449 R40 

652RSF ATAGTGAC AGAAGA Rhipicephalus sanguineus 2xFemale Female Canis lupis 0830 Palmerston PI 652 F449 R41 

261RSF ATAGTGAC TTGAAG Rhipicephalus sanguineus 1xFemale Female Canis lupis 0830 Palmerston PI 261 F449 R42 
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Table B.2: Relative quantification CT values and pooling volume for Darwin and Perth 

samples with Bact16S27F/338R primers

Sample CT 

rep1 

CT 

rep2 

CT 

Mean 

Ref 

CT 

Ratio Volume 

(µL) 

Pool 

# 

264RSM 27.19 27.14 27.165 21.61 1.26 12.57 1 

640RSM 23.09 22.78 22.935 21.61 1.06 10.61 1 

646RSM 24.91 24.19 24.55 21.61 1.14 11.36 1 

650RSM 22.61 22.14 22.375 21.61 1.04 9.35 1 

641RSM 21.4 21.4 21.4 21.61 0.99 8.90 1 

265RSM 28.41 28.19 28.3 21.61 1.31 13.10 1 

644RSM 18.76   18.76 21.61 0.87 7.68 1 

267RSM 21.36 27.51 24.435 21.61 1.13 11.31 1 

266RSM 27.96 27.57 27.765 21.61 1.28 12.85 2 

264RSF  29.22 29.22 21.61 1.35 13.52 2 

640RSF 28.06 27.06 27.56 21.61 1.28 12.75 2 

646RSF 27.48 27.32 27.4 21.61 1.27 12.68 2 

650RSF 20.98 22.6 21.79 21.61 1.01 9.08 2 

641RSF 21.35 21.87 21.61 21.61 1.00 10.00 2 

265RSF 27.26 27.76 27.51 21.61 1.27 12.73 2 

644RSF 17.56 16.78 17.17 21.61 0.79 6.95 2 

267RSF 29.09 29.74 29.415 21.61 1.36 13.61 3 

266RSF 24.34 23.91 24.125 21.61 1.12 11.16 3 

697RSM 23.68 24.244 23.962 21.61 1.11 11.09 3 

695RSM 26.03 26.73 26.38 21.61 1.22 12.21 3 

699RSM 27.82 28.64 28.23 21.61 1.31 13.06 3 

136RSM 26.44 26.122 26.2812 21.61 1.22 12.16 3 

286RSM 29.09 28.87 28.98 21.61 1.34 13.41 3 

770RSM 26.07 25.93 26 21.61 1.20 12.03 3 

Amp plateaued - 

volume adjusted 

manually 

 

Reference Sample 
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Table B.3: Relative quantification CT values and pooling volume for Perth samples with 

Bact16S27F/338R primers

Sample CT 

rep1 

CT 

rep2 

CT 

Mean 

Ref 

CT 

Ratio Volume 

(µL) 

Pool # 

879RSF 24.3965 25.5432 24.96985 22.43 1.11 11.13 1 

880RSF 25.2661 26.0458 25.65595 22.43 1.14 11.44 1 

881RSF 28.3408 27.9919 28.16635 22.43 1.26 12.56 1 

882RSF  25.8615 25.8615 22.43 1.15 11.53 1 

697RSF 23.8173 23.6041 23.7107 22.43 1.06 10.57 1 

698RSF 27.545 26.049 26.797 22.43 1.19 11.95 1 

696RSF 23.6489 23.286 23.46745 22.43 1.05 10.46 1 

699RSF 26.5253 25.3863 25.9558 22.43 1.16 11.57 2 

76RSF 27.1928 27.6422 27.4175 22.43 1.22 12.22 2 

198RSF 28.1554 28.2919 28.22365 22.43 1.26 12.58 2 

282RSF 22.8037 22.0656 22.43465 22.43 1.00 10.00 2 

285RSF 23.1949 23.1192 23.15705 22.43 1.03 10.32 2 

770RSF 27.5545 27.4551 27.5048 22.43 1.23 12.26 2 

Darwin Ext Ctrl 31.0663  31.0663 22.43 1.39 13.85 3 

Perth Ext Ctrl 30.3197 30.9662 30.64295 22.43 1.37 13.66 3 

Palmerston Ext 

Ctrl 

31.1187 30.1839 30.6513 22.43 1.37 13.67 3 

NTC 30.9391  30.9391 22.43 1.38 13.79 3 

NTC 31.9095  31.9095 22.43 1.42 14.23 3 

Amp plateaued - 

volume adjusted 

manually 

 

Reference Sample 
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Table B.4: Relative quantification CT values and pooling volume for Palmerston samples 

with Bact16S27F/338R primers.

Sample CT 

rep1 

CT 

rep2 

CT 

Mean 

Ref CT Ratio Volume 

(µL) 

Pool # 

649RSM 29.9158 28.4868 29.2013 26.8849 1.09 10.86 1 

654RSM 31.8514 29.1968 30.5241 26.8849 1.14 11.35 1 

260RSM 28.9719 28.5115 28.7417 26.8849 1.07 10.69 1 

262RSM 26.2669 26.7292 26.49805 26.8849 0.99 9.86 1 

651RSM 28.0021 27.0614 27.53175 26.8849 1.02 10.24 1 

259RSM 30.7988 28.8829 29.84085 26.8849 1.11 11.10 1 

656RSM 29.9647 29.7731 29.8689 26.8849 1.11 11.11 1 

653RSM 30.3955 29.2445 29.82 26.8849 1.11 11.09 1 

652RSM 27.9534 27.2133 27.58335 26.8849 1.03 10.26 2 

261RSM 29.3841 29.8346 29.60935 26.8849 1.10 11.01 2 

263RSM 28.342 29.8603 29.10115 26.8849 1.08 10.82 2 

649RSF 29.3343 28.431 28.88265 26.8849 1.07 10.74 2 

654RSF 29.8684 30.0162 29.9423 26.8849 1.11 11.14 2 

655RSF 27.9441 27.1623 27.5532 26.8849 1.02 10.25 2 

260RSF 26.5578 27.212 26.8849 26.8849 1.00 10.00 2 

647RSF 26.4008 27.6803 27.04055 26.8849 1.01 10.06 2 

262RSF 28.39 28.4454 28.4177 26.8849 1.06 10.57 3 

637RSF 29.4722 30.521 29.9966 26.8849 1.12 11.16 3 

259RSF 28.4152 28.1685 28.29185 26.8849 1.05 10.52 3 

653RSF 30.3977 30.3683 30.383 26.8849 1.13 11.30 3 

652RSF 30.4664 30.1867 30.32655 26.8849 1.13 11.28 3 

261RSF 30.9892 30.0791 30.53415 26.8849 1.14 11.36 3 

Reference Sample        
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 CT Rep1 CT  

Rep 

2 

CT 

Rep3 

CT  

Mean 

 CT  

Rep1 

CT  

Rep2 

CT  

Rep3 

CT  

Mean 

Copies/µL Copies Volume 

to add 

(uL): 

     0.01 8.85 8.1 7.99 8.313333         

193,099,641  

         

386,199,282  

3.4 

1000000000 6.95 6.78 6.95 6.893333 0.001 11.68 11.75 11.86 11.76333           

14,541,395  

           

29,082,791  

44.7 

100000000 10.3  10 10.15 0.0005 12.93 12.71 12.49 12.71             

7,151,730  

           

14,303,460  

90.9 

10000000 13.21 13.23 13.36 13.26667 0.00025 14.01 14.43 14.07 14.17             

2,393,846  

             

4,787,693  

271.5 

1000000 16.6 16.26 16.48 16.44667 0.000125 14.63 14.73 14.44 14.6             

1,734,229  

             

3,468,457  

374.8 

100000 19.52 19.13 19.09 19.24667 6.25E-05 15.6 16.29 15.44 15.77667                

717,849  

             

1,435,698  

905.5 

10000 22.08 22.98 21.86 22.30667 3.13E-05 16.59 16.51 16.6 16.56667                

397,047  

                

794,094  

1637.1 

1000     1.56E-05 17.69 17.42 17.39 17.5                

197,237  

                

394,474  

3295.5 

             

Target 
Copy # 

650,000,000  Dilution 

used 

1in100  Volume 

Added 

3.4ul Library + 21.6ul water 

Table B.5: Absolute Quantification CT values and calculations for final volume.  
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Figure B: Absolute quantification standard curve.  
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Appendix C.  

 

Figure C.1: Amplification plot for Darwin undiluted DNA samples with Bact16S27F/338R 

primers. 
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Figure C.2: Amplification plot for Perth undiluted DNA samples with Bact16S27F/338R 

primers.  
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Figure C.3: Amplification plot for Palmerston undiluted DNA samples with 

Bact16S27F/338R primers. 
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Appendix D. 

Table D.1: Percent of Coxiella spp. reads for each sample.  

Sample ID Geographical 

Location 

Sex Number 

of Ticks 

(Genus) Coxiella % 

644RSM Darwin Male 5 0.00% 

641RSM Darwin Male 2 0.30% 

640RSM Darwin Male 2 0.40% 

646RSM Darwin Male 2 1.20% 

650RSM Darwin Male 2 1.80% 

266RSM Darwin Male 2 18.30% 

267RSM Darwin Male 3 31.40% 

265RSM Darwin Male 1 44.60% 

264RSM Darwin Male 1 48.00% 

644RSF Darwin Female 2 0.00% 

646RSF Darwin Female 2 0.10% 

650RSF Darwin Female 2 0.10% 

641RSF Darwin Female 2 0.90% 

640RSF Darwin Female 1 1.80% 

264RSF Darwin Female 1 3.20% 

267RSF Darwin Female 2 10.70% 

265RSF Darwin Female 1 74.60% 

266RSF Darwin Female 2 91.40% 

262RSM Palmerston Male 3 0.00% 

651RSM Palmerston Male 2 0.00% 

652RSM Palmerston Male 2 1.30% 

259RSM Palmerston Male 1 1.60% 

653RSM Palmerston Male 1 1.60% 

649RSM Palmerston Male 2 3.40% 

261RSM Palmerston Male 2 3.70% 

654RSM Palmerston Male 1 7.50% 

656RSM Palmerston Male 1 22.20% 

263RSM Palmerston Male 2 34.40% 

260RSM Palmerston Male 1 64.90% 

261RSF Palmerston Female 1 0.00% 

637RSF Palmerston Female 1 0.00% 

652RSF Palmerston Female 2 0.20% 

654RSF Palmerston Female 2 0.50% 

262RSF Palmerston Female 2 0.70% 

649RSF Palmerston Female 3 9.70% 

653RSF Palmerston Female 1 12.30% 

655RSF Palmerston Female 2 30.20% 

260RSF Palmerston Female 1 49.20% 

259RSF Palmerston Female 2 51.70% 

647RSF Palmerston Female 1 86.40% 

699RSM Perth Male 1 11.80% 

770RSM Perth Male 6 19.40% 

286RSM Perth Male 1 36.40% 

697RSM Perth Male 1 62.90% 

136RSM Perth Male 5 74.70% 
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695RSM Perth Male 1 81.40% 

198RSF Perth Female 1 7.90% 

699RSF Perth Female 2 11.40% 

696RSF Perth Female 2 13.20% 

770RSF Perth Female 2 38.10% 

698RSF Perth Female 1 45.50% 

697RSF Perth Female 2 53.90% 

881RSF Perth Female 1 54.00% 

76RSF Perth Female 1 73.00% 

879RSF Perth Female 1 84.90% 

880RSF Perth Female 1 92.80% 

282RSF Perth Female 1 97.40% 

882RSF Perth Female 1 98.90% 

285RSF Perth Female 1 99.20% 

Darwin 

Extraction 

Control 

N/A N/A N/A 0.00% 

Palmerston 

Extraction 

Control 

N/A N/A N/A 0.10% 

Perth 

Extraction 

Control 

N/A N/A N/A 0.20% 

Cryptick Lab 

NTC 

N/A N/A N/A 0.00% 

Clean Lab 

NTC 

N/A N/A N/A 0.00% 
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Table D.2: Legend for taxonomic assignment in QIIME.   

Legend Taxonomy 

   k__Bacteria;p__Actinobacteria;c__Actinobacteria;o__Actinomycetales;f__Nocardioidaceae;g__Friedmanniella 

   k__Bacteria;p__Proteobacteria;c__Alphaproteobacteria;o__Sphingomonadales;f__Sphingomonadaceae;g__Sphingomonas 

   Unassigned 

   k__Bacteria;p__Proteobacteria;c__Betaproteobacteria;o__Burkholderiales;f__Comamonadaceae;g__Variovorax 

   k__Bacteria;p__Proteobacteria;c__Gammaproteobacteria;o__Enterobacteriales;f__Enterobacteriaceae;g__ 

   k__Bacteria;p__Bacteroidetes;c__[Saprospirae];o__[Saprospirales];f__Chitinophagaceae;g__ 

   k__Bacteria;p__Proteobacteria;c__Betaproteobacteria;o__Burkholderiales;f__Comamonadaceae;g__Pelomonas 

   k__Bacteria;p__OD1;c__SM2F11;o__;f__;g__ 

   k__Bacteria;p__Proteobacteria;c__Alphaproteobacteria;o__Sphingomonadales;f__Sphingomonadaceae;Other 

   k__Bacteria;p__Proteobacteria;c__Gammaproteobacteria;o__Legionellales;f__Legionellaceae;g__ 

   k__Bacteria;p__Proteobacteria;c__Betaproteobacteria;o__Burkholderiales;f__Oxalobacteraceae;g__Ralstonia 

   k__Bacteria;p__Proteobacteria;c__Betaproteobacteria;o__Burkholderiales;f__Burkholderiaceae;g__Burkholderia 

   k__Bacteria;p__Actinobacteria;c__Actinobacteria;o__Actinomycetales;f__Propionibacteriaceae;g__Propionibacterium 

   k__Bacteria;p__Proteobacteria;c__Alphaproteobacteria;o__Rhodospirillales;f__Acetobacteraceae;g__ 

   k__Bacteria;p__Proteobacteria;c__Gammaproteobacteria;o__Xanthomonadales;f__Xanthomonadaceae;g__ 

   k__Bacteria;p__Proteobacteria;c__Gammaproteobacteria;o__Xanthomonadales;f__Xanthomonadaceae;g__Stenotrophomonas 

   k__Bacteria;p__Proteobacteria;c__Alphaproteobacteria;o__Rhizobiales;Other;Other 

   k__Bacteria;p__Proteobacteria;c__Alphaproteobacteria;o__Rickettsiales;f__;g__ 

   k__Bacteria;p__Proteobacteria;c__Gammaproteobacteria;o__Vibrionales;f__Vibrionaceae;g__Photobacterium 

   k__Bacteria;p__Proteobacteria;c__Alphaproteobacteria;o__Rhizobiales;f__Phyllobacteriaceae;Other 

   k__Bacteria;p__Firmicutes;c__Bacilli;o__Lactobacillales;f__Streptococcaceae;g__Lactococcus 

   k__Bacteria;p__Actinobacteria;c__Actinobacteria;o__Actinomycetales;f__Corynebacteriaceae;g__Corynebacterium 

   k__Bacteria;p__Proteobacteria;c__Alphaproteobacteria;o__Rhizobiales;f__Methylobacteriaceae;g__Methylobacterium 

   k__Bacteria;p__Proteobacteria;c__Alphaproteobacteria;o__Rhodobacterales;f__Rhodobacteraceae;g__ 

   k__Bacteria;p__Bacteroidetes;c__Flavobacteriia;o__Flavobacteriales;f__[Weeksellaceae];g__Chryseobacterium 

   k__Bacteria;p__Firmicutes;c__Bacilli;o__Bacillales;f__Staphylococcaceae;g__Staphylococcus 

   k__Bacteria;p__Firmicutes;c__Bacilli;o__Lactobacillales;f__Streptococcaceae;g__Streptococcus 

   k__Bacteria;p__Bacteroidetes;c__Flavobacteriia;o__Flavobacteriales;f__Flavobacteriaceae;g__Flavobacterium 

   k__Bacteria;p__Proteobacteria;c__Betaproteobacteria;o__Burkholderiales;f__Comamonadaceae;g__ 

   k__Bacteria;p__Acidobacteria;c__Solibacteres;o__Solibacterales;f__;g__ 

   k__Bacteria;p__OD1;c__ZB2;o__;f__;g__ 

   k__Bacteria;p__Firmicutes;c__Bacilli;o__Turicibacterales;f__Turicibacteraceae;g__Turicibacter 

   k__Bacteria;p__Firmicutes;c__Clostridia;o__Clostridiales;f__Clostridiaceae;g__Clostridium 

   k__Bacteria;p__Proteobacteria;c__Betaproteobacteria;o__Burkholderiales;f__Oxalobacteraceae;g__Herbaspirillum 

   k__Bacteria;p__Firmicutes;c__Clostridia;o__Clostridiales;f__Veillonellaceae;g__Veillonella 

   k__Bacteria;p__Proteobacteria;c__Alphaproteobacteria;o__Sphingomonadales;f__Erythrobacteraceae;g__ 

   k__Bacteria;p__Firmicutes;c__Bacilli;o__Bacillales;f__Bacillaceae;g__ 

   k__Bacteria;p__Proteobacteria;c__Gammaproteobacteria;o__Enterobacteriales;f__Enterobacteriaceae;Other 

   k__Bacteria;p__Proteobacteria;c__Alphaproteobacteria;o__Rhizobiales;f__Rhizobiaceae;g__Rhizobium 

   k__Bacteria;p__Proteobacteria;c__Gammaproteobacteria;o__Pasteurellales;f__Pasteurellaceae;g__Haemophilus 

   k__Bacteria;p__Cyanobacteria;c__Chloroplast;o__Streptophyta;f__;g__ 

   k__Bacteria;p__Firmicutes;c__Bacilli;o__Bacillales;f__Planococcaceae;g__Sporosarcina 

   k__Bacteria;p__Proteobacteria;c__Alphaproteobacteria;o__Rhizobiales;f__Bradyrhizobiaceae;g__ 
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   k__Bacteria;p__Proteobacteria;c__Betaproteobacteria;o__Burkholderiales;f__Oxalobacteraceae;g__ 

   k__Bacteria;p__Proteobacteria;c__Gammaproteobacteria;o__Legionellales;f__Coxiellaceae;g__Rickettsiella 

   k__Bacteria;p__Proteobacteria;c__Betaproteobacteria;o__Burkholderiales;f__Oxalobacteraceae;Other 

   k__Bacteria;p__Actinobacteria;c__Actinobacteria;o__Actinomycetales;f__Microbacteriaceae;g__ 

   k__Bacteria;p__Cyanobacteria;c__4C0d-2;o__SM1D11;f__;g__ 

   k__Bacteria;p__Proteobacteria;c__Gammaproteobacteria;o__Pseudomonadales;f__Moraxellaceae;g__Acinetobacter 

   k__Bacteria;p__Proteobacteria;c__Gammaproteobacteria;o__Legionellales;f__Coxiellaceae;g__Coxiella 

   k__Bacteria;p__Proteobacteria;c__Betaproteobacteria;o__Burkholderiales;f__Alcaligenaceae;g__ 

   k__Bacteria;p__Actinobacteria;c__Actinobacteria;o__Actinomycetales;f__Micrococcaceae;g__Micrococcus 

   k__Bacteria;p__Firmicutes;c__Bacilli;o__Bacillales;f__Bacillaceae;Other 

   k__Bacteria;p__Bacteroidetes;c__Cytophagia;o__Cytophagales;f__Cytophagaceae;g__Hymenobacter 

   k__Bacteria;p__Firmicutes;c__Bacilli;o__Bacillales;f__Staphylococcaceae;g__Jeotgalicoccus 

   k__Bacteria;p__Proteobacteria;c__Alphaproteobacteria;Other;Other;Other 

   k__Bacteria;p__Actinobacteria;c__Actinobacteria;o__Actinomycetales;f__Geodermatophilaceae;g__Geodermatophilus 

   k__Bacteria;p__Proteobacteria;c__Gammaproteobacteria;o__Pseudomonadales;f__Pseudomonadaceae;g__Pseudomonas 

   k__Bacteria;p__Firmicutes;c__Bacilli;o__Lactobacillales;f__Lactobacillaceae;g__Lactobacillus 

   k__Bacteria;p__Proteobacteria;c__Alphaproteobacteria;o__Sphingomonadales;f__Sphingomonadaceae;g__Sphingobium 

   k__Bacteria;p__Actinobacteria;c__Actinobacteria;o__Actinomycetales;f__Microbacteriaceae;g__Curtobacterium 

   k__Bacteria;p__Gemmatimonadetes;c__Gemmatimonadetes;o__Gemmatimonadales;f__;g__ 

   k__Bacteria;p__Proteobacteria;c__Alphaproteobacteria;o__Rhizobiales;f__Methylocystaceae;g__ 

   k__Bacteria;p__Actinobacteria;c__Actinobacteria;o__Actinomycetales;f__Nocardiaceae;g__Rhodococcus 

   k__Bacteria;p__Bacteroidetes;c__Sphingobacteriia;o__Sphingobacteriales;f__Sphingobacteriaceae;g__ 

   k__Bacteria;p__Actinobacteria;c__Actinobacteria;o__Actinomycetales;f__Microbacteriaceae;g__Leucobacter 

   k__Bacteria;p__Actinobacteria;c__Actinobacteria;o__Actinomycetales;f__Geodermatophilaceae;g__ 

   k__Bacteria;p__Actinobacteria;c__Actinobacteria;o__Actinomycetales;f__Streptomycetaceae;g__Streptomyces 

   k__Bacteria;p__Proteobacteria;c__Gammaproteobacteria;o__Xanthomonadales;f__Xanthomonadaceae;Other 

   k__Bacteria;p__Firmicutes;c__Bacilli;o__Lactobacillales;f__Aerococcaceae;g__ 

   k__Bacteria;p__Proteobacteria;c__Betaproteobacteria;o__Burkholderiales;f__Burkholderiaceae;g__Lautropia 

   k__Bacteria;p__Acidobacteria;c__Acidobacteria-5;o__;f__;g__ 

   k__Bacteria;p__Acidobacteria;c__Acidobacteriia;o__Acidobacteriales;f__Acidobacteriaceae;g__ 

   k__Bacteria;p__Acidobacteria;c__Solibacteres;o__Solibacterales;f__Solibacteraceae;g__ 

   k__Bacteria;p__Acidobacteria;c__Solibacteres;o__Solibacterales;f__Solibacteraceae;g__Candidatus Solibacter 

   k__Bacteria;p__Acidobacteria;c__[Chloracidobacteria];o__PK29;f__;g__ 

   k__Bacteria;p__Acidobacteria;c__[Chloracidobacteria];o__RB41;f__Ellin6075;g__ 

   k__Bacteria;p__Acidobacteria;c__iii1-8;o__DS-18;f__;g__ 

   k__Bacteria;p__Actinobacteria;c__Acidimicrobiia;o__Acidimicrobiales;f__;g__ 

   k__Bacteria;p__Actinobacteria;c__Acidimicrobiia;o__Acidimicrobiales;f__C111;g__ 

   k__Bacteria;p__Actinobacteria;c__Acidimicrobiia;o__Acidimicrobiales;f__EB1017;g__ 

   k__Bacteria;p__Actinobacteria;c__Actinobacteria;o__Actinomycetales;Other;Other 

   k__Bacteria;p__Actinobacteria;c__Actinobacteria;o__Actinomycetales;f__;g__ 

   k__Bacteria;p__Actinobacteria;c__Actinobacteria;o__Actinomycetales;f__Actinomycetaceae;g__Actinomyces 

   k__Bacteria;p__Actinobacteria;c__Actinobacteria;o__Actinomycetales;f__Brevibacteriaceae;g__Brevibacterium 

   k__Bacteria;p__Actinobacteria;c__Actinobacteria;o__Actinomycetales;f__Cellulomonadaceae;g__Cellulomonas 

   k__Bacteria;p__Actinobacteria;c__Actinobacteria;o__Actinomycetales;f__Cellulomonadaceae;g__Demequina 

   k__Bacteria;p__Actinobacteria;c__Actinobacteria;o__Actinomycetales;f__Dermacoccaceae;g__Dermacoccus 

   k__Bacteria;p__Actinobacteria;c__Actinobacteria;o__Actinomycetales;f__Frankiaceae;g__ 
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   k__Bacteria;p__Actinobacteria;c__Actinobacteria;o__Actinomycetales;f__Geodermatophilaceae;g__Modestobacter 

   k__Bacteria;p__Actinobacteria;c__Actinobacteria;o__Actinomycetales;f__Gordoniaceae;g__Gordonia 

   k__Bacteria;p__Actinobacteria;c__Actinobacteria;o__Actinomycetales;f__Intrasporangiaceae;Other 

   k__Bacteria;p__Actinobacteria;c__Actinobacteria;o__Actinomycetales;f__Intrasporangiaceae;g__ 

   k__Bacteria;p__Actinobacteria;c__Actinobacteria;o__Actinomycetales;f__Intrasporangiaceae;g__Knoellia 

   k__Bacteria;p__Actinobacteria;c__Actinobacteria;o__Actinomycetales;f__Kineosporiaceae;g__ 

   k__Bacteria;p__Actinobacteria;c__Actinobacteria;o__Actinomycetales;f__Kineosporiaceae;g__Kineococcus 

   k__Bacteria;p__Actinobacteria;c__Actinobacteria;o__Actinomycetales;f__Microbacteriaceae;Other 

   k__Bacteria;p__Actinobacteria;c__Actinobacteria;o__Actinomycetales;f__Microbacteriaceae;g__Agrococcus 

   k__Bacteria;p__Actinobacteria;c__Actinobacteria;o__Actinomycetales;f__Microbacteriaceae;g__Candidatus Aquiluna 

   k__Bacteria;p__Actinobacteria;c__Actinobacteria;o__Actinomycetales;f__Microbacteriaceae;g__Candidatus Rhodoluna 

   k__Bacteria;p__Actinobacteria;c__Actinobacteria;o__Actinomycetales;f__Microbacteriaceae;g__Cryocola 

   k__Bacteria;p__Actinobacteria;c__Actinobacteria;o__Actinomycetales;f__Microbacteriaceae;g__Microbacterium 

   k__Bacteria;p__Actinobacteria;c__Actinobacteria;o__Actinomycetales;f__Micrococcaceae;Other 

   k__Bacteria;p__Actinobacteria;c__Actinobacteria;o__Actinomycetales;f__Micrococcaceae;g__ 

   k__Bacteria;p__Actinobacteria;c__Actinobacteria;o__Actinomycetales;f__Micrococcaceae;g__Arthrobacter 

   k__Bacteria;p__Actinobacteria;c__Actinobacteria;o__Actinomycetales;f__Micrococcaceae;g__Kocuria 

   k__Bacteria;p__Actinobacteria;c__Actinobacteria;o__Actinomycetales;f__Micrococcaceae;g__Rothia 

   k__Bacteria;p__Actinobacteria;c__Actinobacteria;o__Actinomycetales;f__Micromonosporaceae;Other 

   k__Bacteria;p__Actinobacteria;c__Actinobacteria;o__Actinomycetales;f__Micromonosporaceae;g__ 

   k__Bacteria;p__Actinobacteria;c__Actinobacteria;o__Actinomycetales;f__Mycobacteriaceae;g__Mycobacterium 

   k__Bacteria;p__Actinobacteria;c__Actinobacteria;o__Actinomycetales;f__Nocardioidaceae;Other 

   k__Bacteria;p__Actinobacteria;c__Actinobacteria;o__Actinomycetales;f__Nocardioidaceae;g__ 

   k__Bacteria;p__Actinobacteria;c__Actinobacteria;o__Actinomycetales;f__Nocardioidaceae;g__Aeromicrobium 

   k__Bacteria;p__Actinobacteria;c__Actinobacteria;o__Actinomycetales;f__Nocardioidaceae;g__Kribbella 

   k__Bacteria;p__Actinobacteria;c__Actinobacteria;o__Actinomycetales;f__Nocardioidaceae;g__Nocardioides 

   k__Bacteria;p__Actinobacteria;c__Actinobacteria;o__Actinomycetales;f__Propionibacteriaceae;Other 

   k__Bacteria;p__Actinobacteria;c__Actinobacteria;o__Actinomycetales;f__Propionibacteriaceae;g__ 

   k__Bacteria;p__Actinobacteria;c__Actinobacteria;o__Actinomycetales;f__Pseudonocardiaceae;g__ 

   k__Bacteria;p__Actinobacteria;c__Actinobacteria;o__Actinomycetales;f__Pseudonocardiaceae;g__Actinomycetospora 

   k__Bacteria;p__Actinobacteria;c__Actinobacteria;o__Actinomycetales;f__Pseudonocardiaceae;g__Pseudonocardia 

   k__Bacteria;p__Actinobacteria;c__Actinobacteria;o__Actinomycetales;f__Sporichthyaceae;g__ 

   k__Bacteria;p__Actinobacteria;c__Actinobacteria;o__Actinomycetales;f__Thermomonosporaceae;g__Actinomadura 

   k__Bacteria;p__Actinobacteria;c__Coriobacteriia;o__Coriobacteriales;f__Coriobacteriaceae;g__ 

   k__Bacteria;p__Actinobacteria;c__MB-A2-108;o__0319-7L14;f__;g__ 

   k__Bacteria;p__Actinobacteria;c__Nitriliruptoria;o__Euzebyales;f__Euzebyaceae;g__Euzebya 

   k__Bacteria;p__Actinobacteria;c__Rubrobacteria;o__Rubrobacterales;f__Rubrobacteraceae;g__Rubrobacter 

   k__Bacteria;p__Actinobacteria;c__Thermoleophilia;o__Gaiellales;f__Gaiellaceae;g__ 

   k__Bacteria;p__Actinobacteria;c__Thermoleophilia;o__Solirubrobacterales;f__;g__ 

   k__Bacteria;p__Actinobacteria;c__Thermoleophilia;o__Solirubrobacterales;f__Conexibacteraceae;g__ 

   k__Bacteria;p__Actinobacteria;c__Thermoleophilia;o__Solirubrobacterales;f__Patulibacteraceae;g__Patulibacter 

   k__Bacteria;p__Actinobacteria;c__Thermoleophilia;o__Solirubrobacterales;f__Solirubrobacteraceae;g__ 

   k__Bacteria;p__Armatimonadetes;c__Armatimonadia;o__Armatimonadales;f__Armatimonadaceae;g__ 

   k__Bacteria;p__Armatimonadetes;c__Chthonomonadetes;o__SJA-22;f__;g__ 

   k__Bacteria;p__Bacteroidetes;c__Bacteroidia;o__Bacteroidales;f__Bacteroidaceae;g__ 

   k__Bacteria;p__Bacteroidetes;c__Bacteroidia;o__Bacteroidales;f__Bacteroidaceae;g__Bacteroides 
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   k__Bacteria;p__Bacteroidetes;c__Bacteroidia;o__Bacteroidales;f__Marinilabiaceae;g__ 

   k__Bacteria;p__Bacteroidetes;c__Bacteroidia;o__Bacteroidales;f__Porphyromonadaceae;g__Porphyromonas 

   k__Bacteria;p__Bacteroidetes;c__Bacteroidia;o__Bacteroidales;f__Porphyromonadaceae;g__Tannerella 

   k__Bacteria;p__Bacteroidetes;c__Cytophagia;o__Cytophagales;f__Cyclobacteriaceae;g__ 

   k__Bacteria;p__Bacteroidetes;c__Cytophagia;o__Cytophagales;f__Cytophagaceae;g__ 

   k__Bacteria;p__Bacteroidetes;c__Cytophagia;o__Cytophagales;f__Cytophagaceae;g__Adhaeribacter 

   k__Bacteria;p__Bacteroidetes;c__Cytophagia;o__Cytophagales;f__Cytophagaceae;g__Flectobacillus 

   k__Bacteria;p__Bacteroidetes;c__Cytophagia;o__Cytophagales;f__Cytophagaceae;g__Pontibacter 

   k__Bacteria;p__Bacteroidetes;c__Cytophagia;o__Cytophagales;f__Cytophagaceae;g__Rhodocytophaga 

   k__Bacteria;p__Bacteroidetes;c__Cytophagia;o__Cytophagales;f__Cytophagaceae;g__Spirosoma 

   k__Bacteria;p__Bacteroidetes;c__Cytophagia;o__Cytophagales;f__Flammeovirgaceae;g__ 

   k__Bacteria;p__Bacteroidetes;c__Flavobacteriia;o__Flavobacteriales;f__Cryomorphaceae;g__ 

   k__Bacteria;p__Bacteroidetes;c__Flavobacteriia;o__Flavobacteriales;f__Flavobacteriaceae;g__ 

   k__Bacteria;p__Bacteroidetes;c__Flavobacteriia;o__Flavobacteriales;f__Flavobacteriaceae;g__Capnocytophaga 

   k__Bacteria;p__Bacteroidetes;c__Flavobacteriia;o__Flavobacteriales;f__Flavobacteriaceae;g__Gillisia 

   k__Bacteria;p__Bacteroidetes;c__Flavobacteriia;o__Flavobacteriales;f__Flavobacteriaceae;g__Myroides 

   k__Bacteria;p__Bacteroidetes;c__Flavobacteriia;o__Flavobacteriales;f__[Weeksellaceae];g__ 

   k__Bacteria;p__Bacteroidetes;c__Flavobacteriia;o__Flavobacteriales;f__[Weeksellaceae];g__Cloacibacterium 

   k__Bacteria;p__Bacteroidetes;c__Sphingobacteriia;o__Sphingobacteriales;f__;g__ 

   k__Bacteria;p__Bacteroidetes;c__Sphingobacteriia;o__Sphingobacteriales;f__Sphingobacteriaceae;g__Pedobacter 

   k__Bacteria;p__Bacteroidetes;c__Sphingobacteriia;o__Sphingobacteriales;f__Sphingobacteriaceae;g__Sphingobacterium 

   k__Bacteria;p__Bacteroidetes;c__[Rhodothermi];o__[Rhodothermales];f__Rhodothermaceae;g__ 

   k__Bacteria;p__Bacteroidetes;c__[Rhodothermi];o__[Rhodothermales];f__Rhodothermaceae;g__Rubricoccus 

   k__Bacteria;p__Bacteroidetes;c__[Rhodothermi];o__[Rhodothermales];f__[Balneolaceae];g__Balneola 

   k__Bacteria;p__Bacteroidetes;c__[Rhodothermi];o__[Rhodothermales];f__[Balneolaceae];g__KSA1 

   k__Bacteria;p__Bacteroidetes;c__[Saprospirae];o__[Saprospirales];f__;g__ 

   k__Bacteria;p__Bacteroidetes;c__[Saprospirae];o__[Saprospirales];f__Chitinophagaceae;g__Chitinophaga 

   k__Bacteria;p__Bacteroidetes;c__[Saprospirae];o__[Saprospirales];f__Chitinophagaceae;g__Flavisolibacter 

   k__Bacteria;p__Bacteroidetes;c__[Saprospirae];o__[Saprospirales];f__Chitinophagaceae;g__Sediminibacterium 

   k__Bacteria;p__Bacteroidetes;c__[Saprospirae];o__[Saprospirales];f__Chitinophagaceae;g__Segetibacter 

   k__Bacteria;p__Bacteroidetes;c__[Saprospirae];o__[Saprospirales];f__Saprospiraceae;g__ 

   k__Bacteria;p__Chlorobi;c__OPB56;o__;f__;g__ 

   k__Bacteria;p__Chloroflexi;c__Chloroflexi;o__Herpetosiphonales;f__;g__ 

   k__Bacteria;p__Chloroflexi;c__Chloroflexi;o__[Roseiflexales];Other;Other 

   k__Bacteria;p__Chloroflexi;c__Chloroflexi;o__[Roseiflexales];f__[Kouleothrixaceae];g__ 

   k__Bacteria;p__Chloroflexi;c__Ellin6529;o__;f__;g__ 

   k__Bacteria;p__Chloroflexi;c__TK17;o__mle1-48;f__;g__ 

   k__Bacteria;p__Chloroflexi;c__Thermomicrobia;o__JG30-KF-CM45;f__;g__ 

   k__Bacteria;p__Cyanobacteria;c__4C0d-2;o__YS2;f__;g__ 

   k__Bacteria;p__Cyanobacteria;c__Chloroplast;o__;f__;g__ 

   k__Bacteria;p__Cyanobacteria;c__Chloroplast;o__Stramenopiles;f__;g__ 

   k__Bacteria;p__Cyanobacteria;c__ML635J-21;o__;f__;g__ 

   k__Bacteria;p__Cyanobacteria;c__Nostocophycideae;o__Nostocales;f__Nostocaceae;g__Cylindrospermopsis 

   k__Bacteria;p__Cyanobacteria;c__Nostocophycideae;o__Stigonematales;f__Rivulariaceae;g__Calothrix 

   k__Bacteria;p__Cyanobacteria;c__Oscillatoriophycideae;o__Chroococcales;f__Xenococcaceae;g__ 

   k__Bacteria;p__Firmicutes;c__Bacilli;o__Bacillales;Other;Other 
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   k__Bacteria;p__Firmicutes;c__Bacilli;o__Bacillales;f__Alicyclobacillaceae;g__Alicyclobacillus 

   k__Bacteria;p__Firmicutes;c__Bacilli;o__Bacillales;f__Bacillaceae;g__Bacillus 

   k__Bacteria;p__Firmicutes;c__Bacilli;o__Bacillales;f__Bacillaceae;g__Geobacillus 

   k__Bacteria;p__Firmicutes;c__Bacilli;o__Bacillales;f__Bacillaceae;g__Virgibacillus 

   k__Bacteria;p__Firmicutes;c__Bacilli;o__Bacillales;f__Listeriaceae;g__Brochothrix 

   k__Bacteria;p__Firmicutes;c__Bacilli;o__Bacillales;f__Paenibacillaceae;g__ 

   k__Bacteria;p__Firmicutes;c__Bacilli;o__Bacillales;f__Paenibacillaceae;g__Ammoniphilus 

   k__Bacteria;p__Firmicutes;c__Bacilli;o__Bacillales;f__Paenibacillaceae;g__Brevibacillus 

   k__Bacteria;p__Firmicutes;c__Bacilli;o__Bacillales;f__Paenibacillaceae;g__Paenibacillus 

   k__Bacteria;p__Firmicutes;c__Bacilli;o__Bacillales;f__Planococcaceae;Other 

   k__Bacteria;p__Firmicutes;c__Bacilli;o__Bacillales;f__Planococcaceae;g__ 

   k__Bacteria;p__Firmicutes;c__Bacilli;o__Bacillales;f__Planococcaceae;g__Planococcus 

   k__Bacteria;p__Firmicutes;c__Bacilli;o__Bacillales;f__Planococcaceae;g__Planomicrobium 

   k__Bacteria;p__Firmicutes;c__Bacilli;o__Bacillales;f__Planococcaceae;g__Ureibacillus 

   k__Bacteria;p__Firmicutes;c__Bacilli;o__Bacillales;f__Staphylococcaceae;g__Macrococcus 

   k__Bacteria;p__Firmicutes;c__Bacilli;o__Bacillales;f__[Exiguobacteraceae];g__Exiguobacterium 

   k__Bacteria;p__Firmicutes;c__Bacilli;o__Gemellales;f__Gemellaceae;g__Gemella 

   k__Bacteria;p__Firmicutes;c__Bacilli;o__Lactobacillales;f__Aerococcaceae;g__Aerococcus 

   k__Bacteria;p__Firmicutes;c__Bacilli;o__Lactobacillales;f__Carnobacteriaceae;g__Carnobacterium 

   k__Bacteria;p__Firmicutes;c__Bacilli;o__Lactobacillales;f__Enterococcaceae;g__Enterococcus 

   k__Bacteria;p__Firmicutes;c__Bacilli;o__Lactobacillales;f__Enterococcaceae;g__Vagococcus 

   k__Bacteria;p__Firmicutes;c__Bacilli;o__Lactobacillales;f__Leuconostocaceae;g__Leuconostoc 

   k__Bacteria;p__Firmicutes;c__Clostridia;o__Clostridiales;f__;g__ 

   k__Bacteria;p__Firmicutes;c__Clostridia;o__Clostridiales;f__Clostridiaceae;Other 

   k__Bacteria;p__Firmicutes;c__Clostridia;o__Clostridiales;f__Clostridiaceae;g__ 

   k__Bacteria;p__Firmicutes;c__Clostridia;o__Clostridiales;f__Eubacteriaceae;g__Acetobacterium 

   k__Bacteria;p__Firmicutes;c__Clostridia;o__Clostridiales;f__Gracilibacteraceae;Other 

   k__Bacteria;p__Firmicutes;c__Clostridia;o__Clostridiales;f__Lachnospiraceae;Other 

   k__Bacteria;p__Firmicutes;c__Clostridia;o__Clostridiales;f__Lachnospiraceae;g__ 

   k__Bacteria;p__Firmicutes;c__Clostridia;o__Clostridiales;f__Lachnospiraceae;g__[Ruminococcus] 

   k__Bacteria;p__Firmicutes;c__Clostridia;o__Clostridiales;f__Peptococcaceae;g__Desulfosporosinus 

   k__Bacteria;p__Firmicutes;c__Clostridia;o__Clostridiales;f__Peptococcaceae;g__Peptococcus 

   k__Bacteria;p__Firmicutes;c__Clostridia;o__Clostridiales;f__Peptostreptococcaceae;g__ 

   k__Bacteria;p__Firmicutes;c__Clostridia;o__Clostridiales;f__Peptostreptococcaceae;g__Filifactor 

   k__Bacteria;p__Firmicutes;c__Clostridia;o__Clostridiales;f__Peptostreptococcaceae;g__Peptostreptococcus 

   k__Bacteria;p__Firmicutes;c__Clostridia;o__Clostridiales;f__Ruminococcaceae;g__ 

   k__Bacteria;p__Firmicutes;c__Clostridia;o__Clostridiales;f__Ruminococcaceae;g__Oscillospira 

   k__Bacteria;p__Firmicutes;c__Clostridia;o__Clostridiales;f__Veillonellaceae;g__G07 

   k__Bacteria;p__Firmicutes;c__Clostridia;o__Clostridiales;f__Veillonellaceae;g__Megamonas 

   k__Bacteria;p__Firmicutes;c__Clostridia;o__Clostridiales;f__Veillonellaceae;g__Phascolarctobacterium 

   k__Bacteria;p__Firmicutes;c__Clostridia;o__Clostridiales;f__[Acidaminobacteraceae];g__Fusibacter 

   k__Bacteria;p__Firmicutes;c__Clostridia;o__Clostridiales;f__[Tissierellaceae];Other 

   k__Bacteria;p__Firmicutes;c__Clostridia;o__Clostridiales;f__[Tissierellaceae];g__ 

   k__Bacteria;p__Firmicutes;c__Clostridia;o__Clostridiales;f__[Tissierellaceae];g__Anaerococcus 

   k__Bacteria;p__Firmicutes;c__Clostridia;o__Clostridiales;f__[Tissierellaceae];g__Finegoldia 

   k__Bacteria;p__Firmicutes;c__Clostridia;o__Clostridiales;f__[Tissierellaceae];g__Helcococcus 
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   k__Bacteria;p__Firmicutes;c__Clostridia;o__Clostridiales;f__[Tissierellaceae];g__Parvimonas 

   k__Bacteria;p__Firmicutes;c__Clostridia;o__Clostridiales;f__[Tissierellaceae];g__Peptoniphilus 

   k__Bacteria;p__Firmicutes;c__Clostridia;o__Clostridiales;f__[Tissierellaceae];g__WAL_1855D 

   k__Bacteria;p__Firmicutes;c__Erysipelotrichi;o__Erysipelotrichales;f__Erysipelotrichaceae;g__ 

   k__Bacteria;p__Firmicutes;c__Erysipelotrichi;o__Erysipelotrichales;f__Erysipelotrichaceae;g__Catenibacterium 

   k__Bacteria;p__Firmicutes;c__Erysipelotrichi;o__Erysipelotrichales;f__Erysipelotrichaceae;g__[Eubacterium] 

   k__Bacteria;p__Fusobacteria;c__Fusobacteriia;o__Fusobacteriales;f__Fusobacteriaceae;g__Fusobacterium 

   k__Bacteria;p__Fusobacteria;c__Fusobacteriia;o__Fusobacteriales;f__Leptotrichiaceae;g__Leptotrichia 

   k__Bacteria;p__Fusobacteria;c__Fusobacteriia;o__Fusobacteriales;f__Leptotrichiaceae;g__Sneathia 

   k__Bacteria;p__GN02;c__BD1-5;o__;f__;g__ 

   k__Bacteria;p__GN02;c__GKS2-174;o__;f__;g__ 

   k__Bacteria;p__GN04;c__;o__;f__;g__ 

   k__Bacteria;p__Gemmatimonadetes;c__;o__;f__;g__ 

   k__Bacteria;p__Gemmatimonadetes;c__Gemm-1;o__;f__;g__ 

   k__Bacteria;p__Gemmatimonadetes;c__Gemm-3;o__;f__;g__ 

   k__Bacteria;p__Gemmatimonadetes;c__Gemm-5;o__;f__;g__ 

   k__Bacteria;p__Gemmatimonadetes;c__Gemmatimonadetes;o__;f__;g__ 

   k__Bacteria;p__Gemmatimonadetes;c__Gemmatimonadetes;o__KD8-87;f__;g__ 

   k__Bacteria;p__Nitrospirae;c__Nitrospira;o__Nitrospirales;f__Nitrospiraceae;g__Nitrospira 

   k__Bacteria;p__OD1;c__;o__;f__;g__ 

   k__Bacteria;p__OP11;c__OP11-4;o__;f__;g__ 

   k__Bacteria;p__Planctomycetes;c__Phycisphaerae;o__WD2101;f__;g__ 

   k__Bacteria;p__Planctomycetes;c__Planctomycetia;o__Gemmatales;f__Isosphaeraceae;g__ 

   k__Bacteria;p__Proteobacteria;c__Alphaproteobacteria;o__;f__;g__ 

   k__Bacteria;p__Proteobacteria;c__Alphaproteobacteria;o__BD7-3;f__;g__ 

   k__Bacteria;p__Proteobacteria;c__Alphaproteobacteria;o__Caulobacterales;f__Caulobacteraceae;g__ 

   k__Bacteria;p__Proteobacteria;c__Alphaproteobacteria;o__Caulobacterales;f__Caulobacteraceae;g__Mycoplana 

   k__Bacteria;p__Proteobacteria;c__Alphaproteobacteria;o__RF32;f__;g__ 

   k__Bacteria;p__Proteobacteria;c__Alphaproteobacteria;o__Rhizobiales;f__;g__ 

   k__Bacteria;p__Proteobacteria;c__Alphaproteobacteria;o__Rhizobiales;f__Aurantimonadaceae;Other 

   k__Bacteria;p__Proteobacteria;c__Alphaproteobacteria;o__Rhizobiales;f__Aurantimonadaceae;g__ 

   k__Bacteria;p__Proteobacteria;c__Alphaproteobacteria;o__Rhizobiales;f__Bartonellaceae;g__ 

   k__Bacteria;p__Proteobacteria;c__Alphaproteobacteria;o__Rhizobiales;f__Bradyrhizobiaceae;g__Balneimonas 

   k__Bacteria;p__Proteobacteria;c__Alphaproteobacteria;o__Rhizobiales;f__Hyphomicrobiaceae;g__Devosia 

   k__Bacteria;p__Proteobacteria;c__Alphaproteobacteria;o__Rhizobiales;f__Hyphomicrobiaceae;g__Rhodoplanes 

   k__Bacteria;p__Proteobacteria;c__Alphaproteobacteria;o__Rhizobiales;f__Methylobacteriaceae;g__ 

   k__Bacteria;p__Proteobacteria;c__Alphaproteobacteria;o__Rhizobiales;f__Phyllobacteriaceae;g__ 

   k__Bacteria;p__Proteobacteria;c__Alphaproteobacteria;o__Rhizobiales;f__Rhizobiaceae;g__Agrobacterium 

   k__Bacteria;p__Proteobacteria;c__Alphaproteobacteria;o__Rhizobiales;f__Rhizobiaceae;g__Kaistia 

   k__Bacteria;p__Proteobacteria;c__Alphaproteobacteria;o__Rhizobiales;f__Rhodobiaceae;g__Afifella 

   k__Bacteria;p__Proteobacteria;c__Alphaproteobacteria;o__Rhizobiales;f__Xanthobacteraceae;Other 

   k__Bacteria;p__Proteobacteria;c__Alphaproteobacteria;o__Rhodobacterales;f__Rhodobacteraceae;Other 

   k__Bacteria;p__Proteobacteria;c__Alphaproteobacteria;o__Rhodobacterales;f__Rhodobacteraceae;g__Amaricoccus 

   k__Bacteria;p__Proteobacteria;c__Alphaproteobacteria;o__Rhodobacterales;f__Rhodobacteraceae;g__Paracoccus 

   k__Bacteria;p__Proteobacteria;c__Alphaproteobacteria;o__Rhodobacterales;f__Rhodobacteraceae;g__Rubellimicrobium 

   k__Bacteria;p__Proteobacteria;c__Alphaproteobacteria;o__Rhodospirillales;f__Acetobacteraceae;g__Roseomonas 
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   k__Bacteria;p__Proteobacteria;c__Alphaproteobacteria;o__Rhodospirillales;f__Rhodospirillaceae;g__ 

   k__Bacteria;p__Proteobacteria;c__Alphaproteobacteria;o__Sphingomonadales;f__Sphingomonadaceae;g__ 

   k__Bacteria;p__Proteobacteria;c__Alphaproteobacteria;o__Sphingomonadales;f__Sphingomonadaceae;g__Sphingopyxis 

   k__Bacteria;p__Proteobacteria;c__Betaproteobacteria;o__;f__;g__ 

   k__Bacteria;p__Proteobacteria;c__Betaproteobacteria;o__Burkholderiales;f__Comamonadaceae;Other 

   k__Bacteria;p__Proteobacteria;c__Betaproteobacteria;o__Burkholderiales;f__Comamonadaceae;g__Comamonas 

   k__Bacteria;p__Proteobacteria;c__Betaproteobacteria;o__Burkholderiales;f__Comamonadaceae;g__Delftia 

   k__Bacteria;p__Proteobacteria;c__Betaproteobacteria;o__Burkholderiales;f__Comamonadaceae;g__Lampropedia 

   k__Bacteria;p__Proteobacteria;c__Betaproteobacteria;o__Burkholderiales;f__Comamonadaceae;g__Paucibacter 

   k__Bacteria;p__Proteobacteria;c__Betaproteobacteria;o__MND1;f__;g__ 

   k__Bacteria;p__Proteobacteria;c__Betaproteobacteria;o__Neisseriales;f__Neisseriaceae;Other 

   k__Bacteria;p__Proteobacteria;c__Betaproteobacteria;o__Neisseriales;f__Neisseriaceae;g__ 

   k__Bacteria;p__Proteobacteria;c__Betaproteobacteria;o__Neisseriales;f__Neisseriaceae;g__Conchiformibius 

   k__Bacteria;p__Proteobacteria;c__Betaproteobacteria;o__Neisseriales;f__Neisseriaceae;g__Kingella 

   k__Bacteria;p__Proteobacteria;c__Betaproteobacteria;o__Nitrosomonadales;f__Nitrosomonadaceae;Other 

   k__Bacteria;p__Proteobacteria;c__Betaproteobacteria;o__Rhodocyclales;f__Rhodocyclaceae;g__Hydrogenophilus 

   k__Bacteria;p__Proteobacteria;c__Deltaproteobacteria;o__Desulfobacterales;f__Desulfobulbaceae;g__Desulfobulbus 

   k__Bacteria;p__Proteobacteria;c__Deltaproteobacteria;o__Desulfovibrionales;f__Desulfohalobiaceae;g__ 

   k__Bacteria;p__Proteobacteria;c__Deltaproteobacteria;o__Myxococcales;f__;g__ 

   k__Bacteria;p__Proteobacteria;c__Deltaproteobacteria;o__Myxococcales;f__Nannocystaceae;g__Nannocystis 

   k__Bacteria;p__Proteobacteria;c__Deltaproteobacteria;o__Myxococcales;f__Polyangiaceae;g__ 

   k__Bacteria;p__Proteobacteria;c__Deltaproteobacteria;o__Syntrophobacterales;f__Syntrophobacteraceae;g__ 

   k__Bacteria;p__Proteobacteria;c__Deltaproteobacteria;o__[Entotheonellales];f__[Entotheonellaceae];g__ 

   k__Bacteria;p__Proteobacteria;c__Epsilonproteobacteria;o__Campylobacterales;f__Campylobacteraceae;g__Campylobacter 

   k__Bacteria;p__Proteobacteria;c__Gammaproteobacteria;o__Cardiobacteriales;f__Cardiobacteriaceae;g__ 

   k__Bacteria;p__Proteobacteria;c__Gammaproteobacteria;o__Enterobacteriales;f__Enterobacteriaceae;g__Proteus 

   k__Bacteria;p__Proteobacteria;c__Gammaproteobacteria;o__Legionellales;f__;g__ 

   k__Bacteria;p__Proteobacteria;c__Gammaproteobacteria;o__Legionellales;f__Legionellaceae;g__Legionella 

   k__Bacteria;p__Proteobacteria;c__Gammaproteobacteria;o__Pasteurellales;f__Pasteurellaceae;g__ 

   k__Bacteria;p__Proteobacteria;c__Gammaproteobacteria;o__Pasteurellales;f__Pasteurellaceae;g__Pasteurella 

   k__Bacteria;p__Proteobacteria;c__Gammaproteobacteria;o__Pseudomonadales;f__Moraxellaceae;g__ 

   k__Bacteria;p__Proteobacteria;c__Gammaproteobacteria;o__Pseudomonadales;f__Moraxellaceae;g__Moraxella 

   k__Bacteria;p__Proteobacteria;c__Gammaproteobacteria;o__Pseudomonadales;f__Moraxellaceae;g__Psychrobacter 

   k__Bacteria;p__Proteobacteria;c__Gammaproteobacteria;o__Xanthomonadales;f__Sinobacteraceae;g__ 

   k__Bacteria;p__Proteobacteria;c__Gammaproteobacteria;o__Xanthomonadales;f__Xanthomonadaceae;g__Luteimonas 

   k__Bacteria;p__SR1;c__;o__;f__;g__ 

   k__Bacteria;p__Synergistetes;c__Synergistia;o__Synergistales;f__Dethiosulfovibrionaceae;g__TG5 

   k__Bacteria;p__TM6;c__SJA-4;o__;f__;g__ 

   k__Bacteria;p__TM7;c__SC3;o__;f__;g__ 

   k__Bacteria;p__TM7;c__TM7-1;o__;f__;g__ 

   k__Bacteria;p__TM7;c__TM7-3;o__;f__;g__ 

   k__Bacteria;p__TM7;c__TM7-3;o__CW040;f__;g__ 

   k__Bacteria;p__TM7;c__TM7-3;o__CW040;f__F16;g__ 

   k__Bacteria;p__TM7;c__TM7-3;o__EW055;f__;g__ 

   k__Bacteria;p__Tenericutes;c__Mollicutes;o__Mycoplasmatales;f__Mycoplasmataceae;g__Mycoplasma 

   k__Bacteria;p__WS3;c__PRR-12;o__Sediment-1;Other;Other 
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   k__Bacteria;p__[Thermi];c__Deinococci;o__Deinococcales;f__Deinococcaceae;g__Deinococcus 

   k__Bacteria;p__[Thermi];c__Deinococci;o__Deinococcales;f__Trueperaceae;g__Truepera 

 

 

 

 

 

 


