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Abstract 

The reliability of digital evidence is an important consideration in legal cases requiring sound 
validation. To ensure its reliability, digital evidence requires the adoption of reliable processes for the 
acquisition, preservation, and analysis of digital data. To undertake these tasks, the courts expect 
digital forensic practitioners to possess specialised skills, experience, and use sound forensic tools and 
processes. The courts require that the reliability of digital evidence can be verified with supporting 
documentation; notably acquisition process logs and a chain of custody register, confirming that the 
process of recovering and protecting the evidence was based on sound scientific principles. 

In typical cases the digital evidence has been ‘preserved’ in a special file or ‘container’ that 
has been declared to be secure on the basis that it is not possible to tamper with the contents of the 
container or the information supporting the contents (metadata) without this act being discovered. 
However, through the use of a freely available open source library, libewf, it has been discovered that 
the most commonly used forensic container format, Encase Evidence File Format, also known by its 
file extension .E01, can be manipulated to circumvent validation by forensic tools. This digital forensic 
container contains an embedded forensic image of the acquired device and metadata fields 
containing information about the data that was acquired, the circumstances of the acquisition, and 
details about the device from which the forensic image was acquired. It has been found that both the 
forensic image and the metadata associated with that image can be freely altered using simple file 
editors and open source software. 

Exploiting these weaknesses within the Encase Evidence File format results in a forensic 
container that can be altered but fails to provide any evidence that this has occurred. In practice the 
original device is often unavailable, damaged, or otherwise unable to provide independent validation 
of the data held in the container. In such situations, it would be difficult, if not impossible, to 
determine which of two forensic containers held the original record of the evidence. 

As part of a proof of concept, existing libewf code was manipulated to allow for legitimate 
metadata to be attached to a compromised and altered forensic image with recalculated hashes and 
data integrity checksums. Without incontrovertible records of the original data’s hash value, this 
manipulation might only be detected by an independent third party holding a copy of the original 
forensic container’s metadata and hashes for comparison. While hashes and metadata held by an 
interested party could also potentially be altered or declared unreliable, an uninterested party would 
be able to provide a more reliable set of hashes that could be used to validate the unaltered 
container. 

In order to add to the body of knowledge supporting digital forensics as a scientific discipline 
this research has brought into question a fundamental assumption about the reliability of a 
fundamental method currently used to collect and validate digital evidence. Further research is 
required to determine the whether processes can be designed to enhance the detection of 
contaminated images. 
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1 Introduction 
 

Cyber transgressions, whether criminal acts, civil wrongs, or personnel misconduct, are on the 

increase due to an increasing access to and reliance upon technology in everyday life (Nfuka, Sanga, 

& Mshangi, 2014). These transgressions require investigation but often involve technologies that 

exceed the skills and experience of investigators and legal practitioners, thus creating a need for 

specialist digital forensic practitioners (Rogers, Scarborough, Frakes, & San Martin, 2007). This thesis 

focuses on a key aspect of digital forensics: the validation of digital evidence recovered from 

electronic devices. 

The chain of custody is a record of the handling and protection processes used to ensure the 

continuing integrity of physical evidence seized from a crime scene, including computing devices 

holding digital evidence, such as computer hard drives and mobile phones (Cosic & Baca, 2010). The 

chain of custody documents the state, location, and interactions with the evidence and is intended 

to confirm the authenticity of the evidence between seizure and presentation in legal hearings 

(Jarrett, Bailie, Hagen, & Judish, 2009, p.197). 

The evidence acquisition process logs created by digital forensic acquisition software are a record of 

the handling, extraction, and copying processes used to ensure the integrity of the digital evidence 

located on physical devices that have been seized from a crime scene (Richard, Roussev, & Marziale, 

2007). These logs include information such as the date of acquisition, the amount of data acquired, 

hash values and other relevant details about the seized device. They are intended to demonstrate 

that the acquisition process created an authentic image of the digital information held on the device 

(CDESFWG, 2006). The evidence extracted from devices is subject to intense scrutiny in courts, and 

the chain of custody register and acquisition process logs assist in persuading the court of its 

accuracy and authenticity and hence its reliability (Jarrett et al., 2009).  
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This thesis explores the processes currently used to validate digital evidence intended for use in legal 

hearings and seeks to identify vulnerabilities in these processes that allow for the malevolent 

alteration of digital evidence, such that the altered evidence could not be differentiated from the 

original evidence when supporting documentation is considered unreliable or is was unavailable. 

This research stems from the suggestions of other researchers, such as Mocas (2004) and Garfinkel 

(2010), that further research into the areas of data integrity and authentication processes is 

required. 

The research undertaken seeks to test the most common processes and tools used by digital 

forensics investigators by attempting to take advantage the technical limitations of digital evidence 

containers and the software that creates them. This was conducted through a series of experiments 

testing the degree to which digital evidence containers can be altered and the ability of forensic 

software tools to detect these alterations. 

This thesis consists of the following chapters: a literature review detailing digital forensic processes 

and previous research into the validation of digital evidence; an overview and justification of the 

research objectives of this project; a description of the experiments used to validate identified 

weaknesses in the Encase Evidence File digital evidence container; a presentation of the results of 

those experiments; a discussion of the findings and their implications; and a list of recommendations 

that can lessen the potential impact or prevent the exploitation of the weaknesses identified in the 

research presented in this thesis. 
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2 Literature review 
 

Digital forensics is a broad discipline ranging from technical detail on the operation of electronic 

devices through to the legal theory applicable to digital evidence, as demonstrated by the variety of 

research discussed in this literature review. This literature review seeks to provide an introduction as 

to how technical expertise, specialised hardware and software tools, and standardised processes 

work together to provide reliable digital evidence in support of legal argument. The literature review 

provides an overview of the purpose and nature of digital forensics and provides a description of 

digital evidence. The acquisition of digital evidence and the evidentiary requirements it must meet 

are described and the review concludes with an appraisal of the condition of digital forensics 

research regarding digital evidence validation. 

2.1 Digital forensics 
 

Digital forensics, sometimes called cyber forensics, computer forensics, or forensic computing, is the 

investigation of circumstances in which a computer is believed to have been used to commit 

criminal, civil, or staff misconduct (Carrier, 2005; Rowlingson, 2004). The growth of crimes involving 

computers has resulted in an increasing reliance upon digital evidence in legal cases, including those 

where the evidence is collected entirely in digital form (Cohen, 2008; De Maio, 2013; 

Mouhtaropoulos, Li, & Grobler, 2014, p.5). Digital evidence is generally held to be information stored 

in a binary form (encoded as strings of 1s and 0s), in a wide range of devices, such as hard drives and 

mobile phones, which holds investigative or probative value to digital forensics practitioners, 

investigators, and legal practitioners (Ashcroft, 2001, pp.9-22; Pollitt, 2001). 

The first Digital Forensics Research Workshop (p.16, 2001) agreed upon the following definition of 

digital forensics: 

The use of scientifically derived and proven methods toward the preservation, 
collection, validation, identification, analysis, interpretation, documentation and 
presentation of digital evidence derived from digital sources for the purpose of 
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facilitating or furthering the reconstruction of events found to be criminal, or 
helping to anticipate unauthorized actions shown to be disruptive to planned 
operations. 
 

Digital forensics is, therefore, defined as a science using repeatable process and logical deduction to 

identify, extract and preserve digital evidence, a definition supported by Noblett, Pollit and Presley 

(2000). Altheide and Carvey (2011, p.2) assert that investigation, a part of the process, is also an art, 

relying on experience and intuition to analyse the available data. 

2.1.1 The purpose of digital forensics 
 

The Digital Forensics Research Workshop (2001) further categorised the aims of digital forensics as 

law enforcement, information warfare, and critical infrastructure protection (business and industry); 

while the primary goal of law enforcement is to prosecute those who break the law, prosecution 

may only be a secondary objective of the latter categories, if it is even considered at all. 

The goal of any digital forensic examination is to identify the facts relating to an alleged event and to 

create a timeline of these events that represents the truth (Altheide & Carvey, 2011). A practitioner 

should strive to link these events to the identity of an individual; however, this may not always be 

possible and the events may be described with unknown actors (Digital Forensics Research 

Workshop, 2001). 

Admissibility in legal proceedings is the appropriateness of evidence to be used as a basis for legal 

argument; admissible evidence must be reliable and relevant to the case (Gottesman, 1994). Casey 

(2011, pp. 56-57) states that determining admissibility varies between jurisdictions, though evidence 

must comply with all of the following conditions in that it is:  

 Relevant, 

 Authentic, 

 Not hearsay (some hearsay is exempt), 

 The best evidence available, and 
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 Not unduly prejudicial. 

Evidence which is found to be irrelevant to the case or deemed to be unreliable, in other words 

unable to present objective truth, is considered inadmissible and cannot be considered in judgment 

of the case (Gottesman, 1994). ‘Scientific’ expert testimony, such as that presented by a digital 

forensics practitioner in United States jurisdictions, is typically assessed by the Daubert Test, from 

the case Daubert v. Merrell Dow Pharmaceuticals Inc. (1993). 

The Daubert test is used in the United States as a benchmark for evaluating the validity of tools and 

processes used to acquire, preserve, and analyse digital evidence (Craiger, Swauger, Marberry, & 

Hendricks, 2006). While this is not an Australian case, it was considered by the High Court of 

Australia in Osland vs The Queen (1998). A witness asserted that scientific evidence presented 

during the case would not have satisfied the Daubert test and the Justices agreed, noting that it also 

failed to meet Australian evidence standards (High Court of Australia, 2000).  

The Daubert test is a set of non-prescriptive, flexible guidelines to be used by a judge to determine 

whether evidence presented by an expert witness can be considered to be based on scientific 

knowledge (Gottesman, 1994). Suggested guidelines include peer review, known error rates, 

empirical testing, and the adherences to standards and protocols developed and maintained by 

scientific peers (Gottesman, 1994). In determining the scientific credentials of the witness and their 

testimony the judge acts in an independent ‘gatekeeper’ role who assesses each case according to 

its individual circumstances (Gottesman, 1994). 

Digital evidence, if not handled in strict accordance with protective handling and investigation 

guidelines, is susceptible to alteration, destruction, or other contamination that can impair its 

admissibility and evidentiary weight (Ashcroft, 2001; Carrier & Spafford, 2003). The tools and 

techniques used in digital forensics are designed to assist the practitioner in preserving and 

protecting digital evidence (Lenstra & de Wegner, 2005; Schneier, 2004). 
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Digital evidence, like other forms of indirect evidence, is provided to the legal counsel to determine 

its admissibility and its suitability for use in legal proceedings, based upon the rules of the court and 

its ability to support a convincing argument (Ashley & Rissland, 1986; Perelman, Weaver, Wilkinson, 

& Olbrechts-Tyteca, 1971). The legal counsel can use evidence they deem suitable to construct an 

argument by linking discrete pieces of evidence together using logical inference; these inferences 

are used to persuade the court towards a particular interpretation of the evidence presented 

(Silverstone & Sheetz, 2007).  

2.1.2 The nature of digital evidence 
 

Digital evidence is information that is stored in electronic devices. Carrier & Spafford (2003) 

categorise the storage device as physical evidence, together with any other hardware and 

peripherals; while binary data stored on these devices is categorised as digital evidence. Digital 

evidence can be recovered from a wide range of devices and take various forms, such as 

system/server logs, network logs, network traffic, and file system data (Sommer, 1998). File system 

data can be found in a variety of devices such as removable disks, both optical (CD) and magnetic, 

floppy disks (Duerr, Beser, & Staisiunas, 2004), magnetic tapes (Thompson & Berwick, 1998, p.36), 

memory cards, digital cameras, personal electronic devices, hard drives (Ashcroft, 2001, pp.9-22), 

and more recently flash memory and solid state drives (Bell & Boddington, 2010). The random 

access memory (RAM) of a computer also contains data that can be captured and analysed, provided 

the suspect machine has not been powered off before acquisition as RAM needs to be powered to 

retain the data it contains (Ruff, 2008).  

Altheide and Carvey (2011) make a distinction in terminology between evidence, which is a legal 

construct and is presented in a court room or other official proceedings, and an artefact, which is a 

piece of data that pertains to an alleged action or event and is of interest to a digital forensic 

practitioner. Other researchers, (Carrier, 2005; Jarrett et al., 2009; Cohen, 2008) choose to use the 

term evidence inclusively, and this is the term used throughout this proposal. 
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The purpose of collecting digital evidence and physical evidence is the same; it allows legal 

practitioners and investigators to preserve evidence and then analyse it to determine the facts of an 

alleged crime or other unauthorised behaviour (Saferstein, 2011). Evidence can be categorised 

depending on the kind of argument it supports; inculpatory evidence is that which supports existing 

hypotheses, such as the guilt of a suspect, and exculpatory is that which contradicts the existing 

hypotheses or offers an alternative argument (Carrier, 2003). 

Notable differences exist between physical evidence and digital evidence and in particular the 

volatile nature of digital evidence by virtue of the ease with which it can be altered (Caloyannides, 

2004; Mercuri, 2005). This susceptibility to alteration can make it difficult for courts to determine 

the admissibility of some of digital evidence exhibits tendered during legal cases (Akester, 2004). For 

this reason it is important that when acquiring digital evidence the original data remains unaltered, a 

requirement that is met through the application of sound acquisition processes (Casey, 2011). 

Digital evidence is also rich in metadata, which is information about the data that is stored on a 

device, such as the of a file size in bytes, the time of the most recent modification to the file, the last 

time a file was edited, or the time the file was initially created (Carrier, 2005, p.130). This metadata 

can assist the digital forensic practitioner in establishing timelines of events and identifying 

forensically interesting artefacts within the data (Buchholz & Spafford, 2004, pp.4-5). 

The analysis of digital evidence routinely involves working with large data sets that often use new 

and emerging technologies that require technical expertise and understanding that the typical legal 

practitioner does not possess (Mercuri, 2005). This technical complexity can lead to fundamental 

misunderstandings of the evidence presented in legal cases, resulting in flawed reasoning and 

justifications when considering a verdict (Koehler & Thompson, 2006). 
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2.2 Digital forensic processes 
 

The motive and desired outcome of a digital investigation may vary depending on the environment, 

individuals involved, and the nature of the behavior. However, the general forensic principles and 

processes do not, as it is vital that evidence must be acquired, preserved, and analysed before 

conclusions can be drawn from it (Altheide & Carvey, 2011).  

The acquisition and preservation processes involved in digital forensic examinations have different 

objectives but are closely linked (Casey, 2011). Preservation must be considered by a practitioner 

before the acquisition process begins, as the acquisition process itself can alter the source device 

(Sommer, 1998). Preservation techniques, therefore, must be employed during the acquisition of the 

data to prevent contamination and preserve the data in a condition identical to that it was seized in 

(Hosmer, 2002). 

Once a practitioner has collected and suitably preserved the digital data in a manner that is assured 

of later proving its validity, the image may be analysed to complete the forensic examination (Carrier 

& Spafford, 2003). There are three main kinds of digital forensic analysis: 

 Media analysis is the identification, extraction, and interpretation of digital evidence on 

storage devices like hard drives and USB flash media (Digital Forensics Research Workshop, 

2001),  

 Network analysis focusses on traffic and communications on networks between computers 

(Corey, Peterman, Shearin, Greenberg, & Van Bokkelen, 2002), and  

 Code analysis is the breaking down of suspect applications and programs to determine the 

composition and underlying mechanics that may be of interest to a practitioner (Aquilina, 

Casey, & Malin, 2008). 

All investigations should start with a hypothesis to explain events and artefacts located in the data 

and the practitioner should then search for inculpatory evidence and exculpatory evidence (Carrier 
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& Spafford, 2003). These hypotheses may need revising as the investigation progresses and new 

evidence is detected, and should continue to be revised until a logical explanation of events is found 

(Carrier, 2005, pp.12-14). 

Carrier and Spafford (2003) explored digital forensic processes and developed a model for 

investigating digital crime scenes called the Integrated Digital Investigation Process (IDIP). One of the 

primary tenets of this process is to ensure that any computer encountered in a physical crime scene 

is treated as a separate crime scene in terms of both the physical hardware and the digital evidence 

it may contain.  

According to Carrier and Spafford (2003), the IDIP model prescribes 17 phases organised into five 

groups. These groups are readiness, deployment, physical investigation, digital investigation, and 

review, and are described as follows: 

 The Readiness phases are ongoing, and are designed to maintain a forensic capability at all 

times.  

 The Deployment phases involve the detection of suspect events and obtaining authorisation 

to pursue an investigation into those events.  

 The Physical Investigation is designed to secure, locate, document, collect, reconstruct and 

present those physical artefacts within the digital crime scene.  

 The Digital Investigation undertakes the same phases but in relation to the data on devices 

collected during the Physical Investigation.  

 The Review phases are retrospective and allow the practitioner to reflect on the process and 

results of the investigation to identify areas of improvement. 

Carrier and Spafford (2003) note that a digital crime scene does not only encompass the digital 

evidence, but also includes all the physical evidence associated with the computer. This may include 

removable devices, network cables, storage devices, printers, and even post-it notes attached to a 

device or other documentation pertaining to the computer (Ashcroft, 2001, pp.9-22). It is up to the 
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practitioner to use both the physical and digital evidence to connect the events that occurred on a 

suspect computer back to one or more users (Carrier & Spafford, 2003). 

An alternative, and considerably newer, model is the Advanced Data Acquisition Model (ADAM), as 

designed and proposed by Adams (2012, pp. 152-155). According to Adams (2012), the ADAM’s 

overriding principles focus on maintaining the integrity of the original data, keeping complete, 

detailed records of the state of the data and physical devices, and protecting the rights of all parties 

involved in the investigation. The model is divided into three stages; initial planning, creating an 

onsite plan, and acquisition of digital data (Adams, 2012). According to Adams (2012), these stages 

consist of: 

 The initial planning stage, which involves identifying the requirements of a task, 

confirmation of authorisation to act, considering the case specific constraints, such as 

physical access and time limitations, and including this information in an outline plan.  

 The creation of an onsite plan; this is done by assessing the specific characteristics of the 

operating environment, identifying and securing the required access to the data to be 

acquired, and making the necessary changes to the outline plan.  

 The consideration of technical issues when acquiring the data, and the mandating of 

comprehensive note taking, creation of multiple copies of the acquired data, and ensuring 

that the integrity of the data can be verified.  

Unlike the IDIP, the ADAM does not cover the analysis of the acquired data and presentation of any 

discovered evidence. 

Of these processes, the acquisition and preservation of digital evidence is the focus of the next 

section, which examines these processes in more detail, covering the purpose, technical processes, 

potential complications, and mitigation for some of those complications. 
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2.3 Preservation and recovery of digital evidence 
 

The preservation of digital evidence is intended to ensure that both the original device and any 

images acquired from that device remain in a pristine condition, meaning they are representative of 

the data stored on the device at the time of seizure (Casey, 2011). Effective preservation, as 

documented by acquisition logs and hashes1, allows a practitioner to attribute events and items to 

the users of the device, and precludes any suggestion that they were generated by the practitioner 

themselves (Carrier, 2005). A key factor in preservation is the promptness with which a seized device 

has its data forensically acquired, with speed being crucial to preventing claims of deliberate or 

accidental contamination (Altheide & Carvey, 2011). The next section describes the acquisition and 

recovery processes in detail, and explores some potential sources of contamination and their 

counter-measures. 

2.3.1 The role and importance of crime scene preservation 
 

Evidence acquisition and preservation is required to ensure the continuing integrity (the objective 

truthfulness) of any evidence recovered from a device and allows it to be admitted during legal 

proceedings (Altheide & Carvey, 2011). The integrity of the original evidence directly affects its value 

and any forensic images relating to it in court; if a party cannot prove that evidence is unaltered then 

it can be implied by opposing legal counsel that it may have changed and is no longer an accurate 

representation of the actions of the accused (Noblett et al., 2000; Duerr et al., 2004). Therefore,  

sound procedure is required to prove that the investigative process has not altered the original 

evidence (Noblett et al., 2000), and acquisition is an important step in that procedure. 

Assessing the suitability of evidence for presentation in a court of law is at the core of forensic 

science (Digital Forensics Research Workshop, 2001). The US Federal Rules of Evidence dictate the 

                                                           
1 A hash is a fixed length representation of an arbitrary input. Identical inputs to a hashing function will 
produce identical hashes, meaning a hashing function can be used to prove two files are identical (Roussev, 
Chen, Bourg, & Richard, 2006). Hashing is further discussed in section 2.3.3.1. 
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requirements that must be met regarding the collection, preservation, and presentation of evidence 

in United States Federal Courts, including the Supreme Court of the United States (SCOTUS) (Federal 

Rules of Evidence, 2010). Given the scientific and methodical nature by which a digital forensic 

investigation is performed, and the non-traditional nature of digital evidence, rules 702, 901a, 

1001(4), and 1002 of the US Federal Rules of Evidence are particularly pertinent to the digital 

forensic practitioner.  

The equivalent Australian legislation is the Commonwealth Evidence Act 1995, with each state and 

territory having its own Evidence Act (Mason, 2007). Moles (2007) notes that Australian courts have 

acknowledged  Daubert vs Merrell Dow Pharmaceuticals Inc. (1993), the current precedent in US 

Federal Courts (Gottesman, 1994), in assessing evidence presented by expert witnesses, such as in 

Osland v The Queen (1998). It should be noted that Australian evidence requirements are far less 

prescriptive and rely heavily on the magistrate or judge to analyse the circumstances surrounding 

the acquisition, analysis, and presentation of digital evidence (Moles, 2007). 

Looking at the US experience, to meet the requirements of the US Federal Rules of evidence, the 

integrity of the data cannot be in question; the data structures must have remained the same 

throughout the investigative process (Digital Forensics Research Workshop, 2001). This requirement 

is primarily driven by rules 1002, ‘Requirement of the Original’, and 1001(4), ‘Definitions that Apply 

to This Article’ (Jarrett et al., 2009). Rule 1002 requires that to prove the content of an item of 

evidence, the original must be provided (Federal rules of evidence, 2010); however, due to the 

nature of digital evidence, presenting the original storage device would be ineffective (Thompson & 

Berwick, 1998).  

Rule 1001(4) allows for copies where appropriate, such as a photograph developed from a negative, 

so long as it is, “. . . produced by methods possessing accuracy which virtually eliminates the 

possibility of error” (Federal Rules of Evidence, 2010). These copies are considered best evidence; 

the courts do not consider there is a more appropriate, feasible method of preserving and 
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presenting digital evidence, especially multimedia such as digital photos, video or audio (Thompson 

& Berwick, 1998) 

2.3.1.1 The acquisition process 

 

Forensic acquisition is a process intended to capture an accurate (objectively truthful) and 

independently verifiable representation of data stored on physical evidence-and which can be 

validated in that it may be relied upon as evidence in proceedings (Altheide & Carvey, 2011). A 

sound acquisition process creates an exact duplicate of a suspect data storage device, a ‘bit for bit 

copy’, or a specialised forensic container holding the equivalent thereof (Lyle, 2003). This process 

must be well documented to prove the provenance and integrity of the captured image, repeatable 

with the same results to allow for authentication as digital evidence, and capture a forensic image 

that is a complete and unaltered representation of the data stored on a device (Noblett et al., 2000; 

Altheide & Carvey, 2011). These processes are designed to protect the integrity of digital evidence. 

Ideally acquiring and verifying the integrity of a forensic image should never modify the source 

media (Duerr et al., 2004). 

The initial captured forensic image, sometimes called the ‘master image’ should be copied  to create 

one or more ‘working’ backups and to provide a copy for the opposing counsel (Pollitt, 2001). This 

means that the practitioner can later analyse a perfect representation of the original evidence 

without running the risk of corrupting the original image (Digital Forensics Research Workshop, 

2001). Using an imperfect image for analysis would diminish the admissibility as well as placing at 

risk the evidentiary worth of evidence recovered from the device (Noblett et al., 2000; Carrier, 

2005). 

Carrier (2005) explains that data can be acquired at different levels, such as the whole disk, a single 

partition, or a single file, depending on what the practitioner is attempting to preserve. Accordingly, 

a practitioner should make an informed decision prior to creating a forensic image. Usually this will 
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be the lowest level possible, the whole disk, as it ensures that all possible data has been collected 

and can be analysed (Carrier, 2005). 

Acquiring a forensic image at a higher level will inherently exclude some data, so the practitioner 

must be confident that doing so is well justified and is cognisant of exactly what is being excluded; 

this is called selective imaging (Turner, 2006). For example, Carrier (2005) suggests that when 

acquiring data from an intrusion detection system (IDS), it may be more appropriate to capture 

specific log files only, if the IDS is not thought to have been compromised. Other considerations in 

selective imaging may be the capacity of the practitioner to acquire large volumes of data or legal 

requirements in regards to legally privileged information, such as medical or legal documents 

(Turner, 2006). 

The acquisition process itself differs in detail depending on the forensic tools used, however, a basic 

explanation can be extracted from the US National Institute of Standards and Technology (NIST) 

testing guidelines (Lyle, 2003). The first step of the acquisition process is to record the details of the 

source, the environment it was found in, and whether it was removed from the original host 

machine (Jarrett et al., 2009). Typically a practitioner would now connect a software or hardware 

write-blocker before creating a hash of the disk (Carrier, 2005), though NIST neglects to do this so 

that the acquisition software can be tested to determine if it writes to the source drive (Lyle, 2003). 

The forensic image acquired needs to be stored, so the destination media should be prepared: 

formatted and partitioned for a forensic image, or left blank for a bitwise clone (a technique that 

copies data from one disk to another, such that every bit ends up at the same address on the copy, 

as opposed to an image which groups all the data into a single file; Carrier, 2005). Carrier (2005) 

suggests writing zeros to the drive beforehand if using the latter case, to make it clear where the 

captured data ends and to prevent contamination from other data previously on the disk. 

Once this preparation is completed, the capture of the target data can begin using the forensic tool 

chosen. The capture process progresses methodically, reading a chunk of data and writing that 
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chunk to the destination drive, then repeating the process until the entire source drive has been 

copied (Carrier, 2005). NIST (Lyle, 2003) recommends finishing the acquisition process by computing 

the hashes of the  image and comparing them to those calculated at the beginning of the acquisition 

process to verify whether they are identical. 

The alternative to acquiring an image of a device for investigation in an environment in which the 

original computer system is powered off ( sometimes referred to as dead analysis) is live analysis 

which uses the hardware and operating system of the suspect computer to perform the digital 

forensic investigation, rather than an environment completely controlled by the practitioner 

(Carrier, 2006). 

Carrier (2005) identifies numerous negative aspects to the live analysis, notably: 

 the actions of the practitioner can irreversibly alter the data, making it hard to differentiate 

between their actions and those of a potential suspect 

 the OS and hardware can actively work to hide data from the practitioner, such as HPAs and 

DCOs2,  and 

 as the suspect controls the environment, it can make the practitioner more susceptible to 

triggering evidence destroying programs, including digital booby traps.  

Carrier (2005) concludes that while a live analysis should be avoided where possible, there are times 

where a live analysis is the only option, such as when dealing with critical systems that cannot be 

taken offline for acquisition, or when knowingly dealing with full disk encryption.  

2.3.1.2 Chain of custody 

 

The chain of custody is a concept and process designed to ensure the integrity of evidence, including 

digital evidence (Cosic & Baca, 2010). The process requires those holding custody over evidence to 

                                                           
2 Host Protected Areas (HPAs) and Device Configuration Overlays (DCOs) are areas of a storage that cannot be 
read by the file system. They are discussed in more depth in the section 2.3.2.3.  
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be able to provide a clear timeline highlighting the location, state, and significant events as they 

pertain to a piece of evidence (Cosic & Baca, 2010). The chain of custody can be a point of challenge 

for opposing counsel and for a practitioner trying to introduce digital evidence in a court; defending 

a challenge can hinge on the procedures used to document and protect the forensic image (Berg, 

2000). However, the possibility of alteration is not enough to make evidence inadmissible; there 

must be credible evidence that alteration has taken place to render it inadmissible, though the 

identification of inadequate evidence protection processes can reduce the weight of that evidence 

(Jarrett et al., 2009). 

Digital evidence needs protecting in terms of the data, which is the focus of this review, and the 

physical media on which it is stored (Jarrett et al., 2009). A two stage process involving a 

documented chain of custody for the physical evidence and a comprehensive set of hashes for the 

data held by the device, is mandatory and ensures the continuing integrity of the digital evidence 

(Jarrett et al., 2009).  

Cosic and Baca (2010) suggest that documenting the chain of custody should involve addressing the 

following questions and recording the information for future reference: 

 What is the evidence?  

 How did investigators get the evidence?  

 When was it collected and when was it used?  

 Who handled it?  

 Why that person handled it?  

 Where it travelled, where was it stored? 

The overall goal of any procedure that tracks the information required to answer these questions is 

to prevent unauthorised persons from having access to the evidence between the time of capture 

and presentation in court (Cosic & Baca, 2010). It is essential to record the chain of custody as near 

to the time and place of collection as possible, and this should include the identification information 
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of the practitioner generating the data (Duerr et al., 2004). The collection of this information should 

be complete and detailed, making clear who has accessed the evidence, when, what was done to it 

or what it was used for, and when it was returned, and ideally should follow a documented process 

(Turner, 2005). 

2.3.2 Sources of contamination and preservation issues 
 

Locard’s Exchange Principle explains how the perpetrator of a crime will bring something into any 

crime scene and will leave with something from it (Saferstein, 2001). Carrier and Spafford (2003) 

explain how this principle applies to a digital crime scene: any action an individual takes when 

electronically interacting with a digital crime scene will alter the system if specialised equipment and 

procedures are not used. This includes the actions of the practitioner, and is a strong reason why live 

analysis can diminish the admissibility and reliability of the evidence; the practitioner can 

inadvertently alter the digital crime scene, compromising its integrity as evidence, as all artefacts can 

no longer be guaranteed to be a historical account of events taken place on the system (Carrier, 

2006). The acquisition process is designed to avoid the transference of evidence from the 

practitioner to the storage device (Sommer, 1998). 

Contamination refers to the addition or alteration of data, by the practitioner or another person, as 

well as the loss or uncontrolled, non-capture of data (Gupta, Hoeschele, & Rogers, 2006). Acquisition 

equipment needs to be capable of capturing all the information present on a disk (Lyle, 2003), which 

includes the HPA and DCO3 areas (Gupta et al., 2006). While the potential loss of evidence present in 

any uncollected data is a setback for any investigation, the more important implication is that if the 

omission of data from a forensic image is discovered, it can damage the credibility of all findings and 

testimony produced by the practitioner based on that image (Carrier, 2005; Cohen, 2008). 

                                                           
3 Host Protected Areas (HPAs) and Device Configuration Overlays (DCOs) are areas of a storage that cannot be 
read by the file system. They are discussed in more depth in section 2.3.2.3. 
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2.3.2.1 BIOS addressing limitation 

 

Different acquisition tools access the hardware in different ways, either through the Basic 

Input/Output System (BIOS), or through direct connection to the media (Carrier, 2005). Carrier 

(2005) notes that the BIOS can potentially report incorrect information, either through technical 

limitations, firmware errors, or possibly deliberate obfuscation caused by custom firmware. For 

example, a BIOS using a 32 bit addressing scheme can only detect 2.2 terabytes of a 3 terabyte hard 

drive, and in turn will only report 2.2 terabytes as the size to acquisition software using the BIOS 

(Microsoft, 2013). 

Computer viruses running on the practitioner’s computer, either extant or contracted through 

interaction with a suspect device, also have the potential to alter or destroy data randomly or in a 

targeted attack (Berg, 2000). 

2.3.2.2 Bad sectors 

 

Bad sectors and other input/output (IO) errors encountered during the acquisition process should be 

logged in detail (Lyle, 2003). Bad sectors are a part of a storage device that has become corrupted, 

either through hardware malfunction or a software error in writing data (Carrier, 2005). When a bad 

sector is encountered during the acquisition process most software will record the entire sector as 

being filled with zeros, called benign fill by Lyle and Wozar (2007), rather than the corrupt data, in a 

case of deliberate contamination (Altheide & Carvey, 2011). While inserting benign fill results in an 

image that is not a perfect copy of the source media, writing a fixed number of zeros ensures the 

correct number of bytes is written to the image, keeping the overall size and relative structure of the 

image consistent with the source media (Carrier, 2005). Bad sectors have been shown, however, to 

cause the popular Unix image creation tool dd to omit up to six sectors following a bad sector, 

resulting in an image that has not captured all available data (Lyle & Wozar, 2007). 
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2.3.2.3 Hardware level data obfuscation 

 

Host Protected Areas (HPAs) and Device Configuration Overlays (DCOs) are areas of a hard drive or 

solid-state drive that are protected from reading by the operating system (Guo, Slay, & Beckett, 

2009). These areas are used by vendors to store data, such as drivers and recovery information, 

without it being at risk of modification or erasure; however, these areas can equally be used by an 

individual to store other data that they do not want found by practitioners or other users of the 

computer (Gupta et al., 2006). During the acquisition process the practitioner can use tools to detect 

and capture these areas on a hard disk or solid state drive and subject them to analysis (Altheide & 

Carvey, 2011). 

2.3.3 The importance of forensic image validation and preventing contamination 
 

The case the literature makes is that imaging is required to be an errorless process by which a copy 

can be obtained of original evidence. When dealing with digital evidence it is not immediately 

obvious that the copy is a true and accurate reproduction, and therefore relies on the expert 

testimony of the practitioner to provide validation (also called authentication) (Jarrett et al., 2009). 

Validation is a process by which a practitioner establishes that inferences drawn from the digital 

evidence can be reproduced and verified and are a suitable basis from which to form legal 

arguments (Casey, 2011).  

Where arguments have been presented to the court but cannot be verified or have failed 

verification, the case often collapses for the party leading that argument, especially if the failure is a 

result of professional incompetency (Cohen, 2008). Similarly, a case is also in jeopardy should the 

opposing party be able to show that the security of the environment in which digital evidence was 

stored was lax and that contamination of the evidence resulted from this shortcoming (Cohen, 

2008). In cases where the evidence has been validated and accepted by the court but questions 

remain about the reliability of the evidence, the decision makers in that case may give the evidence 
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less weight (Casey, 2011); they will not consider the evidence and associated arguments to be a 

definitive source of truth. 

Rule 901 of the US Federal Rules of Evidence, Authenticating or Identifying Evidence, states that the 

onus is on the proponent of the evidence in question to “. . . provide evidence sufficient to support a 

finding that the item is what the proponent claims it is” (Federal Rules of Evidence, 2010), a point 

reinforced by Duerr et al., (2004) and Berg (2000). Jarrett et al. (2009) also state this, but make the 

distinction that only the process and forensic image must be sound to achieve admissibility, while 

the accuracy of the information originally on the device is a matter for argument at trial. 

Jarrett et al. (2009) elaborate that evidence can be authenticated by a person with demonstrated 

knowledge, “. . . that a matter is what it is claimed to be . . .”; meaning that a person present during 

the seizure and acquisition of digital evidence is qualified to assert that the correct process has been 

carried it. Jarrett et al. (2009) state that the person need not be a forensic expert and give the 

example of a FBI Agent not trained in forensic acquisition being qualified to authenticate the 

evidence. 

To assist practitioners in producing evidence that meets validation standards, the National Institute 

of Standards and Technology (United States) runs the Computer Forensics Tool Testing (CFTT) 

Program. This programme is designed to provide assurance to practitioners and legal practitioners as 

to the accuracy and validity of the data generated by digital forensic tools, using the scientific 

method (Lyle & Wozar, 2007). The results of NIST testing allow evidence to be presented in court 

without the requirement to prove the process and tools used to create it are accurate, thus reducing 

the likelihood the validity of the evidence will be challenged by opposing counsel or ruled 

inadmissible by the person in charge of proceedings (Guo et al., 2009). The tests start from a set of 

base requirements that every tool must achieve (Lyle, 2003): 

 it must not alter the original disk, 

 it must make a perfect duplicate, 
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 both of these requirements can be independently verified, and  

 it logs any disk errors it encounters.  

In addition to the mandatory criteria, there exists a range of optional criterion to allow for the 

testing of specialised features of different tools (Lyle, 2003). 

More recently the UK Forensic Science Regulator released a draft Digital Forensics Method 

Validation guide focussing on the validation of the processes used to procure digital evidence (2014). 

The guidance provided instructs practitioners to ensure that all processes they use are shown to 

produce reliable evidence before being used in real cases and that adequate documentation is 

created and retained detailing the steps followed to validate their processes. These processes 

include the digital forensic tools used, but they are described as only part of the validation regime, a 

deviation from NIST standards which focus almost exclusively on the technical aspects of process 

validation. The Digital Forensics Method Validation guide requires the use of multiple software tools 

using fundamentally different code bases to ensure that the tools used provide a consistent output 

regardless of the technology used to implement the functions (2014). However, as with NIST 

guidelines there are no specific criterion addressing the integrity of the case files and chain of 

custody, despite them being an important part of digital forensics processes. 

2.3.3.1 The role and importance of hashing and digitally signing the forensic image 

 

Once created, a forensic image needs to be verified as being an accurate copy so as to be 

authenticated and considered admissible; this is achieved through a mathematical process called 

hashing (Jarrett et al., 2009). Hashing involves taking an input of any length, performing complex 

mathematical operations on it, and outputting a fixed length string that is intended to be unique 

(Noblett et al., 2000). The modification of a single bit of the input will result in an altered output, and 

the process will enable detection of any changes to the target data by comparison of the two inputs 

(Altheide & Carvey, 2011). Two identical inputs, such as two image files, will produce identical 

hashes, supplying a repeatable way to prove that two files are identical, as it is computationally 
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infeasible for non-identical inputs to produce the same hash (Roussev, Chen, Bourg, & Richard, 

2006). 

Using hashing to verify a forensic image involves taking multiple hashes at different points during the 

acquisition process (Altheide & Carvey, 2011). The first step is to take a hash of the suspect device, 

to create a benchmark against which it can be proven that the original has not been altered by the 

process (Noblett et al., 2000). In devices containing HPA or DCO areas it is advisable to take two 

preliminary hashes; before and after enabling these protections (Carrier, 2005).  After this hashing 

and verification process the forensic image is acquired and both the original media and the image 

are again hashed; this new device hash is used to prove that the acquisition process has not altered 

the original in any way and the image hash is used to prove that the forensic image is an identical 

representation of the data present on the device (Roussev et al., 2006). 

Some forensic acquisition tools will hash larger chunks of data as the process progresses (Altheide & 

Carvey, 2011). The benefit in this behaviour is that it can be used to prove the integrity of a certain 

part of a forensic image where the rest has been contaminated or otherwise invalidated (Roussev et 

al., 2006). If the acquisition process is repeated it can be shown that individual chunks of the same 

size and cluster range remain identical, even if others have changed (Roussev et al., 2006).  

Some older hashing functions, such as MD5, have been proven to have collisions, that is non-

identical inputs that generate identical hashes thus putting the reliability of the hash in doubt (Wang 

& Yu, 2006). While these are rare, and have only been demonstrated in controlled, deliberate 

circumstances, the vulnerability can be mitigated by providing hashes using different hashing 

functions, such as MD5 and SHA1, as the likelihood of both hashes being collisions is 

computationally infeasible (Altheide & Carvey, 2011). 
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Carrier (2005) asserts that embedded hashes in specialised digital evidence containers4 do not 

increase the security or integrity of the image file, as anyone seeking to deliberately modify the 

forensic image could simply recalculate the hashes with the altered input. An encrypted file could 

also be altered by anyone with access to the decryption key (Oppliger & Rytz, 2003). Carrier (2005) 

suggests that one way to protect embedded hashes would be to use a cryptographic signature that 

included a timestamp to make it obvious that the forensic image has been altered after the original 

process, though such a process would require a trusted time source, which is not something a 

practitioner is likely to have access to during an offsite acquisition of data. 

Hashing is the current standard for proving the integrity of forensic images and is considered by the 

US Department of Justice as a means of proving the identical nature of two files or images (Jarrett et 

al., 2009), however, the hashes must be protected and are subject to simple alteration that may be 

difficult to detect (Hosmer, 2002). An alternative is to use digital signatures, which bind the known 

identity of the practitioner, as verified by a third party Certificate Authority (CA), an independently 

verified timestamp, and the data together (Hosmer, 2002). This approach still uses a hash, except 

that it is embedded in the signature; the verifier can still access the hash, but can now be assured of 

who calculated it and when (Oppliger & Rytz, 2003). The signature cannot be altered, though a new 

one can be generated; this new signature will have a new timestamp (Oppliger & Rytz, 2003). 

According to Hosmer (2002), digitally signing hashes or logs is an improvement on simple hashing, 

but has a number deficiencies, notably: 

 the private keys used to create the signatures could be compromised, allowing others to 

generate signatures in the practitioner’s name;  

 the certificate proving the practitioner’s identity could expire, making all previously signed 

signatures invalid;  

                                                           
4 Digital Evidence Containers (DECs) are constructs, which not only include the files from the source device, but 
also logs, hashes, and other information about the acquisition process. DECs are further discussed in section 
2.3.3.3. 
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 the public keys or certificate could be lost, meaning the existing signatures could not be 

read; and  

 the signature still does not bind to the data, there is no guarantee that the hash represents 

what the practitioner claims it does. 

Duerr et al. (2004) investigate the possibility of using digital certificates to help prove the chain of 

custody for digital evidence by signing the results of major events in the chain of custody. Duerr et 

al. (2004) propose attaching a digital certificate to any information that is added or altered, such as 

the various hashes generated throughout an investigation, creating a sequence of signatures 

describing the life of the evidence. This would allow a practitioner to say with certainty that any hash 

presented was calculated at a specific time and by them (Duerr et al., 2004). 

2.3.3.2 Tools available to prevent contamination  

 

Preventing contamination of original evidence is typically done using hardware or software write 

blockers (Lyle & Black, 2005). These write blocking processes have the same end goal of preventing 

the practitioner from writing to the source media during the acquisition process, but approach it in 

different ways (Lyle & Black, 2005). Despite their widespread use and stated purpose, Carrier (2005) 

notes that neither are immune to sophisticated booby traps designed to destroy, alter, or obfuscate 

data on a drive being acquired. 

Hardware write blockers are devices that act as a gateway between the practitioner and the storage 

device being acquired (NIST, 2004). The source device is connected directly to the write blocker 

while the practitioner operates the write blockers, either from a console or through buttons on the 

write blocker (Carrier, 2005). The write blocker allows the practitioner to acquire systematically a 

forensic image and ensure that the storage device being acquired is not altered in any way (Lyle & 

Black, 2005). The write blocker achieves this by screening incoming instructions directed at the 

device and removes or disables any instructions it identifies as potentially causing changes 
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(Hardware Write Blocker Device (HWB) Specification Version 2.0, 2004), thereby disallowing any 

write requests made of the device thereby preventing contamination. 

Software write blockers have the same goals as hardware write blockers but achieve this in a 

fundamentally different way (Lyle & Black, 2005). Rather than directly connecting to the device a 

software write blocker is loaded on a computer the device is connected to; often the computer 

storage device has been used with (Carrier, 2005). The software is loaded through some external 

device, such as USB flash memory or a DVD containing a bootable forensic imaging environment, 

directly into memory. As the software loads it alters the interrupt table of the computer that causes 

the BIOS to execute custom code when it receives an instruction targeted at the storage device, 

rather than native BIOS code (NIST, 2003). This custom code monitors incoming instructions and 

strips out or alters any instructions that would potentially alter the data or configuration of the 

device, to produce an effect similar to that of a hardware write blocker (Lyle & Black, 2005). 

Device Configuration Overlays and Host Protected Areas can be troublesome for write blockers, as 

they require alteration of the device to be acquired to make them accessible, the exact thing they 

are designed to prevent (Gupta et al., 2006). Most write blockers have been modified to facilitate 

these instructions, or allow them to be toggled on or off, though older write blockers may not have 

this functionality and would provide an incomplete forensic image (Carrier, 2005). 

2.3.3.3 Forensic containers 

 

When a forensic image is acquired it can be stored in a number of formats including raw format, a 

bit for bit copy of the acquired device contained within a single file, or in several common forensic 

evidence containers (Altheide & Carvey, 2011; Carrier, 2005). These digital evidence containers 

(DECs), combine the data collected during acquisition with extra supporting information, such as 

metadata about the image and acquisition logs, into a single structure (Richard et al., 2007). The raw 

format, a file which simply contains the data from the acquired device and nothing more, is 

commonly used and capable of being opened and viewed by most forensic tools (CDESFWG, 2006), 
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DECs offer additional benefits to the practitioner, but may be proprietary or closed source (Carrier, 

2005). DECs, such as EnCase Evidence File (E01) and Advanced Forensics Format (AFF4), are files 

which contain the unaltered data from the acquired device and offer additional features that can 

make storing, protecting, transporting, and analysing the data an easier task (CDESFWG, 2006). 

Typical functionality includes automatic checksums and hashing, compression, encryption, and 

splitting (CDESFWG, 2006). E01, one of the most common formats, and AFF4, support all of these 

functions, with AFF4 also supporting arbitrary metadata fields for use as the practitioner sees fit to 

choose (Altheide & Carvey, 2011).  

Automated checksums and hashing features of these forensic acquisition tools assist examination as 

they calculate the hashes for the source device and the forensic image automatically, which can be 

stored with or within the image file, and are intended to  prove whether the original evidence has 

been altered or remains intact (CDESFWG, 2006). Most tools provide compression of the image to 

reduce storage size and make them more efficient to store and transfer, which is useful when 

acquiring multiple high capacity devices, but may result in longer acquisition times (CDESFWG, 

2006). Encryption features allow a practitioner to protect forensic images from improper access by 

making them unreadable without the encryption key, thereby preventing alteration of the image 

and affording added protection to important data within the image (Altheide & Carvey, 2011). 

However, these digital evidence containers do not protect the contents from alteration (Carrier, 

2005). Other researchers have identified this issue, and similar shortcomings, and discuss the current 

focus of research efforts and identify research areas requiring increased development. 

2.4 Research Directions 
 

A decade ago researchers noted that much of the contemporary research of the time was geared 

towards providing practitioners with additional and improved means to locate and preserve digital 

evidence (Lenstra & de Wegner, 2005; Schneier, 2004). Garfinkel (2010) considers that the current 

suite of digital forensics tools are focussed on evidence discovery, rather than as tools to assist in the 
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execution of a broader investigation. Garfinkel (2010) suggests the need for an enhanced 

preservation process geared towards improving the capabilities and efficiency of tools. Garfinkel 

(2010) opines that the current operational ability of practitioners will diminish over time as the 

complexity and breadth of devices holding digital evidence increases and calls for a reorientation of 

research focus away from purely technical challenges, to addressing greater issues within the 

science and processes of digital forensics. Garfinkel (2010) suggests that standardised processes for 

data acquisition be developed for a wide variety of electronic devices, such as ebook readers and 

mobile phones, and that tools be developed to assist in cases where a computer was used to commit 

a crime, but does not contain criminal material.  

Mocas (2004) suggested that two worthwhile research areas are data integrity and authentication, 

topics which deal with processes and developments that are mandatory to ensure the continuing 

admissibility of digital evidence in a court of law. 

Garfinkel, Farrell, Roussev and Dinolt (2009) assert that the results of digital forensic research 

experiments to date is not entirely reproducible by other researchers; while similar results can be 

obtained using the published methodology of the original authors, the use of different experimental 

data (i.e. the data on the mock suspect hard drives used in the experiments) means that the results 

cannot be reproduced exactly, weakening the scientific merit of any results and conclusions drawn 

from the experiment. To combat this a freely available digital forensics corpus (available at 

digitalcorpora.org) consisting of files and assorted forensic images, including images taken of ‘real 

world’ user devices has been created (Garfinkel et al., 2009). Researchers can select data from this 

repository to populate the devices in their experiments, which means that anyone wishing to 

reproduce the experiment can download and use exactly the same data in their reproductions as 

were used in the original. 
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2.5  Summary 
 

Digital evidence is a complex and fragile form of evidence (Caloyannides, 2004) that requires 

specialist practitioners to acquire, preserve, and analyse it (Rogers et al., 2007). Where digital 

evidence is required to be used in court proceedings it must be validated, which means it needs to 

be proven to be an accurate representation of the data held on the original device (Altheide & 

Carvey, 2011). Standardised tools and processes are available to ensure digital evidence acquisition 

and preservation processes meet the validity requirements of the courts (Lenstra & de Wegner, 

2005).  

However, the artefacts used to establish validity to the courts may be vulnerable to alteration, either 

inadvertent or through tampering. Carrier (2005) asserts that embedded hashes in digital evidence 

containers does little to protect the validity of digital evidence and Hosmer (2002) claims that hashes 

are simple to alter. Oppliger and Rytz (2003) opine that encryption as a protective mechanism is 

vulnerable to a compromise of the encryption key. 

Garfinkel (2010) and Mocas (2004) call for further investigation into the processes and scientific 

theory behind digital forensic practice, opining that for too long research has focussed on 

overcoming technical challenges. Lyle has produced a number of papers proposing methods for 

evaluating the performance of digital forensic acquisition tools, such as hardware write blockers 

(Lyle & Black, 2005) and write-blocking software (Lyle, 2003). Further analysis of commonly used 

digital forensic acquisition tools, especially in the context of the ability of practitioners to validate 

the evidence they produce, is proposed in subsequent chapters. The analysis is intended to better 

understand the shortcomings in digital forensics research identified by Garfinkel and Mocas. This will 

provide a strong base from which recommendations towards improvements to the validation 

process can be made. 

  



29 

3 Research objectives 
 

The research described in this thesis aims to confirm and further understand possible defects in 

current digital evidence validation practices processes by testing the integrity of the common 

forensic container format Encase Evidence File, also known as .e01. The Encase Evidence File format 

was chosen as it is the most widely used digital evidence container. The time permitted to complete 

the research did not permit the examination of other, less commonly used imaging tools. The results 

are intended to provide recommendations towards the mitigation of weaknesses in the container 

format identified during the research experiments. Further development based on these findings 

may allow for the presentation of more robust digital evidence and provide the justice system with 

the resources it requires to protect the integrity of its decision-making processes.  

3.1 Digital evidence container metadata 
 

Of particular interest to legal adjudicators are the acquisition process logs and digital evidence 

container metadata generated by common forensic acquisition tools, such as FTK Imager and EnCase 

Forensic Imager. This metadata is used to show that a sound acquisition process has been adhered 

to and that the forensic image produced is a complete and authentic reproduction of the data stored 

on the physical device. As mentioned in section 2.2, the soundness of the acquisition process is 

supported by the calculation of hashes, which are verified to be identical with those calculated from 

the original device. Preliminary experimentation revealed that the metadata contained within an 

Encase Evidence File forensic container could be manipulated via the use of open source third party 

libraries, such as libewf. This raised concerns about the reliability of existing processes to determine 

the validity of the forensic images. 

Alterations to this metadata could have applications limited only by the imagination of the 

perpetrator, who may be the practitioner themselves, or another person with access to those 

materials, such as a network intruder or a colleague, or opposing legal counsel. If these alterations 
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are possible, and more importantly, cannot be detected by the software tools that made them, then 

it is feasible that a forensic image could be altered and the accompanying metadata altered to make 

it appear as if the image was unchanged. The leads to a scenario where a forensic image could have 

data added or removed from it to influence the findings of the practitioner and ultimately the 

outcome of a legal case or other situation where the tampered evidence is used to reach a decision. 

3.2 Research questions and hypotheses 
 

The overall objective of the research is to ascertain the reliability of current digital evidence 

validation processes and the tools that support them. The heavy reliance upon digital evidence 

container reports, metadata, and hashes with little research into the effectiveness of their 

protection mechanisms makes digital evidence containers an important area of analysis. The 

research seeks to determine whether a misplaced reliance upon digital evidence containers might 

allow a malicious actor to alter digital evidence without detection and ultimately subvert the 

operations of the courts. 

The research progressed in stages, depending on the outcome of previous tests. While the ultimate 

goal was to alter a digital evidence container such that it was impossible to detect the alterations, 

the research was inspired by the assumed limitations of the Encase Evidence File and the tools 

available. Accordingly, questions 1 and 2, and the accompanying hypotheses, were considered 

preliminary investigation, while question 3 and H3 rely on H1 and H2 being unsupported. Question 4 

was formulated once the limitations imposed by the technology, tools, and time available became 

more clear. 

Each hypothesis was developed from its associated research question after identification of a viable 

technique for evaluating each premise, thereby providing the opportunity to develop test cases for 

the techniques, and facilitating scientific verification of the outcomes of the tests. This approach was 

selected because of the investigative nature of the research and the paucity of background research. 
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3.2.1 Alteration of digital evidence container metadata 
 

Question 1: 

Can the metadata embedded within digital evidence containers be meaningfully altered or 
modified? 

H1: The identifying metadata embedded within Encase Evidence File digital evidence 
containers cannot be meaningfully altered. 

 

The first hypothesis is designed to establish whether the metadata used to identify a digital evidence 

container and its contents can be altered in a meaningful way. Being a file, it is a trivial task to alter a 

digital evidence container using a hex editor. However, due to the encoded nature of many 

proprietary file formats, it was likely that creating targeted, meaningful alterations would be more 

challenging, as the alterations would have to be made in specific locations within the file, or risk 

simply corrupting the original data with meaningless junk data. This question is intended to 

determine if and how alterations can be made to the original digital evidence container that may 

lead to an examiner making conclusions influenced by modified metadata fields, such as the date of 

initial evidence acquisition. 

3.2.2 Alteration of forensic images within digital evidence containers 
 

Question 2: 

Can the content, the forensic image, contained within the digital evidence container be 
meaningfully altered? 

H2: The forensic image embedded within Encase Evidence File digital evidence containers 
cannot be meaningfully altered. 

 

The second hypothesis is designed to establish whether the forensic image contained within a digital 

evidence container can be altered in a meaningful way. As with the digital evidence container, the 

proprietary nature of the digital evidence container was likely to impede the ability to simply alter 

the data within the forensic image. This question seeks to determine if and how alterations can be 
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made to the original forensic image contained within a digital evidence container that may lead to 

an examiner making conclusions influenced by modified digital images, such as the addition, 

removal, or modification of a digital photograph file. 

3.2.3 Detection of alterations to digital evidence containers 
 

Question 3: 

Can meaningful changes to embedded metadata or forensic images be detected by digital 
forensic software tools? 

H3: Alterations to Encase Evidence File digital evidence containers cannot be detected by 
Encase Imager. 

 

Question 3 relies on the previous questions establishing that meaningful changes can be made to the 

metadata or forensic image contained within a digital evidence container, or both. This hypothesis 

seeks to determine whether the tools provided by software vendors are able to determine whether 

the contents of a digital evidence container have been altered after the initial acquisition process. 

Examples of detection methods include automatic hashing and validation of the digital image and 

functions for validating an entire digital evidence container. This question seeks to identify the 

extent to which a malicious actor may be able to influence the forensic analysis and conclusions a 

digital forensic practitioner may reach. 

3.2.4 Differentiation of forensic image containers 
 

Question 4: 

Is it possible to create two digital evidence containers that contain different forensic images 
but the same image metadata? 

H4: Given two Encase Evidence File digital evidence containers with identical metadata, 
except the forensic image hashes, but differing forensic images, it is possible to determine 
which container is an accurate representation of the originally acquired device. 
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This question developed as a way to demonstrate the implications of the findings of the previous 

three questions. It is used to determine whether a combination of the techniques used to assess the 

previous hypotheses can be used to create a potentially realistic threat model and what additional 

measures are required to defeat automated digital evidence container verification functions. The 

objective is to demonstrate that through the manipulation of digital evidence containers it may be 

possible to present altered evidence to a court or discredit evidence presented by other digital 

forensic practitioners.   
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4 Experiment design and results 
 

The experiments designed for this research were used as a form of verification of processes devised 

to alter digital forensic containers and circumvent the error detection and validation tools provided 

by the vendor. Each hypothesis was tested on its ability to achieve certain specific objectives 

designed to demonstrate that the circumvention techniques were effective, permanent, and 

meaningful. Given that the means to circumvent a particular feature were unknown when 

commencing this research, the hypotheses were developed only once a viable candidate process 

was established. 

Preliminary attempts at achieving the goals of the research questions involved directly opening 

Encase Evidence File digital evidence containers in a hex editor and attempting to reverse engineer 

the fields within the file. It quickly became apparent that while this may be possible, it was not a 

viable strategy given the time constraints and expertise of the investigators. An alternative approach 

was identified that used the open source library libewf as the basis for file manipulation. libewf is 

used to create, manipulate, and examine Encase Evidence File files in a Linux environment. The open 

source nature of the libraries allows for simple inspection and modification of the code base to allow 

non-standard operations to be executed against the Encase Evidence File digital evidence container. 

It is through libewf and modification of it that these hypotheses have been tested. 

When testing for the validation of Encase Evidence File digital evidence containers Guidance 

Software’s Encase Forensic Imager was used. This software was chosen as it requires no paid license 

and is produced by the same vendor that created the Encase Evidence File. Given the vendor’s 

intimate knowledge of the source code and specifications of the Encase Evidence File, it was 

assumed that Encase Forensic Imager was likely to provide the most effective error checking and 

validation functions available. 
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4.1 Equipment 
 

This section includes the major software and hardware used during the project. 

Software: 

 Kali Linux 1.0.9 

 Microsoft Windows 7 

 Microsoft Windows 8.1 

 Guidance Software Encase Forensic Imager 7.09 

 VMware Workstation 10 

 WinHex 17.8 

 Technology Pathways ProDiscover Basic 8.2.0.5 

 libewf-20140608 

o experimental distribution 5 

 nps-2013-canon1 

o A forensic image taken of a digital camera memory card 

o Acquired from Digital Corpora6 

4.2 Testing environment 
 

To facilitate the investigation of the research questions and testing of the hypotheses a standard 

environment was developed. To reduce cost and combat equipment and time constraints the entire 

experimental environment was virtualised. The host computer was running Windows 8.1 and used 

VMware Workstation 10 as the hypervisor. This host computer was used to store the results of each 

experiment. The experimental machines were a Windows 7 machine with WinHex, ProDiscover 

                                                           
5 
https://53efc0a7187d0baa489ee347026b8278fe4020f6.googledrive.com/host/0B3fBvzttpiiSMTdoaVExWWNs
Rjg/ 
6 www.digitalcorpora.org 
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Basic, and Encase Forensic Imager installed or present, and a Kali Linux machine with libewf version 

20140608 installed. To ensure a sterile and consistent experiment environment each machine was 

restored to a standard snapshot of a clean install after each experiment. Neither experimental 

machine was connected to the internet. 

The image used for testing was downloaded from Digital Corpora to ensure that researchers wishing 

to replicate this work have access to the exact same experimental data as was used in this research. 

The image used was named nps-2013-canon1, was distributed as an Encase Evidence File, and was 

originally acquired from a 128MB SD card used in a digital camera. 

The digital evidence file itself holds the standard metadata any file in an NTFS (default Windows) or 

EXT4 (popular Linux) file system would: creation, last access and last modification dates. A range of 

tools are available that can trivially alter this metadata and accordingly altering this file metadata 

has been omitted from the experiments for simplicity. 

4.3 Testing of H1 

 

H1: The identifying metadata embedded with Encase Evidence File digital evidence containers 
cannot be meaningfully altered. 

 

This hypothesis (H1) attempts to determine the ability of an individual to alter the metadata, without 

regards to detectability. Accordingly, the outcomes to be tested are permanency and 

meaningfulness. Permanency means that any alteration made to the digital evidence container must 

persist when the file is copied, redistributed, or opened on another machine. To test this outcome 

the file was altered on the Kali Linux machine and then copied to the host machine, then to the 

Windows 7 machine, where the modified metadata field was viewed with Encase Forensic Imager to 

ensure the changes were permanent. To test meaningfulness the initial acquisition date of the digital 

evidence container was modified, as an alteration to this information could influence the decision 
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making or conclusions of a court or digital forensic practitioner, and it is a field that never requires 

modification, as the acquisition date will never change. 

 

Figure 1: The acquisition dates and hashes of the original E01 file. 

 

The specific steps undertaken were: 

1. Copied nps-2013-canon1.E01 to the Kali Linux desktop. 

2. Executed the following command to set the acquisition date to midnight, January 1st, 2014. 

Ewfexport –m ‘2014 01 01 00 00 00’ nps-2013-canon1.E01 

3. Copied nps-2013-canon1.E01 to Windows 8.1 host machine. 

4. Copied nps-2013-canon1.E01 to Windows 7 desktop. 
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5. Started Encase Forensic Imager and opened nps-2013-canon1.E01. 

6. Recorded the contents of the File Acquired metadata field. 

 

The original contents of the File Acquired field were “06/03/13 05:40:06 AM”. After altering the field 

and transferring the file to an unrelated computer and opening the file in Encase Forensic Imager the 

contents of the field were “01/01/14 00:00:00 AM”, suggesting the evidence was acquired at a much 

later date than its actual acquisition date. This supports the conclusion that metadata fields can be 

altered in a meaningful was and that any alterations are permanent. Therefore, H1 is not supported. 

A more exhaustive project examining every individual metadata field would be advantageous 

towards strengthening this finding. 

 

Figure 2: The acquisition dates and hashes of the original E01 file. 
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The prototype code used to modify the date of acquisition metadata field can be found in Appendix 

A. 

4.4 Testing of H2 
 

H2: The forensic image embedded within Encase Evidence File digital evidence containers 
cannot be meaningfully altered. 

 

This (H2) hypothesis attempts to determine the ability of an individual to alter the forensic image 

contained within the digital evidence container, without regards to detectability of the changes. The 

primary outcomes to be tested are permanency and meaningfulness. Permanency means that any 

alteration made to the forensic image within the digital evidence container must persist when the 

file is copied, redistributed, or opened on another machine. To test meaningfulness a specific image 

within the digital evidence container’s embedded forensic image was modified, as an alteration to 

this information could influence the decision-making or conclusions of a court or digital forensic 

practitioner, and it is a field that never requires modification, as the acquisition date will never 

change. 

In seeking a solution, it was found that libewf offered no solution to modifying the forensic image 

data directly. Part of the documentation and source code alluded to an experimental function that 

would allow such modifications, however, it was not part of the prebuilt binaries and attempting to 

build from source failed, as a much older version of libewf, 20090528 was required. However, it 

appears that this particular version of libewf is no longer available from any software repositories, 

meaning it was not possible to use this experimental function of libewf. 

libewf does, however, offer a function to export an Encase Evidence File digital evidence container 

to a raw format file, stripped of all proprietary functions. This raw image can be altered simply with a 

hex editor and allows data to be added, removed, or altered. libewf can also acquire from a raw 

image, creating a brand new Encase Evidence File digital evidence container. This new digital 
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evidence container, however, has entirely different metadata, and therefore cannot be considered a 

modification of the original digital evidence container. 

 

 

Figure 3: The original contents of the IMG_0126.JPG file. 

To overcome this limitation the libewf acquisition function was modified such that an original Encase 

Evidence File digital evidence container can be provided as an argument when acquiring a raw 

image. This modified function saves the metadata from the original digital evidence container and 

overwrites the metadata fields of the newly created digital evidence container. The result is a digital 

evidence container that holds identical identification information to the original, and while not 

strictly a modification of the original, it is essentially a direct copy, with an altered digital image. 

The specific steps undertaken were: 

1. Copied nps-2013-canon1.E01 to the Kali Linux desktop. 

2. Executed the following command to export the forensic image to raw format. 

ewfexport nps-2013-canon1.E01 

Named the output nps-2013-canon1.raw 
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All defaults were accepted in the following prompts. 

3. Copied nps-2013-canon1.raw to Windows 8.1 host machine. 

4. Copied nps-2013-canon1.raw to Windows 7 desktop. 

5. Opened nps-2013-canon1.raw in WinHex and mounted as disk. 

6. Browsed to \DCIM\111__06 and opened IMG_0126.JPG. Saved a copy of this file, a digital 

photograph of the US National Science Foundation building. 

7. Noted the hex offset of the start of the file and securely wiped it. 

8. Opened an image of a cartoon light bulb in WinHex and copied the hex values representing 

this image. 

9. Pasted the hex representation of the light bulb illustration starting at the previously noted 

starting offset of the IMG_0126.JPG file. Saved the file, accepting warnings and prompts. 

10. Copied nps-2013-canon1.raw to Windows 8.1 host machine. 

11. Restored Kali Linux machine to original state and compiled and installed modified libewf. 

12. Copied nps-2013-canon1.raw to Kali Linux desktop. 

13. Copied nps-2013-canon1.E01 to Kali Linux desktop. 

14. Executed the following command to acquire the modified raw image as an E01 with the 

original headers. 

ewfacquire -9 nps-2013-canon1.E01 nps-2013-canon1.raw 

Named output as ./altered/nps-2013-canon1.E01 

All defaults were accepted in the following prompts. 

15. Copied the newly created nps-2013-canon1.E01 to Windows 8.1 host machine. 

16. Restored Windows 7 machine to original snapshot. 

17. Copied the newly created nps-2013-canon1.E01 to Windows 7 desktop. 
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18.  Opened nps-2013-canon1.E01 in ProDiscover Basic7 browsed to \DCIM\111__06 and made 

a copy of IMG_0126.JPG. 

 

Comparison of IMG_0126.JPG taken before and after the modification process shows that the 

photograph of the National Science Foundation has been replaced by the illustrated light bulb in the  

 

Figure 4: The contents of the IMG_0126 file after modification. 

modified and reacquired digital forensic container, notwithstanding that the digital forensic 

containers share identical metadata. Accordingly, although the original digital evidence container 

has not been modified directly, a copy has been produced that shares identical characteristics to the 

original, except for the modifications deliberately introduced, and constitutes a meaningful 

modification to the digital evidence container. Therefore, H2 is not supported. 

 

                                                           
7 WinHex cannot open E01 files that are not multiples of 512 bytes, despite them being considered valid by 
Encase Forensic Imager. 
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4.5 Testing of H3 
 

H3: Alterations to Encase Evidence File digital evidence containers cannot be detected by 
Encase Imager. 

 

This hypothesis (H3) is designed to determine whether alterations to the metadata and forensic 

image embedded with an Encase Evidence File digital evidence container can be detected, using 

Encase Forensic Imager’s built in error checking and verification functions. This function is provided 

within the software as a single process, which verifies that metadata hashes are consistent with the 

forensic image and that error-checking checksums calculated for blocks of sectors have not changed. 

These hashes and checksums are compared between the values stored during acquisition and those 

generated during the verification process. Should the data have changed the values calculated 

during the verification process will differ from those stored during the acquisition process and 

indicate to the practitioner that the data in question has been altered. 

Testing this hypothesis required answering two questions: 

Will altering the metadata cause the validation algorithms to indicate an alteration 
occurred? 

Will altering the embedded forensic image cause the validation algorithms to indicate an 
alteration occurred?  

These two questions can be answered using the processes used to test H1 and H2 and then running 

the Encase Forensic Imager validation function on the resulting E01 files, one with the acquisition 

date altered (from H1), and the other with the digital photograph replaced with an illustrated light 

bulb (from H2). 

The results of running the verification function on these altered digital forensic containers showed 

that the alteration to the acquisition date was not detected, suggesting that it would be difficult to 

refute a claim that the acquisition date had been modified.  
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Figure 5: The E01 with modified acquisition dates showing no verification errors. 

 

However, the alterations to the forensic image were easily detected, with Encase Forensic Imager 

providing the original hash and the new hash, and indicating the exact clusters in which alterations 

had been made, as indicated by changes in the checksums recorded for those sectors at acquisition 

time. 

Accordingly, H3 is unsupported, with the caveat that alterations to metadata are not detected. 
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Figure 6: The original E01 with altered forensic image data showing a verification error. 

 

4.6 Testing of H4 

 

H4: Given two Encase Evidence File digital evidence containers with identical metadata, 
except the forensic image hashes, but differing forensic images, it is possible to determine 
which container is an accurate representation of the originally acquired device. 

 

This hypothesis (H4) evolved as a response to the finding of the H3 experiment. Given that H3 was 

refuted based on the hashes and checksums being recalculated and compared to previously stored 

values for the forensic image, but critically, not for the metadata, there existed a possibility that the 

metadata could be altered to reflect any alterations made to the forensic image. Accordingly, 

alterations were made to the modified libewf function that copied all original metadata to the new 
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digital forensic container, except for the hashes and file integrity checksums, which were replaced 

with newly calculated values corresponding to the altered forensic image. 

 

Figure 7: The verification results of the original E01 file. 

 

This new function was tested by creating a modified digital evidence container as per the 

instructions in the H2 experiment and then validating this digital evidence container as per the H3 

experiment. 
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Figure 8: The verification results for the modified E01 file. Note that altered hash. 

 

Contrary to the results of the H3 experiment, Encase Forensic Imager detected no modifications to 

this digital evidence container, even though it had the same identifying information as the original, 

unmodified version obtained from Digital Corpora. Accordingly, using this modification of the libewf 

libraries creates two near identical Encase Evidence File digital evidence containers with different 

forensic data that both appear to be equally valid representations of the original device, which 

refutes the premise of H4. 

The prototype code used to acquire the raw image whilst maintaining the original metadata can be 

found in Appendix B. 
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4.7 Summary of results 
 

H1: The identifying metadata embedded with Encase Evidence File digital evidence containers 
cannot be meaningfully altered. 

 

H1 is found to be unsupported as identifying metadata, such as the date of acquisition, can be 

altered using the libewf open source library. 

H2: The forensic image embedded within Encase Evidence File digital evidence containers 
cannot be meaningfully altered. 

 

H2 is found to be unsupported as the forensic image embedded within an Encase Evidence File digital 

evidence container can be exported to a raw format, altered, acquired as an Encase Evidence File, 

and then have its metadata altered to match that of the original digital evidence container. 

H3: Alterations to Encase Evidence File digital evidence containers cannot be detected by 
Encase Imager. 

 

H3 is found to be unsupported as alterations to the forensic image can be detected by Encase 

Forensic Imager. Encase Forensic Imager indicates a change in the calculated hash for the forensic 

image and indicates which sectors have been modified. It should be noted that alterations to the 

metadata are not detected by Encase Forensic Imager. 

H4: Given two Encase Evidence File digital evidence containers with identical metadata, 
except the forensic image hashes, but differing forensic images, it is possible to determine 
which container is an accurate representation of the originally acquired device. 

 

H4 is unsupported as careful modification of the digital evidence container’s metadata allows for 

alterations to the forensic image with it to be disguised through recalculating the metadata used 

during the digital evidence container verification process implemented in Encase Forensic Imager. 
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5 Discussion of findings 
 

The findings of this research have dire implications and could potentially have wide ranging effects 

as they identify the potential for image and log sheet tampering to occur. The research highlights 

two primary ways of bringing digital evidence into disrepute: altering the metadata alone, or altering 

the metadata to disguise alterations to the forensic image, either of which could have substantial 

impacts on singular cases and on the future of digital evidence validation within legal practice. 

5.1 Altering metadata 
 

In H1 it was determined that metadata could be simply altered with slight alterations to the libewf 

library to expose functions to the Linux command line. H3 supplemented this finding by discovering 

that Encase Forensic Imager was unable to detect the alterations to the metadata field indicating the 

data of acquisition. This single field is shown to be vulnerable such that accusations of a practitioner 

performing an acquisition far later than the metadata and documentation suggests and simply 

backdating the acquisition date to a more appropriate time, such as mere hours following seizure, 

using a simple command line tool cannot be rebuffed without separate verification of the metadata. 

It could also be contended that during the proposed period between seizure and imaging of the 

source device, deliberate or accidental modification could have occurred whereby additional data 

may have been introduced, or existing data excised or modified, placing the reliability of the 

evidence in question. 

Should all metadata fields be as simple to modify as the acquisition date, many more scenarios 

become available, limited only by the circumstances of the case and the creativity of the malicious 

actor. For example, the architecture information and serial numbers of a device could be altered 

such that it was impossible to prove the forensic image was of that particular device, leading to the 

potential inadmissibility of the digital evidence. 
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5.2 Altering forensic images 
 

In H2 it was determined that alteration of the forensic image was possible by creating an identical 

copy of the original digital evidence container. However, in H3 it was discovered that this alteration 

was simply detected by Encase Forensic Imager. H4 was therefore created to test if alterations to the 

forensic image could be detected if alterations to the metadata reflecting this change were also 

made and it was determined that Encase Forensic Imager could not detect these alterations on its 

own. The implications of this range from being able to replace in totality an image without a 

practitioner’s knowledge and have them believe it was an accurate and uncompromised forensic 

image of the target device, through to producing a digital evidence container that is identical to 

another in all except content and hashes. In the latter situation, it would be impossible to determine 

which of two or more digital evidence containers the original, unmodified version was. This would 

allow a legal practitioner to introduce doubt as to the provenance of a particular digital evidence 

container and potentially diminish its admissibility or weight in court proceedings. 

The overall effect of these discoveries is hard to determine. The legal profession is known to be 

conservative and slow to adopt new practices and therefore it is unlikely that any great changes to 

best practice and court proceedings will occur in the short term, despite the serious flaws uncovered 

by this research and the potential threat to proper functioning of the justice system. A more likely 

outcome is that a legal practitioner will introduce the concepts, findings and possibilities discussed in 

this research to a court and potentially influence the outcome due to the potential contamination or 

alteration of digital evidence. This may act as a catalyst towards faster adoption of improved 

practices in both the digital forensic field and legal proceedings. 

5.3 Recommendations 
 

Attacks altering the metadata only and altering forensic images both rely on a non-existent, poor, or 

potentially unreliable chain of custody records and documentation. In following best practice, the 
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hashes generated at acquisition time for a particular forensic image are recorded in the chain of 

custody register or case files such that any alteration to the image or the hashes recorded within a 

digital evidence container can be detected by comparing the current hash with that recorded 

previously. 

This approach has two major shortcomings. Firstly, metadata beyond the hashes is often not 

recorded and it is not protected by the hashes. This means that any alteration to the metadata will 

not be detected unless it has been explicitly recorded somewhere other than within the digital 

evidence container. Secondly, even where this metadata, including hashes, has been recorded in a 

chain of custody register or case files, they are not immutable themselves. It could be alleged that 

any person with enough motivation to alter a digital evidence container may also have the means 

and motivation to alter the chain of custody or case files similarly. 

Two simple measures exist to prevent these attacks, however. The first is to adopt a more 

comprehensive approach to recording metadata in the chain of custody register or case notes. By 

including every field available to the practitioner, it will be easier to determine where alterations 

have occurred, or what the original data was if changes are apparent but the provenance of two 

digital forensic containers are in question.  

Secondly, these records should be collected as soon as practically possible after seizing evidence and 

they should be placed in the possession of an independent third party, such as an industry body, 

legal arbitrator, law enforcement body (for civil cases) or a university. This measure would mean 

that a set of metadata exists having been submitted at a known time and been protected without 

fear of alteration, outside of malicious network intrusion. This provides those presenting digital 

evidence with a much stronger chain of custody and supporting documentation with which to 

defend accusations of impropriety or mishandling of evidence. Anecdotal reports suggest some 

organisations are creating these impartial repositories; however, no academic references to the 

establishment of such a scheme have been located. The repositories are somewhat informal and are 



52 

designed to be used should the provenance of digital evidence be called into question, rather than 

acting as an official certifying body that acts to independently verify the metadata presented to 

courts as a means of asserting the validity of digital evidence. One such repository is administered by 

the Forensic Technology Group of the University of Western Australia, and consists of an email inbox 

that can be used to automatically store and retrieve acquisition metadata, effectively binding the 

metadata to a known timestamp, as recoded by the email server (The University of Western 

Australia, 2014). 

However, it should be noted that this does not prevent a practitioner from altering, deliberately or 

inadvertently, the evidence between the time of seizure and the time of acquisition. This is a 

standing weakness in digital forensic process that relies on the integrity of the practitioner and for 

courts to hold practitioners to best practices, such as immediate acquisition after seizure, to limit the 

time in which alterations can occur. 

5.4 Further research 
 

Further research opportunities would include testing a selection of digital forensic acquisition tools 

and more deeply investigating those determined to be resistant to alteration. This would create 

further discussion within the industry and potentially propagate anti-tampering technology to all 

vendors and products. A valuable candidate for this research would be Guidance Software’s newer 

format, Ex01, of which they encourage widespread adoption by practitioners and other vendors. As 

Guidance Software already hold a large majority of business in the digital forensics market, they are 

presently in a unique position to encourage advancements in forensic technology and improvements 

to current best practice. An analysis of how they have addressed these issues in the Ex01 format 

would be valuable to gauge the level of engagement vendors have with these issues. 

Analysing the impact of digital signatures and encryption upon alteration attempts would prove 

useful in identifying improvement to current practices by publicising and promoting the use of 

existing features which may overcome the identified weaknesses in digital evidence validation. 
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Reverse engineering of the Encase Evidence File format or an analysis of the source code may be 

able to reveal more advanced methods for obfuscating changes to the metadata or forensic image. If 

a way to circumvent the validation process entirely by altering the image without need to alter the 

metadata could be created, it would potentially make validation of digital evidence exceedingly 

difficult unless someone was looking for specific signs of alteration. 

Further general research into the processes and equipment used to acquire forensic images and 

generate acquisition process logs would build a larger knowledge base which legal practitioners and 

judges could draw upon to assess and validate digital evidence. Deeper investigation from a legal 

practice perspective of the methods by which practitioners present and validate digital evidence in 

courtrooms may discover ways to promote more robust validation practices and requirements 

through raising awareness in legal practitioners and the judiciary. 

Furthermore, anecdotal evidence suggests that at least one vendor of digital forensic software, 

Perlustro L.P., (http://www.perlustro.com/) has for some time prevented metadata alteration 

attacks against its image containers and acquisition audit log. This is purportedly achieved through 

an embedded, encrypted logging mechanism that details all changes to the digital evidence 

container over its lifetime. Further research would be required to scientifically validate these claims 

and assess their efficacy in preventing the alteration of the metadata of their digital evidence 

containers. 
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6 Conclusion 
 

The validation of digital evidence is an important process in presenting digital evidence in court 

proceedings. Validation of forensic images ensures that the evidence presented is a truthful and 

accurate representation of the source device at the time it was seized and allows decision makers to 

reach a verdict based on the truth of a matter. Therefore, any weaknesses in the validation process 

may allow contaminated or fraudulent evidence to be accepted by a court and used in consideration 

of a verdict, with the potential to affect the outcome of a case adversely. 

Current practice for the validation of evidence involves the presentation of a chain of custody 

register, acquisition process reports and metadata, and a forensic image. The reports are generated 

from metadata that is embedded within a digital evidence container along with an embedded 

forensic image. It has been shown, however, that both the metadata and the forensic image can be 

altered in such a way that it may not be possible to determine an alteration has occurred, or it may 

not be possible to determine which of two almost identical digital evidence containers is an accurate 

and unaltered representation of the original data. 

The implications of these findings include showing that malicious actors have the means to alter 

digital evidence and therefore potentially influence digital forensic practitioners, legal practitioners 

and ultimately the proceedings of a court. Courts and the justice system operate in such a manner 

where evidence must be of utmost integrity to ensure that the outcome of court cases are within 

the law, truth and the interests of justice. 

The potential attacks against digital evidence are simply thwarted, however, using independent 

validation of digital evidence metadata. By retaining identifying information in the care of an 

disinterested and unbiased third party the court and those legal practitioners who rely on digital 

evidence can more easily counter claims that their evidence may be altered or otherwise unreliable. 
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Appendices 
 

Appendix A 
 

The following is the result of a diff operation between the distributed libewf library and the 

prototype code developed for testing H1. Compiling required the zlib1g-dev package on Kali Linux. 

 

ewftools/ewfexport.c          | 35 +++++++++++++++++++++++++++++++++-- 

 ewftools/export_handle.c      |  5 ++++- 

 ewftools/export_handle.h      |  8 ++++++++ 

 include/libewf.h              |  1 + 

 include/libewf.h.in           |  1 + 

 libewf/libewf_header_values.c | 23 ++++++++++++----------- 

 libewf/libewf_header_values.h |  1 + 

 libewf/libewf_metadata.c      |  2 ++ 

 libewf/libewf_metadata.h      |  1 + 

 9 files changed, 63 insertions(+), 14 deletions(-) 

 

diff --git a/ewftools/ewfexport.c b/ewftools/ewfexport.c 

index 2e8c9bd..56fde51 100644 

--- a/ewftools/ewfexport.c 

+++ b/ewftools/ewfexport.c 

@@ -104,7 +104,7 @@ void usage_fprint( 

  fprintf( stream, "Use ewfexport to export data from the EWF format 

(Expert Witness Compression\n" 

                   "Format) to raw data or another EWF format.\n\n" ); 

  

- fprintf( stream, "Usage: ewfexport [ -A codepage ] [ -b 

number_of_sectors ]\n" 

+ fprintf( stream, "Usage: ewfexport [ -m acquiry_date_text ] [ -A 

codepage ] [ -b number_of_sectors ]\n" 

                   "                 [ -B number_of_bytes ] [ -c 

compression_values ]\n" 

                   "                 [ -d digest_type ] [ -f format ] [ 

-l log_filename ]\n" 

                   "                 [ -o offset ] [ -p 

process_buffer_size ]\n" 

@@ -135,6 +135,8 @@ void usage_fprint( 

                   "\t           encase7, encase7-v2, linen5, linen6, 

linen7, ewfx\n" ); 

  fprintf( stream, "\t-h:        shows this help\n" ); 

  fprintf( stream, "\t-l:        logs export errors and the digest 

(hash) to the log_filename\n" ); 

+ fprintf( stream,  "\t-m:        a timestamp used to override the 

acquiry_date field format \"YYYY MM DD hh mm ss\" \n" 

+                  "\t           (by default, uses the acquiry_date 

from the source file\n"); 

  fprintf( stream, "\t-o:        specify the offset to start the export 

(default is 0)\n" ); 

  fprintf( stream, "\t-p:        specify the process buffer size 

(default is the chunk size)\n" ); 

  fprintf( stream, "\t-q:        quiet shows minimal status 

information\n" ); 

@@ -242,6 +244,7 @@ int main( int argc, char * const argv[] ) 

  libcstring_system_character_t *option_compression_values      = NULL; 

  libcstring_system_character_t *option_format                  = NULL; 
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  libcstring_system_character_t *option_header_codepage         = NULL; 

+ libcstring_system_character_t *option_acquiry_date = NULL; 

  libcstring_system_character_t *option_maximum_segment_size    = NULL; 

  libcstring_system_character_t *option_offset                  = NULL; 

  libcstring_system_character_t *option_process_buffer_size     = NULL; 

@@ -321,7 +324,7 @@ int main( int argc, char * const argv[] ) 

  while( ( option = libcsystem_getopt( 

                     argc, 

                     argv, 

-                    _LIBCSTRING_SYSTEM_STRING( 

"A:b:B:c:d:f:hl:o:p:qsS:t:uvVwx" ) ) ) != (libcstring_system_integer_t) -1 

) 

+                    _LIBCSTRING_SYSTEM_STRING( 

"A:b:B:c:d:f:hl:m:o:p:qsS:t:uvVwx" ) ) ) != (libcstring_system_integer_t) -

1 ) 

  { 

   switch( option ) 

   { 

@@ -386,6 +389,11 @@ int main( int argc, char * const argv[] ) 

  

     break; 

  

+   case (libcstring_system_integer_t) 'm': 

+    option_acquiry_date = optarg; 

+ 

+    break; 

+ 

    case (libcstring_system_integer_t) 'o': 

     option_offset = optarg; 

  

@@ -714,6 +722,29 @@ int main( int argc, char * const argv[] ) 

     ewfexport_export_handle->sectors_per_chunk ); 

   } 

  } 

+ if (option_acquiry_date != NULL) 

+ { 

+  if (export_handle_set_string( 

+   ewfexport_export_handle, 

+   option_acquiry_date, 

+   &(ewfexport_export_handle->acquiry_date), 

+   &(ewfexport_export_handle->acquiry_date_size), 

+   &error) != 1) 

+  { 

+   fprintf( 

+    stderr, 

+    "Unable to set acquiry date.\n"); 

+ 

+   goto on_error; 

+  } 

+ } 

+ else{ 

+  fprintf( 

+   stderr, 

+   "In this version of ewfexport, you must specify an 

acquiry date (-m).\n"); 

+ 

+  goto on_error; 

+ } 

  if( option_maximum_segment_size != NULL ) 

  { 

   result = export_handle_set_maximum_segment_size( 
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diff --git a/ewftools/export_handle.c b/ewftools/export_handle.c 

index 95e30a7..7d4dbb3 100644 

--- a/ewftools/export_handle.c 

+++ b/ewftools/export_handle.c 

@@ -3712,6 +3712,7 @@ int export_handle_set_output_values( 

   if( libewf_handle_copy_header_values( 

        export_handle->ewf_output_handle, 

        export_handle->input_handle, 

+    (uint8_t *) export_handle->acquiry_date, 

        error ) != 1 ) 

   { 

    libcerror_error_set( 

@@ -3723,8 +3724,9 @@ int export_handle_set_output_values( 

  

    return( -1 ); 

   } 

-  /* Set acquiry operating system, software and software version 

+  /* Set acquiry operating system, software and software version 

from source file 

    */ 

+  /* 

   if( acquiry_operating_system != NULL ) 

   { 

    value_string_length = libcstring_system_string_length( 

@@ -3821,6 +3823,7 @@ int export_handle_set_output_values( 

  

    return( -1 ); 

   } 

+  */ 

   if( libewf_handle_set_header_codepage( 

        export_handle->ewf_output_handle, 

        export_handle->header_codepage, 

diff --git a/ewftools/export_handle.h b/ewftools/export_handle.h 

index fc09ebc..a3673fa 100644 

--- a/ewftools/export_handle.h 

+++ b/ewftools/export_handle.h 

@@ -97,6 +97,14 @@ struct export_handle 

   */ 

  uint64_t export_size; 

  

+ /* The acquiry date 

+ */ 

+ libcstring_system_character_t *acquiry_date; 

+ 

+ /* The acquiry date size 

+ */ 

+ uint64_t acquiry_date_size; 

+  

  /* The header codepage 

   */ 

  int header_codepage; 

diff --git a/include/libewf.h b/include/libewf.h 

index 1b46c49..058c5ff 100644 

--- a/include/libewf.h 

+++ b/include/libewf.h 

@@ -1608,6 +1608,7 @@ LIBEWF_EXTERN \ 

 int libewf_handle_copy_header_values( 

      libewf_handle_t *destination_handle, 

      libewf_handle_t *source_handle, 

+  uint8_t *acquiry_date, 

      libewf_error_t **error ); 
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 /* Retrieves the number of hash values 

diff --git a/include/libewf.h.in b/include/libewf.h.in 

index 31d7870..48f63ee 100644 

--- a/include/libewf.h.in 

+++ b/include/libewf.h.in 

@@ -1608,6 +1608,7 @@ LIBEWF_EXTERN \ 

 int libewf_handle_copy_header_values( 

      libewf_handle_t *destination_handle, 

      libewf_handle_t *source_handle, 

+     uint8_t *acquiry_date, 

      libewf_error_t **error ); 

  

 /* Retrieves the number of hash values 

diff --git a/libewf/libewf_header_values.c b/libewf/libewf_header_values.c 

index 125536f..c87b089 100644 

--- a/libewf/libewf_header_values.c 

+++ b/libewf/libewf_header_values.c 

@@ -1308,6 +1308,7 @@ on_error: 

 int libewf_header_values_copy( 

      libfvalue_table_t *destination_header_values, 

      libfvalue_table_t *source_header_values, 

+  uint8_t *acquiry_date, 

      libcerror_error_t **error ) 

 { 

  libfvalue_value_t *destination_header_value = NULL; 

@@ -1399,22 +1400,22 @@ int libewf_header_values_copy( 

   /* Ignore the acquiry and system date 

    * They will be auto generated 

    */ 

-  else if( ( identifier_size == 13 ) 

+  else if( 

+   (( identifier_size == 13 ) 

         && ( libcstring_narrow_string_compare( 

               (char *) identifier, 

               "acquiry_date", 

-              12 ) == 0 ) ) 

+              12 ) == 0 )) || 

+   ((identifier_size == 12) 

+      && (libcstring_narrow_string_compare( 

+      (char *) identifier, 

+      "system_date", 

+     11) == 0)) 

+  ) 

   { 

-   continue; 

-  } 

-  else if( ( identifier_size == 12 ) 

-        && ( libcstring_narrow_string_compare( 

-              (char *) identifier, 

-              "system_date", 

-              11 ) == 0 ) ) 

-  { 

-   continue; 

+   libfvalue_value_set_data(source_header_value, 

acquiry_date, 20, LIBFVALUE_CODEPAGE_UTF8, 

LIBFVALUE_VALUE_FLAG_DATA_MANAGED, error); 

   } 

+ 

   /* Ignore empty values 

    */ 
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   result = libfvalue_value_has_data( 

diff --git a/libewf/libewf_header_values.h b/libewf/libewf_header_values.h 

index 2768ae9..c87ceee 100644 

--- a/libewf/libewf_header_values.h 

+++ b/libewf/libewf_header_values.h 

@@ -143,6 +143,7 @@ int libewf_generate_date_header2_value( 

 int libewf_header_values_copy( 

      libfvalue_table_t *destination_header_values, 

      libfvalue_table_t *source_header_values, 

+  uint8_t *acquiry_date, 

      libcerror_error_t **error ); 

  

 int libewf_header_values_parse_utf8_header_string( 

diff --git a/libewf/libewf_metadata.c b/libewf/libewf_metadata.c 

index ec320e6..321e3cd 100644 

--- a/libewf/libewf_metadata.c 

+++ b/libewf/libewf_metadata.c 

@@ -4466,6 +4466,7 @@ int libewf_handle_set_utf16_header_value( 

 int libewf_handle_copy_header_values( 

      libewf_handle_t *destination_handle, 

      libewf_handle_t *source_handle, 

+  uint8_t *acquiry_date, 

      libcerror_error_t **error ) 

 { 

  libewf_internal_handle_t *internal_destination_handle = NULL; 

@@ -4527,6 +4528,7 @@ int libewf_handle_copy_header_values( 

  if( libewf_header_values_copy( 

       internal_destination_handle->header_values, 

       internal_source_handle->header_values, 

+   acquiry_date, 

       error ) != 1 ) 

  { 

   libcerror_error_set( 

diff --git a/libewf/libewf_metadata.h b/libewf/libewf_metadata.h 

index 443c378..cffeb9a 100644 

--- a/libewf/libewf_metadata.h 

+++ b/libewf/libewf_metadata.h 

@@ -401,6 +401,7 @@ LIBEWF_EXTERN \ 

 int libewf_handle_copy_header_values( 

      libewf_handle_t *destination_handle, 

      libewf_handle_t *source_handle, 

+  uint8_t *acquiry_date, 

      libcerror_error_t **error ); 

  

 LIBEWF_EXTERN \ 
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Appendix B 
 

The following is the result of a diff operation between the distributed libewf library and the 

prototype code developed for testing H4. Compiling required the zlib1g-dev package on Kali Linux. 

 

ewftools/ewfacquire.c         |  23 ++++- 

 ewftools/imaging_handle.c     | 189 

+++++++++++++++++++++++++++++++++++++++--- 

 ewftools/imaging_handle.h     |   8 ++ 

 libewf/libewf_header_values.c |  21 +---- 

 4 files changed, 210 insertions(+), 31 deletions(-) 

 

diff --git a/ewftools/ewfacquire.c b/ewftools/ewfacquire.c 

index 51bc71a..8927c0a 100644 

--- a/ewftools/ewfacquire.c 

+++ b/ewftools/ewfacquire.c 

@@ -113,7 +113,7 @@ void ewfacquire_usage_fprint( 

                   "                  [ -B number_of_bytes ] [ -c 

compression_values ]\n" 

                   "                  [ -C case_number ] [ -d 

digest_type ] [ -D description ]\n" 

                   "                  [ -e examiner_name ] [ -E 

evidence_number ] [ -f format ]\n" 

-                  "                  [ -g number_of_sectors ] [ -l 

log_filename ]\n" 

+      "                  [ -g number_of_sectors ] 

[-9 filename to source headers] [ -l log_filename ]\n" 

                   "                  [ -m media_type ] [ -M 

media_flags ] [ -N notes ]\n" 

                   "                  [ -o offset ] [ -p 

process_buffer_size ]\n" 

                   "                  [ -P bytes_per_sector ] [ -r 

read_error_retries ]\n" 

@@ -1355,6 +1355,7 @@ int main( int argc, char * const argv[] ) 

  

  libcerror_error_t *error                                         = 

NULL; 

  

+ libcstring_system_character_t *option_source_headers_filename   = 

NULL; 

  libcstring_system_character_t *log_filename                     = 

NULL; 

  libcstring_system_character_t *option_additional_digest_types   = 

NULL; 

  libcstring_system_character_t *option_bytes_per_sector          = 

NULL; 

@@ -1620,6 +1621,11 @@ int main( int argc, char * const argv[] ) 

     option_secondary_target_filename = optarg; 

  

     break; 

+ 

+   case (libcstring_system_integer_t) '9': 

+    option_source_headers_filename = optarg; 

+     

+    break; 

   } 

  } 
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  if( optind == argc ) 

@@ -1913,6 +1919,21 @@ int main( int argc, char * const argv[] ) 

    goto on_error; 

   } 

  } 

+ if (option_source_headers_filename != NULL) 

+ { 

+  if (imaging_handle_set_string( 

+   ewfacquire_imaging_handle, 

+   option_source_headers_filename, 

+   &(ewfacquire_imaging_handle->source_headers_filename), 

+   &(ewfacquire_imaging_handle-

>source_headers_filename_size), 

+   &error) != 1){ 

+ 

+   fprintf(stderr, "Unable to set source headers filename.\n 

"); 

+ 

+   goto on_error; 

+  } 

+ } 

+ 

  if( option_examiner_name != NULL ) 

  { 

   if( imaging_handle_set_string( 

diff --git a/ewftools/imaging_handle.c b/ewftools/imaging_handle.c 

index 285a258..9bd2a4e 100644 

--- a/ewftools/imaging_handle.c 

+++ b/ewftools/imaging_handle.c 

@@ -50,6 +50,150 @@ 

 #define IMAGING_HANDLE_STRING_SIZE  1024 

 #define IMAGING_HANDLE_NOTIFY_STREAM  stdout 

  

+ 

+ 

+/* Opens the input of the export handle 

+* Returns 1 if successful or -1 on error 

+*/ 

+int export_handle_open_input( 

+ imaging_handle_t *export_handle, 

+ libcstring_system_character_t * const * filenames, 

+ int number_of_filenames, 

+ libcerror_error_t **error) 

+{ 

+ 

+ 

+ libcstring_system_character_t **libewf_filenames = NULL; 

+ static char *function = "export_handle_open_input"; 

+ size_t first_filename_length = 0; 

+ 

+ if (number_of_filenames <= 0) 

+ { 

+  libcerror_error_set( 

+   error, 

+   LIBCERROR_ERROR_DOMAIN_ARGUMENTS, 

+   LIBCERROR_ARGUMENT_ERROR_VALUE_ZERO_OR_LESS, 

+   "%s: invalid number of filenames.", 

+   function); 

+ 

+  return(-1); 

+ } 
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+ if (number_of_filenames == 1) 

+ { 

+  first_filename_length = libcstring_system_string_length( 

+   filenames[0]); 

+ 

+#if defined( LIBCSTRING_HAVE_WIDE_SYSTEM_CHARACTER ) 

+  if (libewf_glob_wide( 

+   filenames[0], 

+   first_filename_length, 

+   LIBEWF_FORMAT_UNKNOWN, 

+   &libewf_filenames, 

+   &number_of_filenames, 

+   error) != 1) 

+#else 

+  if (libewf_glob( 

+   filenames[0], 

+   first_filename_length, 

+   LIBEWF_FORMAT_UNKNOWN, 

+   &libewf_filenames, 

+   &number_of_filenames, 

+   error) != 1) 

+#endif 

+  { 

+   libcerror_error_set( 

+    error, 

+    LIBCERROR_ERROR_DOMAIN_RUNTIME, 

+    LIBCERROR_RUNTIME_ERROR_GET_FAILED, 

+    "%s: unable to resolve filename(s).", 

+    function); 

+ 

+   return(-1); 

+  } 

+  filenames = (libcstring_system_character_t * const *) 

libewf_filenames; 

+ } 

+ 

+ if (libewf_handle_initialize( 

+  &( export_handle->headers_source_handle), 

+  error) != 1) 

+ { 

+  libcerror_error_set( 

+   error, 

+   LIBCERROR_ERROR_DOMAIN_RUNTIME, 

+   LIBCERROR_RUNTIME_ERROR_INITIALIZE_FAILED, 

+   "%s: unable to create input handle.", 

+   function); 

+ 

+  return (-1); 

+ } 

+ 

+#if defined( LIBCSTRING_HAVE_WIDE_SYSTEM_CHARACTER ) 

+ if (libewf_handle_open_wide( 

+  export_handle->headers_source_handle, 

+  filenames, 

+  number_of_filenames, 

+  LIBEWF_OPEN_READ, 

+  error) != 1) 

+#else 

+ if (libewf_handle_open( 

+  export_handle->headers_source_handle, 

+  filenames, 
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+  number_of_filenames, 

+  LIBEWF_OPEN_READ, 

+  error) != 1) 

+#endif 

+ { 

+  libcerror_error_set( 

+   error, 

+   LIBCERROR_ERROR_DOMAIN_IO, 

+   LIBCERROR_IO_ERROR_OPEN_FAILED, 

+   "%s: unable to open file(s).", 

+   function); 

+ 

+  if (libewf_filenames != NULL) 

+  { 

+#if defined( LIBCSTRING_HAVE_WIDE_SYSTEM_CHARACTER ) 

+   libewf_glob_wide_free( 

+    libewf_filenames, 

+    number_of_filenames, 

+    NULL); 

+#else 

+   libewf_glob_free( 

+    libewf_filenames, 

+    number_of_filenames, 

+    NULL); 

+#endif 

+  } 

+  return(-1); 

+ } 

+ if (libewf_filenames != NULL) 

+ { 

+#if defined( LIBCSTRING_HAVE_WIDE_SYSTEM_CHARACTER ) 

+  if (libewf_glob_wide_free( 

+   libewf_filenames, 

+   number_of_filenames, 

+   error) != 1) 

+#else 

+  if (libewf_glob_free( 

+   libewf_filenames, 

+   number_of_filenames, 

+   error) != 1) 

+#endif 

+  { 

+   libcerror_error_set( 

+    error, 

+    LIBCERROR_ERROR_DOMAIN_RUNTIME, 

+    LIBCERROR_RUNTIME_ERROR_FINALIZE_FAILED, 

+    "%s: unable to free globbed filenames.", 

+    function); 

+ 

+   return(-1); 

+  } 

+ } 

+ return(1); 

+} 

+ 

+ 

 /* Creates an imaging handle 

  * Make sure the value imaging_handle is referencing, is set to NULL 

  * Returns 1 if successful or -1 on error 

@@ -4198,7 +4342,7 @@ int imaging_handle_set_output_values( 
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   return( -1 ); 

  } 

- if( imaging_handle->case_number != NULL ) 

+ if ( imaging_handle->source_headers_filename != NULL && 

imaging_handle->case_number != NULL) 

  { 

   if( imaging_handle_set_header_value( 

        imaging_handle, 

@@ -4217,7 +4361,7 @@ int imaging_handle_set_output_values( 

    return( -1 ); 

   } 

  } 

- if( imaging_handle->description != NULL ) 

+ if (imaging_handle->source_headers_filename != NULL && 

imaging_handle->description != NULL) 

  { 

   if( imaging_handle_set_header_value( 

        imaging_handle, 

@@ -4236,7 +4380,7 @@ int imaging_handle_set_output_values( 

    return( -1 ); 

   } 

  } 

- if( imaging_handle->evidence_number != NULL ) 

+ if (imaging_handle->source_headers_filename != NULL && 

imaging_handle->evidence_number != NULL) 

  { 

   if( imaging_handle_set_header_value( 

        imaging_handle, 

@@ -4255,7 +4399,7 @@ int imaging_handle_set_output_values( 

    return( -1 ); 

   } 

  } 

- if( imaging_handle->examiner_name != NULL ) 

+ if (imaging_handle->source_headers_filename != NULL && 

imaging_handle->examiner_name != NULL) 

  { 

   if( imaging_handle_set_header_value( 

        imaging_handle, 

@@ -4274,7 +4418,7 @@ int imaging_handle_set_output_values( 

    return( -1 ); 

   } 

  } 

- if( imaging_handle->notes != NULL ) 

+ if (imaging_handle->source_headers_filename != NULL && 

imaging_handle->notes != NULL) 

  { 

   if( imaging_handle_set_header_value( 

        imaging_handle, 

@@ -4301,7 +4445,7 @@ int imaging_handle_set_output_values( 

  

  /* Set acquiry operating system, software and software version 

   */ 

- if( platform_get_operating_system( 

+ if (imaging_handle->source_headers_filename != NULL && 

platform_get_operating_system( 

       acquiry_operating_system, 

       32, 

       error ) != 1 ) 

@@ -4324,7 +4468,7 @@ int imaging_handle_set_output_values( 

   libcerror_error_free( 

    error ); 
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  } 

- else 

+ else if (imaging_handle->source_headers_filename != NULL ) 

  { 

   if( imaging_handle_set_header_value( 

        imaging_handle, 

@@ -4343,7 +4487,7 @@ int imaging_handle_set_output_values( 

    return( -1 ); 

   } 

  } 

- if( acquiry_software != NULL ) 

+ if ( imaging_handle->source_headers_filename != NULL && 

acquiry_software != NULL) 

  { 

   if( imaging_handle_set_header_value( 

        imaging_handle, 

@@ -4362,7 +4506,7 @@ int imaging_handle_set_output_values( 

    return( -1 ); 

   } 

  } 

- if( acquiry_software_version != NULL ) 

+ if (imaging_handle->source_headers_filename != NULL && 

acquiry_software_version != NULL) 

  { 

   if( imaging_handle_set_header_value( 

        imaging_handle, 

@@ -4381,7 +4525,7 @@ int imaging_handle_set_output_values( 

    return( -1 ); 

   } 

  } 

- if( model != NULL ) 

+ if (imaging_handle->source_headers_filename != NULL && model != NULL) 

  { 

   if( imaging_handle_set_header_value( 

        imaging_handle, 

@@ -4400,7 +4544,7 @@ int imaging_handle_set_output_values( 

    return( -1 ); 

   } 

  } 

- if( serial_number != NULL ) 

+ if (imaging_handle->source_headers_filename != NULL && serial_number 

!= NULL) 

  { 

   if( imaging_handle_set_header_value( 

        imaging_handle, 

@@ -4491,6 +4635,29 @@ int imaging_handle_set_output_values( 

  } 

  /* Format needs to be set before segment file size and compression 

values 

   */ 

+ 

+ if (imaging_handle->source_headers_filename != NULL){ 

+ 

+  libcstring_system_character_t * files[1] = { imaging_handle-

>source_headers_filename }; 

+ 

+  if (export_handle_open_input(imaging_handle, files, 1, error) 

!= 1){ 

+   fprintf(stderr, "Error opening source headers file."); 

+   return (-1); 

+  } 
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+ 

+  if (libewf_handle_copy_header_values( 

+   imaging_handle->output_handle, 

+   imaging_handle->headers_source_handle, 

+   error) != 1) 

+  { 

+   fprintf( 

+    stderr, 

+    "unable to copy header values."); 

+ 

+   return(-1); 

+  } 

+ } 

+ 

  if( libewf_handle_set_format( 

       imaging_handle->output_handle, 

       imaging_handle->ewf_format, 

diff --git a/ewftools/imaging_handle.h b/ewftools/imaging_handle.h 

index 4ec946a..4ee0fe3 100644 

--- a/ewftools/imaging_handle.h 

+++ b/ewftools/imaging_handle.h 

@@ -52,6 +52,11 @@ struct imaging_handle 

   */ 

  size_t target_filename_size; 

  

+ /* Filename for source headers */ 

+ libcstring_system_character_t *source_headers_filename; 

+  

+ size_t source_headers_filename_size; 

+ 

  /* The secondary target filename 

   */ 

  libcstring_system_character_t *secondary_target_filename; 

@@ -212,6 +217,9 @@ struct imaging_handle 

   */ 

  libewf_handle_t *secondary_output_handle; 

  

+ /* Source handle for copying headers */ 

+ libewf_handle_t *headers_source_handle; 

+ 

  /* The input media size 

   */ 

  size64_t input_media_size; 

diff --git a/libewf/libewf_header_values.c b/libewf/libewf_header_values.c 

index 125536f..32da143 100644 

--- a/libewf/libewf_header_values.c 

+++ b/libewf/libewf_header_values.c 

@@ -1396,25 +1396,7 @@ int libewf_header_values_copy( 

 #endif 

    continue; 

   } 

-  /* Ignore the acquiry and system date 

-   * They will be auto generated 

-   */ 

-  else if( ( identifier_size == 13 ) 

-        && ( libcstring_narrow_string_compare( 

-              (char *) identifier, 

-              "acquiry_date", 

-              12 ) == 0 ) ) 

-  { 

-   continue; 
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-  } 

-  else if( ( identifier_size == 12 ) 

-        && ( libcstring_narrow_string_compare( 

-              (char *) identifier, 

-              "system_date", 

-              11 ) == 0 ) ) 

-  { 

-   continue; 

-  } 

+   

   /* Ignore empty values 

    */ 

   result = libfvalue_value_has_data( 

@@ -1437,6 +1419,7 @@ int libewf_header_values_copy( 

   { 

    continue; 

   } 

+ 

   if( libfvalue_value_clone( 

        &destination_header_value, 

        source_header_value, 

 

 


