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EXECUTIVE SUMMARY 

The Dawesville channel was constructed in April 1994, as part of a management plan to 

control eutrophication. With increased exchange between the nutrient-rich waters of the 

estuary and the nutrient-poor waters of the Indian Ocean there was considerable speculation as 

to the effects of altered water exchange on inundation, salinity, sedimentation and erosion. The 

work described here examined a number of estuarine characteristics in relation to 

meteorological factors and geomorphology at ten foreshore sites between April 2001 and 

March 2002. Comparisons were made between pre and post channel estuary conditions, and 

vegetation zonation examined . 

This study tested the following null hypotheses: 

1. That the opening of the Dawesville channel has had no effect on inundation of foreshores 

in the Peel-Harvey system. This was not tenable; with increased tidal amplitude, flooding 

has extended further into marsh than before the channel. Low-lying sites were particularly 

affected, with most of transects inundated more than 80% of the time of the study. The 

extension of Sarcocornia quinquiflora and Suaeda australis into upper marsh provided 

evidence that inundation has increased. Inundation was exacerbated at sites containing 

higher proportions of fine sediments, and on shores with beach ridges that act to trap 

• water. 

• 

• 

• 

• 

2. That the opening of the Dawesville channel has had no effect on salinity in the Peel­

Harvey system. Proving or disproving this hypothesis was difficult, as the range of water 

salinity in this study and previous post channel years were comparable to pre channel 

records, and because most soil salinities were low. While hypersalinity continued to 

prevail in summer and autumn, higher minimum salinities this year ( 17° /oo) may relate to 

the extreme low rainfall . 

Flooding by estuary waters may elevate salinities, especially in low-lying areas, as 

hypersalinity continues in summer and autumn. Vegetation structure was the most 

convincing indicator that salinities had altered, with encroachment of Sarcocornia 

quinquiflora and Suaeda australis into upper marsh. Dead ]uncus kraussii and Melaleuca 

rhaphiophylla in topographical depressions at two sites indicated soil water and soil 
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salinity, may make conditions unfavorable for survival, especially in low-lying, regularly­

flooded areas . 

3. The opening of the Dawesville channel has had no effect on sedimentation and erosion. 

This was not supported. Low proportions of fine sediments and dominance of medium and 

coarse sands at most sites, along with consistently low turbidities suggest fine sediments 

may be more easily flushed from the system. Rapid oscillation between erosion and 

deposition between sampling dates infers that foreshore sediments are unstable, though 

little nett loss of land suggest rapid erosion may have already occurred during the six years 

after channel construction, and may now be slowing toward equilibrium . 

Foreshore erosion was indicated by a cliffed shoreline, exposed ]uncus kraussii roots and 

rhizomes, and the presence of Melaleuca rhaphiophylla and M. cuticularis on the 

immediate shore. Erosion was more extreme at sites exposed to prevailing winds and 

which had sediments with a high content of coarse sand. Obvious erosion occurred at one 

site, where the ]uncus kraussii was eliminated during the study. 

Vegetation structure at each site reflected the interaction between increased tidal amplitude, 

meteorological conditions and topographical differences of the shoreline. Vegetation 

distribution may indicate new marsh limits, but conditions may alter naturally with climatic 

change, storm events and continued anthropogenic disturbance. 

The study offers a better understanding of estuarine conditions six years after channel 

construction. The study provides a platform for better understanding of vegetation dynamics, 

preferred plant position and tolerances of saltmarsh vegetation. 

Recommendations include: 

1. Continued monitoring of parameters on a site-specific basis to account for seasonal 

variability. 

2. Replicate vegetation and soil surveys over the long term and on a seasonal basis to 

determine effects of the present conditions, as well as the range of conditions imposed 

on individual species over time . 
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3. Map recent aerial photography for comparison with conclusions in Kobryn et al., 

(2000). 

4. Investigate tolerance of ]uncus kraussii to varwus environmental conditions, and 

incorporate in revegetation programmes, to maintain the ecological integrity of this 

species. 

5. Use existing vegetation successional patterns as a guide to assist with revegetation 

programmes. 

6. Instigate revegetation of Erskine Reserve foreshore to enhance and improve the quality 

of the narrow marsh zone. 

7. Investigate best shore stabilisation methods, including the use of logs to reduce wave 

action and promote sediment accretion . 
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1. BACKGROUND 

The Peel-Harvey Estuary (Figure 1.1) has been receiving high levels of nutrients from the 

surrounding 11 000 km2 catchment, and in consequence has since the mid 1970s accumulated 

excessive macroalgae and blooms of the toxic blue-green algae Nodularia spumigena (PIMA, 

1994; DAL, 1998). In response to negative impacts on both estuarine ecology and human use 

of the estuary, construction of the Dawesville Channel (Figure 1.2) was completed in April 

1994 (PIMA, 1994; McComb and Lukatelich, 1995; DAL, 1998). Developed as part of a 3-

stage management strategy to improve water quality, the primary purpose of the channel was 

to increase the flushing of nutrients from the estuary (Kinhill, 1988). There was a strong 

certainty that water quality would improve from the channel construction, it was also 

recognised that there may be extensive changes to the physical, chemical and biological 

characteristics of the estuary in the long and short term, and that impacts may be both positive 

and negative (DAL, 1998) . 

1.1 FORESHORE VEGETATION 

Saltmarsh area fringing the Peel-Harvey Estuary covers approximately 13 km2 of the estuary 

area (Rose and McComb, 1980; Murray et al., 1995). Marsh vegetation consists of complexes 

recognized by Backshall and Bridgewater (1979); Bridgewater (1982); and Creswell and 

Bridgewater, (1994). Murray et al., (1994) describes three major complexes or plant 

associations characteristic of the foreshore vegetation in the Peel-Harvey, comprising 

communities dominated by Sarcocornia, ]uncus and Haloscarcia with other marsh species 

that share overlapping tolerances to environmental conditions . 

The soil salinity gradient within the marsh creates zonation of species, including Sarcocornia 

quinqueflora in association with Suaeda australis in the lower marsh that become frequently 

inundated by tides (Backshall and Bridgewater, 1979; Cresswell and Bridgewater, 1994). The 

narrow bands of ]uncus kraussii, fringing the shoreline on higher elevations, results from the 

limited tidal flooding beyond the small beach ridges that dominate most of the estuary 

shoreline (Hodgkin et al., 1980; Semeniuk and Semeniuk, 1990; Murray et al., 1995). 

Melaleuca spp occupy the upper marsh zone where tidal flooding and soil salinities tend to be 

reduced . 
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Marsh width varies around an estuary due to the different types of intertidal habitats that range 

from sandy shores to mud flats and embayments (Roman et al., 2000). Often narrow marshes 

are associated with steeper topography and embankments where the reduction of flooding into 

an area may limit landward colonization of marsh species (Chapman, 1971; Roman et al., 

2000). Considering the shoreline topography around the Peel-Harvey Estuary, comprising 

beach ridge complexes and erosional shores (Semeniuk and Semeniuk, 1990), most marsh 

areas fringing the Peel-Harvey are narrow (Murray et al., 1995). More extensive marsh 

development occurs in low-lying areas that become inundated for long periods on the eastern 

side of the Peel Inlet and Southern part of the Harvey Estuary. 

Most changes in marsh structure corresponded with natural succession in response to seasonal 

and local hydrological variations and these were formally minor due to the relative low tidal 

amplitude prior to channel construction (Hillman, 1986). Oscillation between marsh gain and 

loss has been observed through comparison of historical aerial photographic imagery in the 

low-lying areas on the eastern shores of Peel Inlet and southern Harvey Estuary (Kobryn et al., 

2000). Rapid retreat of salt marsh in the Peel-Harvey Estuary near the Mandurah Channel 

associated with dredging required to maintain permanent communication with the ocean 

between 1977-1986 (Glasson et al., 1995). Human uses, including development and 

recreational activities, have also contributed to losses of foreshore vegetation. Significant 

losses occurred along Erskine Reserve foreshore between 1976-1990 as a result from 

mechanical beach clearing of deposited macro algae (Black and Hodgkin, 1984 ). 

After construction of the Dawesville channel in April 1994, water exchange between the 

Indian Ocean and the Peel-Harvey was predicted to more than double in volume, and tidal 

range was expected to increase from 15% to between 50 and 70% of ocean tides (Ryan, 1993, 

Latchford, et al., 2002). With altered tidal regime it was predicted that larger areas of intertidal 

flats would be exposed, and indicated more than 100m may be exposed in some very low­

lying areas (Murray et al., 1995). Colonisation of samphires into exposed intertidal areas was 

expected (PIMA, 1994 ), however increases in flooding extent into marsh areas were predicted 

to be minor (Murray et al., 1994) . 
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Figure 1.1: Locality map of the Peel-Harvey Estuary, Western Australia indicating project study sites I to I 0, 
April2001 to March 2002 . 
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Figure 1.2: Aerial photograph of the Dawesville channel. Channel dimensions are 200m wide and 4.5 m (AHD) 
deep at the junction of the estuary, tapering to 150 m wide and 6.5 m deep at Indian Ocean entrance 
(Kinhill , 1988) . 
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1.2 OBJECTIVES 

·Few studies have been carried out on the foreshore vegetation of the Peel-Harvey Estuary 

before and after the opening of the Dawesville Channel in 1994 (DAL, 1998). Studies carried 

out during 1994 to 1995 attributed vegetation losses and gains to natural environmental 

variation rather than directly to the effects of the altered tidal regime (DAL, 1998). A 

preliminary survey of shoreline erosion in the Peel-Harvey Estuary conducted by Kobryn et 

al., (2000), employed historical aerial photography and developed changes in the structure of 

shoreline vegetation with time. It was concluded that erosion and deposition rates had 

accelerated and that vegetation loss had occurred. 

There has been considerable speculation about the possible effects on sediment transport of 

altered water movement following the opening of the channel. The work described in this 

report was carried out to test the following specific null hypotheses: 

That the opening of the Dawesville channel has had no effect on: 

• Inundation; 

• Salinity; 

• Sedimentation and erosion 

This was achieved through assessment of a number of estuarine characteristics and processes 

(Table 2.1) in relation to meteorological conditions, and by comparing pre and post channel 

records. The report compiles findings described in an Honours thesis (Calvert, 2002) with 

additional summer data. The effects of increased tidal amplitude on foreshore vegetation 

dynamics since channel construction are discussed . 

2. MONITORING 

Monitoring of sites was conducted between April2001 and March 2002 . 

2.1 SITE LOCATION 

Ten sites were chosen for investigation representing a variety of geographical settings 

(Figure 1.1). Associated shoreline geomorphology is summarised in Table 2.1. Panoramic 

photographs describe sites selected (Appendix 1). Detailed site description is in Calvert 

(2002). Methods have been summarised in Table 2.2. Full details of methods are in 
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Calvert, (2002). Multiple regressiOn analysis was conducted to assess correlations 

between parameters (Appendix II) . 

Selection of study sites was based on the following criteria: 

• Locations approximated sites employed in other studies (eg. Kobryn et al., 2000); 

• There was ]uncus kraussii or Melaleuca species were present at each site; 

• Sites covered a broad area of the Peel Inlet and Harvey Estuary and included a range 

of habitats and environmental conditions; 

• Sites received minimal public access, reducing disturbance and protecting equipment; 

• Accessibility by 4 WD or boat; 

• Personal safety. 

Table 2.1: Geomorphology characteristics of the study area within the Peel-Harvey Estuary W A, 2001 
Source: Semeniuk & Semeniuk (1990); Weaver (1999) 

Study Dune association Dominant Shore landforms Main formative process 
site soil type 

1 Spearwood dunes yellow deep sand beach ridge complex waves & wind 

2 Spearwood dunes yellow deep sand beach ridge complex waves & wind 

3 Spearwood dunes yellow deep sand beach ridge complex waves; wind; 
erosional sandy shore erosion & longshore transport 
elongate fluvial delta by waves and currents 

4 Spearwood dunes yellow deep sand beach ridge complex waves; wind; 
erosional sandy shore erosion & longshore transport 
elongate fluvial delta by waves and currents 

5 Spearwood dunes yellow deep sand beach ridge complex waves; wind; 
erosional sandy shore erosion & longshore transport 
elongate fluvial delta by waves and currents 

6 Spearwood dunes pale deep sand beach ridge complex waves & wind 
elongate fluvial delta 

7 Bassendean dunes self-mulching lobate fluvial delta deltaic & estuarine processes; 
cracking clay complex reworking by waves & currents 

8 Bassendean dunes pale deep sand limestone cliff pocket erosion by shoreline currents & 
beach wind waves 

9 Bassendean dunes pale deep sand limestone cliff pocket erosion by shoreline currents & 
beach wind waves 

10 Bassendean dunes yellow deep sand beach ridge complex waves & wind 
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Table 2.2: Summary of methods employed at sites in the Peel-Harvey Estuary during study period April 2001 
to March 2002 . 

Parameters 
Investigated 

Vegetation 

Survey 

Tree Canopy 

Soils 

Grainsize 

Tides 

Inundation 

Salinity 

Water salinity 

Soil salinity 

Erosion 

Turbidity 

Sampling dates 

11/6/01 
all sites 

1116/01 
sites: 
4,5,7,8,9,10 

6/6/01 
all sites 

114/01-3113/02 

20/3/01-2 7/9/01 
16/3/02+ 17/3/02 
all sites 

6/6/01 
16/8/10+29/8/01 
16/3/02+ 17/3/02 

20/3/01-2 7/9/0 1 
16/3/02 + 17/3/02 
all sites 

Sedimentation 20/3/01-27/9/01 
processes 16/3/02-17/3/02 

Method Employed 

Vegetation structure and species along each transect was measured 
and recorded (Appendix IIl). Position of tree trunks, canopy and 
approximate height along with location of dead or unhealthy plants 
were also recorded. 

Tree canopy photographs were taken from a known distance above 
corresponding pegs along selected transects. Multi-spectral image 
processing method was employed to analyse percentage canopy 
cover. The temporal extent of tree canopy cover(%) was compared. 

Soil core sections were oven dried at 90°C for 48 hrs. Samples were 
weighed, mechanically shaken and proportion of grainsize classes 
determined according to Wentworth, (1922). 

* Hourly tidal data was provided by the Department of Transport 
for the period between April 2001 and March 2002. Data was 
employed to assess water level changes in the estuary and 
percentage of time over the study period in which water was above 
surveyed peg height was calculated along each transect. 

Water was collected 15-20 m off shore. Samples were analysed 
using a WTW LF 330 Salinity meter and measured as mS/cm and 
0/oo. 

Air dried surface and sub-surface soil profile sections were mixed 
with deionised water 5:1 ratio by volume (water:soil). Soil core 
extraction was repeated at the same site locations and temporal soil 
salinity comparisons were made. 

Turbidity (NTU) of collected water samples was analysed and 
spatial and temporal comparisons made. 

The extent of erosion and deposition over each peg along transects 
was measured (the depth of soil deposited or the height of peg 
exposed). Sedimentation patterns were evaluated by comparing the 
initial survey heights. Rates were determined by taking the average 
between erosion and deposition near the open water at each site. 

Note: * . The location of the datum points, 55 em below AHD in the Peel Inlet and 59 em below AHD in the 
Harvey Estuary. Tidal recordings and topography (initially surveyed to a relative point) were 
adjusted to AHD . 
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3. RESULTS 
3.1 CLIMATIC CONDITIONS 

Rainfall over the study period was lower than the long term averages, only May, September, 

November and December approaching the long-term records of the Bureau of Meteorology 

based on 105 years of rainfall data (Table 3.1). 

Table 3.1: Total monthly rainfall between April2001 to March 2002 in comparison to long term monthly 
average rainfall recorded at Safety Bay Station No. 001149. 

Month Total rainfall (mm) Monthly long term rainfall average (mm) 

April 2.84 44.0 

May 108.4 120.2 

June 84.4 189.7 

July 106.2 175.4 

August 98.8 126.6 

September 82.0 84.7 

October 24.4 51.8 

November 23.6 22.8 

December 17.2 11.6 

January 9.0 9.6 

February 0.0 13.3 

March 3.4 9.4 

Total 560.2 859.1 
No.ofrainy days to 31/3/02 94/365 days 

Winter winds prevailed from NNW in the mornings and W-SW in the afternoons, while 

during summer months prevailed from the E and SW (Table 3.2). Highest wind speed (44 

km/hr) occurred on 23/8/01 (NNW direction) and 22111/01(SW direction). Monthly average 

wind speeds were comparable during the winter, and highest average wind speeds occurred in 

summer (Table 3.2). 

Harvey sites and site 1 in Peel faced prevailing winds for 8-10 months (Table 3.2). Sites 9 and 

10 were sheltered from most winds, but exposed to NE-NW winds during June and July. With 

prevailing E winds in summer, site 2 was protected from winter winds (Table 3.2) . 
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Table 3.2: Monthly average wind speed, prevailing wind direction and sites most exposed in the 
Peel-Harvey Estuary over the period April2001 to March 2002 . 

Month Average wind Prevailing wind Exposed sites 

April 12.14 NEand W NE 2,3,4,5,9 W 7,8 

May 10.18 SEandNE SE 1,3,4,5,6 NE 2,3,4,5,9 

June 8.80 WandSW w 7,8 sw 1,7,8 

July 9.90 NWandSW NW 7,8,10 SW 1,7,8 

August 12.10 Nand SE N 7,8,9,10 SE 1,3,4,5,6 

September 14.20 NEandE NE 2,3,4,5,9 E 1,2,3,4,5,6 

October 19.34 Sand SSW s 1, 3,4,5,8 sw 1,7,8 

November 21.72 SEandSW SE 1,3,4,5,6 SW 1,7,8 

December 22.30 BandS E 1,2,3,4,5,6 S 1, 3,4,5,8 

January 21.0 EandSW E 1,2,3,4,5,6 SW 1,7,8 

February 21.75 EandSW E 1,2,3,4,5,6 SW 1,7,8 

March 17.68 Band SW E 1,2,3,4,5,6 SW 1,7,8 

Maximum wind speed 44.00 on the 23/8/01 (NNW) and 22/11101 (SW) . 

3.2 TOPOGRAPHY 

Sites were less than 0.5 m above the Australian Height Datum (AHD). Highest elevations 

were at sites 1 and 9 and landward at sites 5 and 10. Sites 3, 6, 7 and 8 remained below AHD, 

while at sites 2, 4 and 10 most of the transects were below AHD (Figures 3.1-3.4). For most 

sites, gradients were steepest between the low tide mark (peg 1) and the shoreline (peg 2-4). 

Beyond the shoreline, elevations flattened beyond the beach ridges at sites along the western 

shores of the Harvey Estuary and at sites 1 and 9 in Peel-Inlet. Sites 3 (Figure 3.1) and 8 

(Figure 3.3) had the steepest gradient from beach to shoreline, sites 7 and 10 the lowest 

(Figure 3.2) . 
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Figure 3.2: Vegetation distribution at study site 7- South Kooljerrenup, Peel-Harvey Estuary WA, 2001 (Land 
elevation is in relation to AHD and water levels during annual average tides (see Appendix III) . 
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Figure 3.3: Vegetation distribution at study site 8- Mealup Point, Peel-Harvey Estuary WA, 200 I 
Land elevation is in relation to AHD and average annual tides (see Appendix III) . 
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Figure 3.4: Vegetation distribution at study site 9- Point Grey, Peel-Harvey Estuary WA, 200 I 
Land elevation is in relation to AHD and average annual tides (see Appendix III). 
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3.3 VEGETATION 

Vegetation was made up of species assemblages rather than monospecific stands (Table 3.3, 

Appendix III). Boundaries between lower and upper marsh zones were diffuse, and most 

species were distributed throughout the marsh. Lower marsh assemblages comprised mainly 

Sarcocornia quinqueflora and Suaeda australis in association with ]uncus kraussii. 

Sarcocornia quinqueflora and Suaeda australis also occupied topographical depressions, and 

extended along a number of transects such as sites 2, 3, 6 and 7. Live Melaleuca 

rhaphiophylla and/or cuticularis occurred in the mid and upper marsh at sites 2, 3, 4, 5, 9 and 

10, on the secondary shore at site 7, and beyond the beach at site 8. 

Unhealthy plants (]uncus kraussii and Melaleuca spp) were associated with waterlogged areas 

at sites 2 and 7, and on the immediate shoreline at sites 1, 3, 8 and 9, where roots and rhizomes 

were undercut or exposed (Figure 3.5, Figure 3.6). At site 8 there was frequent flooding, 

smothering and collapse of foreshore ]uncus kraussii was observed, and elimination noted on 

the 16/8/01 (Appendix IV). During the summer monitoring period, root stubble of ]uncus 

kraussii was all that remained in a swale at site 2 (Figure 3.7, Figure 3.8). Most dead trees 

were located along the immediate shore or in the lower marsh at sites 3, 4, 6 and 8, while were 

in association with a swale at site 9 . 
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Table 3.3: Characteristics of vegetation assemblages in the lower and upper marsh areas at each study site . 

• 
Study Lower marsh Upper marsh Approximate Marsh 
sites Assemblages (dominant) Assemblages (dominant spp.) width (m) 

1 
]uncus kraussii, Kunzea ericiflolia, grasses, 2-4 

• Casuarina obesa Melaleuca preissiania 

(dead canopy) 

2 Suaeda australis, ]uncus Melaleuca cuticularis, Suaeda australis, 40 

kraussii Sarcocomia quinqueflora,Juncus kraussii 

• ]uncus kraussii, Atriplex Melaleuca rhaphiophylla, Suaeda australis, 
3 

sp., Suaeda australis ]uncus kraussii 
30 

Suaeda australis, Melaleuca rhaphiophylla, Ghania trifida 

• 4 
Sarcocomia quinqueflora, 

30 

]uncus kraussii 

Suaeda australis, Melaleuca rhaphiophylla, Watsonia bullillfera, 
5 

]uncus kraussii, Watsonia ]uncus kraussii 
30 

• bullillfera 

Suaeda australis, Suaeda australis, Sarcocornia quinquejlora, 
6 

Sarcocomia quinqueflora, ]uncus kraussii 
60 

]uncus kraussii 

• 7 Sarcocomia quinqueflora Melaleuca cuticularis, Suaeda australis, 100 

]uncus kraussii 

8 ]uncus kraussii Melaleuca cuticularis 5 

• Suaeda australis, Suaeda australis, Ghania trifida 
9 

]uncus kraussii, 
40 

Ghania trifida 

10 Suaeda australis, Melaleuca cuticularis, Tetragonia sp. 

Sarcocornia quinquejlora, 
15 

• ]uncus kraussii 
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Figure 3.5: Dead tree-line on the foreshore at site 3, Warragup Springs Harvey Estuary, 200 I . 

• 

• 

• 

• Figure 3.6: Exposed roots and rhizomes of foreshore ]uncus kraussii at site 3, Harvey Estuary, 2001. 
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Figure 3.7: ]uncus kraussii in waterlogged conditions during winter sampling period 
at -31.8 em AHD (peg 5) site 2, Ward Point, Peel Inlet WA, 200 l. 

Figure 3.8: Stubble remains of ]uncus kraussii exposed after summer drying, 
at -31 .8 em AHD (peg 5) site 2, Ward Point, Peel Inlet, WA March 2002. 

Muraoch Umverstty Ltbrary 
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3.3.1 TREE CANOPY 

There was an increase in percentage tree canopy at each site during the project period. 

Increases between dates were less than 10% (Table 3.4). Accuracy of tree canopy assessment 

was more than 96%. 

Table 3.4: Temporal comparison of percentage tree canopy cover 
at selected sites in the Peel-Harvey study sites, 2001-2002 . 

Site Dates Area of tree canopy (%) 

11/06/01 79.3 
7 

04/07/01 82.4 

11/06/01 39.6 
8 

25/09/01 48.1 

16/03/02 47.0 

11/06/01 76.7 
10 

25/09/01 84.5 

16/03/02 82.3 

3.4 SOILS 

Coarse and medium sands dominated soils at each site (Figure 3.9). Proportions of grain size 

were also similar along transects within sites. Soil cores from the lower marsh near the shore 

consisted mainly of medium and coarse sands, with variable proportions of other grain sizes. 

Coarse sands were highest at sites 5, 6 and 8 in Harvey and at sites land 2 in Peel Inlet. Soils 

from sites 3, 4, 6, 7 and 9 contained the highest percentage of clay/silt soils in comparison to 

other sites. Sites 1, 5, 8 and 10 contained the smallest fractions of fine soils . 
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Figure 3.9: Sediment composition (by grain size) within Peel-Harvey Estuary study sites, 2001 . 
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3.5 INUNDATION 

During winter (April 2001 to September 2001), average maximum tides were higher than the 

summer and annual periods, while average minimum tides were lower during summer (Figure 

3.1 0). Average maximum, mean and minimum tide heights were slightly higher in the Harvey 

than the Peel over the annual, winter and summer periods (Figure 3.1 0). 
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Figure 3.10: Average maximum, minimum and mean water levels (derived from maximum, 
minimum and mean tide heights in each tide cycle) in the Peel-Harvey Estuary 

over the annual period- April 200 I to March, Winter period- April to September 
2001 and Summer period-October 2001 to March 2002 . 

Average mean tides were above the highest ground at sites 3, 6, 7 and 8 (Figures 3.1-3.3). 

Inundation extended to the landward pegs during average tides at sites 2, 4, 5 and 10. Average 

tides at sites 1 and 9 did not extend beyond the shoreline, between peg 4 and 5 at site 1 and 

peg 2 at site 9 (Figure 3.4). 

Average minimum tides extended inland to varying degrees at sites 2, 3, 4, 6, 7, 8 and 10. 

Most extensive flooding occurred at sites 2, 3, 6 and 7. Even very low tides inundated entire 

transects at sites 3 (Figure 3.1) and 7 (Figure 3.2). 

Highest recorded tide in Peel was 75 em above AHD, which was approximately 30cm lower 

than the evaluated Post Dawesville Channel highest recorded tide (Figure 3.11 ). In Harvey, the 

highest tide was similar to the highest recorded post channel. Minimum levels ( -43 em below 
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AHD) were approximately 10 em higher than the lowest post channel minimum tide, and 

comparable with the recorded minimum pre channel (Figure 3.11 ) . 
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Figure 3.11: Pre-and post-channel modeled tidal data with water-levels recorded in the Peel-Harvey 
· Estuary from April to September 2001 and from April 2001 and March 2002 

(modified graph provided by the Department of Transport WA) . 

Transects were inundated for a longer period during winter (April to September 2001) than 

summer (October 2001 to March 2002) (Table 3.5 and Table 3.6). Over the annual period the 

low water line was submerged over 99.9% of the time at all sites (Table 3.7). Submergence 

inland, (to peg four) occurred more than 80% of the time along all transects apart from those at 

sites 1 and 9 (Table 3.7). Most of transect at sites 6, 7 and 10 were inundated more than 86% 

of the time (Table 3.7). The entire length of site 3 was inundated more than 80%, site 2, more 

than 79% of the time to 56 minto transect (peg 7) and site 10 more than 90% to 11.75 minto 

transect (peg 6) (Table 3. 7). 
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• Table 3.5: Percentage inundation along Peel-Harvey study transects April-September 2001 (%submergence over 180 day study period) . 
(See appendix V for height of reference point in relation to AHD em). 

Reference Points (pegs along transect) 

Site Transect length (m) 

1 2 3 4 5 6 7 8 9 10 

1 100 100 100 82.9 23.9 52.31 52.3 45.59 NA NA 20.8 • 2 100 99.8 100 97.3 99.8 98.7 95.1 80.1 34.9 NA 74.53 

3 100 99.2 91.6 88.4 93.4 91.6 94.2 90.4 89.4 81.54 30.5 

4 100 94.2 98.1 96.7 96 65.8 41.4 47.6 49.9 65.8 57.24 

• 5 100 100 97.7 98.7 56.8 43.3 86.9 12.5 91.56 NA 41.85 

6 100 100 100 100 100 100 100 100 92.4 92.4 91.35 

7 100 100 99.5 99.7 99.9 100 100 100 99.7 90.4 124.5 

8 100 100 100 100 100 100 96.3 77.1 75.4 NA 16.54 

• 9 100 37.2 63.9 20.2 12.5 24.6 24.6 0.1 0.1 31.4 63.5 

10 100 98.9 98.7 98.8 99.6 98.8 90.9 86.9 63.9 17.3 21.47 

Table 3.6: Percentage inundation along Peel-Harvey study transects October 2001 to March 2002 (%submergence over 182 day study period) 
(See appendix V for height of reference point in relation to AHD em) • Peg Number 

Site Transect length (m) 

1 2 3 4 5 6 7 8 9 10 

1 100 100 100 33.8 0.5 0 6.6 6.6 4.3 NA 20.8 

• 2 100 97.5 99.1 76 97.5 85.1 64 29 1.5 NA 74.53 

3 100 98.4 77.8 73 82.2 77.8 83.8 75.7 73 56.6 30.5 

4 100 83.8 94.4 90.7 87.7 34.6 12.7 17.7 19.1 34.6 57.24 

5 100 100 93.4 96.5 25.3 14.4 67.9 0 77.8 NA 41.85 

• 6 100 100 100 100 100 100 100 99.9 80 80 91.35 

7 100 100 98.8 99.1 99.6 100 99.9 99.7 99.1 75.7 124.5 

8 100 100 100 100 100 100 89.2 48.8 46.5 0.66 16.54 

9 99.8 2 12.5 0.2 0 0.5 0.5 0 0 0.9 63.5 

• 10 100 89.2 85.1 87.2 95.1 87.2 39.1 41.7 12.5 0.1 21.47 
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• 

• Table 3.7: Percentage inundation along Peel-Harvey study transects April 2001 to March 2002 (%submergence over 365 day study period) 
( di £h"hf£ AH See appen x V or etgl t o re erence point in relation to Dcm). 

Peg Number 

Site Transect length (m) 

1 2 3 4 5 6 7 8 9 10 

• I 100 100 100 59 16.1 8.6 33.4 33.4 29.5 NA 20.8 

2 100 98.6 99.5 86.5 98.6 91.8 79.3 55.4 22.6 NA 74.53 

3 100 99 87.6 84.7 90.1 87.6 91.1 86.4 84.7 75.9 30.5 

4 100 91.1 98 95 93.3 57.3 36.3 40.5 42.4 57.3 57.24 • 5 100 100 96.4 98 48.9 36.3 81.3 8.7 87.6 NA 41.85 

6 100 100 100 100 100 100 100 99.9 88.8 88.8 91.35 

7 100 100 99.3 99.5 99.8 100 99.9 99.8 99.5 86.4 124.5 

• 8 100 100 100 100 100 100 94.2 68.7 67 12.7 16.54 

9 99.9 24.1 40.7 13 7.8 16.1 16.1 5.6 8.6 20.3 63.5 

10 100 94.1 91.8 93 97.3 93 62.8 64.6 40.7 10.9 21.47 

• 

• · . 

• 

• 
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3.6 SALINITY 

Water salinity 

Average salinities were comparable at all sites (Figure 3 .12). Salinities for all sites did not fall 

below 17.5 °/oo (21.4 mS/cm) (Figure 3.12). All sites were hypersaline (higher than seawater) 

during summer sampling dates (20/03/01 and 16/03/02). Highest salinities (above 55°/oo) 

were at sites 4, 5, 6, 7 and 8 in Harvey . 
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Figure 3.12: Water salinity range (maximum, average and minimum values) at each site over the study 
Period in the Peel-Harvey Estuary WA, April2001 to March 2002. 

The smallest salinity ranges were at Peel sites and at sites 3 and 4 in Harvey (Figure 3.12) . 

There was a gradual decline in salinity at all sites with the onset of the wet season. A typical 

seasonal pattern developed where salinities declined in conjunction with increased rainfall and 

river flow. Salinity declined (for all sites) on the 16/08/01. 

Soil Salinity 

Surface and subsurface soil salinities were moderate to low in most profiles on all sampling 

dates (Table 3.8). Highest salinities were at sites 2, 3, 6, 7, and at site 10 where salinities 

equivalent to ocean values occurred on 16/3/02. Sites 1, 4, 5 and 8 had comparably low 

salinities (Table 3.8). There was a reduction in salinities at all sites on the second sampling 

period (Table 3.8). 
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• 
In most cases the pattern of change along transects from inland to the open water was of 

• increasing salinity, and higher salinities at the surface than at 50 em depth (Table 3.8) . 

However, higher surface salinities occurred landward at sites 2, 3 and 7 on the 6/6/01 and 3 

and 7 on the 16/3/02 and 17/3/02 (Table 3.8). Salinity of soils close to the open water at sites 3 

and 6 were lower than those inland on the 16/3/02 and 17/3/02 (Table 3.6) . 

• Table 3.8: Temporal comparison of surface and sub-surface soil salinities (mS/cm) along 
transects at selected study sites within the Peel-Harvey Estuary, April2001 to 
March 2002 (sample location= metres from the open water along site transects). 
Higher salinities are highlighted bold. 

Site 2 sample location (m) 9.20 65.25 74.50 
5/6/01 surface 11.30 7.70 1.30 

• sub-surface 6.72 2.30 1.20 
27/9/01 surface 4.85 2.09 0.26 

sub-surface 1.64 3.62 0.15 
17/3/02 surface 36.10 12.15 0.37 

sub-surface 8.74 4.62 0.50 
Site 3 sample location (m) 4.00 30.50 40.00 
5/6/01 surface 23.10 21.40 2.88 

• sub-surface 16.73 2.55 4.49 
29/9/01 surface 1.07 2.45 2.86 

sub-surface 0.60 0.47 0.49 
17/3/02 Surface 1.82 29.5 

sub-surface 3.66 14.00 
Site 7 sample location (m) 27.00 92.50 114.50 

• 6/6/01 surface 30.50 20.20 4.30 
sub-surface 3.53 2.30 13.50 

29/901 surface 6.70 6.56 2.24 
sub-surface 3.42 3.20 3.52 

16/3/02 surface 24.00 31.50 
sub-surface 18.90 9.78 

Site 8 sample location (m) 5.00 16.50 20.00 

• 6/5/01 surface 1.45 0.31 1.54 
sub-surface 1.43 0.42 0.38 

16/8/01 surface 0.30 0.53 0.12 
sub-surface 1.50 0.13 0.11 

16/3/02 surface 0.14 1.48 
sub-surface 0.19 0.34 

• Site 10 sample location (m) 6.20 13.00 31.00 
6/6/01 surface 12.12 0.67 0.32 

sub-surface 3.95 1.32 0.11 
16/8/01 surface 0.11 0.48 0.30 

sub-surface 3.2 0.29 0.13 
16/3/02 surface 50.8 14.5 1.38 

sub-surface 7.7 7.4 0.11 

• 
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3.7 .EROSION 

Turbidity 

Turbidities were not very high at any sites. They were lowest at sites 1 and 2 for Peel, with the 

smallest range (Figure 3.13). Turbidities were similar for Peel sites, and between sites along 

the western shores of the Harvey (Figure 3.13). 
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Figure 3.13: Turbidities at study sites in the Peel-Harvey Estuary over the study period, 
April2001 to March 2002. 

Sedimentation 

• 
10 

7.2 

Sedimentation differed at all sites (Figure 3.14 -3.19). Erosion and accretion dominated at the 

open water end of each transect and near the shoreline, apart from site 10, where 

sedimentation occurred 13m into the transect (Figure 3.19). There was insignificant sediment 

movement at sites 1, 2 and 7 (Figure 3.14), sites 3, 4, 5, 8 and 10 oscillated between erosion 

and accretion, with site 8 having 7.5 em gain and more than 10 em loss (Figure 3.17) . 

Accretion predominated at site 9 (Figure 3.18). 

Erosion and deposition over the year resulted in little difference from the initial survey levels. 

On average, annual nett sediment loss occurred at sites 3, 4, 5, 6 and 10 (Table 3.7) Sediment 

gains occurred at sites 1, 2, 8 and 9 (Table 3.7) . 
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Winter and summer nett sedimentation differed between sites. Sediment gain occurred at sites 

6, 8 and 9, and erosion at sites 3, 4, 5, and 10 from April and September 2001. In contrast, 

accretion occurred at sites 3, and 10 and erosion at site 6 and 8, between September 2001 and 

March 2002 . Sites 4, 5 and 6 continued to erode over summer with the highest average nett 

loss (-3.4 em) at site 6 . 
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Figure 3.14: Erosion and accretion at site 2, Peel-Harvey Estuary, Apri12001 to March 2002. 
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Figure 3.15 : Erosion and accretion at site 4, Peel-Harvey Estuary, April2001 to March 2002 . 
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Figure 3.16: Erosion and accretion at site 5, Peel-Harvey Estuary, April 2001 to March 2002 . 
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Figure 3.17: Erosion and accretion at site 8, Peel-Harvey Estuary, Apri12001 to March 2002 . 
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Figure 3.18: Erosion and accretion at site 9, Peel-Harvey Estuary, Apri12001 to March 2002 . 
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Figure 3.19: Erosion and accretion at site 10, Peel-Harvey Estuary, April 2001 to March 2002 . 
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Table 3.7: Average nett sedimentation rates (em) between annual, winter and summer periods at sites 
in the Peel-Harvey Estuary, April 2001 to March 2002 (+indicates accretion,- indicates 
erosion). Sites with higher sedimentation rates are highlighted bold. 

Sites Average annual Average winter Average summer 
(em) (em) (em) 

I +0.90 + 0.90 0.00 

2 +0.02 +0.09 0.00 

3 -1.10 - 1.40 +0.26 

4 -2.52 -1 .25 -0.50 

5 -2.80 -1.64 -1.15 

6 -2.60 +0.83 -3.40 

7 No data +2 .00 No data 

8 +1.50 +4.30 -2.20 

9 +3.50 +3 .50 0.00 

10 +2.20 -0.30 +0.22 

Figure 3.20: Colonization of Suaeda australis in deposited beach rack at site 9, Peel inlet, 2001 . 
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4. DISCUSSION 

This study did not support the hypotheses that the opening of the Dawesville Channel has had 

no effect on inundation, salinity or sedimentation and erosion in the Peel-Harvey system. 

Increased tidal amplitude has extended flooding, altered salinity patterns and sedimentation 

processes, and has induced more rapid changes than in the past. Through assessment of a 

number of estuarine characteristics and processes in relation to meteorological factors, and by 

comparing pre and post channel records, implications could be made as to the effect of altered 

estuarine conditions on foreshore vegetation structure since channel opening. Vegetation 

changes have resulted from interaction between altered tidal regime, meteorological factors 

and physical characteristics of the estuary shoreline . 

4.1 INUNDATION 

Although rainfall was well below annual averages and the actual tidal range was smaller than 

post channel ranges modeled by the Department of Transport, there has been a substantial 

increase in tidal amplitude since channel construction. Increased tidal amplitude to the extent 

where average tidal range (Figure 3.10), has increased to approximately three times the 

maximum pre channel range (20 em) and the resulting high degree of flooding provides 

evidence for the rejection of the hypothesis that the Dawesville channel has had no effect on 

foreshore inundation. 

Inundation 

The frequency of inundation at 0 em AHD was predicted by the model to increase from 50 to 

51% of the time over an annual period and from 5 to 8% at elevations of approximately 25 em 

(Murray et al., 1995). Similar results came from modeling post channel tidal data by the 

Department of Transport, where elevations of 0 em AHD were expected to be submerged for 

50% of the time (Appendix VI). While predictions of inundation may differ from observations 

because of variations in mean sea level (MSL), inundation of marsh at 0 em AHD over the 

annual period in this study was comparable with predictions. However, inundation at 25 em 

AHD was more than double the predicted increase, and 80% submergence at 0 em AHD in 

winter, further supports rejection of the hypothesis, suggesting inundation has increased since 

channel construction and low-lying sites may be most affected . 
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The site of lowest elevation appeared particularly affected with continuous flooding 

throughout the study. The low incidence of N-NW winds during the study suggest high water 

levels relate to site topography, and to delayed flushing because of the distance from the 

Dawesville and Mandurah channels, than to the effective fetch of 7.28 km in Harvey Estuary 

that may raise water levels in the South Kooljerrenup region. Although marsh extent 

fluctuated in the South Kooljerrenup and Austin Bay region because of low-lying topography 

before the channel opening (Glasson et al., 1995), increased tidal amplitude has extended 

flooding and may cause changes to occur more rapidly than before. 

Sediments 

Higher proportions of fine sediment in soils at some sites may have prolonged inundation and 

contributed to unfavourable conditions for establishment and survival of ]uncus kraussii and 

Melaleuca rhaphiophylla. Congdon (1981) observed an initial successful establishment of 

]uncus in inundated conditions approximately 20 em deep, although seedlings died when 

flooding increased in winter. In contrast, inundation may be less effective in sandy soils that 

readily drain between tides. This concurs with Hillman, (1986) who notes that ]uncus may 

tolerate greater inundation in sandy soils. 

Topographic influences 

Beach ridges, especially at sites on the western shore of Harvey Estuary, restrict drainage after 

ebb tides, and prolong inundation. Before the channel, topography at these sites was 

considered too steep for landward colonisation of samphires (Hillman, 1986). In the present 

study, samphires extended into the upper marsh, concurring with expectations in Kinhill 

(1988) that during high tides, there could be flooding beyond the beach ridges that may impair 

drainage. 

Topographical depressions also trap floodwaters and prolong inundation. Dead Melaleuca 

rhaphiophylla trees in the depression in the upper marsh (site 9) indicate that high tides 

(despite being infrequent) have created conditions unsuitable for plant survival and 

establishment. Melaleuca rhaphiophylla is only tolerant of periodic inundation (WRC, 1997) 

and increased submergence in the upper marsh, as well as the encroachment of samphires, 

suggest that conditions for regeneration of Melaleuca rhaphiophylla may occur on higher 

ground. 
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Inundation effect on vegetation 

Upper and lower marsh species occurred on or near the shoreline at a number of sites, where 

Sarcocomia and Suaeda encroached into upper marsh indicating extensive flooding, so that 

lower marsh areas may have become open water since the channel opened. This is despite 

predictions that little change would occur in the lower marsh due the flood tolerance of 

Sarcocomia quinqueflora (DAL, 1998), and the small increases in flooding expected (Murray 

et al., 1995) . 

The encroachment of Sarcocomia quinqueflora and Suaeda australis into upper marsh reflects 

the long duration of submergence at most low-lying sites, providing further evidence of 

increased inundation. Sarcocomia will tolerate submergence up to 95% of the time (Rose and 

McComb, 1980), and may replace species adversely affected by increased flood duration 

(Chapman, 1974; Congdon, 1981). 

After channel opening, samphires were expected to colonise large areas of the exposed 

intertidal in very low-lying regions. Considering there may be less exposure in the year of this 

study, with higher minimum tides than were predicted by the model (Figure 3.13), and the 

tendency of samphires to have extended landward resulting from submergence and inefficient 

sediment accretion (Nyman et al., 1993) indicates colonisation may not occur, or may do so 

over a longer period. Studies in the Swan, Leschenault and Wilson estuaries, suggest 

colonisation of intertidal flats may proceed for more than 5 to 25 years with increased 

exposure following altered tidal regimes (PIMA, 1994). 

Before the channel, Murray et al. (1995) found ]uncus kraussii on the shoreline to be subject 

to submergence 10-50% of the year and more, while those landward were submerged 2-30% 

of the time. The unhealthy appearance of ]uncus kraussii in the swale at site 2 and its 

disappearance over summer may be explained, given that submergence has increased to more 

than 80% of the time along most or all of the low-lying transects . 

Increases in tree canopy cover (Table 3.4), may indicate trees will survive in the upper marsh 

as long as tidal amplitude does not increase further. The increase in tree canopy cover may 

also reflect the temporary recovery that could occur in winter with increased river flow and 

precipitation. Although there was little difference in general between species (Table 3.4), 

continuing growth may depend on plant age and the tolerance range of individual species. 
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4.2 SALINITY 

Water salinity 

General seasonal changes in salinity were similar before and after channel construction. The 

small salinity ranges at some sites relate to their proximity to the channel, where exchange 

with ocean waters maintain more constant salinities throughout the year (DAL, 1998). Higher 

salinity ranges in southern Harvey relate to the distance from the channel and proximity to the 

Harvey River. Freshwater inputs from the Harvey River, which continues to flow even in low 

rainfall years (Black and Hodgkin, 1984) brings about lower minimum salinities, while high 

evaporation rates in summer contribute to high salinities. 

It had been expected that salinities would be less extreme after channel construction (DAL, 

1998), but hypersaline conditions continue to prevail during the dry months of summer and 

autumn. This appears to support the hypothesis that channel opening may not have altered 

salinities. Hale and Paling (1999) recorded similar seasonal changes in salinity to those 

reported here during the five years immediately post channel, though minimum salinities were 

close to freshwater and comparable with pre channel records. Although higher minimum 

salinities in this study suggest salinities have altered since channel opening, they more likely 

reflect the extreme dry conditions and related low river-flow during 2001, and while the post 

channel years assessed by Hale and Paling (1999) were below average rainfall years, rainfall 

this year was approximately half of that in those years. 

Soil Salinity 

With no pre-channel soil salinity records for comparison, addressing the hypothesis that the 

opening of the Dawesville channel has had no effect on soil salinities was inconclusive. While 

most soil salinities were low, considering the hypersalinity of waters in summer and the long 

duration of flooding, higher soil salinities may have been expected. With increased tidal 

amplitude, saline waters would flood further into the marsh, altering soil water and soil 

salinities, with a combined effect on foreshore vegetation, especially at low elevations. Day et 

al. (2000) reported that the combined effects of saltwater intrusion, long periods of inundation 

and salinity caused tree death in Taxodium Swamps of the Mississippi Delta . 
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Sediments 

At a two sites (3 and 7) higher recordings also corresponded with higher proportions of fine 

sediments which may act to enhance salinities by water and salt retention. In comparison, 

sandy soils with higher leaching may explain low soil salinities at most sites (Chapman, 1974). 

Topographic influences 

There were higher salinities at low-lying, frequently flooded sites. Higher salinities near the 

open water at low-lying sites were expected given that duration and frequency of flooding 

determines the soil salinity gradient, and that salinity tends to be highest in the lower marsh, 

and lower toward the upper marsh where there is less flooding (Latchford, 1997). Higher soil 

salinities toward the upper marsh may also reflect extended inundation caused by shoreline 

ridges in winter, and in summer within topographical depressions, as salinity increases when 

sediments dry. Highest soil salinities were expected in South Kooljerrenup (site 7) and Austin 

Bay (site 10) because of their low relief, tendency to flood and extreme water salinity during 

dry months (Murray et al., 1995) . 

Salinity effect on vegetation 

Sarcocomia quinqueflora and Suaeda australis encroaching into upper marsh was the most 

convincing indicator that soil salinities may have altered, as both species are obligate 

halophytes (Chapman, 1974). Establishment of Sarcocomia and Suaeda around topographical 

depressions and decline of vegetation within them infers soil water and soil salinity may not 

allow survival at low elevations. The absence of Halosarcia spp. and Bolboschoenus 

caldwellii, reported by Murray et al. (1995) as commonly associated with Sarcocomia 

quinqueflora and ]uncus kraussii, concurs with the expectation that increased tide height may 

inundate and alter the dry extreme of saline areas, bringing about a decline in Halosarcia spp. 

(Murray et al., 1995). 

As with most marsh species, for establishment, ]uncus kraussii requires a period of low soil 

salinity (less than 5°/oo) (Zedler et al., 2000). If higher minimum water salinities were to 

continue for most of the year and fresh water input remains low, ]uncus may not establish 

especially in areas of low-lying topography where submergence exceeds 80% . 

The low abundance of ]uncus at sites with higher proportions of fine sediments may indicate 

their intolerance to sediments prone to flooding and elevated soil salinities. In contrast, ]uncus 
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may survive in sandy soils (as at site 6) with a high degree of flooding and low soil salinities 

(Hillman, 1986) . 

The failure of M. rhaphiophylla to re-establish at one site (3) may relate to the close 

coincidence between a fire event and the opening of the Dawesville Channel. Juvenile M. 

rhaphiophylla may not have become fully established before increased tides made conditions 

unfavourable for their continued growth. Baldwin et al. (1996) found in pot trials that there 

was little effect on seedlings subjected to short term flooding and salt load, although long-term 

exposure greatly inhibited growth. 

Given the high tolerance of Melaleuca cuticularis to inundation and salinity (Pen, 1992; Bell, 

1999; Naidu et al., 2000), this species may have been able to cope with the altered conditions 

better than most upper marsh species, as it survives at low-lying sites with long submergence 

time. Stands of M. cuticularis along the secondary shore at site 7 may also survive, though 

may be less adaptable to the changed conditions because of their immaturity. Decline in 

Melaleuca rhaphiophylla and M. cuticularis may still occur as changes in upper marsh have 

been known to continue for 25 years following hydrological alterations (Murray et al., 1995). 

4.3 SEDIMENTATION and EROSION 

Sediments 

Similar sediment characteristics to pre-channel years at a number of sites, appears to support 

the hypothesis that the Dawesville channel has had no effect on sedimentation and erosion, 

and implies that channel opening has had no effect on sedimentation. The higher proportions 

of fine muds and silts at sites along the western shore of Harvey Estuary concurs with findings 

by Hill et al., (1991). Gabrielson and Lukatelich (1985) also relate high deposition rates off­

shore of western Harvey sites to the reworking of sediments on the eastern side of Harvey 

during predominant S-SW winds, and deposition of fine sediments on the western shore as a 

result of an anticlockwise gyre . 

A higher sand content in Peel Inlet before channel opening may also relate to proximity to the 

Mandurah Channel, where fine alluvial sediments may be flushed seaward (Hodgkin, 1984). 

The high coarse sand content at one site (8) was characteristic of sediment composition along 

the eastern shores of Harvey Estuary before the channel opening (Hill et al., 1991). At site 7, a 

higher coarse sand content before channel opening may be alluvial sands that have settled 
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quickly following discharge from Harvey River (Hodgkin et al., 1980; Gabrielson and 

Lukatelich, 1985) . 

It was not possible to accurately quantify any change in sediment grain size proportions since 

channel construction, Fine sediments may be more easily flushed from the system and sands 

of marine origin may explain the high sand content, particularly at sites in proximity to the 

Dawesville and Mandurah channel mouths . 

Low proportions of fine sediment may also reflect low river flow associated with the below 

average rainfall years since the Dawesville Channel opened (DAL, 1998). Day et al. (2000) 

explained the importance of delivery of fine sediments through river flow and attributes lower 

rates of wetland loss to high riverine inputs. Perhaps low river flows during post channel years 

may have contributed to low accretion rates, soil instability and vegetation change. Accretion 

rates may continue to be low even in years of high river flow, though with increased tidal 

flushing, fine sediments may continue to be flushed from the system rather than deposited in 

the marsh. 

Turbidity of Estuary Waters 

Since the construction of the channel and the absence of Nodularia blooms, improved water 

quality is reflected in decreased light attenuation in post channel years (Hale and Paling, 

1999), as well as in low turbidities at all sites in this study. Although turbidities during 

previous post channel years were lower in spring and early summer, consistently low 

recordings this year may relate to reduction in fine sediments in the system because of 

increased flushing through the Dawesville Channel, therefore may add further support for 

rejection of the hypothesis that sedimentation has not altered since channel opening. 

Turbidities also did not reflect a trend of increasing in association with areas close to river 

discharge, perhaps because of low input of fine alluvial sediments because of low river flow 

this year. Low turbidities may also be due to improved catchment management, including 

farming practices and revegetation, rendering sediments less prone to erosion. 

As general wind patterns remain consistent with pre-channel years, Harvey Estuary continues 

to be more turbid than Peel Inlet this year as reported in other pre and post channel studies . 

Although wind is responsible for 70-90% of the resuspension of sediments in both Peel and 
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Harvey, wind fetch dynamics are responsible for higher resuspension rates in the Harvey 

(McComb and Lukatelich, 1995) . 

A relationship between turbidity and sediment type was indicated where more turbid waters 

along the western shores than on the east of the Harvey Estuary appear related to the higher 

proportions of fine sediments that can be easily entrained and suspended, settling only during 

calm periods (Kennish, 1986), while low turbidities at most sites reflected higher proportions 

of coarse sands. 

Sedimentation and tidal amplitude 

As higher erosion rates relate to higher tidal amplitude and water movement (Congdon, 1981), 

it is possible that the landward shift of the high tide line and increased tidal frequency has 

increased entrainment and removal of foreshore sediments in the Peel-Harvey. Rose and 

McComb (1995) considered pre-channel sedimentation rates to be high when more than 10 

mm of sediment were deposited per year, and low when there had been less than 3 mm per 

year. On this basis, the erosion and deposition characteristics over the study refute the 

hypothesis that channel opening has had no effect on sedimentation and erosion, and indicate 

that tidal amplitude has increased sedimentation rates since channel construction (Figures 

3.14-3.19) . 

Dead Melaleuca cuticularis along the shoreline, and under cutting of ]uncus roots and 

rhizomes, suggest tidal action has removed sediments from around their shallow root zone and 

caused trees to collapse. Erosion and deposition on the shoreline at each site indicates 

instability of all shorelines, and suggests there will be continued erosion and deposition, the 

nett outcome being determined by the balance between submergence and vertical 

accumulation. 

Wind exposure 

Regular exposure to onshore winds explains higher sedimentation rates (and turbidities) at 

sites along the western shores of Harvey. This concurs with findings of French et al. (2000) 

who related high erosion rates in the Blythe Estuary (England) with areas subject to high wind 

exposure. In the present study, although most sites oscillated between erosion and accretion 

between sampling dates, and nett losses were low, the extreme fluctuations at one site (8), 

exposure to most prevailing winds (either directly or through long shore drift) and the 
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complete removal of shoreline ]uncus at one location, indicates eroswn has effected 

vegetation (Appendix II). As ]uncus kraussii is able to withstand wave energy (Hillman, 

1986) because of its dense underground biomass (Congdon and McComb, 1980), it appears 

this site has been severely affected by wave action. Absence of Sarcocornia quinquiflora also 

indicates a 'high-energy' shore, due to its inability to withstand direct wave movement 

(Hillman, 1986) . 

Topographic influences 

Considering that shoreline shape and alignment greatly influence sedimentation (Guy and 

Parkin, 1994, Schwimmer, 2001), higher rates may have been exacerbated by ridge formations 

where sediments may be easily removed, exposing roots and rhizomes at the ridge face . 

Steeper gradients from the open water to the shore may also contribute to higher erosion rates. 

Erosion and sediments 

A high sand content correlates to areas of low water and high energy (Hill et al., 1991), and it 

is not surprising to find a high sand content at site 8. Higher average annual nett losses at sites 

along the western shores of the Harvey also relate to the high sand content of foreshore soils. 

In contrast, lower annual nett sediment losses at a site (3) are consistent with a higher 

proportion of fine sediments at that site. The lack of any nett change at some sites despite high 

sand content, suggest erosion has slowed and there may be a move toward stability at such 

sites. Low erosion rates at one site (1) may relate to the removal of significant proportions of 

fringing vegetation during beach clearing of macroalgae between 1976-1990 (Black and 

Hodgkin, 1984) . 

Stability at one site (9) may also be promoted because of the nature of the deposited material, 

largely made up of Halophila ovalis debris and sand (personal observation, Figure 3.22). 

Nyman et al. (1993) reports that mineral content of organics deposited on shores plays a major 

role in sediment stabilisation, and can promote vegetation growth. Colonisation of Suaeda 

australis in the deposited material (Figure 3.20) further supports shoreline stabilisation in this 

area and suggests marsh gains may continue as reported in Kobryn et al. (2000). 

While evidence from this study indicated erosion has increased at a number of sites and rejects 

the hypothesis that the Dawesville Channel has had no effect on erosion, there were no marked 

losses of land this year. Given the time frame of 6 years since channel construction and 
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evidence of accelerated erosion in Kobryn et al. (2000), rapid erosion seems to have already 

occurred in the earlier post channel years and may be now slowing, with a move toward 

shoreline stability. However, below average rainfall in all post channel years and extreme dry 

conditions this year, it would be wise to confirm this conclusion. 

5. CONCLUSION 

Construction of the Dawesville Channel has affected inundation, salinity, sedimentation and 

erosion in the Peel-Harvey System. Vegetation structure reflected altered conditions 

determined by the interplay between increased tidal amplitude, meteorological factors and 

topographic differences along the shoreline . 

The following effects of altered water movement since channel opening were identified: 

Inundation 

• Inundation has increased, and low-lying sites most affected, where all or most of the 

• marsh was flooded 80% of the study time period. 

• 

• 

• 

• 

• 

• Higher proportions of fine sediments may have enhanced flooding at 2 sites. 

• Inundation was exacerbated by the presence of beach ridges (particularly on the 

western shore of the Harvey). 

• Trapped waters in topographical depressions also prolonged inundation, creating 

conditions unsuitable for plant survival. 

• Encroachment of Sarcocornia quinquiflora and Suaeda australis into upper marsh 

provided evidence of increased inundation. 

Salinity 

Water salinity 
• Water salinities generally resembled those before and after channel opening. 

• Hypersalinity continues to occur in summer and autumn. 

• Higher minimum salinities related to the extreme dry conditions this year. 

• Salinity ranges reflected proximity of sites to channel mouths and river systems. 

Soil salinity 

• Salinities in most soils were low and did not reflect the hypersalinity of estuary waters 

in summer. 

• Soil salinities were higher in areas with long duration of flooding . 

• Two sites higher salinities corresponded with higher proportions of fine sediments. 
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• The presence of Sarcocornia quinquiflora and Suaeda australis in upper marsh 

indicated higher soil salinities . 

Sedimentation and Erosion 

Sediments 

• Sediment characteristics were similar to pre channel. 

Turbidity 

• Turbidities were consistently low and may relate to increased flushing of fine 

sediments through the channel and high sand content in soils. 

• Harvey Estuary continues to be more turbid than Peel Inlet. 

• Higher turbidities related to a site containing higher proportions of fine sediments . 

Erosion 

6. 

• Erosion was indicated by dead Melaleuca spp. on the shoreline and undercutting of 

]uncus roots and rhizomes. 

• Obvious erosion occurred at one site where foreshore ]uncus kraussii was 

eliminated. 

• 

• 

• 

Sites oscillated between erosion and deposition between sampling . 

Sites with higher sedimentation rates related to areas regularly exposed to 

prevailing winds . 

Higher erosion rates corresponded with dominance of sand in foreshore soils . 

RECOMMENDATIONS 

Research 

1. Continued to monitor parameters on a site-specific basis to take account of seasonal 

variability. 

2. Replicate vegetation and soil surveys over the long term and on seasonal basis to 

determine the effects of the present conditions, as well as the range of conditions 

exposed to individual species over time. 

3. Map recent aerial photography for comparison with conclusions in Kobryn et al., 

(2000). 

4. Investigate tolerance of ]uncus kraussii to various environmental conditions, and make 

it a focus within rehabilitation programmes, to maintain the ecological integrity of this 

species. 
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5. Continue to monitor conditions and changes in special interest areas (public reserves 

and conservation areas). Areas highlighted in this present study include, site 1 on 

Erskine Reserve and site 8 in the Mealup Point area where the very narrow marsh area 

may retreat further and affect conservation values. 

6. Measure groundwater properties each site. 

7. Incorporate plant trials that assimilate field conditions for different plant ages 

particularly for ]uncus kraussii and Melaleuca spp. to better understand vegetation 

dynamics and improve success of rehabilitation methods. 

8. To assess further the dynamics of accumulation of organic debris on the estuarine 

foreshores and determine the positive and detrimental effects of wrack dynamics. 

Management 

9. Use existing vegetation successional patterns as a guide to assist with revegetation 

programmes. 

10. Instigate revegetation of Erskine Reserve foreshore to enhance and improve the quality 

of the narrow marsh zone . 

11. Investigate best shore stabilisation methods, including the use of logs to reduce wave 

action and promote sediment accretion . 
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8. APPENDICES 

APPENDIX 1: (see CD-ROM attached to inside back cover). 

Panoramic photographs of Peel-Harvey study sites 1-10,2001. 

Adobe Photoshop- jpeg files (727 KB) 

Format: HFS+ISO 9960 (Mac. And PC readable) 

• P-H.sitel.jpg :Study site 1- Erskine Reserve 

• P-H.site2.jpg : Study site 2- Ward Point 

• P-H.site3.jpg : Study site 3- Warragup Springs 

• P-H.site4.jpg : Study site 4- Lot 8 Estuary Road 

• P-H.site5.jpg :Lot 100 Old Coast Road 

• P-H.site6.jpg : South Estuary Road 

• P-H.site7.jpg : South Kooljerrenup 

• P-H.site8.jpg : Mealup Point 

• P-H.site9.jpg : Point Grey 

• P-H.sitelO.jpg: Point Birch 
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APPENDIX II: 

STATISTICAL ANA YSIS 

Multiple regression analysis was employed to assess the relationships between parameters 

measured over the study period. Linier regression was preformed in the statistical package 

SPPS, using 'enter' and 'step-wise' methods for analysis (Coakes and Steed, 1996). Several 

multiple regression runs were undertaken with vegetation and site chosen as dependant 

variables. Correlations between individual independent variables and the dependant variable 

were also made. The level of significance used wasp~ 0.05. 

Model summary output for each multiple regression run indicated little correlation between 

parameters, with R-square values ranging from 0.09 to 0.26. No significant relationship 

between individual parameters and the dependant variable was supported where p-values 

ranged from 0.10 to 0.9 . 

___________________________________________________________ 48 



• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

APPENDIX III 

Vegetation distribution along transects in the Peel-Harvey Estuary 2001 . 

(Word document, CD-ROM, HFS+/IS09960 format) 
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APPENDIX IV: Photographs indicating The effects of wave action on foreshore ]uncus 
kraussii ( on eastern Harvey shore at study site 8, 
Mealup Point, Peel-Harvey Estuary WA, 2001. 

Format: HFS+ ISO 9960 (Mac. And PC readable) 
Adobe Photoshop- jpeg files (332 KB) 

• Temporal.l.jpg: 

• Temporal.2.jpg: 

• Temporal.3.jpg: 

• Temporal.4 jpg: 

• TemporaLS .jpg: 

• Temporal.6.jpg: 

• Temporal.7.jpg: 

28 th February 2001 

20 th March 2001 

5th June 2001 

11th June 2001 

30th July 2001 

16 th August 2001 

16 th March 2002 

----------------------------------------------------------- 50 



• 
APPENDIX V: Land elevation (em) in relation to the AHD (in bold), at each reference point 

(peg) along site transects, Peel-Harvey Estuary, 2001. 

• 
Peg 2 3 4 5 6 7 8 9 10 

Site 1 
transect (m) 0 2.8 5.6 7.8 10.68 13 15.78 18 20.8 

cmAHD -76.7 -69.7 -55.5 -3.2 26.4 34.7 12.7 12.8 15.5 
Site 2 • transect (m) 0 9.2 18.56 28.09 37.25 45.95 56 65.25 74.53 

cmAHD -69 -31.8 -35.9 -18.8 -31.8 -22.6 -14.7 -1.4 20 
Site 3 

transect (m) 0 2 4 8 12 16 20 24 28 30.5 

cmAHD -136 -29.3 -14.8 -12.3 -16.2 -14.5 -17.5 -13.5 -12.6 -7 
Site 4 

• transect (m) 0 6.14 13.14 19.14 25.14 32.14 38.14 44.64 52 57.24 
ccmAHD -75 -18 -25 -22 -20 2 13 10 9 2 

Site 5 
transect (m) 0 5.15 10.15 14.95 19.95 24.75 29.6 34.6 41.85 

cmAHD -100 -96 -24 -27 6 12 -10.43 31 -15 
Site 6 

transect (m) 0 11 21 31 39.5 49.15 59.85 70.55 81.35 91.35 

• cmAHD -126 -61.3 -71.8 -50.3 -59 -50.5 -56 -41 -16 -16 
Site 7 

transect (m) 0 13.5 27 40.5 66.5 79.5 92.5 103.5 114.5 124.5 

cmAHD -53 -44 -31.3 -33.9 -37.1 -43.9 -40.8 -39 -33.9 -14 
Site 8 

transect (m) 0 2.3 4.48 7.84 10.24 12.24 14.24 15.39 16.54 

• cmAHD 
Site 9 

-99.8 -85.5 -59.8 -59.8 -50.1 -43.5 -20.8 -3.7 -2.5 

transect (m) 0 7 14 19.8 26.8 33.8 40.8 48.3 54.7 63.5 

cmAHD -40.8 19.1 7 29.1 35.8 26.5 26.3 38 34.8 22.5 
Site 10 

transect (m) 0 2.7 6.2 7.4 10 11.75 13.2 16 18.62 21.47 

cmAHD -50 -24.7 -23 -23.7 -29 -24 -6 -6.4 7 31 

• 

• 

• 
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Appendix VI: Submergence curve. Predicted percent time inundation in relation to 
the Australian Height Datum (AHD), in the Peel Inlet after construction of the 
Dawesville Channel. 
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