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We analysed the genetic properties of non-rhizobial root nodule endophytes (NRE) isolated from
indigenous legumes in Flanders. In total, 654 isolates were obtained from 30 different plant species
within the Faboideae legume subfamily. Partial sequencing of the 16S rRNA gene revealed a large di-
versity of different taxa from the classes Alphaproteobacteria, Betaproteobacteria, Gammaproteobacteria,
Actinobacteria, Firmibacteria, Flavobacteria and Sphingobacteria. Many of the isolates belonged to the
genera Bacillus (17.9%) and Pseudomonas (15.9%). No symbiosis (nodC) or nitrogen fixation related genes
(nifH) could be detected amongst the isolates, which indicate the endophytic nature of the bacteria.
Statistical analysis grouped the investigated plant species into six clusters according to the presence of
particular NRE. However, no correlations could be found within these six clusters towards plant tribes or
ecoregions the plants had been sampled from. Cluster analysis of the ecoregions according to the
presence of NRE, revealed correlations between bacterial genera and those areas. However, groups
present in the ecoregions did not correlate with the groups present in the different plant clusters. When
combining our previous study on rhizobial diversity recovered from the same sampling campaign (De
Meyer et al., 2011) with the current study, 84.1% of the isolates belonged to the traditional rhizobia
groups and only 15.9% were NRE. The Loamy ecoregion yielded the lowest number of culturable NRE
(8.04%) and the Campine ecoregion the highest number (24.19%). The present study highlights the
frequent presence of these NRE in root nodules. The occurrence of certain rhizobia was correlated with
the presence of particular NRE, suggesting their presence may not be accidental, however their functions
remain unclear at this point.

© 2015 Published by Elsevier Ltd.
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1. Introduction

Rhizobia are soil bacteria capable of symbiosis with legume
plants where they can reside in root or stem nodules and perform
nitrogen fixation for the host. While traditionally, rhizobia
belonged to the genera, Azorhizobium, Bradyrhizobium, Ensifer,
Mesorhizobium and Rhizobium (Sawada et al., 2003), in recent years
nitrogen fixing root nodule bacteria have also been described in
other Alphaproteobacterial genera, including Ochrobactrum
(Trujillo et al., 2005), Methylobacterium (Sy et al., 2001), Microvirga
(Ardley et al., 2012; Radl et al., 2014), Devosia (Rivas et al., 2003) and
tudies, Murdoch University,
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Phyllobacterium (Zakhia et al., 2006). Furthermore, so-called Beta-
rhizobia have in the last ten years been described in the Betapro-
teobacterial genera Burkholderia and Cupriavidus (Chen et al., 2001;
Moulin et al., 2001; De Meyer et al., 2013a; De Meyer et al., 2013b;
De Meyer et al., 2014). In addition to strains that can elicit nodules
and belong to documented rhizobial species, several other bacterial
species have been reported from legume nodules without a clear
indication of their role within the host. In the absence of positive
nodulation tests, they can be regarded as non-rhizobial endophytes
(NRE). These include i.a., Alphaproteobacteria (Aminobacter
(Estrella et al., 2009), Ochrobactrum (Zurdo-Pineiro et al., 2007;
Imran et al., 2010), Methylobacterium (Palaniappan et al., 2010),
Devosia (Bautista et al., 2010) and Phyllobacterium (Mantelin et al.,
2006)), Betaproteobacteria (Herbaspirillum (Valverde et al., 2003)
and Shinella (Lin et al., 2008)), Gammaproteobacteria (Pantoea,
Enterobacter and Pseudomonas (Benhizia et al., 2004; Ib�a~nez et al.,
117
118
119
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Table 1
Genera recovered in this study with their rep-clusters, identification according to partial 16S rRNA gene sequencing and the number of isolates.

Genera Representative strains Rep-clusters # isolates

Actinobacteria
Actinoplanes sp. R-45801 Alone 1
Aeromicrobium sp. R-45950, R-45951 411 13
Arthrobacter sp. R-45644, R-45645,R-45677, R-45678, R-45679, R-45733, R-

46132, R-46278, R-46319
Alone, 317, 403, 443 24

Brevibacterium sp. R-45585, R-45586 Alone 2
Corynebacterium sp. R-45865, R-45902, R-45903, R-45927, R-46008 Alone, 172 5
Curtobacterium sp. R-46162, R-46314 Alone, 69 10
Kocuria sp. R-45655, R-45665, R-45689, R-45691, R-45692, R-46308 Alone, 257, 442, 448 20
Leifsonia sp. R-45745, R-46062, R-46076, R-46167, R-46259 Alone, 427 7
Microbacterium sp. R-45570, R-45573, R-45658, R-45659, R-45676, R-45694, R-

45704, R-45758, R-45762, R-45772, R-45841, R-45861, R-
45991, R-46024, R-46029, R-46031, R-46041

Alone, 79, 185, 275, 324, 325, 404, 415, 444 43

Microbispora sp. R-45698 Alone 1
Micromonospora sp. R-45554 Alone 1
Moraxella sp. R-45536, R-45904 Alone, 24 10
Mycobacterium sp. R-45620, R-46056, R-46330 Alone, 77, 180 5
Oerskovia sp. R-45820 Alone 1
Plantibacter sp. R-46164 Alone 1
Promicromonospora sp. R-45862, R-45892, R-46030, R-46035 Alone, 326, 379 16
Rhodococcus sp. R-45548, R-45551 Alone 2
Sphaerisporangium sp. R-46174 Alone 1
Streptomyces sp. R-45560, R-45795, R-45838, R-45839, R-45840, R-45852, R-

45853, R-45856, R-45857, R-45858, R-45880, R-46032, R-
46033, R-46034, R-46036, R-46037, R-46057, R-46058, R-
46156, R-46264, R-46282, R-46320

Alone, 280, 321, 336 30

Alphaproteobacteria
Ancylobacter sp. R-45799, R-45800 Alone 2
Bosea sp. R-45681, R-46060, R-46070, R-46073 Alone, 6 5
Caulobacter sp. R-46323 Alone 1
Inquilinus sp. R-45827, R-46318 Alone, 323 3
Novosphingobium sp. R-45660 329 2
Paracoccus sp. R-46302, R-46307 Alone 2
Phyllobacterium sp. R-45564, R-45798, R-46124, R-46157 Alone, 129, 130, 181 9
Sphingomonas sp. R-46285, R-45731, R-45732 Alone, 211 3
Sphingomonadaceae sp. R-46192 Alone 1
Betaproteobacteria
Herbaspirillum sp. R-45723 Alone 1
Massilia sp. R-45804, R-45805, R-45830 99, 100, 335 6
Roseateles sp. R-45571 Alone 1
Variovorax sp. R-46208 33 10
Firmibacteria
Bacillus sp. R-40421, R-45534, R-45535, R-45537, R-45540, R-45543, R-

45549, R-45607, R-45608, R-45628, R-45640, R-45650, R-
45656, R-45667, R-45669, R-45671, R-45672, R-45706, R-
45708, R-45775, R-45785, R-45787, R-45792, R-45793, R-
45794, R-45824, R-45833, R-45837, R-45842, R-45851, R-
45859, R-45885, R-45890, R-45942, R-45943, R-45944, R-
45945, R-45947, R-45997, R-46011, R-46013, R-46020, R-
46025, R-46141, R-46144, R-46146, R-46152, R-46169, R-
46176, R-46193, R-46216, R-46226, R-46228, R-46238, R-
46245, R-46246, R-46263, R-46279, R-46280

Alone, 23, 30, 161, 170, 188, 303, 362, 375, 376,
377, 378, 380, 420, 421, 422, 423, 424, 425, 432,
434, 435, 439, 440

117

Brevibacillus sp. R-45680 Alone 1
Cohnella sp. R-45709 428 1
Exigobacterium sp. R-45918 Alone 1
Lysinibacillus sp. R-45541, R-45670, R-45748, R-46326 Alone 4
Paenibacillus sp. R-45550, R-45610, R-45623, R-45647, R-45649, R-45664, R-

45673, R-45674, R-45675, R-45701, R-45776, R-45786, R-
45807, R-45812, R-45813, R-45814, R-45815, R-45816, R-
45939, R-45993, R-46010, R-46038, R-46080, R-46203, R-
46243, R-46244, R-46251, R-46252, R-46257, R-46269, R-
46305

Alone, 2, 4, 5, 12, 101, 111, 169, 171, 238, 357,
370, 381, 431

84

Staphylococcus sp. R-45577, R-45580, R-45641, R-45663, R-45688, R-45690, R-
45693, R-45875, R-46012, R-46052, R-46142, R-46143

Alone, 7, 406, 412, 413, 419 20

Flavobacteria
Chryseobacterium sp. R-45581, R-46064 Alone, 429 7
Gammaproteobacteria
Acinetobacter sp. R-45867 313 4
Buttiauxella sp. R-45774 110 5
Enhydrobacter sp. R-45682, R-45683, R-45684, R-45685, R-45686, R-45687 Alone, 426, 449 11
Enterobacter sp. R-45810 82 7
Erwinia sp. R-45811 Alone 1
Pantoea sp. R-45539, R-45717, R-45789, R-45806, R-46081, R-46239, R-

46301
Alone, 16, 281, 333, 347 27
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Table 1 (continued )

Genera Representative strains Rep-clusters # isolates

Pseudomonas sp. R-45532, R-45533, R-45538, R-45582, R-45716, R-45757, R-
45808, R-45809, R-45822, R-45823, R-45850, R-45864, R-
45972, R-46026, R-46089, R-46100, R-46111, R-46145, R-
46171, R-46240, R-46241, R-46242

Alone, 3, 17, 18, 19, 20, 31, 32, 68, 90, 97, 112,
273, 293

108

Rahnella sp. R-46079 91 5
Stenotrophomonas sp. R-46069, R-46300 Alone 2
Xanthomonas sp. R-45826, R-45893, R-46004, R-46065 Alone, 213 8
Sphingobacteria
Dyadobacter sp. R-45763 338 2
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2009; Shiraishi et al., 2010; Aserse et al., 2013)), Actinobacteria
(Arthrobacter, Microbacterium and Curtobacterium (Sturz et al.,
1997; Palaniappan et al., 2010)) and Firmibacteria (Bacillus, Paeni-
bacillus and Staphylococcus, (Rajendran et al., 2008; Palaniappan
et al., 2010; Shiraishi et al., 2010; Deng et al., 2011)). They were in
most cases isolated on the same yeast mannitol agar medium as
rhizobia. The characteristics important for the interaction with le-
gumes seem to be shared by a growing number of unrelated taxa
(Sawada et al., 2003).

Certain NRE bacteria have beneficial effects on the host plants,
including plant growth promotion (Vessey, 2003; Kuklinsky-Sobral
et al., 2004; Ib�a~nez et al., 2009; El-Tarabily et al., 2010; Tariq et al.,
2014), nitrogen fixation (Andrews et al., 2010), siderophoremediated
interactions (Rajendran et al., 2008; Andrews et al., 2010), increased
promotion of plant stress tolerance (Andrews et al., 2010) and bio-
logical control of plant pathogens (El-Tarabily et al., 2010). Most le-
gumes are good pioneer species, adapted to low nutrient soils and/or
environments with heavy metals (Gonzalez-Andres et al., 2005;
Vidal et al., 2009; Azcon et al., 2010). Multiple studies report on
the beneficial effect of co-inoculating rhizobia with other bacteria
(Zhang et al., 1996; Parmar and Dadarwal, 1999; Rajendran et al.,
2008; Egamberdieva et al., 2010). All previously mentioned studies
suggest that besides rhizobia, NRE are present inside root nodules,
which may have beneficial effects on the host plant.

While many studies in the past have focussed on plant species of
economic importance, including soybean, common bean, cowpea,
chickpea and red clover (Delorme et al., 2003; Laranjo et al., 2004;
Kuklinsky-Sobral et al., 2005; Duodu et al., 2007; Hung et al., 2007;
Laranjo et al., 2008; Ogutcu et al., 2008; Appunu et al., 2009; Chagas
et al., 2010;Li et al., 2010;Pule-Meulenberget al., 2010), native legume
specieshavegenerally received lessattention. InBelgium, legumesare
restricted to the Faboideae subfamily and contain 102 plant species in
30 different genera (Lambinon et al., 1998). In a previous study, we
assessed the genetic diversity of 3810 isolates belonging to traditional
rhizobial genera including Bradyrhizobium, Ensifer, Mesorhizobium
and Rhizobium, isolated from a large diversity of indigenous legumes
in Flanders (Belgium) (De Meyer et al., 2011). The present study, is
based on the same sampling campaigns, however, it focuses on the
other bacteria recovered from those root nodules. Our aim was to
analyse the diversity of non-rhizobial root nodule endophytes (NRE)
isolated fromvarious indigenous andexotic legumeplants in Flanders
(Belgium), to gain insights in their potential nitrogen fixation ability
and to investigate possible connections with plant species and ecor-
egion. Additionally, the results on the rhizobia from our previous
study (DeMeyer et al., 2011)were comparedwith the diversity found
in the present study.
123
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2. Materials and methods

2.1. Nodule collection and isolation

Root nodules were collected as previously reported (De Meyer
et al., 2011). Briefly, the sampling campaigns were performed
Please cite this article in press as: De Meyer, S.E., et al., A large diversity o
(Belgium), Soil Biology & Biochemistry (2015), http://dx.doi.org/10.1016/j
over the summers of 2008 and 2009. Sampling plots were selected
based on the diversity of legume species present (Van Landuyt
et al., 2006) and the difference in ecoregion (campine, dune,
polder, loamy and sandy-sandloamy region) (Van Landuyt et al.,
2006; Van Landuyt et al., 2011). In most cases, whole plants were
excavated and taken to the laboratory where the nodules were
excised from roots in situ, brushed free of soil debris and preserved
at 4 �C in tubes containing dried silica beads. Healthy, non-ruptured
nodules were collected to maximise the isolation of root-nodule
bacteria. Bacteria were isolated in 2009 and 2010 according to the
protocol described previously (De Meyer et al., 2011) and the sur-
face sterilized nodules were rolled over YMA agar plates (Vincent,
1970) to confirm adequate surface sterilisation. The control plates
without bacterial growth were considered as successfully surface
sterilized and isolates from these nodules were further used in the
study. All YMA plates were incubated at 28 �C and regularly
checked for growth up to 20 days. Two colonies of each morpho-
logical type were selected for isolation. The bacteria were purified
by repeatedly streaking on YMA plates. All bacteria were stored in
tubes with 15% glycerol and YMA broth at �20 �C.
2.2. DNA extraction and genomic fingerprinting by (GTG)5 rep-PCR

Total genomic DNA of each isolate was extracted as described by
Baele et al. (2000) and a repetitive extragenic palindromic (rep) PCR
was performed with the (GTG)5 primer in a total volume of 25 ml
(Versalovic et al., 1994; Gevers et al., 2001). To allow normalization,
a combined 500 bp and 100 bp DNA marker (Biorad) was included
4 times in each 1.5% (w/v) agarose gel during electrophoresis
(960 min at 55 V (constant voltage)) in a 4 �C incubator. The elec-
trophoresed gels were stained for 30 min in a solution of 1 mg ml�1

EtBr in Tris acetic acid EDTA buffer (1 x) and digital pictures were
taken under UV light. The rep (GTG)5 patterns were normalized and
cluster analysis was performed using the software package Bio-
Numerics v5.1 (Applied Maths). Representatives of each rep cluster
analysed in this study are listed in Table 1 and Table S1.
2.3. Sequence analysis of 16S rRNA gene and ribosomal database
project (RDP) classification

The 16S rRNA gene was sequenced using the protocol described
previously by Vancanneyt et al. (2004). High quality partial se-
quences (262e490 bp) were submitted to a FASTA search using the
EMBL nucleotide sequence database to find related species or
genera (Pearson, 1990). The Ribosomal Database Project (RDP)
Classifier, a naïve Bayesian classifier, was used to obtain identifi-
cations at genus level (Wang et al., 2007). The RDP classifier esti-
mates the classification reliability using bootstrap confidence
estimation values with a default threshold of 80% (Wang et al.,
2007). Strains identified with confidence estimates lower than
80% were analysed together with reference strains using the MEGA
5 software package (Tamura et al., 2011). Phylogenetic trees were
constructed using the Maximum Likelihood method, with the
f non-rhizobial endophytes found in legume root nodules in Flanders
.soilbio.2015.01.002
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General time reversible model. Bootstrap analysis with 500 repli-
cates was performed to assess the reliability of the clustering. Se-
quences of the 16S rRNA gene determined in this study have been
deposited in the EMBL database under the accession numbers:
FR774919 to FR775187. Nodulation (nodC) and nitrogen fixation
(nifH) genes have also been investigated according to previously
described protocols (De Meyer et al., 2011), however no amplicons
were obtained.

2.4. Statistical analysis

All analyses were performed with the statistical computing
environment R (R Core Team, 2013), version 3.0.1. A hierarchical
cluster analysis based on Ward's method (Ward Jr, 1963) was used
to cluster plant species with similar patterns of presence/absence of
NRE, given the presence of various rhizobia. Next, a double hier-
archical cluster analysis was performed to reveal with which these
clusters showed similar co-occurrence patterns of NRE. The results
are shown by means of a heatmap. The colours in the heatmap are
indicative of the proportion of occurrence of a specific NRE in a
certain plant species. More specifically, they are based on the col-
umn Z-score of this proportion, which is the normalized proportion
within each NRE in this case. Two additional double hierarchical
cluster analyses were performed to reveal ecoregions with similar
co-occurrence patterns of NRE and to reveal rhizobia with similar
co-occurrence patterns of NRE. Heatmaps were constructed as
described above.

To assess the sample coverage of NRE and rhizobia in our study,
several rarefaction curves were calculated using the online rare-
faction calculator (http://biome.sdsu.edu/fastgroup/caltools.htm).
Different intensively sampled plant species, including Trifolium
pratense, Trifolium repens, Medicago lupulina and Vicia cracca and
two less intensively sampled plant species harbouring a large di-
versity of bacteria in their root nodules were analysed. Similarly,
rarefaction curves were calculated for each ecoregion sampled in
this study.

3. Results

3.1. Sampling and isolation of bacteria

We obtained 654 bacterial isolates originating from 162 surface
sterilised root nodules from 30 plant species in 14 genera (Table S1).
These isolates were obtained as part of a larger sampling campaign
covering different regions in Flanders (DeMeyer et al., 2011): one or
two representatives from each legume species present in selected
sampling sites were excavated and nodules collected. One nodule
per sampled plant was selected and used for isolation. The surface
sterilization treatment was generally efficient, since in most cases
no growth occurred on the YMA plates upon which the surface
sterilized nodules were rolled. All colony types appearing on the
YMA plates were purified and investigated. There was a large
variation in colony morphology; differences were observed in
colour, shape and size (data not shown). In total, 4464 isolates were
obtained (De Meyer et al., 2011). Here we report on the bacteria not
belonging to the traditional rhizobia genera. They were recovered
from all reported plant genera except for Galega, Securigera and
Ulex. Our previous report covered the 3810 isolates that were found
to be traditional rhizobia (De Meyer et al., 2011).

The rarefraction curves indicate that only for T. pratense and T.
repens host plants the diversity was covered since these curves are
reaching a plateau (Fig. S1). For all other plant species rarefaction
curves are rising indicating that the diversity was not yet covered
completely. Only the rarefaction curve for the Loamy ecoregion
reaches a plateau and as a consequence covers fairly well the
Please cite this article in press as: De Meyer, S.E., et al., A large diversity o
(Belgium), Soil Biology & Biochemistry (2015), http://dx.doi.org/10.1016/j
bacterial diversity in that region (Fig. S2). For all other ecoregions,
graphs are rising and additional samples should be investigated to
fully cover the bacterial diversity.

3.2. Rep (GTG)5 PCR fingerprinting

High resolution fingerprinting patterns were obtained in the
(GTG)5-PCR analysis which allowed identification of duplicate iso-
lates, to reduce the number of strains and to get a first insight on
the extent of diversity sampled. The reproducibility of this tech-
nique was analysed by including one control strain in each PCR.
This resulted in repeated fingerprinting patterns with correlation
levels of 90,8% to 98,3%, in line with previously reported data
(Gevers et al., 2001) and confirming the strength of this technique.
A Pearson correlation/UPGMA analysis was performed and rep-
clusters were delineated at 80% correlation. This revealed a high
level of diversity with 106 rep-clusters and 155 strains occupying
isolated positions (Table S1). With regard to the number of colonies
selected for purification, two of each morphology type seems
reasonable since these duplicates always grouped within the same
rep-cluster. In total, 269 strains were selected based on their unique
rep-profile for further genetic identification.

3.3. Phylogenetic analysis of 16S rRNA

The RDP classifications and phylogenetic trees obtainedwith the
16S rRNA gene sequences revealed an enormous diversity including
different taxa in the Alphaproteobacteria, Betaproteobacteria,
Gammaproteobacteria, Actinobacteria, Firmibacteria, Flavobacteria
and Sphingobacteria (Fig. S3). The genera recovered with their
representative strains and rep-clusters are summarised in Table 1
and detailed information on representative strains is listed in
Supplementary Table S1. Actinobacteria were related to Actino-
planes, Aeromicrobium, Arthrobacter, Brevibacterium, Corynebacte-
rium, Curtobacterium, Kocuria, Leifsonia, Microbacterium, Moraxella,
Mycobacterium, Oerskovia, Plantibacter, Promicromonospora, Rho-
dococcus, Schumanella and Streptomyces (Fig. S4). The Firmibacteria
were related to Bacillus, Brevibacillus, Cohnella, Exigobacterium,
Lysinibacillus, Paenibacillus and Staphylococcus (Fig. S5). Alphapro-
teobacteria strains were related to Ancylobacter, Bosea, Caulobacter,
Inquilinus, Novosphingobium, Paracoccus, Phyllobacterium and
Sphingomonas (Fig. S6). The Betaproteobacteria strains were related
to Herbaspirillum, Massilia, Roseateles and Variovorax (Fig. S6).
Gammaproteobacteria strains were related to Acinetobacter, But-
tiauxella, Enhydrobacter, Erwinia, Pantoea, Pseudomonas, Rahnella,
Stenotrophomonas and Xanthomonas (Fig. S6).

Overall, Firmibacteria (34.9%) were the most abundantly
recovered, followed by Actinobacteria (29.5%), Gammaproteobac-
teria (27.2%), Alphaproteobacteria (4.3%) and Betaproteobacteria
(2.8%) (Table 1, Fig. S3). A limited number of isolates were related to
Flavobacteria (1%) and Sphingobacteria (0.3%). Bacillus (17.9%) and
Pseudomonas (15.9%) were the most frequently recovered bacterial
genera within this NRE population.

3.4. Host plant e NRE association

The legumes sampled were identified as 30 species divided over
14 genera: Anthyllis, Colutea, Cytisus, Lathyrus, Lotus, Lupinus,
Medicago,Melilotus, Ononis, Ornithopus, Robinia, Trifolium, Vicia and
Wisteria. An overview of the host plant species with their NRE is
shown in Table 2.

Double cluster analysis was performed to reveal plants with
similar co-occurrence patterns of NRE (Fig. 1). These data group the
host plants in six clusters according to the presence of particular
NRE species. Cluster 1 contains Cytisus scoparius, Lathyrus pratensis,
f non-rhizobial endophytes found in legume root nodules in Flanders
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Table 2
Host plants with the number of non-rhizobial endophytes found per plant species.a

Plant genera Cytisus Lathyrus Lotus Lupinus Medicago Melilotus Ononis Ornithopus Robinia Trifolium Vicia

Plant speciesb 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Actinobacteria
Actinoplanes sp. e e e e 1 e e e e e e e e e e e e e e e e e e

Aeromicrobium sp. e e e e e 12 e e e e e e e e 1 e e e e e e e e

Arthrobacter sp. e e e e 1 e 11 e e e e 5 e e 4 e e e e 2 e e 1
Brevibacterium sp. e e e e e e e e e 2 e e e e e e e e e e e e e

Corynebacterium sp. e e e e 1 e e 2 e e e e e e e e 1 1 e e e e e

Curtobacterium sp. e e e e e 2 e e e e e e e e e e 4 e 3 e 1 e e

Kocuria sp. 1 e e e e e 5 e e e e e e e e e e e e e e 14 e

Leifsonia sp. 1 e e e e e e e e e e e e 1 2 e e e e e 3 e e

Microbacterium sp. 2 14 e e e e 12 4 e 1 e e 1 6 e 2 e e e 1 e e e

Microbispora sp. e e e e e e 1 e e e e e e e e e e e e e e e e

Micromonospora sp. e e e e e e e e e e e e e 1 e e e e e e e e e

Moraxella sp. 1 e 1 e e e e 2 2 1 e 1 e e 1 e e e e e 1 e e

Mycobacterium sp. e 2 1 e 2 e e e e e e e e e e e e e e e e e e

Plantibacter sp. e e e e e 1 e e e e e e e e e e e e e e e e e

Promicromonospora sp. e 13 e e e e e 1 e e e e 2 e e e e e e e e e e

Rhodococcus sp. 2 e e e e e e e e e e e e e e e e e e e e e e

Sphaerisporangium sp. e e e e e e e e e 1 e e e e e e e e e e e e e

Streptomyces sp. 1 15 1 e e e e e 3 e 1 1 3 e 2 2 e e e 1 e e e

Alphaproteobacteria
Ancylobacter sp. e e e e 1 e e e e e e e e e e e e e e e e e e

Bosea sp. e 2 e e e e 1 e e e e e e e 2 e e e e e e e e

Caulobacter sp. 1 e e e e e e e e e e e e e e e e e e e e e e

Inquilinus sp. e e e e 3 e e e e e e e e e e e e e e e e e e

Novosphingobium sp. e e e e e e e e e e e e e 2 e e e e e 2 e e e

Paracoccus sp. 1 e e e e e e e e e e e e e e e e e e e e e e

Phyllobacterium sp. 5 e e e 3 e e e e e 1 e e e e e e e e e e e e

Sphingomonas sp. 1 e e e e 1 e e e e e e e e e e e e e e e e e

Xanthobacteraceae sp. e e e e 1 e e e e e e e e e e e e e e e e e e

Betaproteobacteria
Herbaspirillum sp. e e e e e e e e e e e e e 1 e e e e e e e e e

Massilia sp. e e e e e e e 6 e e e e e e e e e e e e e e e

Roseateles sp. e e e e e e 1 e e e e e e e e e e e e e e e e

Variovorax sp. e e e e e e e e 2 e e e e e e e 4 e 1 e e e 3
Firmibacteria
Bacillus sp. 13 e 5 e 6 20 14 20 1 4 2 8 1 1 e 1 e 2 1 e 6 5 e

Brevibacillus sp. e e e e e e 1 e e e e e e e e e e e e e e e e

Cohnella sp. e e e e e e 1 e e e e e e e e e e e e e e e e

Exigobacterium sp. e e e e e e e e e e e e e e e e e e e e 1 e e

Lysinibacillus sp. e e e e e e 1 e e e e 1 e e e e e e e e e e e

Paenibacillus sp. 8 e 2 2 e 18 6 e e 8 e e e 1 8 e e 5 5 5 5 9 2
Staphylococcus sp. e e 1 e 2 6 5 3 e 1 e e e e e e e e e e 1 e e

Flavobacteria
Chryseobacterium sp. 1 e e e e 5 e e e e e e e e 1 e e e e e e e e

Gammaproteobacteria
Acinetobacter sp. e e e e e 4 e e e e e e e e e e e e e e e e e

Enhydrobacter sp. e e e e e e 11 e e e e e e e e e e e e e e e e

Enterobacter sp. e e e 3 e e e 4 e e e e e e e e e e e e e e e

Erwinia sp. e e e 1 e e e e e e e e e e e e e e e e e e e

Pantoea sp. e e 5 e e 1 e 1 e e e 1 e e 12 5 e e e e e 2 e

Pseudomonas sp. e 7 6 4 17 7 1 11 e 8 e 4 e e 20 2 e e 2 4 14 e e

Rahnella sp. e e e e e e e e e e e e e e 5 e e e e e e e e

Stenotrophomonas sp. e e e e e e e e e e e e e e 1 e e e e e e 1 e

Xanthomonas sp. e e e e 1 2 e e e e e e e e 3 e e e 2 e e e e

Sphingobacteria
Dyadobacter sp. e e e e e e e e e e e e e e e 2 e e e e e e e

a Plant species that were sampled less than three times and that harbour only one endosymbiont are not included in the table, but mentioned hereafter. Anthyllis vulneraria:
Bacillus sp.(3), Colutea arborescens: Buttiauxella sp. (5),Medicago falcata: Paracoccus sp. (1),Melilotus indicus: Bacillus sp. (1), Vicia lathyroides: Lysinibacillus sp.(1), Vicia sepium:
Pseudomonas sp.(1), Vicia tetrasperma: Lysinibacillus sp.(1), Wisteria sinensis: Bacillus sp. (3).

b Plant species: 1, Cytisus scoparius; 2, Lathyrus latifolius; 3, Lathyrus pratensis; 4, Lathyrus sylvestris; 5, Lotus corniculatus; 6, Lotus pedunculatus; 7, Lupinus polyphyllus; 8,
Medicago lupulina; 9, Medicago sativa; 10, Melilotus albus; 11, Melilotus altissimus; 12, Melilotus officinalis; 13, Ononis repens; 14. Ornithopus perpusillus; 15, Robinia pseu-
doacacia; 16, Trifolium arvense; 17, Trifolium dubium; 18, Trifolium hybridum; 19, Trifolium pretense; 20, Trifolium repens; 21 Vicia cracca; 22, Vicia hirsuta; 23, Vicia sativa.
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Trifolium arvense, Trifolium hybridum, Vicia cracca, Vicia hirsuta and
Wisteria sinensis host plants and is characterised by the dominance
of Streptomyces and Rhodococcus bacteria. Cluster 2 contains Lotus
corniculatus, Lotus pedunculatus, Medicago sativa, Melilotus offici-
nalis, Ononis repens, Trifolium pratense, Trifolium repens and Vicia
sativa host plants and has a dominance of Xanthomonas, Variovorax,
Promicromonospora, Inquilinus and Novosphingobium bacteria.
Please cite this article in press as: De Meyer, S.E., et al., A large diversity o
(Belgium), Soil Biology & Biochemistry (2015), http://dx.doi.org/10.1016/j
Cluster 3 only consists of Lupinus polyphyllus and has Staphylo-
coccus, Microbacterium, Kocuria, Brevibacillus and Enhydrobacter as
dominant NRE. Cluster 4 contains Lathyrus latifolius, Lathyrus syl-
vestris, Medicago lupulina, Melilotus alba and Vicia sepium host
plants and is characterised by the dominance of Enterobacter, Bre-
vibacterium and Paenibacillus NRE. Cluster 5 only consists of Orni-
thopus perpusillus and has a dominance of Leifsonia, Herbaspirillum
f non-rhizobial endophytes found in legume root nodules in Flanders
.soilbio.2015.01.002



Fig. 1. Double cluster analysis of host plants with their NRE. Cluster 1: Cytisus scoparius, Lathyrus pratensis, Trifolium arvense, Trifolium hybridum, Vicia cracca, Vicia hirsuta and
Wisteria sinensis; Cluster 2: Lotus corniculatus, Lotus pedunculatus, Medicago sativa, Melilotus officinalis, Ononis repens, Trifolium pratense, Trifolium repens and Vicia sativa; Cluster 3:
Lupinus polyphyllus; Cluster 4: Lathyrus latifolius, Lathyrus sylvestris, Medicago lupulina, Melilotus alba and Vicia sepium; Cluster 5: Ornithopus perpusillus and Cluster 6: Robinia
pseudoacacia. NRE that appear less than two times are not included and plants in which no NRE were found are not included.
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and Micromonospora bacteria. Finally, cluster 6 contains only Rob-
inia pseudoacacia as host plant and is characterised by the domi-
nance of Rahnella, Aeromicrobium, Pantoea and Moraxella species.

Of the plant genus Cytisus, only the species Cytisus scopariuswas
sampled and its NRE were dominated by Bacillus (34%) and Paeni-
bacillus (21%) species, accounting for more than 50% of all NRE
found in this plants species. All other isolated bacterial species were
recovered in less prominent amounts (<13%). The genus Lathyrus
was represented by Lathyrus latifolius, Lathyrus pratensis and
Lathyrus sylvestris. Remarkably, each of the Lathyrus species har-
boured different NRE in their root nodules, in addition to Pseudo-
monas species accounting for respectively 13%, 27% and 40% of the
total NRE isolates. Lathyrus latifolius root nodule samples were
dominated by Streptomyces (28%), Microbacterium (26%) and
Promicromonospora (25%) species. The Lathyrus pratensis endo-
phytes were dominated by Pseudomonas (27%) and Bacillus (23%)
species. Finally, Lathyrus sylvestris contained a limited diversity of
NRE mostly represented by Pseudomonas (40%), Enterobacter (30%)
and Bacillus (20%) species. The Lotus species investigated in this
study, Lotus corniculatus and Lotus pedunculatus, shared in common
the following NRE: Bacillus, Pseudomonas, Staphylococcus and
Xanthomonas, although relative abundances differ in both plant
species (Table 2). Within the genus Lupinus, only one species was
sampled, Lupinus polyphyllus, and the predominant NRE isolated
were Bacillus (20%) and Microbacterium (17%) species. Between
Medicago lupulina and Medicago sativa, large differences were
found in the presence of NRE, however both plant species were not
equally sampled, as was also the case for theMelilotus plant species.
Nevertheless, they all harboured Bacillus species in their root
Please cite this article in press as: De Meyer, S.E., et al., A large diversity o
(Belgium), Soil Biology & Biochemistry (2015), http://dx.doi.org/10.1016/j
nodules. Plant genera Ononis and Ornithopus are both represented
in this study by a single species, Ononis repens and Ornithopus
perpusillus, and they harboured respectively Streptomyces (43%) and
Microbacterium (46%) as dominant NRE. Robinia pseudoacacia, is a
remarkably promiscuous host harbouring 13 different NRE genera.
More than 50% belonged to the Gammaproteobacteria genera
Pantoea and Pseudomonas. Furthermore, five Actinobacteria genera
were present accounting for 16% of the isolates. Five Trifolium
species were analysed in this study, Trifolium arvense, Trifolium
dubium, Trifolium hybridum, T. pratense and T. repens. In three of the
five plant species Bacillus, Paenibacillus and Pseudomonas NRE were
present; all other bacteria differ greatly in presence and abundance
(Table 2). The Vicia plant species investigated in this study include
V. cracca, Vicia hirsuta, Vicia lathyroides, V. sativa, V. sepium and Vicia
tetrasperma. Paenibacillus was the dominant NRE in half of these
plant species (Table 2). However, not all Vicia species were sampled
equally.

3.5. Ecoregion e NRE association

As previously described, plants were collected from different
ecoregions in Flanders (De Meyer et al., 2011). These ecoregions are
based on climatologic conditions, geology, geomorphology, soil
type, groundwater and surface water content (Van Landuyt et al.,
2006) and thus reflects soil texture, water content and nutrient
availability. Double cluster analysis on the presence of NRE in
certain ecoregions was performed using Ward's method in R and
the results are given in a heatmap (Fig. 2). For each ecoregion
characteristic patters of present and/or absent NRE genera is
f non-rhizobial endophytes found in legume root nodules in Flanders
.soilbio.2015.01.002
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visualised. Paenibacillus, Kocuria and Leifsonia NRE dominate the
Campine ecoregion. The Dunes ecoregions is characterized by the
dominance of Promicromonospora. Moraxella, Aeromicrobium,
Microbacterium, Rahnella, Bosea and Rhodopseudomonas NRE
dominate the Loamy ecoregions, whereas Xanthomonas, Inquilinus,
Enterobacter, Pantoea and Streptomyces dominate the Polders
ecoregions. The Sandy and sandloamy ecoregion is characterized by
a dominance of Brevibacterium, Novosphingobium, Variovorax, Bre-
vibacillus, Enhydrobacter, Mycobacterium, Micromonospora, Rhodo-
coccus, Herbaspirillum, Staphylococcus and Arthrobacter NRE.

3.6. Rhizobia e NRE association

When combining the data obtained from our previous study (De
Meyer et al., 2011) and the current study we see that on average
across plant species 84.1% of the isolates were traditional rhizobia
(Bradyrhizobium, Ensifer, Mesorhizobium and Rhizobium) ranging
between 77.7% and 90.5% at a confidence interval of 95%. A detailed
comparison of the investigated host plants shows that for the
majority of the plant species far more rhizobia than NRE were
recovered from the nodules (Fig. 3). However, Anthyllis vulneraria
and Medicago falcata yielded a 50% ratio of both. In general, plant
genera Trifolium and Vicia seem to be restrictive hosts with low
numbers of NRE (4%), whereas Lathyrus and Lotus genera yielded a
larger number of NRE (41% and 31%, respectively see Fig. 3). Ratio
analysis of rhizobia versus NRE in the different ecoregions revealed
75.87% rhizobia in the Campine ecoregion, 76.96% in the Dunes
ecoregion, 87.17% in the Polders ecoregion, 88.53% in the Sandy and
sandloamy ecoregion and 91.96% in the Loamy ecoregion. Addi-
tionally, a double cluster analysis was performed for rhizobia and
NRE, to understand the correlation between the two groups. The
results are shown in a heat map (Fig. 4) and highlight the
Fig. 2. Double cluster analysis of the ecoregions with their NR

Please cite this article in press as: De Meyer, S.E., et al., A large diversity o
(Belgium), Soil Biology & Biochemistry (2015), http://dx.doi.org/10.1016/j
correlation of rhizobia species occurrence with certain NRE in root
nodules. Within the genus Bradyrhizobium we found a co-
occurrence of B. canariense with Bacillus, Rhodococcus and Strepto-
myces and Bradyrhizobium japonicum with Pantoea, Bacillus, Strep-
tomyces, Staphylococcus and Arthrobacter. All Ensifer species had
Pseudomonas and Moraxella as dominant NRE. Additionally, E.
kummerowiae had Mycobacterium, Brevibacterium, Staphylococcus
and Paenibacillus as NRE. E. meliloti co-occurred with Pantoea, Ba-
cillus and Paenibacillus, whereas E. medicae only had Pantoea as
additional NRE. Within the genus Mesorhizobium we found co-
occurrence of Mesorhizobium loti with Rahnella, Aeromicrobium,
Bosea, Pantoea, Moraxella and Rhodopseudomonas. For Rhizobium,
correlations were found for Robinia giardinii with Staphylococcus,
Inquilinus and Arthrobacter, for Robinia cellulosilyticum and Robinia
radiobacterwith Enterobacter, Pantoea and Pseudomonas, for Robinia
alamii with Microbacterium and Moraxella, and for Rhizobium
leguminosarum with Bacillus, Moraxella, Pseudomonas and Pantoea.
Given that rarefaction curves for most host species indicate not all
diversity was covered, further studies are needed to assess the
significance of these observations.
4. Discussion

Previously, we reported on traditional rhizobia from native
legume species in Flanders that were collected over the summers of
2008 and 2009 (De Meyer et al., 2011). In addition to 3810 rhizobia
isolates characterised previously (De Meyer et al., 2011), these
campaigns also yielded 654 NRE that were studied using 16S rRNA,
nodC and nifH gene sequencing. Only nodules that appeared
healthy (presence of red colour) were harvested and analysed
further.
E. NRE that appear less than two times are not included.
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Fig. 3. Bar chart representing the percentage rhizobia and NRE recovered from the different host plants.

Fig. 4. Double cluster analysis of rhizobia and NRE. Bacteria that appear less than two times are not included. Q2
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The data presented in this study suggest the presence of a large
diversity of bacteria belonging to 50 genera inside nodules of
indigenous legumes in Flanders. Plants house several endophytes
within their tissues and multiple studies have reported the pres-
ence of endophytes in legumes (Muresu et al., 2008; Ib�a~nez et al.,
2009; Muresu et al., 2010). One of the genera in our study, Phyllo-
bacterium (Table 1) is a known nodule endosymbiont and is capable
of fixing nitrogen (Valverde et al., 2005; Baimiev et al., 2007).
However, in our study no symbiosis or nitrogen fixation related
genes were detected for the isolates of this genus. Some genera
Please cite this article in press as: De Meyer, S.E., et al., A large diversity o
(Belgium), Soil Biology & Biochemistry (2015), http://dx.doi.org/10.1016/j
including, Arthrobacter, Microbacterium, Rhodococcus, Sphingomo-
nas, Bacillus, Cohnella, Pseudomonas and Herbaspirillum, were pre-
viously reported from root nodules of several legume species (Sturz
et al., 1997; Mantelin et al., 2006; Zakhia et al., 2006; Putnam and
Miller, 2007; Zurdo-Pineiro et al., 2007; Palaniappan et al., 2010).
Other bacterial genera encountered, including Pantoea, Coryne-
bacterium, Chryseobacterium, Sphingomonas and Xanthomonas,
were described previously as endophytes in certain plant tissues
including legume plant tissue (Burch and Sarathchandra, 2006).
However, 33 of the 50 bacterial genera found in this study were to
f non-rhizobial endophytes found in legume root nodules in Flanders
.soilbio.2015.01.002
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our knowledge, not previously reported from legume root nodules
(Table 1). The majority of the investigated nodules contained Ba-
cillus (17.9%), Paenibacillus (12.5%) and Pseudomonas (15.9%) NRE
species, together with small numbers of other NRE bacterial genera
from the classes Actinobacteria, Alpha- and Betaproteobacteria.

Nodulation and nitrogen fixation capacity are characters usually
studied in rhizobia research, since they give an indication of the
host specificity and nitrogen fixing ability (Perret et al., 2000;
Moulin et al., 2004; Diouf et al., 2010). No nodC or nifH gene se-
quences could be detected among the isolates, indicating an
endophytic lifestyle rather than a rhizobial lifestyle. However, this
needs to be confirmed using authentication experiments
(Howieson et al., 1995). Previous studies indicate that endophytes
can have three main functions inside root nodules, firstly as true
rhizobial endosymbionts capable of inducing nodulation and per-
forming nitrogen fixation (Valverde et al., 2005; Ardley et al., 2012).
Secondly, as helper bacteria increasing plant health and/or yield
when co-inoculated with rhizobia (Annapurna et al., 2013; Tariq
et al., 2014), and finally, as opportunistic endophytes thriving in
this nitrogen riche nodule environment (Dudeja et al., 2012).
Therefore, nodules seem to be an excellent environment for a wide
variety of bacteria.

The presence of the NRE was analysed in function of the host
plant and this indicates that certain plant groups prefer certain NRE
in their root nodules (Fig. 1). However, these observations need to
be confirmed, given that rarefaction curves for most host species
were still rising slightly (Fig. S1). As Dudeja et al. (2012) mentioned,
most endophytes originate from the rhizosphere or phyllosphere
and only a small numbermay be transmitted via seed.We postulate
that the host plant may select the appropriate NRE from the envi-
ronment and hence characteristic NRE for certain legume species
were found. Interestingly Trifolium and Viciae plant species har-
boured a small diversity of bacteria in their root nodules, with a
dominance of Rhizobium species and more specific R. leguminosa-
rum. If NRE can enter the root nodule as opportunists then Rhizo-
bium bacteria might have defence mechanisms in place to prevent
this from happening, as previously shown against arbuscular
mycorrhizal fungi (Franzini et al., 2013) and against soil bacterial
populations (Robleto et al., 1998; Wilson et al., 1998). Alternatively,
the native Rhizobium strains could be highly competitive root
nodule bacteria, quickly colonising the available root nodule space
and therefore preventing other bacteria from getting established.
This has been shown previously in studies where commercial
inoculum strains were applied and out competed by native Rhizo-
bium strains (Nangul et al., 2013). Remarkable is also the tentative
correlationwe found between certain NRE and traditional rhizobia.
Previous studies have found co-occurrence of Bacillus species
together with Bradyrhizobium japonicum in soybean nodules (Bai
et al., 2002) and with M. gobiense in Sphaerophysa salsula root
nodules (Deng et al., 2011). Paenibacillus and Pseudomonas species
have also been found to co-occur with Mesorhizobium species
(Deng et al., 2011). However, our study reveals an even more
complex interaction between traditional rhizobia and NRE bacteria
for legumes growing in the temperate climate in Western Europe.
Most of the plants harboured Bacillus and Pseudomonas species in
their root nodules together with traditional rhizobia, which is
becoming a common observation (Dudeja et al., 2012). The function
of these NRE as helpers still needs to be confirmed but the fact that
these specific co-occurrence patterns exist, might suggest that not
only the plant selects certain NRE but also the rhizobia inside the
root nodules prefer certain NRE.

The NRE were also analysed in function of the biogeographical
ecoregion they were isolated from. Flanders, the northern part of
Belgium, is situated in the Atlantic biogeographical region and has
limited climate variation (Van Landuyt et al., 2011). Geological and
Please cite this article in press as: De Meyer, S.E., et al., A large diversity o
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landscape elements, such as soil type and land use system are the
driving forces in the small-scale distribution of plant species.
Several characteristics, including soil type, landscape morphology,
land-use system, climate, topography and hydrology were used by
Van Landuyt et al. (2006) to designate six ecoregions (campine,
dunes, loamy, polders, sandy-sandloamy region and the region of
the Valley of the River Meuse) as areas with a more or less uniform
landscape. A double cluster analysis was preformed using Ward's
method in R and revealed a correlation between NRE species and
the ecoregionwhere the plants were collected (Fig. 2). Noticeable is
also the fact that ecoregions with similar environmental factors
have more similar NRE, as is the case for the Dunes and Campine
ecoregions (Fig. 2). The significance of these observations remains
to be confirmed given that rarefaction curves were still rising.
However, such biogeographical correlation of NRE has been re-
ported before and our study confirms these findings (Deng et al.,
2011). However, the NRE groups from the plant analysis are not
the same as those in the ecoregion analysis, indicating that
different environmental parameters drive the selection of NRE. It is
not clear at this point what these factors might be. However, firstly
Flanders is a densely populated area and also serves as crossroads
for goods and people in Western Europe. Secondly, most of the
sampled legumes occur everywhere in Flanders and have thus no
specific niche with respect to the ecoregion. Both considerations
may contribute to the limited correlation of host plants with
ecoregions and available NRE. Small-scale differences in ecoregions
may affect bacterial distribution by enabling speciation, permitting
certain NRE adapted to these conditions to thrive in these envi-
ronments and as such explaining the preference of certain NRE for
certain ecoregions.

In conclusion, this study investigated a large diversity of legume
plant species and their associated NRE. The detection of bacteria
other than traditional rhizobia in legume plants has been reported
before, however, to our knowledge, this is the first report of such an
extensive bacterial diversity analysis in root nodules of indigenous
legumes in Western Europe.
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