

MURDOCH RESEARCH REPOSITORY

This is the author's final version of the work, as accepted for publication following peer review but without the publisher's layout or pagination. The definitive version is available at <u>http://dx.doi.org/10.1016/j.vetmic.2014.11.008</u>

Hyndman, T.H. and Johnson, R.S.P. (2015) Evidence for the vertical transmission of Sunshine virus. Veterinary Microbiology, 175 (2-4). pp. 179-184.

http://researchrepository.murdoch.edu.au/24908/

Copyright: © 2014 Elsevier B.V.

It is posted here for your personal use. No further distribution is permitted.

Accepted Manuscript

Title: Evidence for the vertical transmission of Sunshine virus

Author: Timothy H. Hyndman Robert S.P. Johnson

PII:	S0378-1135(14)00520-3
DOI:	http://dx.doi.org/doi:10.1016/j.vetmic.2014.11.008
Reference:	VETMIC 6812
To appear in:	VETMIC
Received date:	8-8-2014
Revised date:	4-11-2014
Accepted date:	7-11-2014

Please cite this article as: Hyndman, T.H., Johnson, R.S.P., Evidence for the vertical transmission of Sunshine virus, *Veterinary Microbiology* (2014), http://dx.doi.org/10.1016/j.vetmic.2014.11.008

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

1	Evi	dence for the vertical transmission of
2		Sunshine virus
3		
4	<u>High</u>	lights
5	•	Sunshine virus is a paramyxovirus that infects snakes
6		
7	•	The virus was detected by PCR in a dam and a sire, both
8		carpet pythons
9		
10	•	The dam then laid a clutch of 21 apparently healthy eggs, 14
11		eggs hatched
12		
13	•	Virus was found in the allantois, amnion and embryo from
14		multiple eggs in the clutch
15		
16	•	No virus was detected in oral-cloacal swabs from the
17		hatchlings of this clutch
18		

Evidence for the vertical transmission of Sunshine virus

- 20 Timothy H Hyndman^{a*}, Robert SP Johnson^b
- ^a Murdoch University, School of Veterinary and Life Sciences, Murdoch,
 Western Australia, 6150, Australia
- ^b South Penrith Veterinary Clinic, Penrith, New South Wales, 2750,
 Australia
 *Corresponding author. Phone: +61 08 9360 7348. Fax: +61 08 9310 4144.
 Email: t.hyndman@murdoch.edu.au
- Complete correspondence address: Murdoch University, Murdoch Drive,
 Murdoch, WA, 6150, Australia. t.hyndman@murdoch.edu.au

31 1. Abstract

- 32 Sunshine virus is a paramyxovirus of pythons associated with
- 33 neurorespiratory disease and mortalities. This report provides
- 34 evidence for its vertical transmission. In a collection of over 200
- 35 Australian pythons, a dam and a sire, both carpet pythons (Morelia
- 36 spilota), were PCR-positive for Sunshine virus at a time when the
- 37 dam was likely to have been gravid. A clutch of 21 eggs was laid and
- 38 three non-viable eggs were tested for the presence of Sunshine virus
- 39 by PCR. One egg had been incubating for 34 days while the other
- 40 two had been incubating for 49 days. The surface of all three eggs
- 41 was negative for Sunshine virus but swabs of the allantois and
- 42 amnion were positive in all three eggs. Embryo tissue samples were
- 43 📎 tested from the two 49 day old eggs. From one embryo, a sample of
- 44 brain and a pooled sample of lung, liver, kidney and intestine were
- 45 positive, while for the other embryo, a pooled sample of lung, liver,
- 46 kidney, intestine and brain was positive. Fourteen of the 21 eggs
- 47 hatched and all hatchlings were tested by PCR at least once between

- 48 the ages of 53 and 229 days old. All hatchlings were PCR-negative
- 49 for Sunshine virus.

50 Keywords

- 51 Reptile; snake; python; Morelia spilota; carpet python;
- 52 paramyxovirus; allantois; amnion; embryo

53 2. Introduction

- 54 Sunshine virus is a paramyxovirus that infects pythons and has been
- 55 associated with outbreaks of neurological disease, respiratory
- 56 disease and/or non-specific clinical signs such as lethargy and
- 57 regurgitation (Hyndman et al., 2012b). It is distantly related to the
- 58 other currently-known group of reptilian paramyxoviruses, the
- 59 ferlaviruses (sometimes previously referred to as ophidian
- 60 paramyxoviruses, or OPMV). The genus Ferlavirus clusters within the
- 61 Paramyxivirinae subfamily of Paramyxoviridae (ICTV, 2014) but
- 62 Sunshine virus does not cluster within either of the two currently-
- 63 accepted paramyxoviral subfamilies: Paramyxovirinae and
- 64 Pneumovirinae (Hyndman et al., 2012a).
- 65
- 66 Carpet pythons (Morelia bredli and a variety of subspecies of
- 67 Morelia spilota) are commonly kept in captivity throughout the
- 68 world, including Australia where they are native. They reliably breed
- 69 when kept under suitable conditions and produce moderately large
- 70 clutches of eggs (Elliott, 2014). A successful mating will start with
- 71 copulation and insemination by a fertile male into a female with

72	appropriate follicular development. Ovulation follows and a few
73	weeks later, the female will shed its skin (ecdysis). Approximately
74	three to four weeks after this shed, known as a pre-lay shed,
75	oviposition will usually occur. After approximately 55-60 days of
76	incubation, hatchlings will typically start emerging from viable eggs.
77	There are minor variations in this breeding cycle depending on the
78	(sub) species of carpet python. At the time of this writing, Sunshine
79	virus has been detected in Australian carpet pythons more than any
80	other species of snake (Hyndman et al., 2014).
81	
82	Sunshine virus has been detected by PCR from oral and cloacal
83	swabs, so it is assumed that horizontal transmission can occur from
84	oral and cloacal secretions (Hyndman et al., 2012b). Prior to this
85	report, there has been no evidence that Sunshine virus can transmit
86	itself vertically.
87	
88	Vertical transmission has been defined by many sources. In Fenner's
89	Veterinary Virology (2011), vertical transmission is an "infection that
90	is transferred from dam to embryo, or fetus, or newborn before,
91	during, or shortly after parturition". In Field's Virology (2007), the
92	vertical spread of viruses is where "viruses infect either the
93	immature fetus or the new born during the birth process". And as a
94	final example, the Saunders Comprehensive Veterinary Dictionary
95	(2012) defines vertical transmission as being "from one generation
96	to the next, perhaps transovarially or by intrauterine infection of the
97	fetus". In the case of reptilian paramyxoviruses, three published

98	literature reviews were unable to find evidence that supported or
99	refuted the natural occurrence of the vertical spread of ferlaviruses
100	from dam to embryo (Hyndman et al., 2013; Pasmans et al., 2008;
101	Ritchie, 2006).
102	
103	Vertical transmission of paramyxoviruses in non-reptilian hosts has
104	been demonstrated with Nipah virus in domestic cats (Mungall et
105	al., 2007) and Hendra virus in flying foxes (Halpin et al., 2000;
106	Williamson et al., 2000) and guinea pigs (Williamson et al., 2000),
107	however, the body of work with the greatest relevance to reptiles
108	are the studies on Newcastle disease virus (NDV) in poultry. In a
109	review of the vertical transmission of NDV, it is stated that hens
110	infected with virulent strains usually stop laying eggs (Alexander and
111	Senne, 2008b) making vertical transmission of limited significance.
112	However there are still examples in the literature that provide
113	insights into the transfer of NDV from one generation to the next. In
114	one study, low doses of virulent NDV were experimentally-
115	inoculated into the allantoic cavities of 155 specific pathogen free
116	(SPF) embryonated chicken eggs (Chen and Wang, 2002). In this
117	experiment, NDV was isolated from three of 71 hatchlings. The
118	embryos in the other 84 eggs died. This report does not form
119	evidence of vertical transmission as the eggs (and not the dams)
120	were experimentally-inoculated. In another study, NDV was
121	detected in chicken embryo liver and cell lines that had both
122	originated from the same set of eggs (Capua et al., 1993).

- 124 progeny, revealed NDV in the cloacal swabs of both generations.
- 125 While it is possible the hens horizontally transferred NDV to their
- 126 hatchlings, it seems likely that the hens transmitted NDV into the
- 127 embryos during embryo and egg development (satisfying vertical
- 128 transmission). There is no evidence of vertical transmission in two
- 129 other significant paramyxoviral pathogens of poultry: avian
- 130 metapneumovirus (Gough and Jones, 2008) and avian
- 131 paramyxoviruses 2-9 (Alexander and Senne, 2008a). In summary,
- 132 there is evidence that at least some paramyxoviruses utilise vertical
- 133 transmission to propagate.
- 134
- 135 In this report, we provide evidence of the in 0v0 presence of
- 136 Sunshine virus in three eggs that had been laid by a dam that had
- 137 been diagnosed with Sunshine virus infection at a time the snake
- 138 was likely to have been gravid.
- 139

140 3. Materials and Methods

141

142 3.1 History

- 143
- 144 In 2013, Sunshine virus was detected by PCR (and sequencing) in a
- 145 private Australian collection of over 200 pythons consisting of carpet
- 146 pythons (Morelia bredli and various subspecies of M.spilota), green
- 147 tree pythons (M.viridis), Children's pythons (Antaresia childreni) and

148	black-headed pythons (Aspidites melanocephalus). PCR testing and
149	sequencing was performed at Murdoch University, Australia using
150	methods previously described (Hyndman et al., 2012b). The first
151	animal from this collection to be diagnosed with Sunshine virus was
152	a six year old female Darwin carpet python (Morelia spilota
153	variegata) that had been apparently-healthy since joining the
154	collection five years earlier. In 2013, this snake presented with a
155	rapid onset (days) of generalised weakness, occasional stertorous
156	respiration, skin blisters containing clear fluid, and intracytoplasmic
157	inclusion bodies in heterophils and monocytes (azurophils). Prior to
158	this diagnosis of Sunshine virus, there had been no concerning signs
159	of ill-health in this collection. The keeper of this collection reliably
160	placed new animals into quarantine for 12-months. The source of
161	this infection was unknown.
161 162	this infection was unknown.
161 162 163	this infection was unknown. In the eight months following the first diagnosis of infection,
161 162 163 164	this infection was unknown. In the eight months following the first diagnosis of infection, another 15 similarly-affected and/or in-contact snakes from this
161 162 163 164 165	this infection was unknown. In the eight months following the first diagnosis of infection, another 15 similarly-affected and/or in-contact snakes from this collection were tested for Sunshine virus by PCR, and seven of these
161 162 163 164 165 166	this infection was unknown. In the eight months following the first diagnosis of infection, another 15 similarly-affected and/or in-contact snakes from this collection were tested for Sunshine virus by PCR, and seven of these were positive. One of these was an apparently-healthy 3.5 year old
161 162 163 164 165 166 167	this infection was unknown. In the eight months following the first diagnosis of infection, another 15 similarly-affected and/or in-contact snakes from this collection were tested for Sunshine virus by PCR, and seven of these were positive. One of these was an apparently-healthy 3.5 year old female carpet python (M.s.variegata/M.s.mcdowelli hybrid) that
161 162 163 164 165 166 167 168	this infection was unknown. In the eight months following the first diagnosis of infection, another 15 similarly-affected and/or in-contact snakes from this collection were tested for Sunshine virus by PCR, and seven of these were positive. One of these was an apparently-healthy 3.5 year old female carpet python (M.s.variegata/M.s.mcdowelli hybrid) that was PCR-positive for Sunshine virus on a combined oral-cloacal swab
161 162 163 164 165 166 167 168 169	this infection was unknown. In the eight months following the first diagnosis of infection, another 15 similarly-affected and/or in-contact snakes from this collection were tested for Sunshine virus by PCR, and seven of these were positive. One of these was an apparently-healthy 3.5 year old female carpet python (M.s.variegata/M.s.mcdowelli hybrid) that was PCR-positive for Sunshine virus on a combined oral-cloacal swab and PCR-negative on blood 55 days before laying her first ever
161 162 163 164 165 166 167 168 169 170	this infection was unknown. In the eight months following the first diagnosis of infection, another 15 similarly-affected and/or in-contact snakes from this collection were tested for Sunshine virus by PCR, and seven of these were positive. One of these was an apparently-healthy 3.5 year old female carpet python (M.s.variegata/M.s.mcdowelli hybrid) that was PCR-positive for Sunshine virus on a combined oral-cloacal swab and PCR-negative on blood 55 days before laying her first ever clutch of eggs; a clutch of 21 eggs. This dam had been in contact
161 162 163 164 165 166 167 168 169 170 171	this infection was unknown. In the eight months following the first diagnosis of infection, another 15 similarly-affected and/or in-contact snakes from this collection were tested for Sunshine virus by PCR, and seven of these were positive. One of these was an apparently-healthy 3.5 year old female carpet python (M.s.variegata/M.s.mcdowelli hybrid) that was PCR-positive for Sunshine virus on a combined oral-cloacal swab and PCR-negative on blood 55 days before laying her first ever clutch of eggs; a clutch of 21 eggs. This dam had been in contact with the apparently-healthy sire (M.s.variegata) of this clutch for
161 162 163 164 165 166 167 168 169 170 171 172	this infection was unknown. In the eight months following the first diagnosis of infection, another 15 similarly-affected and/or in-contact snakes from this collection were tested for Sunshine virus by PCR, and seven of these were positive. One of these was an apparently-healthy 3.5 year old female carpet python (M.s.variegata/M.s.mcdowelli hybrid) that was PCR-positive for Sunshine virus on a combined oral-cloacal swab and PCR-negative on blood 55 days before laying her first ever clutch of eggs; a clutch of 21 eggs. This dam had been in contact with the apparently-healthy sire (M.s.variegata) of this clutch for approximately one and a half months during a three month period

174	The sire had tested positive for Sunshine virus on blood and a
175	combined oral-cloacal swab (tested separately) 57 days prior to
176	oviposition. All 21 eggs were placed into an incubator and based on
177	external examination, all appeared to be viable. This clutch of eggs
178	shared an incubator with other clutches of eggs but there was never
179	any direct contact between this clutch and any other clutch. No egg
180	or hatchling ever made contact with either the dam or the sire after
181	this time.

182

- 3.2 Sample Collection 183
- 184

185 Thirty four days into incubation, an egg that was suspected to be 186 non-viable was dissected to retrieve samples for Sunshine virus 187 testing. This sampling was performed by the attending veterinarian 188 for diagnostic purposes. Three swabs were collected from this egg: 189 one from the surface of the egg, the second from the allantois, and 190 the third from the amnion. Cotton-tipped applicators were used to 191 swab these areas (see Figure 2) and then swab tips were broken off 192 into 3 mL plain blood tubes. The tubes were then partially filled with 193 1.5 mL of isotonic saline solution. Fifteen days later (49 days into 194 incubation), two more eggs of normal size but mottled appearance, 195 were transferred into a -20 °C freezer for future sampling. Sixty four 196 days later, swabs were collected as before from the surface, the 197 allantois and the amnion of each of these two eggs. In addition to 198 this, tissue samples were collected from the embryos in these two

199	eggs. To prevent tissue samples being contaminated with the extra-
200	embryonic membranes, the surface of the embryo was sprayed with
201	a benzalkonium-biguanide disinfectant combination (F10 [®] SC
202	Veterinary Disinfectant, Health and Hygiene, South Africa) which
203	was then wiped off with cotton swabs. Following embryo surface
204	decontamination, a separate set of sterile instruments was used to
205	collect samples of brain, kidney, lung, liver, heart and intestine.
206	Tissue samples were placed into plain blood tubes. All samples were
207	sent to Murdoch University for PCR testing for Sunshine virus.
208	
209	In addition to the samples that were retrieved from eggs, combined
210	oral-cloacal swabs were opportunistically-collected from all 14 of
211	the hatchlings from this clutch of 21 eggs. Three of the remaining
212	seven unhatched eggs were non-viable and were tested for
213	Sunshine virus (see above), while the other four were not sampled
214	and did not hatch. One hatchling was tested at the ages of 53 and
215	229 days old; another hatchling was tested at the ages of 53, 74 and
216	229 days old; two hatchlings were tested at the age of 74 days old;
217	and nine hatchlings were tested at the ages of 74 and 229 days old.
218	The dam and the sire that had previously been tested on days 55
219	and 57 prior to oviposition, respectively, were each tested for a
220	second time 133 days after oviposition (equal to the hatchlings' age
221	of 74 days). Swabs were collected as previously described (Hyndman
222	et al., 2012b). Briefly, a cotton-tipped applicator was pre-moistened
223	in isotonic saline and then the inside of the mouth was swabbed.
224	This same swab was then used to swab the cloaca. The swab tip was

225	then broken off into a 3 mL plain blood tube and was submerged in
226	1.5 mL of isotonic saline. A number of surfaces of the incubator
227	were also swabbed but this was not done until 133 days after
228	oviposition.
229	
230	3.3 Polymerase Chain Reaction (PCR) and
231	Sequencing
232	
233	Containers that contained swab tips immersed in isotonic saline
234	were vigorously vortexed for at least 15 seconds and then a 200 μL
235	aliquot of the saline was used for nucleic acid extraction using the
236	Purelink [™] Viral RNA/DNA Mini Kit (Cat. No. 12280-050, Invitrogen,
237	Victoria) according to the manufacturer's instructions. Fresh tissues
238	were processed using the MELT [™] Total Nucleic Acid Isolation
239	System (Cat. No. AM1983, Ambion, Texas) according to the
240	manufacturer's instructions. Total nucleic acid from both extraction
241	procedures was eluted into 30 μL of elution buffer. For one-step
242	reverse transcription (RT)-PCR, 1 μ L of extracted nucleic acid was
243	added to 0.8 μL of SuperScript® III RT/Platinum® Taq Mix (Cat. No.
244	12574-026, Invitrogen, Victoria), 10 μL of 2x Reaction Mix, 1 μM
245	(final concentration) of each of SunshineS2 (5'-
246	TTCAAGGAGATAACCAGG) and SunshineAS2 (5'-
247	CGGGATTCCCATAGAC) (Hyndman et al., 2012b), and made up to 20
248	μL using PCR-grade water. Cycling conditions were 45 $^{\circ}C$ x 45 m, 94
249	°C x 2 m, 40 x (94 °C x 20 s, 51 °C x 30 s, 72 °C x 20 s). PCR products

2

- 250 were visualised using agarose gel electrophoresis and sequencing of
- 251 appropriately-sized PCR products (230 nucleotides) was
- 252 accomplished using an AB3730xl DNA Analyser (Applied Biosystems,
- 253 California).
- 254

4. Results 255

- 256
- 4.1 Fate of Clutch 257
- 258

255	4. Itesuits
256	
257	4.1 Fate of Clutch
258	
259	A timeline of parent pairings, oviposition and results of PCR testing
260	for Sunshine virus are presented in Figure 1. In total, 21 eggs were
261	laid and of these, 14 hatched. One hatchling died at 53 days old
262	without any premonitory signs of disease and necropsy was
263	unremarkable. This animal was PCR-negative for the presence of
264	Sunshine virus (see below). A second hatchling was killed by the
265	household cat at 74 days old and a third was found missing from its
266	cage between 74 and 229 days old without ever being found again
267	(presumed eaten by the household cat as well). At the time of
268	writing, the hatchlings were approximately 11 months old and have
269	been feeding, growing and behaving as expected for this species.
270	

- 4.2 Polymerase Chain Reaction and Sequencing 271
- 272

273	The results of PCR testing of each animal are summarised in Figure
274	1. Both parents of this clutch were positive for Sunshine virus by PCR
275	at least once. Swabs of the allantois and the amnion from all three
276	of the eggs that were tested were PCR-positive for Sunshine virus.
277	Additionally, the embryo itself was tested from two of these eggs
278	and in both cases, embryonic tissues were PCR-positive for Sunshine
279	virus. In contrast to these findings, blood, a combined oral-cloacal
280	swab, brain, and a pooled sample of kidney, liver, lung and intestine,
281	from the hatchling that died at 53 days of age (see above), were all
282	PCR-negative for Sunshine virus. Tissues from this hatchling were
283	not examined histologically. Furthermore, combined oral-cloacal
284	swabs from all hatchlings, at all times tested, were PCR-negative.
285	
286	All PCR-positive results were sequenced and there was no sequence
287	variation between any of the positive results in this study. After
288	excluding the primers from the sequence data, the remaining 196
289	nucleotides were 99% identical (195/196) to Sunshine virus
290	(GenBank accession number JN192445.1). The single nucleotide
291	difference was a silent mutation.
292	

293 5. Discussion

- 294
- 295 There is almost no published information on the vertical
- transmission of any virus in any group of reptile. There are reports
- 297 of inclusion body disease (IBD)-positive boa dams giving birth to IBD-

0

298	positive offspring but these reports are either unpublished (Rachel
299	Marschang, personal communication) or provide little detail (Chang
300	and Jacobson, 2010). Most published reports merely acknowledge
301	the absence of information. In this report, evidence for the natural
302	occurrence of the vertical transmission of Sunshine virus is
303	described. In a large private collection of Australian pythons, the
304	parents of a clutch of carpet python eggs were shown to be PCR-
305	positive for Sunshine virus. This virus was then also detected in ovo
306	from three of the eggs in this clutch. Interestingly, the virus was not
307	detected in any of the hatchlings, including a hatchling that died
308	suddenly at 53 days of age.
309	
310	Although it is our opinion that Sunshine virus was vertically
311	transmitted to the eggs, an alternative explanation could be that the
312	eggs were uninfected when they were laid, and environmental
313	contamination of Sunshine virus resulted in the horizontal
314	transmission of the virus into the eggs (trans-shell infection).
315	Although we feel this was unlikely, we do not have sufficient data to
316	categorically disprove this. Translocation of a paramyxovirus across
317	a snake egg shell has not been demonstrated but studies exist that
318	have shown that other microbes are capable of trans-shell infection
319	in reptiles. In one study, the trans-shell infection of Salmonella sp.
320	occurred in 25 out of 46 Pseudemys elegans (red-eared slider turtle)
321	eggs after 24 hours of exposure under laboratory conditions (Feeley
322	and Treger, 1969). In another study, bacterial and fungal trans-shell
323	infections were commonly identified in non-viable ("slug") Caretta

324	caretta (loggerhead turtle) eggs (Wyneken et al., 1988). In poultry,
325	motile bacteria such as Pseudomonas sp., Alcaligenes sp. and
326	Salmonella enteritidis have been shown to effectively infect eggs (De
327	Reu et al., 2006) but the same could not be said for the
328	paramyxovirus Newcastle disease virus (NDV). Under laboratory
329	conditions, Williams and Dillard (1968) showed that NDV was only
330	able to penetrate the cuticle (the mucus layer external to the shell)
331	and the shell of <4% of uncracked chicken eggs after up to 48 hours
332	of NDV exposure. Penetration through the cuticle, the shell and the
333	outer shell membrane occurred in 10% of cracked eggs but for both
334	cracked and uncracked eggs, NDV did not penetrate through the
335	inner shell membrane.
336	
337	Based on the fastidious cleaning routines of the private breeder, the
338	inability to detect Sunshine virus on the surface of the eggs and in
339	the incubator (although they were sampled later), the presence of
340	Sunshine virus in both parents, we feel that the simplest explanation
341	for the in ovo presence of Sunshine virus is that the virus was
342	vertically transmitted from parent to egg.
343	
344	A limitation of this study is that non-viable eggs were stored at -20
345	$^{\circ}$ C until sampling could be performed. Because of this, there was no
346	opportunity to examine infected embryo tissues histologically to
347	look for evidence of embryo toxicity that may have been seen under
348	light microscopy.
349	

350	In the author's laboratory, Sunshine virus has been detected by PCR
351	in ovary tissue in an Australian carpet python before (unpublished
352	data) and it may seem logical to assume that the eggs were infected
353	transovarially, however, the role that the sire played in the in ovo
354	presence of Sunshine virus warrants consideration. In the
355	aforementioned definition of vertical transmission in Fenner's
356	Veterinary Virology (2011), the dam is specifically identified as the
357	source of infection for the progeny but the results of our study
358	cannot rule out the possibility that the sire may have been the
359	source of infection. It is possible that the ovulated eggs were
360	uninfected (despite it being likely that the dam was infected at this
361	time) and only became infected at the time of fertilisation by the
362	sire's sperm. Semen as a source of infection for two mammalian
363	paramyxoviruses (both rubulaviruses) has been investigated.
364	Following experimental inoculation, porcine rubulavirus was found
365	in semen collected from boars (Solis et al., 2007) and in people,
366	mumps virus has been detected in semen (Jalal et al., 2004). For
367	both rubulaviruses, epididymo-orchitis was a potential complication
368	of infection. The presence of Sunshine virus in testicular tissue or
369	semen has not been demonstrated but from a comparative virology
370	perspective, this is an intriguing area worthy of investigation.
371	
372	Sunshine virus could not be detected in any of the hatchlings from
373	this clutch and it can only be cogitated why this may have been. One
374	possible explanation is that Sunshine virus has a high embryo
375	mortality rate and not all the eggs were infected. That is, the eggs

376	that died may have died from Sunshine virus infection, and the
377	surviving hatchlings were uninfected during incubation. Another
378	explanation is that the viral load delivered to each egg was unequal.
379	Conceivably, the eggs with higher viral titres died, while those with
380	lower titres hatched and cleared the infection. In a study on the
381	vertical transmission of NDV in chickens, Pospisil et al. (1991)
382	detected the virus in chicken embryos and young (hatchling to 25-
383	day old) but not older chickens. The viral load in the hatchlings
384	decreased as the chicks aged. Levels of NDV could not be detected
385	in chicks after they had reached 25-days old. In our study, the
386	hatchlings were at least 53 days old at the time of the first sampling.
387	Yet another explanation is that the hatchlings were infected at the
388	time of sampling but were not shedding sufficient quantities of
389	Sunshine virus to be detected by the PCR used in this study. The
390	PCR-results of the hatchlings have important biosecurity
391	ramifications on a collection. The results presented here were not
392	able to demonstrate these animals as reservoirs of virus. For
393	Sunshine virus, multiple PCR-negative test results are needed to
394	increase the confidence that an animal is uninfected (Hyndman et
395	al., 2012b) and although most of these hatchlings were tested at
396	least twice over a six month period, it is possible that infected
397	animals may still have escaped detection.
398	
399	The results of this study provide evidence that Sunshine virus may
400	be able to transmit vertically from parent to egg. The significance of
401	this finding is not yet clear. The possibility that this virus can

- 402 propagate itself using this mode of transmission should be carefully
- 403 considered by herpetologists and reptile veterinarians alike if the
- 404 virus is to be eradicated from a snake collection.
- 405

6. Conclusion 406

405	
406	6. Conclusion
407	Sunshine virus is a paramyxovirus of pythons associated with
408	neurorespiratory and non-specific clinical signs of ill health. Prior to
409	this report, the only information available on its transmission was
410	derived from PCR testing of oral and cloacal swabs. Based on this, it
411	was assumed that Sunshine virus could be transmitted by oral and
412	cloacal secretions. Data are presented here that supports the
413	vertical transmission of Sunshine virus from parent to offspring. A
414	dam and a sire, both carpet pythons, were both PCR-positive for the
415	presence of Sunshine virus at a time near to when the dam would
416	be expected to have been gravid. A clutch of 21 eggs was laid and
417	three non-viable eggs were tested for the presence of this virus by
418	PCR. Sunshine virus was detected in extra-embryonic membranes
419	(allantois and amnion) and embryonic tissues but not on the surface
420	of each egg. Hatchlings from this clutch were PCR-negative when
421	tested at the ages of 53, 74 and/or 227 days old. It is unknown
422	whether the hatchlings were infected prior to PCR testing or
423	whether they hatched uninfected.

424 7. References

425	Alexander, D.J., Senne, D.A. 2008a. Avian paramyxoviruses 2-9, In:
426	Saif, Y.M., Fadly, A.M., Glisson, J.R., McDougald, L.R., Nolan,
427	L.K., Swayne, D.E. (Eds.) Diseases of Poultry. Blackwell
428	Publishing, Iowa, 112.
429	Alexander, D.J., Senne, D.A. 2008b. Newcastle disease, In: Saif, Y.M.,
430	Fadly, A.M., Glisson, J.R., McDougald, L.R., Nolan, L.K.,
431	Swayne, D.E. (Eds.) Diseases of Poultry, Blackwell Publishing,
432	lowa, 83.
433	Canua I. Scarchia M. Toscani T. Canorale V. 1993 Unexpected
434	isolation of virulent Newcastle disease virus from
/35	commercial embryonated fowls' eggs Journal of Veterinary
432	Medicine Series B 40, 600-612
430	Chang I. W. Jacobson E.R. 2010. Inclusion Body Disease A
437	Marldwide Infactious Disease of Boid Spekes: A Boview
430	Normal of Evotio Dat Madicina 10, 216, 225
439	Journal of Exolic Pet Medicine 19, 216-225.
440	Chen, JP., Wang, CH., 2002. Clinical epidemiologic and
441	experimental evidence for the transmission of Newcastle
442	disease virus through eggs. Avian diseases 46, 461-465.
443	De Reu, K., Grijspeerdt, K., Messens, W., Heyndrickx, M.,
444	Uyttendaele, M., Debevere, J., Herman, L., 2006. Eggshell
445	factors influencing eggshell penetration and whole egg
446	contamination by different bacteria, including< i>
447	Salmonella enteritidis. International journal of food
448	microbiology 112, 253-260.
449	Elliott, A., 2014. A Guide to Australian Pythons in Captivity. Reptile
450	Publications, Burleigh BC, Australia.
451	Feeley, J.C., Treger, M.D., 1969. Penetration of turtle eggs by
452	Salmonella braenderup. Public health reports 84, 156.
453	Gough, R.E., Jones, R.C. 2008. Avian metapneumovirus, In: Saif,
454	Y.M., Fadly, A.M., Glisson, J.R., McDougald, L.R., Nolan, L.K.,
455	Swayne, D.E. (Eds.) Diseases of Poultry. Blackwell Publishing,
456	Iowa, 103.
457	Halpin, K., Young, P., Field, H., Mackenzie, J., 2000. Isolation of
458	Hendra virus from pteropid bats: a natural reservoir of
459	Hendra virus. Journal of General Virology 81, 1927-1932.
460	Hyndman, T.H., Johnson, R., Shilton, C.M. 2014. An Update on
461	Australian Reptile Viruses. In: Australian and New Zealand
462	College of Veterinary Scientists, Gold Coast, Australia.
463	Hyndman, T.H., Marschang, R.E., Wellehan, J.F., Jr., Nicholls, P.K.,
464	2012a Isolation and molecular identification of Sunshine
465	virus a novel naramyxovirus found in Australian snakes
466	Infection Genetics and Evolution 12 1436-1446
467	Hyndman T.H. Shilton C.M. Doneley, B.I.T. Nicholls, P.K. 2012h
168	Sunshing virus in Australian pythons, Vatarinary
460	Microbiology 161, 77-87
403	Hundman TH Shilton CM Marcohang PE 2012
470	Daramyovirusos in rontilos: A roview Veterinary
472	raraniyyovii uses ili repliles. A review. Veleriildi y microbiology
4/2	писторноюду.

473	ICTV 2014. Virus Taxonomy: 2012 Release (International Committee	
474	on Taxonomy of Viruses).	
475	Jalal, H., Bahadur, G., Knowles, W., Jin, L., Brink, N., 2004. Mumps	
476	epididymo-orchitis with prolonged detection of virus in	
477	semen and the development of anti-sperm antibodies.	
478	Journal of medical virology 73, 147-150.	
479	MacLachlan, N.J., Dubovi, E.J. 2011. Epidemiology and Control of	
480	Viral Diseases, In: MacLachlan, N.J., Dubovi, E.J. (Eds.)	
481	Fenner's Veterinary Virology. Elsevier Inc., London, UK, 131-	
482	134.	
483	Mungall, B.A., Middleton, D., Crameri, G., Halpin, K., Bingham, J.,	
484	Eaton, B.T., Broder, C.C., 2007. Vertical transmission and	
485	fetal replication of Nipah virus in an experimentally infected	
486	cat. Journal of infectious diseases 196, 812-816.	
487	Pasmans, F., Blahak, S., Martel, A., Pantchev, N., 2008. Introducing	
488	Reptiles into a Captive Collection: The Role of the	
489	Veterinarian. The Veterinary Journal 175, 53-68.	
490	Pospíšil, Z., Zendulková, D., Šmíd, B., 1991. Unexpected Emergence	
491	of Newcasde Disease Virus in Very Young Chicks. Acta	
492	Veterinaria Brno 60, 263-270.	
493	Ritchie, B. 2006. Virology, In: Medicine and Surgery of Reptiles.	
494	Elsevier, St. Louis, 391-417.	
495	Solis, M., Ramirez-Mendoza, H., Mercado, C., Espinosa, S., Vallejo,	
496	V., Reyes-Leyva, J., Hernández, J., 2007. Semen alterations in	
497	porcine rubulavirus-infected boars are related to viral	
498	excretion and have implications for artificial insemination.	
499	Research in veterinary science 83, 403-409.	
500	Studdert, V.P., Gay, C.C., Blood, D.C., 2012. Saunders	
501	Comprehensive Veterinary Dictionary, 4th Edition. Elsevier	
502	Saunders, Philadelphia, USA.	
503	Virgin, S. 2007. Pathogenesis of Viral Infection, In: Field's Virology.	
504	Lippincott, Williams & Wilkins, a Wolters Kluwer Business,	
505	Philadelphia, 346-348.	
506	Williams, J., Dillard, L., 1968. Penetration patterns of Mycoplasma	
507	gallisepticum and Newcastle disease virus through the outer	
508	structures of chicken eggs. Avian diseases 12, 650-657.	
509	Williamson, M., Hooper, P., Selleck, P., Westbury, H., Slocombe, R.,	
510	2000. Experimental Hendra Virus Infectionin Pregnant	
511	Guinea-pigs and Fruit Bats (< i> Pteropus poliocephalus).	
512	Journal of comparative pathology 122, 201-207.	
513	Wyneken, J., Burke, T., Salmon, M., Pedersen, D., 1988. Egg failure in	
514	natural and relocated sea turtle nests. Journal of	
515	Herpetology, 88-96.	
516		
517		

518 8. Figure Captions

519	Figure 1. Timeline of parent pairings, oviposition and PCR testing for
520	Sunshine virus of eggs, hatchlings and parents. All numbers are the
521	days before (-) or following oviposition except h.a. = hatchling age.
522	The dam (in box, left) and sire (in box, right) were in breeding
523	contact for approximately one and a half months during the three
524	months from days -147 to -57. Neither snake was PCR tested during
525	this time (unfilled images). On day -55, the dam (above) was PCR-
526	positive (image coloured red) and on day -57, the sire (below) was
527	PCR-positive (red). A clutch of 21 eggs was laid on day zero. On days
528	34 and 49 of incubation, three eggs were PCR-positive (red).
529	Fourteen of the 21 eggs hatched. On day 112 (hatchling age = 53
530	days), three of the 14 hatchlings were PCR-negative (image coloured
531	green). On day 133 (hatchling age = 74 days), the dam (above) was
532	PCR-negative (green), the sire (below) was PCR-positive (red) and 13
533	of the 14 hatchlings were PCR-negative (green). The fourteenth
534	hatchling was not tested. On day 288 (hatchling age = 229 days), 11
535	of the 11 remaining hatchlings were PCR-negative (green). Between
536	days 133 and 288 (hatchling ages 74 to 229), three hatchlings were
537	either lost or were killed by the keeper's domestic cat. Unfilled
538	images represent animals/eggs that were not tested for the
539	presence of Sunshine virus. Images filled in red or green represent
540	animals that were tested and were PCR-positive or PCR-negative,
541	respectively.

542

- 543 Figure 2. Swabbing the surface (A) and allantois (B) of a non-viable
- egg from a carpet python, which 55 days prior to oviposition, was
- 545 PCR-positive for Sunshine virus. Following the removal of the
- 546 embryo (C), the amnion (D) was swabbed.

A cole and a cole and

