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Abstract 

Trypanosomes are flagellated blood parasites that are capable of infecting virtually all 

classes of vertebrates. They range from non-pathogenic species to those that are highly 

pathogenic and are the causative agents of many diseases of medical and veterinary 

importance. While much is known of their impact on human health or economic 

development, a great deal less is known of those associated with wildlife.  

 

Within Australia, trypanosomes have been found naturally infecting a wide range of 

native marsupials, most of which are considered threatened or endangered. However, 

their research has largely been confined to the description of trypanosome morphology 

in blood, and a complete lack of information regarding their life cycle, virulence, and 

pathogenicity is evident. This study therefore, aimed to investigate the genotypic and 

phenotypic diversity of Trypanosoma spp. infecting Western Australia marsupials and 

to determine their potential pathogenicity with particular emphasis in the critically 

endangered marsupial, the woylie (Bettongia penicillata).  The genotypic 

characterisation was achieved using a combination of sequencing and phylogenetic 

analysis of trypanosomes in the blood and tissues of nine different marsupial species, as 

well as the sequencing of partial fragments of the minicircles of the kinetoplast DNA of 

trypanosomes isolated in culture. The phenotypic characterisation involved a 

combination of histology, microscopy techniques, and in vitro experiments of cell 

infection and drug susceptibility. 

 

Results revealed that eight different genotypes belonging to three different 

Trypanosoma species: T. copemani, T. vegrandis, and T. sp H25 were found infecting 
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woylies (Bettongia penicillata), quendas (Isoodon obesulus), quokkas (Setonix 

brachyurus), tammar wallabies (Macropus eugenii), banded hare wallabies 

(Lagostrophus fasciatus), boodies (Bettongia lesueur), Chuditches (Dasyurus geoffroii), 

common brush tailed possums (Trichosurus vulpecula), and western grey kangaroos 

(Macropus fuliginosus). However, the woylie was the only marsupial species where 

single individuals and single tissues were co-infected with genotypes belonging to the 

three different Trypanosoma species. Furthermore, T. copemani G2, the predominant 

trypanosome in the declining population of woylies, was shown to be able to infect 

tissue cells and generate a strong immune response characterised by tissue degeneration 

and necrosis in vital organs, suggesting an association between these infections and the 

decline of the woylie. Comparative analysis between T. copemani G2 and the 

pathogenic T. cruzi showed not only similarities in their capacity to infect tissue cells, 

but also in drug susceptibility and kinetoplast DNA organisation. 

 

In summary, this study not only contributes valuable information towards directing 

management decisions for endangered species where trypanosomes are known to be 

present at high prevalence levels, but also provides new knowledge about the 

evolutionary biology and relationships that Australian trypanosomes have with the 

exotic and pathogenic T. cruzi. 
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1.1 Summary 

Trypanosomes are protozoan parasites that are well known for their pathogenicity in 

humans and other mammals. However, while much is known about their life cycle and 

their impact on human health or economic development, a great deal less is known 

about those associated with wildlife. Within Australia, numerous Trypanosoma species 

and genotypes have been described naturally infecting a wide range of native 

marsupials. However, trypanosome research in Australian wildlife has largely been 

confined to studies on individual host species and their study has been limited to the 

description of their morphology in blood. This research project aimed to expand the 

knowledge of Australian trypanosomes by investigating their genetic diversity, 

biological behaviour in the marsupial host, and potential pathogenicity.  Additionally, 

this project hoped to make a contribution towards understanding the relationships 

between Trypanosoma infections and the drastic decline of the endangered Australian 

marsupial, the woylie (Bettongia penicillata) (Wayne et al. 2013a). This review will, 

therefore, outline current knowledge of the diversity, geographic distribution, and host 

range of trypanosomes worldwide that are relevant to this research project.  It will also 

summarise different aspects concerning life cycle, morphology, drug susceptibility, and 

pathogenicity of trypanosomes. Comparison with well-characterised Trypanosoma 

species might facilitate a better understanding of the different aspects of the biology of 

new and undescribed Trypanosoma species within Australian wildlife. 

1.2 Trypanosomes and their hosts: a global summary  

Trypanosomes are flagellate protozoan parasites that infect a wide range of vertebrates, 

invertebrates and plants (Simpson et al. 2006). They belong to the family 
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Trypanosomatidae, which also includes the genus Leishmania. Some of the most 

studied trypanosomes are a group of two human pathogens that are the cause of many 

deaths every year. Trypanosomes from the Trypanosoma brucei complex, T. brucei 

gambiense and T. brucei rhodesiense, are the agents of sleeping sickness that affects 

approximately 20,000 people, with 70 million being at risk of contracting the disease. In 

the new world, Trypanosoma cruzi is the causative agent of Chagas disease, which 

affects approximately 10 million people, with the highest incidence being in Latin 

America (WHO 2010). Both, T. brucei and T. cruzi, also infect wild animals, and can be 

transmitted from these to humans (zoonotic infections) (Miles et al. 2003). Wildlife are 

the natural reservoir hosts of trypanosomes, and are believed to “have learned to live in 

harmony” with the parasite (Legey et al. 1999). However, under certain circumstances 

such as stress caused by draught or starvation, and during concurrent infections, the 

innate resistance of wildlife to the infection with trypanosomes can be compromised, 

leading to an increase in parasitaemia, and severe pathological effects (Herrera et al. 

2008, Mbaya et al. 2009). Some species from the T. brucei complex such as T. brucei 

brucei, T. brucei congolense, and T. vivax, are responsible for animal African 

trypanosomiasis or Nagana, which have an enormous impact on cattle health and 

production. Together with these trypanosomes from Africa that affect livestock, there 

are other species such as T. equinum and T. equiperdum that affect equines, T. evansi 

that affects dogs, wild mammals, cattle and other domestic animals, and T. suis that 

affects pigs (Ventura et al. 2002, Herrera et al. 2004).  

 

Other species of trypanosomes have also been found to infect wildlife species across the 

world including birds, fish, amphibians, reptiles, rodents, baths, monotremes, primates, 

and marsupials (Hoare. 1972). Even though more than 100 species of avian 
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trypanosomes have been described to date (Baker. 1976, Bennett et al. 1992, Podlipaev. 

1990), most of the descriptions from birds have been solely based on host specificity 

and did not provide molecular and/or morphological data for comparison (Sehgal et al. 

2001, Zídková et al. 2012). So far, only T. corvi, T. avium, T. culicavium, T. 

anguiformis, T. confusum and T. polygranularis have been described based on 

morphology and phylogenetic data from birds from the families Corvidae, Accipitridae 

and Laniidae (Nandi et al. 1994, Sehgal et al. 2001, Valkiunas et al. 2011, Votýpka et 

al. 2012). The biological behaviour of avian trypanosomes in the vertebrate host is 

poorly understood. However, it is known that some species can be pathogenic to their 

host (Molyneux et al. 1983, Tarello. 2005).  

 

Crocodilians, alligators, lizards, snakes and turtles inhabiting terrestrial and aquatic 

environments worldwide have long been known to be infected with trypanosomes 

(Hoare. 1972). Trypanosomes from amphibians and reptiles include T. rotatorium from 

frogs (Žičkus. 2002), T. mega from toads (Ashour et al. 1997), T. grayi and some 

uncharacterised species from crocodiles (Viola et al. 2009, Marcili et al. 2013), and T. 

ralphi and T. terena from alligators (Fermino et al. 2013). 

 

Fish trypanosomes are believed to live extracellularly in the blood (Overath et al. 1998). 

However, in some animals, parasites may be detectable in the capillaries of internal 

organs such as kidney and heart (Lom et al. 1992). T. carassii has been found in the 

vascular system of a variety of cyprinid and some noncyprinid fishes (common carp) 

(Lom et al. 1992). T. granulosum, and T. cobitis have been described in the European 

eel (Anguilla anguilla), and in the stone loach (Barbatula barbatula) respectively 

(Letch. 1979, Davies et al. 2005). It has been shown that the control of the infection by 
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the immune system leads to a chronic state characterised by low or undetectable levels 

of parasites in the blood (Overath et al. 1999). However, some species has been shown 

to cause pathology; Trypanosoma danilewskyi has been shown to be pathogenic in 

juvenile common carp when inoculated with high doses of flagellates. Infection caused 

a severe anaemia and 50 % of mortality (Ahmed et al. 2011). Within Australia, an 

uncharacterised Trypanosoma sp. was found in the blood vessels, the choroid of the eye, 

the gill, and the dermis of moribund barramundis. Disease was characterised by intra-

ocular haemorrhage and splenomegaly caused by these trypanosomes and it was 

suggested as the main cause of mortality (http://www.nt.gov.au/d/Content/File/p/Fish_ 

Rep/FR098.pdf). 

  

Rodent trypanosomes are considered non-pathogenic flea-borne parasites that are highly 

specific to their vertebrate hosts, where they live extracellularly in the blood (Albright 

et al. 1991). However, T. lewisi, a rodent trypanosome (Hoare. 1972) that has been 

found sporadically infecting humans (Sarataphan et al. 2007, Kaur et al. 2007, Verma et 

al. 2011, Shah et al. 2011), was suggested to be a likely cause of the extinction of 

Rattus macleari on Christmas Island in Australia in 1908 (D’Alessandro et al. 1991, 

Wyatt et al. 2008, MacPhee et al. 2013). This parasite has also been found 

extracellularly in kidney capillaries of infected rats (Ormerod et al. 1956). T. grosi and 

T. evotomys have been described infecting the wood mouse (Apodemus sylvaticus) 

(Hoare. 1972, Noyes et al. 2002), T. microti in the vasa recta of mouse kidneys 

(Monroy et al. 2000), and T. lainsoni in the spiny tree rat (Mesomys hispidus) (Naiff et 

al. 2013). The human pathogenic T. cruzi has also been found infecting Darwin's leaf-

eared mouse (Phyllotis darwini), the Olive Grass Mouse (Abrothrix olivaceus), the 

http://www.nt.gov.au/d/Content/File/p/Fish_Rep/FR098.pdf
http://www.nt.gov.au/d/Content/File/p/Fish_Rep/FR098.pdf
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brush-tailed rat (Octodon degus), the long- tailed pygmy rice rat (Oligoryzomis 

longicaudatus), and Bennett's chinchilla rat (Abrocoma benetti) (Rozas et al. 2007). 

 

Numerous species of bats have been reported to be infected with trypanosomes around 

the world. T. vespertilionis was reported in bats in Europe, the Americas, Africa and 

Asia; T. dionisii and T. pipistrelli in the Old World, particularly in Europe, and T. cruzi 

marinkellei in Colombia (Hoare. 1972, Marinkelle. 1976). T. cruzi cruzi (T.cBat) has 

been reported infecting the insectivorous bats Noctilio albiventris and Myotis spp. in 

Brazil (Marcili et al. 2009a), and the fruit-eating bat Artibeus jamaicensis in Panama 

(Pinto et al. 2012). T. rangeli was reported in the bats Platyrrhinus lineatus and 

Artibeus planirostris in Brazil (Maia da Silva et al. 2009). More recently, T. erneyi was 

described in Molossidae bats and T. livingstonei in the bats Rhinolophus landeri and 

Hipposideros caffer in Southeast Africa (Lima et al. 2012, Lima et al. 2013). Despite 

extensive knowledge about the occurrence of trypanosomes in bats around the world, 

little is known about their natural vectors and life cycle in both vertebrate and 

invertebrate hosts. 

 

Characterised and uncharacterised species of trypanosomes have been described 

infecting non-human primates. Early studies have described T. cyclops from the 

Malaysian primates Macaca nemestrina and Macaca ira, and other uncharacterised 

Trypanosoma sp. in Asian primates (Weinman. 1972, Weinman et al. 1978). Primates 

captured in the Brazilian Amazon were found infected with T. cruzi, T. minasense, T. 

devei and T. rangeli (Ziccardi et al. 2000, Maia da Silva et al. 2008, Marcili et al. 

2009b).  

 



7 

 

Marsupials account for the largest number of species of Trypanosoma described so far.  

Many species from the family Didelphidae, including Didelphis marsupialis, Didelphis 

virginiana, Didelphis albiventris (Rabinovich et al. 2001), and other marsupials such as 

Philander frenata (Legey et al. 2003), Thylamys elegans (Rozas et al. 2007), and 

Dasypus novemcinctus, are common hosts of T. cruzi (Bern et al. 2011). T. peba was 

described in the blood and smears of subcutaneous lymph nodes from armadillos 

(Euphractus sexcinctus setosus) in Brazil, and was shown to not affect tissues (Barrett 

et al. 1990), and T. freitasi has been described in the blood and anal glands of Didelphis 

azarae and Didelphis marsupialis (Hoare. 1972, Deane et al. 1990). T. saloboense was 

described in the blood of the Brazilian opossum Monodelphis emiliae (Lainson et al. 

2008). 

 

While the description of most of the wildlife trypanosomes is based on morphologically 

descriptions in blood and/or molecular analysis, a great deal is known about their 

biological behaviour in the vertebrate host, including their capacity to migrate to 

different tissues and to infect and replicate inside cells.  

1.3 Australian trypanosomes and their hosts  

Within Australia a number of native and exotic trypanosomes have been described from 

the blood of a broad range of native wildlife including birds, rodents, bats, monotremes, 

marsupials and fish, from which marsupials account for the highest number of species 

infected with trypanosomes (Thompson et al. 2014b).  

 

Of the exotic trypanosomes established in Australia, T. lewisi was recorded in Maclear's 

Rat (Rattus macleari) and in the bulldog rat (Rattus nativitatis) (Mackerras. 1959, 
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Pickering, and Norris. 1996, Wyatt et al. 2008), and T. nabiasi in the introduced rabbit 

(Oryctolagus cuniculus) (Hamilton et al. 2005b). To date, 15 native species of 

Trypanosoma have been described from wildlife, including monotremes, birds, fish, 

bats, reptiles, amphibians and marsupials (Table 1). Numerous uncharacterised 

trypanosomes have also been described in the currawong (Strepera sp), Shark bay 

mouse (Pseudomys fieldi), bush rat (Rattus fuscipes), woylie (Bettongia penicillata), 

common wombat (Vombatus ursinus), eastern grey kangaroo (Macropus giganteus), 

swamp wallaby (Wallabia bicolor), brush tailed possum (Trichosurus vulpecula), 

chuditch (Dasyurus geoffroii), golden bandicoot (Isoodon auratus), southern brown 

bandicoot (Isoodon obesulus) and burrowing bettong (Bettongia lesueur) (Bettiol et al. 

1998, Noyes et al. 1999, Hamilton et al. 2005b, Smith et al. 2008, Averis et al. 2009,  

Paparini et al. 2011). The fact that none of these species and genotypes has been 

described in any other part of the world other than Australia indicates they might be 

indigenous to Australia. Table 1 shows all the species of indigenous Australian 

trypanosomes and their respective hosts.  
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Table 1. Species of Trypanosoma naturally infecting native Australian wildlife 

 

 Trypanosoma Host References 

Monotremes T. binneyi Platypus (Ornithorhynchus anatinus) (Mackerras. 1959, Noyes et al. 

1999, Paparini et al. 2014) 

 

Bats 

T. pteropi Black flying fox (Pteropus alecto) (Johnston. 1916) 

T. hipposideri Dusky roundleaf bat (Hipposideros 

ater) 

(Mackerras. 1959) 

 

Birds 

T. notophoyxis White-faced heron (Ardea 

novaehollandiae) 

Pacific reef heron (Egretta sacra) 

(Breinl. 1913) 

T. eudyptulae Little penguin (Eudyptula minor) (Jones et al. 1989) 

 

 

 

 

 

Reptiles 

T. chelodina Long-necked tortoise (Chelodina 

longicollis) 

Northern snapping turtle (Elseya 

dentate)  

Saw-shelled turtle (Elseya latisternum) 

Krefft’s river turtle (Emydura krefftii) 

Murray turtle (Emydura macquarii) 

(Johnston et al. 1909, Gray. 

1830) 

T. phylluri Southern leaf-tailed gecko (Phyllurus 

platurus) 

(Mackerras. 1961) 

T. egerniae Cunningham’s skink (Egernia 

cunninghami) 

Tree skink (Egernia striolata)  

(Mackerras. 1961) 

 

Amphibians 

T. clelandi Ornate burrowing frog (Limnodynastes 

ornatus) 

Spotted grass frog (Limnodynastes 

tasmaniensis) 

(Johnston, and Cleland. 1909) 

Fish T. mackerasi Epaulette shark (Hemiscyllium 

ocellatum) 

Squatina tergocellatoides (Ocellated 

catshark) 

(Lester et al. 1989) 

 

 

 

 

 

Marsupials  

T. thylacis Southern brown bandicoot (Isoodon 

obesulus) 

Northern brown bandicoots (Isoodon 

macrourus) 

(Mackerras. 1959) 

T. irwini Koalas (Phascolarctos cinereus) (McInnes et al. 2009) 

T. gilletti Koalas (Phascolarctos cinereus) (McInnes et al. 2011a) 

T. copemani Quokkas (Setonix brachyurus) 

Gilbert’s potoroo (Potorous gilbertii) 

Koalas (Phascolarctos cinereus) 

 

(Austen et al. 2009, McInnes et 

al. 2011a) 

T. vegrandis Woylie (Bettongia penicillata) (Thompson et al. 2013) 

1.4 Origin and taxonomy of trypanosomes 

Trypanosomes belong to the family Trypanosomatidae (order Kinetoplastida) that 

includes also Leishmania parasites, Crithidia fasciculata (a parasite of insects) 

(Podlipaev et al. 2004), and free-living protozoa from the family Bodinidae such as 

Bodo saltans and Bodo caudatus (Podlipaev et al. 2010). They have been of major 

interest not only because of their importance as pathogens, but also because they have 
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diverged early from the eukaryotic lineage and developed distinct and well conserved 

subcellular structures such as the kinetoplast, a unique organelle that contains the 

mitochondrial DNA of the parasite (Hoare. 1972). 

 

Different and conflicting theories about the evolutionary origin and phylogenetic 

relationships among trypanosomatids have been put forward over the last two decades 

(Stevens. 2014). Several phylogenetic studies have suggested trypanosomatids diverged 

from free-living bodonids (Simpson et al. 2002, Simpson et al. 2004a, Moreira et al. 

2004, Deschamps et al. 2011). Hypotheses have emerged that aquatic bodonid 

protozoans adapted to parasitism in the intestinal tract of insects after being ingested 

accidentally, giving rise to insect trypanosomatids (Hamilton et al. 2004). Subsequently, 

trypanosomatids of hematophagus insects were transmitted to vertebrates, where they 

adapted to parasitism, giving rise to Leishmania and Trypanosoma parasites (Hoare. 

1972). More recently, the discovery of a novel parasite of mosquitoes, 

Paratrypanosoma confusum, which branched in a phylogeny with very high support at 

the base of the family Trypanosomatidae - together with bodonids, could represent the 

missing link between the ancestral free-living bodonids and the derived parasitic 

trypanosomatids (Flegontov et al. 2013). P. confusum might provide new insights into 

our understanding of the evolution of parasitism within trypanosomatids.  

 

The origin of all species within the genus Trypanosoma has also been controversial.  

The issue that seems to have offered most debate is that concerning the monophyly or 

paraphyly of trypanosomes (Simpson et al. 2006). Even with the advent of molecular 

methods, this conflict has not been resolved mainly due to the use of different gene 

sequences, number of taxa, outgroups and different phylogenetic methodologies in each 
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study (Maslov et al. 1996, Lukeš et al. 1997, Stevens et al. 1999b, Stevens et al. 2001, 

Hughes et al. 2003, Hamilton et al. 2004, Simpson et al. 2004b, Piontkivska et al. 2005). 

Molecular phylogenetic studies, based on comparisons of genes encoding mitochondrial 

and nuclear ribosomal RNAs (rRNA), showed trypanosomes are paraphyletic (Gomez 

et al. 1991, Maslov et al. 1995, Maslov et al. 1996). However, other studies that 

included more taxa, a broader range of host species, and protein-coding genes supported 

the monophyly of trypanosomes (Lukeš et al. 1997, Adjé et al. 1998, Wright et al. 1999, 

Hannaert et al. 1998, Hamilton et al. 2007, Leonard et al. 2011). The confusion over 

monophyly/paraphyly in the genus Trypanosoma indicates the need for caution when 

constructing and interpreting phylogenies, especially when the number of taxa used is 

low.  

 

Despite the controversy regarding the phylogeny of trypanosomatids and the 

monophyly or paraphyly of the genus Trypanosoma, different clades have been defined 

with high phylogenetic support: the T. brucei clade, the T. theileri clade, the T. lewisi 

clade, the T. cruzi clade, the aquatic clade comprising the anuran clade and the fish 

clade, the crocodilian clade, the avian clade, and the lizard clade (Stevens et al. 1998, 

Stevens et al. 1999a, Hamilton et al. 2007, Fermino et al. 2013). 

 

The T. brucei clade comprises exclusively mammalian trypanosomes of African origin. 

T. brucei gambiense and T. b. rhodesiense that affect humans, domestic animals and 

wildlife, and   T. b. brucei, T. b. congolense, T. vivax, T. equinum, T. equiperdum, T. 

suis, and T. evansi that affect livestock and wildlife (WHO 2010). However, T. evansi 

and T. vivax were recently found in South America, and are believed to be the product 

of accidental introductions into the continent in domestic animals (Cortez et al. 2006). 
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The T. theileri clade contains trypanosomes from marsupials and placental mammals 

that are distributed worldwide from the tropics to near the Arctic Circle, with higher 

prevalence in tropical and neotropical areas. It includes T. theileri from buffalos, deer 

and cattle from America and Europe (Rodrigues et al. 2006), T. cyclops from Asian 

macaques (Weinman. 2012), and an uncharacterised trypanosome from an Australian 

wallaby T. sp ABF (Hamilton et al. 2005a). 

 

The T. lewisi clade comprises trypanosomes from rodents. T. lewisi has also been found 

infecting monkeys, which is believed to be the product of host switching from their 

natural rodent species (Maia da Silva et al. 2010). T. lewisi and T. lewisi-like 

trypanosomes within this clade have been reported from America, Europe, Asia and 

Africa. This clade also includes T. musculi, T. grosi, and T. microti; all trypanosomes 

from mice (Maia da Silva et al. 2010).  

 

The aquatic clade comprises mainly trypanosomes of aquatic vertebrates and 

amphibians, including an uncharacterised trypanosome from a turtle. Two small clades 

are present within this clade, the anuran and the fish clades (Hamilton et al. 2007). With 

a wide geographical distribution, the anuran clade comprises T. rotatorium and T. mega 

(Bardsley et al. 1972, Ashour, and Gaafar. 1997, Žičkus. 2002, Martin et al. 2009), and 

the fish clade comprises T. carassii (Lom et al. 1992), T. granulosum, and T. cobitis 

from Europe and Africa (Gibson et al. 2005). 

 

The single robustly monophyletic avian clade comprises T. avium, T. corvi,  

T. culicavium and a high number of uncharacterised Trypanosoma species from birds 
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(Zídková et al. 2012). Trypanosomes within this clade occur in all continents except for 

the polar region (Baker. 1976, Apanius. 1991). 

 

The T. cruzi clade includes species of the genus Schizotrypanum such as T. cruzi; 

trypanosomes of bats from the Old and New World, such as T. cruzi marinkellei,  

T. dionisii, T. vespertilionis, T. conorhini, and T. erneyi; it also includes the South 

American T. rangeli and an uncharacterised species T. sp H25 from Australian 

kangaroos and possums (Noyes et al. 1999, Hamilton et al. 2007, Paparini et al. 2011). 

The finding that the Australian T. sp H25 was at the periphery of the T. cruzi clade more 

than one decade ago raised questions about the diversification and dispersion of 

trypanosomes worldwide and led to the southern super-continent hypothesis to explain 

the evolution of T. cruzi clade trypanosomes  (Figure 1) (Stevens, and Gibson. 1999a, 

Stevens et al. 1999b). 

 

 

 

Figure 1. Southern super-continent or Gondwana hypothesis and distribution of T. cruzi 

clade genotypes. Grey lines indicate dates of splits between landmasses. Double-headed arrows 

indicate dates of collision between continents. Single-headed arrows indicate the direction of 

spread of marsupials to Australia from South America via Antarctica. All numbers are millions 

of years ago (Hamilton et al. 2012). 
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The “Gondwana” or the “Southern-super continent” hypothesis which has dominated 

the discussion of T. cruzi evolution in the past decade, suggested that T. cruzi and 

related parasites emerged from trypanosomes present in marsupials a long time ago 

when South America, Antarctica and Australia were joined in a southern-super 

continent, known as the Gondwana. After the separation of Gondwana, trypanosomes 

evolved in isolation in the mammals of South America, Antarctica and Australia, and 

old world bat trypanosomes within this clade were suggested to be the product of bat 

movements to South America, probably by virtue of the mobility of their hosts (Stevens, 

and Gibson. 1999a, Stevens et al. 1999b). More recently, the findings of many other 

trypanosomes from Australian wildlife that clade with trypanosomes from all over the 

world including T. sp ABF (wallaby) in the T. theileri clade, T. sp AAT (currawong) in 

the avian clade, and T. binneyi (platypus) and T. chelodina (tortoise) in the aquatic clade 

questioned the accuracy of this hypothesis (Hamilton et al. 2005a and b). The finding of 

several Australian trypanosomes that are closely related to trypanosomes outside 

Australia indicates that although the mammals of Australia have been geographically 

isolated, their trypanosomes have not (Hamilton et al. 2012). Furthermore, the 

discovery of two trypanosomes from a palm civet and a monkey from Africa in the T. 

cruzi clade (Hamilton et al. 2009) provided new evidence that did not support the 

southern-super continent hypothesis, and a new hypothesis was raised known as the 

“bat seeding hypothesis”. This hypothesis suggests that trypanosomes from the T. cruzi 

clade were originally bat parasites from the new world that evolved from within a larger 

clade of bat trypanosomes and subsequently made the switch into terrestrial mammal 

hosts in both the new and old worlds (Figure 2) (Hamilton et al. 2012). 
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Figure 2. Hypotheses about the evolution of T. cruzi clade trypanosomes (Hamilton et al. 

2012). 

 

 

Hopefully, advances in genomic sequencing will facilitate the discovery of new 

Trypanosoma species and the description of uncharacterised species around the world. 

The discovery of new Trypanosoma species might provide important clues to a better 

understanding of the evolution of trypanosomes. 

1.5 Morphology and life cycle 

Trypanosomes are transmitted to the vertebrate host by haematophagous arthropods of 

the order Hemiptera (Triatomine bugs), Diptera (flies) and Siphonaptera (fleas) (Hoare. 

1972). African trypanosomes for example, are transmitted by tsetse flies and American 
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trypanosomes by reduviid bugs. Insects from the class Arachnida (ticks and mites) have 

been incriminated as well in the transmission of different species of trypanosomes such 

as T. thylacis, and T. copemani (Mackerras. 1959, Austen et al. 2011). More recently, 

different leech species have been suggested to play a role in the transmission of  

T. rotatorium, T. boissoni, T. triglae, all trypanosomes of aquatic vertebrates (Lukeš et 

al. 1997), and have been suggested as well as the possible vector of T. binneyi, a 

trypanosome from platypuses, T. chelodina from Australian aquatic tortoises, and  

T. cyclops-clade trypanosomes from the frog Mixophyes fleayi and wallabies from 

Australia (Hamilton et al. 2005a).  

 

Transmission occurs when arthropods, while feeding from host blood, take up the 

trypomastigote, which is the bloodstream form of the parasite. After this, trypanosomes 

undergo several transformations in form in the intestinal tract of the insect, ranging 

from epimastigotes in the gut to the production of metacyclic trypomastigotes, which 

are the infective forms of the parasite and are transmitted to a new vertebrate host by 

two different methods according to their localisation in the body of the insect vector 

(Hoare. 1972).  

 

The Stercolarian group refers to trypanosomes such as T. cruzi, T. lewisi, and T. theileri, 

in which metacyclic trypomastigotes are located in the epithelium of the rectum of the 

insect. Transmission occurs when the infective forms are released in the urine or faeces 

near a bite site after feeding on a mammalian host. The parasite penetrates the vertebrate 

skin through the bite site or through adjacent mucous membranes by contamination. The 

Salivarian group refers to trypanosomes where metacyclic trypomastigotes are localised 

in the salivary glands of the insect and includes all trypanosomes from the  
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T. brucei complex. Transmission occurs when the insect injects the infective forms of 

the parasite while feeding from the bloodstream of the vertebrate host (Hoare. 1972). 

Trypanosomes can also be transmitted mechanically (ingestion-oral transmission or in 

blood transfusions) and vertically (from mother to progeny) (Leiby et al. 1999, Roellig 

et al. 2009, Kribs-Zaleta. 2010).  

 

In the vertebrate host, the trypanosome life cycle involves two main strategies of 

parasite replication, either intracellularly in tissue cells or extracellularly in blood. In  

T. cruzi, for example, trypanosomes divide intracellularly in tissue cells. The life cycle 

begins when metacyclic trypomastigotes released in faeces of the vector penetrate the 

skin or mucosal membranes of the vertebrate host. Trypomastigotes then enter the host 

bloodstream (blood trypomastigotes) and migrate to different host tissues where they 

invade cells.  Inside cells, trypomastigotes transform into amastigotes (intracellular 

stage) that divide continuously and differentiate again into trypomastigotes. This 

continuous replication of parasites and transformation of amastigotes into 

trypomastigotes leads to the lysis of invaded cells and release of trypomastigotes that 

initiate several new cycles of cellular invasion. The life cycle is completed when a new 

insect feeds on blood of an infected host (Figure 3). T. cruzi has been found infecting 

several tissues in humans and marsupials (De Souza et al. 2010) and T. dionissi and  

T. erneyi, both trypanosomes of bats, are able to infect host tissues as well (Baker et al. 

1972, Lima et al. 2012). 
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Figure 3. T. cruzi life cycle (http://www.who.int/tdr/diseases-topics/chagas/en/) 

 

 

In contrast, all trypanosomes from the T. brucei complex lack the intracellular 

replicative form in their life cycle (the amastigote). Instead, they replicate in blood as 

trypomastigotes. The life cycle begins when infective metacyclic trypomastigotes in the 

salivary glands of tsetse flies are transmitted while feeding from the bloodstream of the 

vertebrate host. Trypomastigotes then enter the host bloodstream (blood 

trypomastigotes) where they replicate by binary fission. It has been demonstrated that 

trypanosomes from this group can be found extracellularly in the capillaries of some 

host tissues (Tabel et al. 2008). The life cycle is completed when a new insect feeds on 

blood of an infected host (Figure 4).  

 

 

 

http://www.who.int/tdr/diseases-topics/chagas/en/
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Figure 4. T. brucei life cycle  

(http://www.who.int/tdr/diseases-topics/african-trypanosomiasis/en/) 

 

 

The main developmental changes in morphology that trypanosomes undergo in their life 

cycle, in both the vertebrate and invertebrate host, have been defined by the position of 

the kinetoplast and the length of the flagellum (Field et al. 2009, Wheeler et al. 2013). 

The bloodstream trypomastigote presents a flagellum that emerges through a flagellar 

pocket near the rear end of the body and that is attached to an undulating membrane that 

runs the whole length of the cell. In this form, the kinetoplast is found in a posterior 

position relative to the nucleus, which is located in the middle of the cell (Figure 5). The 

amastigote, the intracellular stage in host tissues, presents a round/oval shape with no 

protruding flagellum and with a kinetoplast located in an anterior position relative to the 

nucleus (Figure 5). The epimastigote, the replicative stage in the intestinal tract of the 

insect vector, presents a kinetoplast located anterior and adjacent to the nucleus and a 

flagellum that emerges in the middle of the cell (Figure 5) (Field, and Carrington. 2009).  

http://www.who.int/tdr/diseases-topics/african-trypanosomiasis/en/
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This stage of the parasite grows easily in culture media such as Grace’s, LIT (Liver 

infusion tryptose), and Schneider’s media, which contain several nutrients that simulate 

the environment in the intestinal tract of the insect. The spheromastigote presents a 

more rounded morphology and can be found either in the invertebrate or vertebrate host. 

The kinetoplast in the spheromastigote is located anterior and adjacent to the nucleus 

and its flagellum emerges in the middle of the cell as well as in the epimastigote  

(Figure 5). 

 

Although in Australia many species and genotypes of trypanosomes and their hosts 

have been described, a complete lack of information about host-parasite relationships 

and life cycle is evident. To date, only one study has investigated the possibility that 

Australian trypanosomes could infect and replicate inside host cells in vitro and in vivo 

(Noyes et al. 1999). In vitro experiments showed that T. sp H25 isolated from a 

kangaroo and T. sp H26 isolated from a wombat were able to grow with LLCMK1 cells 

in culture, but they did not invade or attach to the cells. Moreover, in vivo experiments 

showed the absence of parasites in blood, spleen and liver of mice experimentally 

infected with both trypanosomes four weeks post-infection (Noyes et al. 1999). 
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Figure 5. Morphology of all developmental stages of trypanosomes in both the vertebrate 

and invertebrate host. N: nucleus, K: kinetoplast, F: flagellum, FP: flagellar pocket. Image 

modified from Field, and Carrington (2009). 
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1.5.1 The unique organelle “the kinetoplast” 

Parasites from the genus Trypanosoma are flagellate protozoans that belong to the order 

Kinetoplastida (Honigberg. 1963), which are characterised by the presence of a unique 

organelle termed the kinetoplast. This organelle is a modified mitochondrion localised 

at the basal part of the flagella, which encloses the mitochondrial DNA of the cell 

(Simpson. 1972). The kinetoplast DNA or kDNA represents more than 10% of the total 

cellular DNA and presents a peculiar genomic organization unlike that of any other 

DNA in nature (Riou et al. 1969). It consists of two types of circular DNA molecules, 

maxicircles and minicircles, which can be topologically interlocked into a single and 

massive network according to the species (Shapiro et al. 1995b). The size of maxicircles 

usually ranges from 20 to 40 kb and they are present in a few dozen identical copies per 

cell. In contrast, minicircles are present in several thousand copies per cell and are 

usually nearly identical in size ranging from 0.5 to 10 kb depending on the species 

(Lukeš et al. 2002). Maxicircles encode typical mitochondrial gene products, such as 

cytochrome c oxidase subunits I, II and III (COI, COII and COIII) and apocytochrome b 

(CYb), but, remarkably, some of the protein-coding genes are encrypted. To generate 

functional mRNAs, the cryptic maxicircle transcripts undergo postranscriptional 

modification via an intricate RNA editing process that requires insertion and deletion of 

uridine residues at specific sites in the transcripts. Minicircles and some maxicircles 

encode guide RNAs (gRNAs) that provide the genetic information for editing (Maslov 

et al. 1994). 

 

Kinetoplastids are divided into two groups, trypanosomatids that are obligate 

endoparasites such as trypanosomes, and bodonids that are free-living protozoans 

(Moreira et al. 2004). Interestingly, a huge diversity in kDNA structure and 
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conformation has been demonstrated in both free-living and parasitic species, and 

several studies have addressed the biological significance of this, and the role of kDNA 

in parasitism. A disk-shaped and highly condensed kDNA network has been reported in 

T. cruzi, T. brucei, L. tarentolae and C. fasciculate (Figures 6A and B) (Shapiro et al. 

1995). This type of kDNA structure consists of maxicircles and minicircles organised in 

a condensed network with a disk-shaped structure. Minicircles are stretched out and 

aligned side-by-side almost perpendicular to the planar face of the disk, and constitute 

about 90% of the mass of the kDNA, while maxicircles constitute only about 10% 

(Valencia. 2014). The thickness of the disk corresponds to about half of the 

circumference of each minicircle and both the disk thickness and the size of minicircles 

have been shown to differ between species (Lukeš et al. 2000, Shapiro, and Englund. 

1995). The main characteristic of the kDNA network organization is that minicircles 

within the network are catenated. This was previously demonstrated in vitro using the 

enzyme topoisomerase II, which in nature modulates DNA topology. Covalently closed 

catenated minicircles are released from the central zone of the network through 

decatenation by the action of type II DNA topoisomerase enzymes (Drew et al. 2001) 

prior to their replication (Shapiro, and Englund. 1995). In contrast, the minicircles in 

species of the family Bodonidae such as Bodo caudatus and others are not organised in 

a network (non-catenated) (Hajduk et al. 1986). Instead, they are distributed in diverse 

forms across the mitochondrial matrix known as Poly-kDNA, Pan-kDNA, Mega-kDNA, 

and pro-kDNA (Vickerman. 1990, Lukeš et al. 2002). Pro-kDNA is found in the free-

living Bodo saltans. Its kDNA is organised in a bundle-like structure that is usually 

composed of individual non-catenated 1.4 kb minicircles (Figure 6C) (Blom et al. 2000). 

However, Dimastigella trypaniformis (a commensal of the intestine of a termite), 

Dimastigella mimosa (a free-living bodonid isolated from a sewage plant), and Cruzella 
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marina (a parasite of the intestine of a sea squirt) present a kDNA organization distinct 

from that seen in B. saltans. Instead of being condensed into a single globular bundle, 

their kDNA is distributed among various discrete foci throughout the mitochondrial 

lumen known as poly-kDNA (Figure 6E and F) (Breunig et al. 1993). The kinetoplast 

DNA of Cryptobia helicis, a parasite of the receptaculum seminis of snails, fills most of 

the mitochondrial matrix and is known as Pan-kDNA (Figure 6D) (Lukeš et al. 1998). 

Mega-kDNA is the most unusual kDNA organization and is present in the fish parasite 

Trypanoplasma borreli. The kDNA of this fish parasite is distributed fairly uniformly 

throughout a large region of the mitochondrial matrix (Figure 6E and F). Molecular 

studies have demonstrated that Mega-kDNA does not contain minicircles at all (Maslov, 

and Simpson. 1994).  
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Figure 6. Electron microscopy images of the kinetoplast of different kinetoplastids. Arrows 

in electron micrographs indicate kDNA. Insets show DAPI-stained cells (n: nucleus) - kDNA is 

stained brightly. A: classical disk-shaped kDNA of C. fasciculata; B: kDNA disk of T. avium; 

C: Pro-kDNA bundle of B. saltans; D: Pan-kDNA of C. helicis; E and F: mitochondrion of  

D. trypaniformis; G and H: T. borreli mega-kDNA. Scale bars: 200 nm in panels A to F, and 1  

μm in panels G and H (Lukeš et al. 2002). 
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The kinetoplast has been of major interest not only because of its peculiar mitochondrial 

genome organisation, but also because its heterogeneity between species can be a clue 

to understanding the evolutionary history of trypanosomatids (Simpson et al. 2002). 

Phylogenetic studies have shown that kinetoplastids with a non-network organization of 

their kDNA, represent early branches of the kinetoplastid tree (Fernandes et al. 1993, 

Lukeš et al. 1997, Maslov, and Simpson. 1994, Blom et al. 1998). In contrast, the 

kDNA of late branching trypanosomatids including T. cruzi, T. brucei and Leishmania 

is organised in a network (Figure 7). It has been suggested that since more recently 

evolved trypanosomes have networks, there is presumably some advantage to the 

network structure (Chen et al. 1995). The pattern of arrangement of kinetoplastids in 

phylogenetic trees makes them interesting objects for the study of the evolutionary 

history of parasitism.  

 

 

Figure 7. Kinetoplastids phylogenetic tree based on the small-subunit rRNA (Lukeš et al. 

2002) 
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In addition to differences in the ultrastructure of the kDNA between different 

kinetoplastids, variation in size, number and sequence organization of the minicircles 

has also been reported. One of the most studied networks is that of Crithidia fasciculata. 

Its kDNA network contains approximately 5,000 minicircles of 2.5 kb each, in which 

each and every minicircle is interlocked with three of its neighbours (Lukeš et al. 2010). 

In contrast, T. cruzi contains approximately 10,000 to 20,000 minicircles of 1.4 kb each 

(Avila et al. 1995).  T. lewisi, T. brucei and Leishmania tarentolae minicircles are 

approximately 1.0 kb each (Simpson. 1987). Sequencing revealed that the minicircles of 

most kinetoplastids are heterogeneous in sequence. They have one or more conserved 

regions (roughly 100 to 200 base pairs) that contain regulatory and initiation sequences 

of replication (Hines et al. 2008). A common feature within the conserved region of the 

minicircles is the presence of a 12-nucleotide sequence named “The Universal 

Minicircle Sequence” (UMS) that is conserved in most trypanosomatids and is the 

initiation site for leading-strand synthesis (Ray. 1989). However, the number of the 

UMS elements and their location in each minicircle differ within species (Ponzi et al. 

1984, Sugisaki et al. 1987, Degrave et al. 1988). The minicircles of both C. fasciculata 

and T. lewisi contain two UMS elements located 180 degrees apart   (Ponzi et al. 1984, 

Sugisaki, and Ray. 1987), whereas those from T. brucei and Leishmania tarentolae 

contain only one (Kidane et al. 1984, Jasmer et al. 1986). In contrast, T. cruzi 

minicircles contain four conserved regions present as direct repeats located 90 degrees 

apart (Degrave et al. 1988). Figure 8 shows the size of the minicircles and number of 

conserved regions (UMS) of different species of trypanosomes. The regions of the 

minicircles flanked by the different UMS elements are heterogeneous in sequence and 

have been used to investigate intraspecific variations within species (Telleria et al. 

2006). Due to the minicircle abundance and heterogeneity in sequence, they have been 
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widely used in the development of sensitive and specific diagnostic molecular tools 

using PCR (Noyes et al. 1998, Botero et al. 2010, Ceccarelli et al. 2014).  

 

 

 

Figure 8. Differences in the minicircle sizes and in the number and position of the 

conserved regions (UMS) from different species of trypanosomatids. 

 

 

The UMS is also the specific binding site for the UMS-Binding Protein (UMSBP), a 

protein involved in kDNA replication (Tzfati et al. 1995). The UMSBP is located in two 

sites in the kineto-flagellar zone (KFZ), where minicircle replication initiates (Abu-

Elneel et al. 2001). The UMSBP of C. fasciculata for example, has been extensively 

studied (Onn et al. 2006).  Recent studies using antibodies raised against C. fasciculata 
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UMSBP have found the presence of C. fasciculata UMSBP homologues in other 

trypanosomatids such as T. cruzi and T. brucei (Coelho et al. 2003, Milman et al. 2007). 

It has been shown that the knockdown of the UMSBPs by RNAi (RNA interference) not 

only affects the initiation of minicircle replication, but also inhibits segregation of the 

daughter networks and blocks nuclear division (Milman et al. 2007), suggesting this 

protein as a potential powerful drug target, and thus revealing a broader role for the 

UMSBP than originally thought. 

1.6 Pathogenicity and trypanosomes associated with wildlife declines and extinction  

Trypanosomes range from non-pathogenic species to those that are highly pathogenic 

and are the causative agents of many diseases of medical and veterinary importance 

(Hoare. 1972). One of the most important pathogenic trypanosomes is T. cruzi, the 

agent of Chagas disease in humans, that also affects domestic and wildlife animals. Its 

pathogenicity is attributed to the damage of several vital organs in the vertebrate host 

caused by a strong immune response triggered by the presence of the parasite in tissues 

(Zhang et al. 1999). Infections consist of an acute initial phase characterised by high 

parasitaemias in blood in the absence of clinical manifestations; however, acute Chagas 

disease can led to a rapid death of the host. Subsequently, the disease progresses to a 

chronic phase that typically begins with a long period of latency (indeterminate chronic 

form) characterised by the presence of T. cruzi amastigotes in several tissue cells where 

they can persist for years in the absence of inflammatory reactions and therefore without 

any significant damage to the host (Teixeira et al. 2006, Teixeira et al. 2011a). However, 

about 30 percent of the indeterminate chronic infections progress over years to 

clinically evident chronic disease. This clinically evident phase of the disease includes 

diverse manifestations that involve vital organs such as heart, spleen, liver, intestine, 
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and nervous system. The persistence of parasites in the cytoplasm of these tissue cells, 

and their release after the lysis of cells triggers a strong inflammatory immune response 

that results in tissue damage and necrosis. The most common chronic form of the 

disease is when the parasite affects the heart in a process called chagasic 

cardiomyopathy. Some areas of the heart can be severely damaged and are characterised 

by inflammatory infiltrates, necrosis and the progressive deposition of fibrotic tissue. 

However, inflammation and lesions might increase over time reaching the entire heart 

simultaneously and leading to heart failure and death of the host (Teixeira et al. 2006). 

In contrast, the mortality rate in the acute phase is below 10%, and is attributed to high 

parasite burdens that cause cardiac failure, meningitis, or encephalitis (Teixeira et al. 

2011b). Although limited research has been conducted regarding the pathogenicity of  

T. cruzi in wildlife, a few studies have shown that this parasite is also able to cause 

pathology in marsupials. Naturally infected D. marsupialis exhibited hearts with 

myocarditis characterised by mononuclear cell infiltrates and target cell lysis; skeletal 

and smooth muscles of the oesophagus and the small and large intestines presented 

strong inflammatory infiltrates as well (Teixeira et al. 2001). Furthermore, the presence 

of intracellular amastigotes and inflammatory infiltrates of moderate to severe intensity 

in scent glands and hearts of the same marsupial species has also been demonstrated 

(Carreira et al. 1996).  

 

In contrast, the pathogenicity of trypanosomes from the T. brucei complex leads to their 

ability to undergo rapid surface membrane variation in a process that is known as 

antigenic variation. During this process, African trypanosomes change their membrane 

proteins in order to evade the host immune system, and multiply with every surface 

modification at a more rapid speed than the immune system can build up a defence 
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against it  (appropriate antibodies) (Berriman et al. 2005). A healthy immune system 

can regularly produce antibodies in a reasonably brief period, but not fast enough to 

destroy the trypanosomes before their protein compositions are modified. Human or 

animal African trypanosomiasis has two clinical stages. The first corresponds to the 

multiplication of trypanosomes in the blood and lymphatic system, which often goes 

undiagnosed. When the parasites cross the blood-brain barrier, the disease progresses to 

the second stage, which is characterised by neurological symptoms and, without 

treatment, evolves towards body wasting, somnolence, coma, and death. The pathologic 

manifestations caused by T. brucei and other pathogenic African trypanosomes include 

anaemia, immune complex disease, progressive destruction of lymphoid organs and 

other tissues, reduced fertility, cachexia and neurologic disorders (WHO 2010). In 

Africa, the major pathogenic species of trypanosomes from domestic ruminants and 

wildlife are T. congolense, T. vivax, T. b. brucei and T. evansi.  

 

Experimental infections have been carried out and have demonstrated that a number of 

wildlife species are susceptible to T. evansi. Donkeys infected with a Brazilian strain of 

T. evansi, originally isolated from a naturally infected dog (Aquino et al. 1999), 

developed a chronic disease. The course of infection was characterised by a marked 

decline in haemoglobin, packed-cell volume, and erythrocyte count, leading to anaemia 

after successive peaks of parasitemia. All infected donkeys exhibited enlargement of 

spleen and lymph nodes and congestion of the lungs (Cadioli et al. 2006). T. evansi 

experimentally infected Bandicota bengalensis developed an acute disease course 

leading to premature death of the animal - the histological changes seen in liver, spleen, 

lung, kidney, and heart comprised inflammatory, degenerative, and necrotic changes, 

similar to those seen in T. evansi infections in natural hosts, and in human sleeping 
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sickness (Biswas et al. 2001). Furthermore, in attempts to test the potential for the 

spread of T. evansi in Papua New Ghinea and Australia, Agile wallabies (Macropus 

agilis) and dusky pademelons (Thylogale brunii) were experimentally infected with this 

parasite. Both species were susceptible to the infection developing high parasitaemias 

that persisted until death. Animals exhibited clinical signs such as anorexia, weakness, 

ataxia, and anaemia, and autopsies revealed pericarditis, splenomegaly and ulcerative 

gastritis and enteritis (Reid et al. 2001). 

 

Some trypanosomes, normally considered as non-pathogenic, are capable of inducing 

detrimental effects in the host when encountering new or naïve host species following 

their introduction into a new habitat (Maraghi et al. 1989). This was the case with  

T. lewisi, a non-pathogenic trypanosome of rats that was involved in the extinction of an 

endemic murid species on Christmas Island at the beginning of the 20th century (Wyatt 

et al. 2008). This parasite has a limited antigenic variation, and infections are usually 

self-limiting leading to the eradication of circulating parasites and generating protection 

against reinfections (D’Alessandro et al. 1991). However, the infection with this 

parasite in native rats on Christmas Island appeared to behave differently.  Black rats 

(Rattus rattus), a common reservoir of T. lewisi, were inadvertently introduced onto the 

island in 1899 as a result of increased ship traffic.  Within 5 years after their 

introduction, the population of two endemic murids, the Christmas Island rat (Rattus 

macleari) and the bulldog rat (Rattus nativitatis), declined abruptly and were considered 

extinct by 1908.  Interestingly, individuals were described with an abnormal behaviour 

(nocturnally active rodents appearing during the daytime), and were infected with 

trypanosomes (Durham. 1908). A more recent study that examined museum specimens 

collected from the introduced R. rattus and from both native species R. macleari and  
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R. nativiatis during the extinction period, confirmed they were infected with T. lewisi. 

Furthermore, analysis of blood samples taken from the bulldog rat before the black rat 

was introduced showed absence of infection with trypanosomes (Wyatt et al. 2008). 

The results obtained showed a correlation between the extinction of the native rat on 

Christmas Island and the arrival of T. lewisi in black rats suggesting that this parasite 

could be the cause of the extinction. It was also suggested that both endemic rats were 

immunologically naïve and therefore were highly susceptible to T. lewisi infections. It is 

also important to note that other mammals declined on the island after the extinction of 

R. macleari. The only other native ground-dwelling mammal on the island, the 

Christmas Island shrew (Crocidura trichura), survived many decades after the 

disappearance of the endemic rodents, but it has not been seen since 1985 despite 

considerable surveying efforts (Schulz et al., 2004). More recently, the Christmas Island 

pipistrelle bat (Pipistrellus murrayi) appears to have become extinct in 2010 (Martin et 

al. 2012). The relationship between the extinction and decline of these species just after 

the loss of the endemic R. macleari and R. nativiatis, and the presence of Trypanosoma 

needs to be investigated, especially considering the reported low white blood cell counts 

in this bat species (Lumsden et al. 2007) that could be associated with infections with 

trypanosomes. 

 

Host stress and concurrent infections might exacerbate the detrimental effects caused by 

Trypanosoma infections, even during infections with trypanosomes that are normally 

considered as non-pathogenic (Brown et al. 2000). Stress generated by captivity was 

suggested as a significant underlying factor in the sudden death of various platypuses 

infected with trypanosomes. Pathological findings in tissue sections from lung, liver, 

and heart from platypuses held in captivity from one to three weeks, showed marked 
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inflammation and tissue necrosis associated with trypanosome infection (McColl. 1983). 

Moreover, it was shown that the depression of the host immune system caused by stress 

and/or concurrent infections with T. theileri could increase parasitemias and facilitate 

the dispersion of T. theileri through several organs and the central nervous system in 

cattle (Ward et al. 1984, Hussain et al. 1985, Seifi. 1995, Braun et al. 2002, Villa et al. 

2008).  

 

A few species of trypanosomes are known pathogens of various amphibians (Wright et 

al. 2006). The population of the North American Eastern hellbender salamanders 

(Cryptobranchus alleganiensis) is declining and was recently classified as an 

endangered species by the US Fish and Wildlife Service (Register. 2011). Consequently, 

many investigations have evaluated their health status including the examination of 

blood cell counts, heavy metal loads, stress hormone levels, immunological responses, 

disease testing, and blood parasite prevalence (Solís et al. 2007, Huang et al. 2010, 

Hopkins et al. 2011). Interestingly, a high prevalence of infection of 56.3% with  

T. cryptobranchi, was found during a recent health survey, suggesting the need for 

further studies to determine if this Trypanosoma species is spreading among hellbender 

salamanders and whether their presence solely or in conjunction with other 

microorganisms are adversely influencing their health and survival (Davis et al. 2013). 

 

Experimental infections have been used frequently to overcome the difficulties in the 

evaluation of pathogenicity of trypanosomes in naturally infected wildlife. 

Histopathological lesions in heart and spleen, characterised by focal myocarditis and 

pericarditis and the presence of chronic mononuclear inflammatory cells were reported 

in spleen of canaries experimentally infected with the avian T. bouffardi (Molyneux et 
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al. 1983). Carp fingerlings experimentally infected with T. danilewskyi exhibited 

infiltrative and proliferative changes in the renal tissue, pancreas and in various 

connective tissues (Lom et al. 1986). Moreover, anaemia, altered blood parameters and 

anorexia were reported in goldfish and juvenile common carp with high levels of  

T. danilewskyi in blood (Islam et al. 1991, Ahmed et al. 2011). 

 

Within Australia, little is known about the pathogenicity of native trypanosomes. To 

date, only one study has associated Australian trypanosomes with the poor health status 

of threatened wildlife.  McInnes et al. (2011b) showed an association between T. gilletti 

infections with low blood packed cell volume values (PCV) and low body condition 

scores in koalas with signs of chlamydiosis, bone marrow disease or koala acquired 

immune deficiency syndrome (kAIDS) caused by infection with the koala retrovirus 

(KoRV). It was suggested that T. gilletti might have the ability to potentiate 

pathogenicity during concomitant infections in the koala (McInnes et al. 2011b). 

Reports of Trypanosoma infections in other threatened or endangered Australian native 

marsupials such as the woylie, Gilbert’s potoroo, quokka, and wombat (Noyes et al. 

1999, Smith et al. 2008, Austen et al. 2009) prompted the need for further studies that 

help to elucidate the potential pathogenicity of Australian trypanosomes and their 

impact on the health and decline of native wildlife species. 

1.7 The critically endangered Australian marsupial “the woylie” 

The woylie or brush-tailed bettong (Bettongia penicillata) is a small rat-kangaroo 

marsupial that was once distributed in most of the southern half of the Australian 

mainland, including the arid and semi-arid zones of Western Australia, the Northern 

Territory, South Australia, New South Wales and Victoria (Figure 9). However, by the 
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1960s, the geographical distribution of the woylie became confined to three locations in 

Western Australia (WA), the Upper Warren Region, Tutanning Nature Reserve and 

Dryandra Woodland (De Tores et al. 2008, Wayne. 2008). By the 1970s, woylies were 

listed as critically endangered due to a drastic reduction in abundance from habitat 

destruction and introduced predators (Orell. 2004, De Tores, and Start. 2008).  

 

 

 

Figure 9. Historical distribution of the woylie in Australia (Yeatman et al. 2012). 

 

Significant conservation efforts, which included predator control and captive breeding 

and release, led to a dramatic increase in abundance from the mid 1970s into the early 

2000s. As a consequence of these efforts, the woylie was the first Australian mammal to 

be delisted from the Commonwealth and State conservation lists in 1996 (endangered/ 



37 

 

threatened) (Start et al. 1998). However, since 1999, remaining populations have 

undergone a dramatic 90% reduction in abundance despite no apparent increase in the 

number or type of predators in the region and no obvious decrease in natural resources 

(Wayne et al. 2013a). The Tutanning population now appears to be extinct and the 

Upper Warren population, which constituted about 85% of the species in 1999, declined 

by 95% between 2002 and 2008 (Wayne et al. 2013a). The other natural population, 

Dryandra, has declined by 92% between 1999 and 2006. As a consequence of these 

population declines, woylies were included once again on the endangered species list 

(Wayne. 2008, Groom. 2010). Figure 10 shows the trend of the woylie decline in the 

Upper Warren region between 1998 and 2010.  

 

 

 

Figure 10. Woylie population sizes estimated for the Upper Warren region based on a 

conversion of median capture rate to density (R
2
=0.90). The lower and upper 95% 

confidence intervals for the regression of co-efficient for the relationship between capture rate 

and density are presented as dashed lines. X-axis: years (Wayne et al. 2013a).  
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The cause of the second wave of the decline of the woylie is unknown, but, the fact that 

predation by foxes and cats were previously identified as key factors in the past woylie 

decline made them the first candidate to investigate (Wayne et al. 2013b). A broad-scale 

aerial baiting began in 1996 and is ongoing as part of the ‘Western Shield’ conservation 

program (Friend et al. 2004), and the monitoring of introduced predators also initiated 

across the Upper Warren region in 2006. Although, there was an average increase in fox 

activity since 2006, it was suggested that it might not be directly related to the woylie 

decline because the majority of the decline in the region occurred before this. Moreover, 

since 2011, fox activity has apparently not increased and has seemed to stabilise, and 

the regional average in cat activity, which initially increased since 2006, appears to have 

reduced slightly since February 2008 (unpublished data, woylie progress report 2010-

2013). Human activity and habitat loss have also been suggested to be influencing the 

decline, although preliminary investigations have shown it is unlikely (Wayne. 2008).  

 

Interestingly, the decline has spread around 4 kilometers per year through the Upper 

Warren region, leading to the hypothesis that this spatio-temporal pattern of the decline 

might be due to an agent with limited mobility, such as an infectious diseases moving 

through the woylie population (Wayne et al. 2013a). The fact that the rates of average 

decline (25–95% per annum) are greater than what would be expected in the event of a 

complete failure of recruitment by reproduction (average life expectancy of woylies is 

4–6 years) (Christensen. 1995), suggested that the rapid and substantial woylie decline 

might be in part due to increased adult mortality (Wayne et al. 2013a). It has been 

previously shown that disease can affect conservation efforts, acting as a contributing 

threat in the endangerment of wildlife hosts, and causing severe population declines, 

such as the case with white-nose syndrome caused by Geomyces spp. fungus in bats, 
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parapoxvirus in red squirrels in the United Kingdom, and facial tumour in the 

Tasmanian devil (Blehert et al. 2009, Thomas et al. 2003, Jones et al. 2007). Woylies 

have been reported to be infected with different parasites including piroplasms from the 

genera Babesia and Theileria (Paparini et al. 2012, Rong et al. 2012), Toxoplasma 

(Parameswaran. 2008), and Trypanosoma (Smith et al. 2008, Averis et al. 2009, 

Paparini et al. 2011, Thompson et al. 2013,  2014a). A recent study investigating if 

infections with virus could be a contributing factor to the decline found that woylies 

have never been exposed to wallal and warrego orbiviruses, macropod herpesvirus 1, 

encephalo-myocarditis virus, alphaviruses Ross River and Barmah Forest, and 

flaviviruses Kunjin and Murray Valley encephalitis (Pacioni et al. 2014). The 

prevalence of infection with Babesia (6.2%) and Toxoplasma (3.61% from 271 woylies 

examined) were too low to be considered as major contributors to the decline 

(Parameswaran. 2008, Paparini et al. 2012). In contrast, the prevalence of infection with 

Theileria (80.4%) and trypanosomes was considerably high. However, microscopic 

evaluations of woylie blood smears infected with Theileria revealed no red cell injury or 

anaemia (benign infections) suggesting that this parasite might not be associated with 

the decline (Rong et al. 2012). No studies have investigated signs of virulence and 

pathogenicity caused by Trypanosoma infections in the woylie. Trypanosomes were 

initially detected in woylies in 1998, with an average prevalence of infections of 35% 

and it was suggested that infections with this parasite should be considered as an 

important factor influencing the decline (Smith et al. 2008).  More recently, a higher 

prevalence of infection of 60% was reported in woylies from the same localities 

(Thompson et al. 2014a) suggesting the spread of trypanosomes through the woylie 

population. The fact that trypanosomes can be potentially pathogenic under certain 

circumstances, and that disease has been considered the most likely primary and 
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ultimate agent of decline (Wayne et al. 2013a) have prompted the investigation of 

trypanosomes as a substantial factor influencing the decline. Synergistic effects between 

parasites and the involvement of stressors that may trigger disease have also been 

considered. Despite all the efforts to preserve the species including the translocation of 

seven populations within its previous range, any substantial recovery of the woylie has 

not been sustained in wild populations (Wayne et al. 2013b). To date, the only 

substantial translocated population that has remained stable in Western Australia is a 

population at Karakamia wildlife sanctuary, a predator-proof fenced reserve located 50 

km northeast of Perth. Confirming the causes of the decline and/or the factors limiting 

the woylie recovery remains a priority, and many efforts to preserve the species are still 

ongoing. 

1.8 Trypanosoma drug therapies 

Different drugs have been developed and are currently used to combat different 

Trypanosoma infections. However, they have been far from satisfactory due to the lack 

of complete efficacy, systemic toxicity, side effects, and intraspecific variation in 

susceptibility or resistance within Trypanosoma species.  

 

In the case of Chagas disease, since the late 1960s to early 1970s, two nitroheterocyclic 

drugs have been available and are still currently used to treat T. cruzi infections: 

benznidazole and nifurtimox (Castro et al. 2006). Benznidazole (N-benzyl-2-nitro-1-

imidazoleacetamide) is a nitroimidazole derivative, while nifurtimox (4[(5-

nitrofurfurylidene) amino]-3-methylthiomorpholine-1,1-dioxide) is a nitrofuran 

derivative (Maya et al. 2007). Both drugs act through the formation of free radicals 

and/or electrophilic metabolites caused by the reduction of their nitro groups to an 
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amino group by the action of nitroreductases. These products inhibit the growth of the 

parasite (Maya et al. 2007). Benznidazole and nifurtimox have been shown to be 

curative only in acute or early chronic infections (Sgambatti de Andrade et al. 1996), 

and a decline in their efficacy has been reported in the late chronic phase of the 

infection (Sosa-Estani et al. 2006). The ineffectiveness of the drugs during the late 

chronic phase has been related to their incapacity to completely clear or inhibits the 

growth of T. cruzi amastigotes in tissues (Muelas-Serrano et al. 2002). Posaconazole, a 

triazole that targets the sterol 14alpha-demethylase enzyme (also known as CYP51), 

inhibit T. cruzi ergosterol biosynthesis, which is fundamental for parasite growth and 

survival has also shown potent in vitro and in vivo activity against T. cruzi (Ferraz et al. 

2007, Olivieri et al. 2010, de Figueiredo Diniz et al. 2010, Veiga-Santos et al. 2012, de 

Figueiredo Diniz et al. 2013, Moraes et al. 2014). However, a recent study that 

performed a clinical trial of posaconazole in 78 adults with chronic T. cruzi infections 

showed a very poor efficacy of this drug, and a larger percentage of treatment failures 

when compared with benznidazole treated patients (Molina et al. 2014). All these drugs 

are far from satisfactory due to the systemic toxicity and adverse and variable side 

effects that they produce (Coura et al. 2002, Castro et al. 2006). Additionally, the 

implementation of several drug discovery programs in the past years has enabled the 

discovery of promising compounds with less toxicity to combat T. cruzi infections such 

as fexinidazole, and fenarimol derivatives (Keenan et al. 2012, Hargrove et al. 2013, 

Keenan et al. 2013, Moraes et al. 2014).  

 

Other drugs that have been shown to present activity against trypanosomes, and that are 

currently used to combat infections with T. brucei and Leishmania are melarsoprol and 

miltefosine. Miltefosine is an alkylphosphocholine originally developed as an 
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anticancer drug, but it has also shown activity against different species of Trypanosoma, 

Leishmania, Entamoeba histolytica, and Trichomonas vaginalis (Dorlo et al. 2012). The 

anti-leishmanial activity of miltefosine was initially discovered in the mid 1980s, and 

the subsequent demonstration of its efficacy in several experimental models led in the 

mid-1990s to clinical trials and its use to combat infections with Leishmania (Croft et al. 

2006). The mechanism of action of miltefosine is not clear. It has been suggested that it 

acts through the inhibition of phosphatidylcholine biosynthesis and sphingomyelin 

biosynthesis, which in turn trigger programmed apoptosis-like cell death (Paris et al. 

2004, Verma et al. 2004, Marinho et al. 2011). However, another potential proposed 

target is the inhibition of cytochrome-c oxidases (Luque-Ortega et al. 2007).  

 

Drugs to treat sleeping sickness are old, scarce, and highly toxic (Torreele et al. 2010). 

Pentamidine and suramin were both developed more than half a century ago and are still 

currently used to treat the early stage of infection with T. b. gambiense and T. b. 

rhodesiense. However, severe side effects have often been reported, including 

anaphylactic shocks, severe cutaneous reactions, neurotoxic signs, and cases of renal 

failure (Steverding. 2010). Melarsoprol is used to treat second-stage sleeping sickness 

caused by both T. b. gambiense and T. b. rhodesiense (Steverding. 2010).  It is an 

organo-arsenical compound that is highly toxic (Travis. 1991) with many adverse side 

effects such as a reactive encephalopathy caused by the presence of trypanosomes in the 

central nervous system (CNS) (Baker et al. 2013). It has been suggested that the 

inflammation in the CNS is triggered by the lysis of trypanosomes (Pepin et al. 1994).  

 

Some drugs developed against certain Trypanosoma species have been shown to be 

active against others. This is the case of miltefosine, which is used against Leishmania, 
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but has also been shown to have activity against T. cruzi and T. b. rhodesiense in vivo 

and in vitro, although the efficacy against these species is lower than against 

Leishmania (Croft et al. 1996, Konstantinov et al. 1997). Furthermore, some drugs 

currently used against pathogenic trypanosomes have been screened in vitro and in vivo 

against non-pathogenic trypanosomes that are known to cause occasional pathological 

effects in humans and/or animals. Nifurtimox and melarsoprol for example, were shown 

to have activity against T. lewisi in vitro and in vivo in experimentally infected rats 

(Dethoua et al. 2013), and melarsoprol was used successfully in human infections with 

T. lewisi (Howie et al. 2006, Verma et al. 2011).  

 

Differences at the phenotypic level in susceptibility or resistance to drugs have been 

reported between different strains of T. cruzi in vitro and in vivo. Differences in the 

susceptibility to benznidazole were observed within different T. cruzi strains (different 

discrete typing units or DTU’s) in vitro (Luna et al. 2009), and in vivo in experimentally 

infected mice (Teston et al. 2013). The susceptibility or resistance to benznidazole and 

nifurtimox has been compared with genotypic characteristics using different T. cruzi 

strains as well (Murta et al. 1998). Roellig et al. (2013) suggested that differences in the 

sequences of some genes within and between the different DTU’s of T. cruzi might 

result in phenotypic differences affecting drug susceptibility. 

 

With the advent of complete genome sequences for the two pathogens, T. cruzi, and  

T. brucei, and the sequences of genes of interest in drug development processes of other 

trypanosomes, it is hoped that new potential drug targets will be identified, and as a 

consequence, new potent drugs with better efficacy and less toxicity will be discovered. 
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1.9 Thesis Aims 

The overall aim of this research project was to investigate the genotypic and phenotypic 

diversity of Trypanosoma spp. infecting Western Australian marsupials, and to examine 

their potential virulence and pathogenicity with particular emphasis on those 

trypanosomes associated with the critically endangered marsupial, the woylie or brush-

tailed bettong (Bettongia penicillata).  

More specifically, this project aimed to: 

 

 Investigate the genetic diversity and phylogenetic relationships of trypanosomes 

present within Western Australian marsupials. 

 Develop sensitive species-specific polymerase chain reaction protocols (PCR’s) 

to discriminate between the different species of Trypanosoma.  

 Investigate the capacity of trypanosomes to infect different tissue cells in natural 

infected animals, and in vitro using different cell lines and trypanosomes 

isolated in culture. 

 Describe the morphology and ultrastructure of trypanosomes isolated in culture. 

 Examine the potential pathogenicity of trypanosomes in the woylie. 

 Determine trypanosomes susceptibility to different drugs in vitro. 

 Investigate trypanosomes kinetoplast DNA organisation. 
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Chapter 2 

Genetic diversity, phylogenetic relationships and tissue distribution of trypanosomes 

infecting Western Australian marsupials 
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2.1 Abstract 

Trypanosomes are blood protozoan parasites that infect humans, livestock and wildlife. 

While much is known about the genetic diversity and life cycle of trypanosomes that 

affect humans and livestock, less is known about trypanosomes in wildlife. This study 

describes the genetic diversity and tissue tropism of trypanosomes naturally infecting 

Western Australian marsupials. Blood samples collected from 554 live-animals and 250 

tissue samples extracted from 50 carcasses of sick-euthanised or road-killed animals, 

belonging to nine species of marsupials, were screened for the presence of 

trypanosomes using a PCR of the 18S rDNA gene. PCR results showed all species 

harboured trypanosomes and revealed a rate of infection of 67% in blood and 60% in 

tissues. Inferred phylogenetic trees using 18S rDNA and glycosomal glyceraldehyde 

phosphate dehydrogenase (gGAPDH) sequences showed the presence of eight 

genotypes that clustered into three clades: a clade including T. copemani (Clade A), a 

new clade closely related to T. gilletti (Clade B – described as T. vegrandis clade in 

Chapter 4), and a clade including T. sp H25 previously isolated from an eastern grey 

kangaroo (Clade C). Clade-specific primers were constructed based on the aggregation 

of the different genotypes in the phylogenetic tree obtained from the 18S rDNA 

sequences (1,410 bp). PCR using clade-specific primers showed a higher prevalence of 

infection with trypanosomes from Clade A followed by Clade B and Clade C in both 

blood and tissues. The results obtained provided evidence of the wide genetic diversity 

and lack of host specificity of trypanosomes within Australian marsupials, and 

demonstrates for the first time the capacity of Australian trypanosomes to migrate to 

different tissues in the vertebrate host.  
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2.2 Background 

Different species of Trypanosoma have been described infecting humans, livestock and 

wildlife. T. cruzi and T. brucei, trypanosomes from America and Africa respectively, 

cause fatal diseases by affecting vital organs in the vertebrate host. However, 

differences in the biological behaviour in the host have been demonstrated between 

species. Although trypanosomes are obligate hematozoan parasites, some species are 

capable of migrating to different organs in the vertebrate host. T. cruzi for example, 

migrates to several tissues and once there is able to infect and multiply within host cells 

(De Souza et al. 2010). In contrast, T. brucei replication occurs extracellularly in the 

bloodstream. However, this species has also been found in blood vessels and capillaries 

of some organs such as the kidney and in the brain (Frevert et al. 2012). 

 

While much is known of trypanosomes that affect humans, a great deal less is known of 

those associated with wildlife (Averis et al. 2009). Several Trypanosoma species have 

been described from wildlife. T. cruzi for example, has been reported in the blood of 

more than 150 wild mammalian species in the Americas (Rozas et al. 2007) and many 

other species of trypanosomes have been found in the blood of  birds, fish, reptiles, 

rodents, marsupials, and bats (Hoare. 1972). Whilst most of these studies have focused 

on the description of trypanosomes from blood, a limited number have involved the 

search for trypanosomes in different host tissues. To date, only a few species of 

trypanosomes that affect wildlife have been shown to be capable of migrating to and 

infecting different tissue cells during natural infections. An early study detected 

uncharacterised “T. cruzi like” trypanosomes from primates (Nycticebus coucang) from 

Malaysia inside heart muscle cells (Kuntz et al. 1970). T. dionissi and T. erneyi, both 

bat trypanosomes, have also been shown to infect host tissue cells (Baker et al. 1972, 
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Lima et al. 2012, Lima et al. 2013). In contrast, the life cycle of the majority of wildlife 

trypanosomes described so far does not involve tissue infection, and many studies have 

failed to demonstrate intracellular stages in host tissues. New species of Trypanosoma 

were found in the blood of caimans (Caiman crocodilus and Caiman yacare 

respectively) from Brazil. However, when caiman tissues were examined, non-

intracellular stages of the parasite were found, but lung and kidney imprints from two 

caimans revealed scarce trypomastigotes distinct from those detected in peripheral 

blood samples (Viola et al. 2009, Marcili et al. 2013). In addition, no intracellular forms 

were seen in different tissues collected from rice-field frogs (Hoplobatrachus 

rugulosus) naturally infected with T. rotatorium and T. chattoni from Thailand 

(Sailasuta et al. 2011).  

 

Within Australia, numerous species and genotypes of Trypanosoma have been 

described naturally infecting a wide range of native marsupials. These include  

T. thylacis in northern brown bandicoots (Isoodon macrourus), T. irwini and T. gilletti 

in koalas (Phascolarctos cinereus) (McInnes et al. 2009, McInnes et al. 2011b), and  

T. copemani in quokkas (Setonix brachyurus), Gilbert’s potoroo (Potorous gilbertii) 

(Austen et al. 2009) and koalas (McInnes et al. 2011b). Different uncharacterised 

species are also seen in the blood of the woylie (Bettongia penicillata), common 

wombat (Vombatus ursinus), eastern grey kangaroo (Macropus giganteus), swamp 

wallaby (Wallabia bicolor) brush tailed possum (Trichosurus vulpecula), chuditch 

(Dasyurus geoffroii), golden bandicoot (Isoodon auratus), southern brown bandicoot 

(Isoodon obesulus) and burrowing bettong (Bettongia lesueur) (Bettiol et al. 1998, 

Noyes et al. 1999, Hamilton et al. 2005, Smith et al. 2008, Averis et al. 2009, Paparini 
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et al. 2011). However, the capacity of Australian trypanosomes to migrate to different 

tissues in the vertebrate host has never been studied. 

 

Phylogenetic analysis has revealed that most of the Australian trypanosomes fall into 

several distinct clades. Some of them are closely related to trypanosomes from outside 

Australia. T. sp H25, T. binneyi, T. sp ABF and T. sp AAT, for example, have been 

shown to be closely related to trypanosomes from America, Portugal, Malaysia, and 

Thailand respectively, suggesting that Australian trypanosomes may have divergent 

evolutionary origins (Hamilton et al. 2005). However, several new species and 

genotypes have been described since 2008, and the majority clustered with 

species/genotypes within Australia (Smith et al. 2008, Averis et al. 2009,  Austen et al. 

2009, McInnes et al. 2011b, Paparini et al. 2011).  

 

Despite the identification of this large list of Australian trypanosomes and their 

marsupial hosts, there are many unanswered questions related to their host specificity 

and biological behaviour in the vertebrate host. This chapter aims to investigate the 

genetic diversity and phylogenetic relationships of trypanosomes that are prevalent in 

Western Australian marsupials, as well as to determine their capability to migrate to 

different tissues in the vertebrate host during natural infections. 

2.3 Materials and methods 

2.3.1 Sample collection 

Tissue and blood samples were collected from nine species of marsupials at different 

locations throughout Western Australia (WA) as part of the WA Department of Parks 
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and Wildlife (DPaW) fauna research and monitoring program (Figure 1). Heparinised 

peripheral blood samples were taken from a total of five hundred and fifty four trapped 

and released marsupials during ongoing trapping sessions by DPaW (Table 1). Tissue 

samples were collected from sick-euthanised animals that were presented to Perth Zoo 

Veterinary Department for treatment and from dead (accidently killed on roads) animals 

sent to Murdoch University for necropsy. Sick animals were euthanised due to very 

poor body condition, marked lethargy and poor prognosis for return to the wild. A total 

of two hundred and fifty tissue samples were collected from fifty carcasses (Table 1). 

Tissues were collected from at least two of the following organs from each animal: 

spleen, liver, lung, heart, kidney, brain, oesophagus, tongue, skeletal muscle and bone 

marrow. Wildlife sampling was carried out under Murdoch University animal ethics 

approval permit numbers NS1182-06, W2172-08 and W2350-10, and DPaW animal 

ethics approval permit number DECAEC/52/2009. All tissue samples were extensively 

washed with phosphate buffered saline (PBS) and stored in 100% ethanol for DNA 

isolation. 

Table 1. Blood and tissue samples collected from different species of Western 

Australian marsupials 

  

Marsupial species Blood samples 

 

Carcasses 

 

Tissue samples 

 

Woylie (Bettongia penicillata) 494 

 

27 

 

154 

 

Quenda (Isoodon obesulus) 2 2 11 

Quokka (Setonix brachyurus) - 3 7 

Tammar wallaby (Macropus eugenii) - 3 7 

Banded hare wallaby (Lagostrophus 

fasciatus) 

1 - - 

Boodie (Bettongia lesueur) 7 1 3 

Chuditch (Dasyurus geoffroii) 2 4 30 

Common brush tailed possum 
(Trichosurus vulpecula) 

7 - - 

Western grey kangaroo (Macropus 

fuliginosus) 

41 9 38 

Total 554 50 250 
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Figure 1. Geographical origin of the different species of marsupials trapped in this study 

2.3.2 PCR amplification and sequencing of the 18S rDNA and gGAPDH loci 

Genomic DNA from blood and tissues was obtained using the QIAamp blood and tissue 

DNA MiniKit (Qiagen, Hilden, Germany) according to the manufacturer’s instructions. 

A nested PCR that targets a variable region of the 18S rDNA locus using generic 

primers that have the potential to recognise different species of trypanosomatids was 

performed as described previously with some modifications (Maslov et al. 1996, 

McInnes et al. 2011b). An initial amplification using the external primers SLF and 

S762R, which amplify a fragment of approximately 1.9 Kb was performed in a PT100 

thermocycler (MJ Research). Then, two secondary nested PCRs were used to amplify 

the first 900 bp (Primers S823F and S662R) and the last 900 bp (Primers S825F and 

SLIR) fragments, which overlap in about 100 bp. Primer sequences, MgCl2 

concentrations and annealing temperatures are shown in Table 2. PCR reactions for all 
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primers were performed in a total volume of 25μL containing 0.2 units of Taq DNA 

Polymerase, 200 μM of dNTPs, 0.8 μM of each primer and 1μL of DNA template and 

consisted of a pre-PCR step at 94° C for 5 min, 50° C for 2 min and primer extension at 

72° C for 4 min, followed by 35 cycles of 30 sec at 94° C, 30 sec at the annealing 

temperature in Table 2, 140 sec at 72°C and a final extension step at 72°C for 7 min.  

 

Positive samples with 18S rDNA PCR were screened with a second PCR of the 

gGAPDH locus using modified hemi-nested reactions (McInnes et al. 2011b). Both 

PCR reactions were performed in a total volume of 25μL containing 0.2 units of Taq 

DNA Polymerase, 200 μM of dNTPs, 0.8 μM of each primer and 1μL of DNA template 

and consisted of a pre-PCR step at 94° C for 5 min, 50° C for 2 min and primer 

extension at 72° C for 4 min, followed by 35 cycles of 30 sec at 94° C, 30 sec at the 

annealing temperature shown in Table 2, 140 sec at 72°C and a final extension step at 

72°C for 7 min. PCR products were run on a 1.5% agarose gel stained with SYBR safe 

(Invitrogen, USA), and visualised with a dark reader trans-illuminator (Clare Chemical 

Research, USA). 

 

To investigate the genetic diversity of trypanosomes infecting Western Australian 

marsupials, two hundred positive PCR products from blood and tissue and twenty four 

PCR products from trypanosomes grown in culture (see Chapter 4) were chosen, 

purified using Agencourt AMPure PCR Purification system (manufacturer’s 

instructions) and sequenced (18S rDNA: ~1,5kb and gGAPDH: ~810bp) using an ABI 

Prism
TM

 Terminator Cycle Sequencing kit (Applied Bio-systems, California, USA) on 

an Applied Bio-system 3730 DNA Analyzer. Chromatograms, derived from18S rDNA 

sequences (fragment 1 and 2), were used for contiguous assembly using the DNA 
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sequence analysis program Sequencher version 5.0.  

 

Table 2.  18S rDNA and gGAPDH PCR primer sequences and PCR conditions 

2.3.3 DNA sequence alignments and phylogenetic inferences 

18S rDNA and gGAPDH sequences obtained from blood, tissue and cultured 

trypanosomes, were manually refined using BioEdit 7.0.9.0 (Hall. 1999), and then 

aligned using MUSCLE (Edgar. 2004). Three different alignments were created for 

phylogenetic inference. First, 1,410 bp sequences of 18S rDNA from trypanosomes 

obtained in the current study were aligned with 31 Trypanosoma spp. sequences 

representing all known trypanosome clades, and five other trypanosomatid sequences 

for use as outgroups obtained from GenBank. Secondly, truncated (786 bp) sequences 

of 18S rDNA were aligned with those previously published from different Western 

Australian marsupials (Smith et al. 2008, Averis et al. 2009, Austen et al. 2009). Finally, 

810 bp gGAPDH sequences obtained in the current study were aligned with 26 

Trypanosoma spp. sequences representing all major trypanosome clades, and five other 

trypanosomatid sequences for use as outgroups. All Trypanosoma spp. and outgroup 

sequences obtained from GenBank are shown in Table 3. JModelTest 2.1.1 was used to 

find the most appropriate nucleotide substitution model for ML and Bayesian analyses 

PCR Primer Primer sequence MgCl2 

 

Annealing 

temperature 

Band size 

18S rDNA External SLF GCTTGTTTCAAGGACTTAGC 2.0 mM 55 ~1.8 Kb 

S762R GACTTTTGCTTCCTCTAATG 

18S rDNA Internal-

fragm1 

S823F CGAACAACTGCCCTATCAGC 2.0 mM 56 ~ 900bp 

S662R GACTACAATGGTCTCTAATC 

18S rDNA Internal-

fragm2 

S825F ACCGTTTCGGCTTTTGTTGG 1.5 mM 57 ~ 950bp 

SLIR ACATTGTAGTGCGCGTGTC 

gGAPDH 

External 

GAPDF CTYMTCGGNAMKGAGATYGAYG 2.0 mM 59 ~ 900bp 

GAPDR GRTKSGARTADCCCCACTCG 

gGAPDH 

Internal 

GAPDF CTYMTCGGNAMKGAGATYGAYG 2.0 mM 55 ~ 880bp 

G4a GTTYTGCAGSGTCGCCTTGG 
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(Posada. 2008). The models of nucleotide substitution chosen were: TIM3ef+I+G 

(equal-frequencies transition model plus gamma) for the first alignment and GTR+I+G 

(general time reversible gamma proportion of invariant sites) for the other two 

alignments. The posterior probability distribution was estimated using The Markov 

chain Monte Carlo, which was run for 10,000,000 generations, until the mean standard 

deviation of split frequencies was lower than 0.01. Trees were sampled every 100th 

generations and the first 2,500 trees (first 250,000 generations), which usually present 

very low likelihood values, were discarded (burn-in phase) as shown in Figure 2. 

 

 

Figure 2. Burn-in value predicted for the 18S rDNA phylogenetic tree  
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Table 3.  GenBank accession number of the sequences used in the phylogenetic analysis 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Isolates 18S rDNA  

Accession number 

gGAPDH  

Accession number 

T. rotatorium AJ009161 AJ620256 

AAT (Currawong) AJ620557  

AAI AJ620559 - 

KG1 (Tick) - FJ649492 

T. mega AJ009157 AJ620253 

T. binneyi AJ132351 AJ620266 

T. granulosum AJ620551 - 

T. avium Rook U39578 - 

T. theileri AJ009164 AJ620282 

T. Cyclops AJ131958  

ABF (Wallaby) AJ620564 AJ620278 

H25 (Kangaroo) AJ009168 AJ620276 

H26 AJ009169 - 

T. dionisii AJ009151 FN599054 

T. cruzi marinkellei AJ009150 AJ620270 

T. cruzi COLOMBIANA AF239980 - 

T. cruzi SLU31 clone2 AY785586 - 

T. cruzi VINCH89 AJ009149 AJ620269 

T. rangeli AJ009160 AF053742 

T. vespertilionis AJ009166 AJ620283 

T. conorhini AJ012411 AJ620267 

T. pestanai AJ009159 AJ620275 

AAP AJ620558 AJ620277 

T. lewisi AJ009156 AJ620272 

T. microti AJ009158 AJ620273 

 T. gilletti Lanie  GU966589 GU966587 

T. copemani Charlton (Koala) GU966588 GU966585 

T. copemani Mika (Koala) - GU966585 

T. copemani Harrison (Koala) - GU966586 

T. irwini FJ649479 FJ649485 

T. bennetti  AJ223562 FJ649486 

T. copemani Q3 (Quokka) EU571232 - 

T. copemani Q10 (Quokka) EU571234 - 

T. copemani GP94 (Gilbert’s potoroo) EU571231 - 

T. copemani GP63 (Gilbert’s potoroo) EU571233 - 

TRY1 (Woylie) EU518939 - 

TRY2 (Woylie) EU518940 - 

WYA1 (Woylie) FJ823116 - 

WYA2 (Woylie) FJ823121 - 

CHA1 (Chuditch) FJ823120 - 

T. sp AP2011 isolate27 clone4 JN315394 - 

T. sp AP2011 isolate4 clone6 JN315392 - 

T. sp AP2011 isolate28 clone11 JN315387 - 

T. sp AP2011 isolate 15 - JN315395 

T. sp AP2011 isolate 17 - JN315396 

Leptomonas sp. AF153043 AF339451 

Phytomonas serpens U39577 EU084892 

H. muscarum L18872 DQ092548 

H. samuelpessoai U01016 AF047494 

H. megaseliae U01014 DQ092547 
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2.3.4 Trypanosoma clade-specific PCR 

Trypanosoma clade-specific primers were constructed based on the aggregation of the 

different genotypes (eight genotypes) in the phylogenetic tree obtained from the 1,410 

bp 18S rDNA sequences (three clades). Specific primers that amplify T. copemani and 

could recognise genotype 1 (G1) and genotype 2 (G2) (both in Clade A) were used as 

described previously (McInnes et al. 2011b). Two sets of specific primers that amplify 

the other major genotype groups, genotypes 3-7 (G3 to G7) (Clade B) and genotype 8 

(G8) (Clade C) were constructed as shown in Table 4. PCR reactions for all blood and 

tissue samples were performed in a total volume of 25μL containing 0.2 units of Taq 

DNA Polymerase, 200 μM of dNTPs, 0.8 μM of each primer and 1μL of DNA template. 

Amplification was performed in a PT100 thermocycler (MJ Research) and consisted of 

a pre-PCR step at 94°C for 5 min, 50°C for 2 min and primer extension at 72°C for 

4 min followed by 35 cycles of 30 sec at 94°C, 30 sec at the annealing temperature 

described in Table 4 for each clade, 50 sec at 72°C and a final extension step at 72°C for 

7 min. PCR products were run on a 1.5% agarose gel stained with SYBR safe 

(Invitrogen, USA), and visualised with a dark reader trans-illuminator (Clare Chemical 

Research, USA). Prevalence of infection with trypanosomes was expressed as the 

percentage of samples found positive by PCR, with 95% confidence intervals calculated 

assuming a binomial distribution, using the software Quantitative Parasitology 3.0 

(Rózsa et al. 2000). 
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Table 4. Clade B and Clade C - specific PCR conditions and primer sequences 

2.4 Results 

2.4.1 Rate of infection in blood and tissue revealed by PCR using generic primers 

Blood samples from 554 trapped and released marsupials and 250 tissue samples 

extracted from 50 carcasses of dead or euthanised marsupials were screened for the 

presence of trypanosomes using generic primers for 18S rDNA. At least one individual 

of each marsupial species examined was positive for Trypanosoma infection either in 

blood or tissue. The rate of infection over all host species was 67% in blood of trapped 

and released animals and 60% in carcasses of dead animals, where at least one tissue 

sample was positive (Table 5).  

 

 

 

 

 

 

 

PCR Primer Primer sequence 
MgCl2 

Concentration 

Annealing temperature 
Band Size 

Clade C External 
H25EF GCCGACAGTGCATTTTGT 

1.0 mM 60 ~ 750bp 
H25ER GAGCGAGATGAACTCGACC 

Clade C Internal 
H25IF TTTGAGGCGCAATGGTTTAG 

1.0 mM 60 ~ 400bp 
H25IR CGAGTTGAGGGAAGGTGGC 

Clade B External 
TVEF GGGGTCCTTTTATTTTATTTG 

1.5 mM 58 ~ 750bp 
TVER TAATTTATTGGCCAGACAAA 

Clade B Internal 
TVIF GACCAAAAACGTGCACGTG 

1.0 mM 58 ~ 350bp 
TVIR AAATCGTCTCCGCTTTAAC 
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Table 5. Overall prevalence of Trypanosoma infection in blood and tissues of different  

species of Western Australian marsupials 

 

 

* The rate of infection is given by: number of Trypanosoma-positive samples or carcasses/total number of 

samples or carcasses. 95% CI (95% confidence interval) 

2.4.2 Phylogenetic analysis and evolutionary divergence 

Eight different genotypes (G1 to G8) from three distinct clades were found at the 18S 

rDNA locus among the 200 blood and tissue samples chosen for sequencing (Table 6).  

 

Table 6. GenBank accession number of the new reported sequences and origin of the 

isolates. 

 

Marsupial species Blood samples 

(%, 95% CI) 

Carcasses 

(%, 95%CI) 

Tissue samples 

(%, 95% CI) 

Woylie (Bettongia penicillata) 335/494 

(68, 63-71) 

18/27 

(67, 46-81) 

67/154 

(43, 35-51) 

Quenda (Isoodon obesulus) 0/2 2/2 8/11 
Quokka (Setonix brachyurus) - 1/3 2/7 

Tammar wallaby (Macropus eugenii) - 1/3 3/7 

Banded hare wallaby (Lagostrophus 
fasciatus) 

1/1 - - 

Boodie (Bettongia lesueur) 1/7 0/1 0/3 

Chuditch (Dasyurus geoffroii) 1/2 4/4 17/30 

Common brush tailed possum 

(Trichosurus vulpecula) 

3/7 - - 

Western grey kangaroo (Macropus 
fuliginosus) 

29/41 4/9 9/38 

Total 370/554 

(67, 63-71) 

30/50 

(60, 48-75) 

106/250 

(42, 36-48) 

GenBank 

Accession number 

18S rDNA 

GenBank 

Accession number 

gGAPDH 

Trypanosoma 

Genotype 

Trypanosoma Clade Hosts 

KC753530 KC812982 Genotype 1 (G1) Clade A Woylie, common brush-

tailed possum 

KC753531 KC812983 Genotype 2 (G2) Clade A Woylie, quokka, 
chuditch, quenda 

KC753532 KC812984 Genotype 3 (G3) Clade B Woylie, Western grey 

kangaroo 

KC753533 KC812985 Genotype 4 (G4) Clade B Woylie, quenda 

KC753534 KC812986 Genotype 5 (G5) Clade B Woylie, tammar wallaby 

KC753535 - Genotype 6 (G6) Clade B Woylie, chuditch 

KC753536 KC812987 Genotype 7 (G7) Clade B Woylie 

KC753537 KC812988 Genotype 8 (G8) Clade C Woylie, banded hare 

wallaby, boodie 
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Very similar phylogenetic relationships were found using both Bayesian and ML 

analyses between these eight genotypes and the 31 trypanosome sequences obtained 

from GenBank (only the results from the Bayesian analysis are shown). The eight 

genotypes found in this study were grouped into three distinct clades (Figure 3A). The 

first two genotypes (G1 and G2) clustered within a clade including T. copemani (Clade 

A); G1 showed a 99% and 98% similarity to T. copemani previously described from 

wombats and koalas respectively (Noyes et al. 1999, McInnes et al. 2011b), and G2 was 

closely related to G1 but differed in 15 nucleotides among the 1,410 bp of sequence. 

Five genotypes (G3 to G7) clustered altogether in a new clade (Clade B) described as  

T. vegrandis clade in Chapter 4 (Thompson et al. 2013). All Clade B genotypes 

clustered with T. sp AP2011-isolate 27, T. sp AP2011-isolate 28 and T. sp AP2011-

isolate 4, previously described from woylies (Paparini et al. 2011). In all analyses, the 

closest relative of this clade among previously described trypanosome species was  

T. gilletti from koalas, although the nucleotide distances between T. gilletti and the 

genotypes within this clade were considerably large (Table 7). The last genotype found 

(G8) presented 99% similarity with a trypanosome previously isolated from an eastern 

grey kangaroo from Victoria - T. sp H25 (Noyes et al. 1999). Genotypes within this 

clade (Clade C) were more closely related to trypanosomes from outside Australia such 

as T. cruzi and T. rangeli from South America and were previously positioned in a 

monophyletic assemblage designated as the “T. cruzi clade” (Hamilton et al. 2012). 

Phylogenetic analysis of the eight new genotypes found in this study and truncated 

genotypes previously published from Western Australian marsupials demonstrated close 

relationships between them. Trypanosome isolates from a chuditch (CHA1) and woylies 

(TRY1, TRY2, WYA1, WYA2, T. sp AP2011), clustered within Clade B, while  

T. copemani isolates from quokkas (Q3 and Q10), koalas (Charlton) and Gilbert’s 
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potoroos (GP63 and GP94) and isolates from wombats (AAP, H26, AAI) clustered 

together with G1 and G2 in Clade A (Figure 3B). However, all of them were more 

closely related to G1 than to G2. Results showed G1 trypanosomes shared a more recent 

common ancestor with T. copemani from quokkas, koalas, Gilbert’s potoroos and 

wombats than to G2 trypanosomes. Additional support for the phylogenetic positioning 

of the new sequences was provided by the phylogenies derived from the gGAPDH 

sequences (Figure 4), which showed the same topology as the 18S rDNA derived tree, 

although only seven genotypes were included due to the lack of PCR amplification of 

G6. With a Bayesian support value of 1 (100%), phylogenies based on both 18S rDNA 

and gGAPDH genes showed that trypanosomes from Clade A, Clade B, and T. gilletti 

(all trypanosomes from Australian marsupials) shared a common ancestor with  

T. pestanai isolated from badgers in Europe (Lizundia et al. 2011).  
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Figure 3. Phylogenetic analysis of the relationships between Australian trypanosomes 

based on 18S rDNA sequences. Phylogenetic trees were constructed by the Bayesian method. 

A: phylogenetic position of longer 18S rDNA sequences (1,410 bp); B: phylogenetic position 

of shorter 18S rDNA sequences (786 bp) CHA1, TRY1, TRY2, WYA1, WYA2, BDA1, Q3, 

Q10, GP63 and GP94. Trees were rooted with five sequences as outgroups. Bootstrap values 

from Bayesian posterior probabilities are shown at nodes. Bar: 0.2 substitutions per site. 
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Figure 4. Phylogenetic relationships of the new trypanosome isolates from Western 

Australian marsupials based on gGAPDH sequences (810 bp) using Mr Bayes. The tree 

was rooted with five sequences as outgroups. Bayesian posterior probabilities are shown at 

nodes. Bar: 0.07 substitutions per site. 
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Results of the evolutionary divergence from all genotypes confirmed the relationships 

obtained in the phylogenies. The evolutionary divergence between trypanosomes 

previously described in wombats (T. sp AAI, AAP and H26) and G1 was lower (0.002) 

than that one obtained between these wombat trypanosomes and G2 (0.010). Moreover, 

the sequence divergence between G2 and the closest relative T. gilletti was higher than 

the one observed between T. gilletti and G1 indicating that although both G1 and G2 

belong to Clade A, G1 is more closely related to T. gilletti than G2 (Table 7). Despite  

T. pestanai sharing a recent common ancestor with trypanosomes from Clade A and 

Clade B as shown in the phylogenies (Figure 3 and 4), the genetic distance between  

T. pestanai and Clade C was lower (0.068) when compared with the genetic distances 

with Clade A and Clade B trypanosomes (0.082-0.115). 

 

Table 7.  Estimates of evolutionary divergence between the 18S rDNA sequences from all 

the genotypes found in this study. Sequences from other Trypanosoma species are also shown. 

The number of base substitutions per site between sequences is shown. Standard error 

estimate(s) are shown above the diagonal (blue) and were obtained by a bootstrap procedure 

(10000 replicates). Analyses were conducted using the Kimura 2-parameter model. Genotypes 1 

and 2 (Clade A), genotype 3 to 7 (Clade B), genotype 8 (Clade C). 

 

Trypanosoma A B C D E F G H I J K L M N O P

G1 A 0.003 0.008 0.008 0.009 0.008 0.009 0.008 0.009 0.001 0.009 0.008 0.009 0.007 0.009 0.008

G2 B 0.012 0.008 0.008 0.009 0.008 0.009 0.008 0.009 0.003 0.009 0.008 0.009 0.007 0.009 0.008

G3 C 0.083 0.089 0.006 0.007 0.003 0.007 0.009 0.009 0.008 0.009 0.005 0.009 0.008 0.009 0.009

G4 D 0.104 0.107 0.052 0.004 0.006 0.003 0.009 0.009 0.008 0.009 0.006 0.009 0.008 0.009 0.009

G5 E 0.114 0.116 0.065 0.018 0.007 0.004 0.009 0.009 0.009 0.010 0.007 0.009 0.008 0.010 0.009

G6 F 0.087 0.094 0.013 0.056 0.069 0.007 0.009 0.009 0.008 0.009 0.006 0.009 0.008 0.009 0.009

G7 G 0.111 0.113 0.060 0.013 0.020 0.064 0.009 0.009 0.009 0.009 0.007 0.009 0.008 0.009 0.009

G8 H 0.098 0.094 0.101 0.105 0.117 0.109 0.112 0.006 0.008 0.006 0.009 0.006 0.007 0.005 0.002

T. marinkellei I 0.114 0.114 0.118 0.129 0.138 0.132 0.136 0.047 0.009 0.004 0.009 0.006 0.008 0.007 0.005

T. sp  AAI, AAP, H26 J 0.002 0.010 0.086 0.105 0.114 0.090 0.112 0.098 0.111 0.009 0.008 0.009 0.007 0.009 0.008

T. cruzi K 0.119 0.118 0.113 0.137 0.146 0.133 0.143 0.047 0.023 0.118 0.009 0.007 0.008 0.007 0.006

T. gilletti L 0.076 0.079 0.036 0.060 0.072 0.041 0.068 0.103 0.124 0.077 0.129 0.009 0.008 0.009 0.009

T. lewisi M 0.096 0.094 0.103 0.118 0.130 0.112 0.126 0.038 0.055 0.096 0.059 0.112 0.007 0.007 0.006

T. pestanai N 0.084 0.082 0.088 0.104 0.115 0.098 0.112 0.068 0.085 0.084 0.092 0.096 0.073 0.007 0.007

T. rangeli O 0.115 0.112 0.111 0.130 0.142 0.122 0.137 0.037 0.067 0.115 0.070 0.121 0.061 0.081 0.005

T.sp  H25 P 0.098 0.094 0.106 0.107 0.119 0.112 0.115 0.003 0.043 0.098 0.045 0.105 0.037 0.070 0.038
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The genetic distances of G3 and G6 with G4, G5 and G7 trypanosomes (all from Clade 

B), fluctuated between 0.052 and 0.064. These distances were significantly higher than 

distances between two closely related Trypanosoma species from the Americas, T. cruzi 

and T. marinkellei (0.023), possibly indicating that G3 and G6 trypanosomes might 

comprise a separate species. These results are in agreement with both 18S rDNA and 

gGAPDH trees, which showed two small sub-clades in Clade B comprising G4, G5, and 

G7 (first sub-clade) and G3 and G6 (second sub-clade). 

2.4.3 Trypanosome clade-specific PCR 

To confirm the reliability of trypanosome clade-specific primers and PCRs, DNA 

sequencing was carried out from 16 blood samples infected with genotypes 

representative of the three different clades. These sequences showed a 100% similarity 

with the full 18S rDNA sequences, and confirmed the high specificity of the clade-

specific primers and PCRs. 

 

Out of the 370 blood samples positive for trypanosome infection, 53% (95% CI= 49-57) 

were positive for Clade A trypanosomes, 32% (95% CI= 27-37) for Clade B 

trypanosomes, 2% (95% CI=1-3) for Clade C trypanosomes and 13% (95% CI=10-17) 

were mixed infections with two or more genotypes representative of different clades. 

From the 106 tissues infected, 47% (95% CI=38-57) were positive for Clade A, 29% 

(95% CI=21-39) for Clade B, 2% (95% CI=0.3-7) for Clade C, and 22% (95% CI=14-

31) for mixed infections. Although PCR using clade-specific primers showed the 

presence of mixed infections in some of the samples, sequencing of the same samples 

using the 18S rDNA trypanosome generic primers revealed infections with only one 

genotype, thus possibly indicating that this PCR might amplify preferentially more 
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abundant genotypes in the sample. 

 

Parasite genotypes were not host-specific, with most being found in at least two host 

species (Table 6). Whereas single infections were found in blood and different tissues of 

all marsupials examined, infections were only present in blood and tissues of woylies. 

This host species presented a total of 13% (95% CI=10-17) and 1% (95% CI=0.2-3) of 

dual infections with genotypes belonging to Clade A-Clade B and Clade B-Clade C 

respectively. Two percent of the samples (95% CI=0.8-4) presented triple infections 

with genotypes from the three clades. All trypanosome genotypes were present in 

peripheral blood. However, only G2 (Clade A), G3, G4 and G5 (Clade B) and G8 

(Clade C) were found infecting host tissues, including tissues from woylies, quokkas, 

quendas, tammar wallabies, chuditch and western grey kangaroos. Trypanosomes within 

Clade A exhibited a preferential tissue distribution for skeletal muscle, tongue, 

oesophagus, and heart, while trypanosomes within Clade B showed predilection for 

skeletal muscle, heart and lung. Table 8 shows the rate of infection among all different 

tissues collected, including tissues infected with more than one genotype. 

 

Table 8. Differential tissue distribution of trypanosomes within the different clades 

 

* The rate of infection (%) in each organ is given by the number of Trypanosoma-positive 

organs/total number of organs. Between brackets: 95% confidence interval (95% CI). 

Trypanosoma 

clades 

Spleen Kidney 

 

Liver Lung Heart Tongue Skeletal 

Muscle 

Oeso- 

phagus 

Brain Bone 

Marrow 

Clade A 10% 

(2-26) 

17% 

(5-37) 

25% 

(13-43) 

21% 

(9-37) 

37% 

(19-58) 

40% 

(16-68) 

41% 

(25-59) 

38% 

(14-68) 

0% 9% 

(2-41) 

Clade B 7% 

(1-22) 

12% 

(26-32) 

8% 

(16-21) 

16% 

(60-31) 

18% 

(6-38) 

13% 

(16-40) 

47% 

(29-65) 

15% 

(19-45) 

0% 9% 

(2-41) 

Clade C 3% 

(0.1-17) 

4% 

(0.1-21) 

3% 

(0.1-14) 

5% 

(0.6-18) 

0% 0% 0% 0% 0% 0% 

TOTAL 20% 

(8-38) 

33% 

(16-55) 

37% 

(22-54) 

42% 

(26-59) 

56% 

(35-74) 

53% 

(26-79) 

88% 

(72-97) 

54% 

(25-81) 

0% 18% 

(2-52) 
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2.5 Discussion 

This study is consistent with previous findings that trypanosomes in Australian 

marsupials comprise a heterogeneous community, with low levels of host specificity 

and no evidence of restricted geographical distribution. T. copemani has been found in 

the blood of quokkas and Gilbert’s potoroos from Western Australia (Austen et al. 

2009), in koalas from Queensland (McInnes et al. 2011b), and in wombats from 

Victoria (Noyes et al. 1999). T. gilletti and numerous closely related trypanosome 

genotypes have been reported in the blood of koalas from Queensland (McInnes et al. 

2011a, McInnes et al. 2011b) and woylies from Western Australia (Averis et al. 2009, 

Paparini et al. 2011). T. sp H25, which was found to cluster on different phylogenies 

with T. cruzi, has been reported in the blood of an eastern grey kangaroo from Victoria 

(Noyes et al. 1999) and in possums from Western Australia (Paparini et al. 2011). This 

study has found two new Trypanosoma genotypes (G1 and G2: Clade A or T. copemani 

clade) in woylies, quendas, chuditch and common brush tailed possums; five new 

genotypes (G3-G7: Clade B or T. vegrandis clade) in woylies, western grey kangaroos, 

quendas, tammar wallaby and chuditch; and G8 (Clade C or T. sp H25 clade) in woylies, 

banded hare wallabies and boodies from Western Australia. Marsupials belonging to 

different families in the same locality could be infected with the same trypanosome 

genotype, as was the case with woylies and tammar wallabies from Karakamia infected 

with trypanosomes from Clade B (data not shown). It has been shown that host 

switching facilitated by ecological fitting, is frequently used for trypanosomes jumping 

between hosts that share ecological niches (Ferreira et al. 2008, Maia da Silva et al. 

2010). The fact that Australian trypanosomes are able to infect different species of 

marsupials (lack of host specificity) may represent multiple host switching events 

through their evolution and this may complicate the understanding of the ecological 
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interactions between trypanosomes and their marsupial hosts. 

 

To infer phylogenetic relationships between the eight trypanosome genotypes found in 

this study and previously described species, we sequenced both 18S rDNA and 

gGAPDH genes. The use of partial 18S rDNA sequences alone is considered inadequate 

for inferring deep levels of phylogenetic relationships and additional gene sequences are 

needed to help resolve polytomies in the Trypanosomatidae (Hamilton et al. 2007, 

Hamilton et al. 2011, Lymbery et al. 2011). Phylogenetic trees inferred in this study 

using both loci (18S rDNA and gGAPDH) yielded almost identical topologies, and the 

general branching pattern was in agreement with those shown in previous analyses 

based on single and combined 18S rDNA and gGAPDH sequences (McInnes et al. 

2009, Paparini et al. 2011, Hamilton et al. 2012). This study showed two of the 

genotypes (G1 and G2) found in woylies, quokkas, chuditch, quendas and common 

brush tailed possums, firmly clustered in a monophyletic assemblage with different 

genotypes of T. copemani previously described in quokkas, Gilbert’s potoroos and 

koalas suggesting that both G1 and G2 might belong to this Trypanosoma species. The 

genetic distances between G1 and T. copemani were lower than the genetic distances 

between G2 and T. copemani suggesting a closer genetic relationship between G1 and 

all previously described genotypes within the T. copemani clade (Clade A). Although 

the genetic distances between G1 and G2 (0.012) are not large enough to suggest that 

they are two different species (the genetic distances between two closely related species 

T. cruzi and T. marinkellei is 0.023), it was surprising that both genotypes exhibited 

significant differences in their biological behaviour in the host - only G2 was able to 

infect host tissues. Unfortunately, previous studies describing T. copemani in Australian 

marsupials have not investigated the presence of trypanosomes in host tissues (Paparini 
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et al. 2011, Austen et al. 2009). 

 

The five remaining genotypes (G3-G7) clustered together in a new clade (Clade B), 

described as “T. vegrandis clade” in Chapter 4 (Thompson et al. 2013). The closest 

relative to trypanosomes within this clade was T. gilletti, although it always clustered in 

a separate clade and the genetic distances between this these species and all 

trypanosomes from T. vegrandis clade (Clade B) were greater than distances between 

the closely related species T. cruzi and T. marinkellei. Analysis of a shorter region of the 

18S rDNA sequences, including previously described trypanosome sequences from a 

chuditch and woylies in Western Australia (Smith et al. 2008), placed these genotypes 

within the T. vegrandis clade suggesting a high heterogeneity within this clade. This 

heterogeneity might be related to different traits in the evolution of these trypanosomes 

along with the different marsupial host species that they infect. Although, T. copemani 

and T. vegrandis clade trypanosomes shared a common ancestor with T. pestanai, a 

parasite reported previously from badgers from Europe (Lizundia et al. 2011), the 

genetic distances between them were large.  

 

G8 (Clade C) was almost identical to T. sp H25 previously described in an eastern grey 

kangaroo, with a genetic divergence of only 0.003. Very high similarities in the 18S 

rDNA and gGAPDH sequences between both isolates confirmed that they indeed were 

the same species. Both T. sp H25 and G8 clustered within a clade containing T. cruzi,  

T. marinkellei and T. rangeli - all trypanosomes from South America (Stevens et al. 

1999). The placement of this Australian trypanosome at the periphery of the “T. cruzi 

clade” may reflect an ancient shared evolutionary history between these trypanosomes. 

Two different hypotheses have been raised to explain the origin and evolution of 
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trypanosomes from the T. cruzi clade.  The first one is the Southern super-continent or 

Gondwana hypothesis that suggests trypanosomes belonging to this clade might have 

originated a long time ago in marsupials on the Southern super-continent or Gondwana 

comprising present day Antarctica, Australia and South America (Stevens et al. 2001). 

However, more recent findings of bat trypanosomes from the old world clustering 

within the T. cruzi clade failed to support this hypothesis (Hamilton et al. 2009). 

Instead, a new hypothesis was raised, known as the bat seeding hypothesis, which 

suggests that T. cruzi clade trypanosomes were originally bat parasites that evolved 

from within a larger clade of bat trypanosomes and subsequently made the switch into 

terrestrial mammal hosts in both the new and old worlds (Hamilton et al. 2012). The 

fact that this study found that all genotypes within T. copemani and T. vegrandis clades 

share a common ancestor with T. pestanai from Europe indicates that although the 

mammals of Australia have been geographically isolated, their trypanosomes have not, 

supporting the “bat seeding” hypothesis. Moreover, previous descriptions of other 

trypanosomes from Australian wildlife that shared common ancestors with 

trypanosomes from all over the world including T. theileri from Germany, T. cyclops 

from Malaysia, and T. granulosum from Portugal (McInnes et al. 2011b) questioned the 

veracity of the Southern super-continent hypothesis.  

 

Using a similar nested PCR from the 18S rDNA locus as used in previous studies, this 

study found substantially higher levels of trypanosome infection: 67% prevalence in 

blood from nine different species of marsupials. In contrast, Paparini et al. (2011) 

reported a prevalence of only 5% in blood from 11 species of Western Australian 

marsupials. These differences may be partly attributed to the sensitivity of the PCR used 

and to the temporal fluctuation of trypanosomes in blood during the natural course of 
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infection. Most of the trapped and released animals screened in the present study may 

have been in the active acute phase of infection where animals present high parasitemias 

easily detectable by PCR or microscopy. Previous studies have shown that in the early 

acute stage of T. cruzi infection, diagnosis is straightforward due to high levels of 

parasitemia but in the chronic stages, low parasitemia often precludes detection in fresh 

blood (Russomando et al. 1992, Vago et al. 2000, Lane et al. 2003, Campos et al. 2010). 

Another possible explanation for differences in prevalence may be due to the capacity 

of Australian trypanosomes to migrate to different organs in the host; in some stages of 

infection, parasites may be more frequently found in tissues than in peripheral blood, 

reducing the chances of detection by PCR. This could explain why in three woylie 

carcasses from which we could collect both blood and tissues, trypanosomes were 

detected by PCR in tissues, but not in blood. This study also found a relatively high 

prevalence of mixed infections in woylies, but not in other host species. However, due 

to the low number of samples examined from the other marsupial species, except blood 

samples from western grey kangaroos and chuditch, the possibility that mixed infections 

can also occur in other species cannot be completely excluded. 

 

The fact that genotype, clade or species-specific molecular tools were not used 

previously (Smith et al. 2008, Paparini et al. 2011) may have masked the presence of 

less abundant trypanosomes in mixed infections. Results of PCR and sequencing using 

the 18S rDNA generic primers compared with clade-specific primers showed that more 

abundant T. copemani genotypes (Clade A) in mixed infections masked the presence of 

less abundant T. vegrandis genotypes (Clade B) and T. sp H25 genotypes (Clade C). 

These results confirm the importance of the use of specific primers for rapid 

identification of trypanosomes in naturally infected marsupials, especially since 
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sequencing directly from amplicons alone may not be able to detect mixed infections. 

 

Although all trypanosome genotypes were found in the blood, only some genotypes 

were seen to colonise tissues. This suggests a genetic basis for the heterogeneity in the 

biological behaviour of trypanosomes in their marsupial host. We also found, for the 

first time in trypanosomes infecting Australian marsupials, a differential tissue tropism 

of trypanosomes within the T. copemani and T. vegrandis clades. Several studies have 

demonstrated that the genetic variability of T. cruzi may determine the different 

histotropism observed during infections and consequently the diverse clinical forms of 

the disease (Andrade et al. 1999, Vago et al. 2000, Macedo et al. 2004, da Silva 

Manoel-Caetano et al. 2008, Ramírez et al. 2010). However, the influence of the host 

genetic background in this process has also been demonstrated (Andrade et al. 2002, 

Freitas et al. 2009). Two previous studies found a differential tissue tropism of two 

genetically different clones of T. cruzi in experimentally infected mice (Botero et al. 

2007) and the presence of a mixed infection in a chagasic patient from Colombia, 

consisting of two genetically diverse T. cruzi populations, one of them infecting the 

oesophagus and the other infecting the heart (Mantilla et al. 2010). 

 

It has been demonstrated that trypanosome multiplication in the vertebrate host occurs 

extracellularly in the bloodstream or intracellularly in tissues. T. lewisi replication 

occurs extracellularly in visceral capillaries, while T. cruzi uses host cells to replicate 

intracellularly and escape from the immune system to continue its life cycle, resulting in 

the infection of many tissues and organs (De Souza et al. 2010).  Our finding of DNA of 

some genotypes representative of all three trypanosome clades in different marsupial 

organs, in addition to the discovery of intracellular amastigotes in some tissues where  



107 

 

T. copemani G2 DNA was present (see Chapter 3), confirms that at least this genotype 

is able to migrate to different tissues in the host, and once there, is capable of invading 

cells. It has been shown that intact amastigotes are not easy to find during a chronic  

T. cruzi infection, possibly due to the damage to host tissues and destruction of 

intracellular parasites caused by a strong inflammatory process (Higuchi et al. 1993, 

Zhang et al. 1999). This could explain why the presence of amastigotes in marsupial 

tissues was not a common finding. However, there is a need to isolate trypanosomes in 

culture and to infect cells in vitro in order to confirm the development of Australian 

trypanosomes inside host cells.  

 

In summary, this study highlights the wide genetic diversity and lack of host specificity 

of trypanosomes within Australian wildlife and reveals for the first time the capacity of 

Australian trypanosomes to migrate to different organs in the host. 
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Chapter 3 

Trypanosoma copemani infection and polyparasitism associated with the population 

decline of the critically endangered Australian marsupial, the brush tailed bettong or 

woylie (Bettongia penicillata) 
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3.1 Abstract 

The Brush-tailed Bettong or woylie is on the brink of extinction. This marsupial species 

has undergone a dramatic overall 90% reduction in abundance despite no apparent 

increase in the number or type of predators in the region and no apparent decrease in 

natural resources. The reasons for the decline are currently unknown. However, disease, 

possibly caused by trypanosome parasites, which are known to be at high prevalence 

levels, have been under consideration as an important factor associated with the decline. 

The diversity and prevalence of infections with Trypanosoma parasites was investigated 

and compared between woylies at stable and declining populations. Pathological signs 

associated with Trypanosoma infections were also investigated. Results showed high 

rates of infection with T. copemani (96%) in woylies from the declining population at 

the Upper warren region. However, in the stable population at Karakamia Sanctuary, T. 

vegrandis was predominant (89%). Mixed infections were common in woylies from the 

declining but not from the stable population and histopathological findings associated 

with either mixed or single infections involving T. copemani G2 showed pathological 

changes similar to those seen in Didelphis marsupialis infected with the pathogenic T. 

cruzi in South America: myocarditis and muscle degeneration. These results provide 

evidence for the potential role of trypanosomes in the decline of a formerly abundant 

marsupial that is now critically endangered, and contribute with valuable information 

towards directing management decisions for endangered species where these parasites 

are known to be present at high prevalence levels. 
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3.2 Background 

Australia accounts for one third of the world’s mammal species, which have become 

extinct, the majority being marsupials (McKenzie et al. 2007). The woylie, a small 

potoroid marsupial occupied most of the southern half of the Australian mainland before 

European settlement in 1788. However, by the 1970s, woylies were listed as critically 

endangered due to a drastic reduction in abundance from habitat destruction and 

introduced predators (Orell. 2004, Van Dyck et al. 2008). The geographical distribution 

of the woylie became confined to three locations in Western Australia (WA); the Upper 

Warren Region, Tutanning Nature Reserve and Dryandra Woodland (Figure 1) (Van 

Dyck, and Strahan. 2008). Significant conservation efforts, which included predator 

control and captive breeding and release, led to an increase in abundance from the mid 

1970s into the early 2000s. As a consequence of these efforts, woylies were the first 

Australian taxon to be removed from the endangered species list in 1996 (Start et al. 

1998). However, since 1999, the three remaining populations have undergone a 

dramatic overall 90% reduction in abundance, despite no apparent increase in the 

number or type of predators in the region and no obvious decrease in natural resources. 

In particular, in the Upper Warren region, the declines have ended up in a net loss of 

95% (Wayne et al. 2013b). As a consequence of these population declines, woylies have 

been listed once again as critically endangered by the International Union for 

Conservation of Nature (IUCN) (Wayne. 2008, Groom. 2010). In efforts to preserve the 

species, seven translocated populations were established within its previous range (Start 

et al. 1998). However, Karakamia wildlife sanctuary, a predator-proof fenced reserve 

located 50 km north-east of Perth, is the only substantial translocated population of 

woylies that has remained stable in Western Australia (Figure 1).  
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The cause of the second wave of the decline of the woylie is unknown. Predators have 

been suggested again to play an important role in the decline (Wayne et al. 2013b). 

However, the areas and frequency of ground-based fox-baiting were increased 

throughout the 1980s and 1990s (Wayne et al. 2006), and a broad-scale aerial baiting 

began in 1996 and is ongoing as part of the ‘Western Shield’ conservation program 

(Friend et al. 2004). Unfortunately, any substantial recovery of the woylie has not been 

sustained to date, and one of the three remaining indigenous populations now appears to 

be extinct (Wayne et al. 2013b). Human activity and habitat lost have also been 

suggested to be influencing the decline, although preliminary investigations have shown 

it is unlikely (Wayne. 2008). Disease, possibly caused by Trypanosoma parasites shown 

to be at high prevalence levels (Thompson et al. 2014), has been under consideration as 

an important factor associated with the decline (Smith et al. 2008). Trypanosomes range 

from pathogenic species to those that are considered harmless to the vertebrate host. 

However, non-pathogenic trypanosomes may be potentially pathogenic in the presence 

of stress, poor nutritional status, and concurrent infections (Hussain et al. 1985, Doherty 

et al. 1993, Seifi. 1995). Although several species and genotypes of Trypanosoma have 

been found infecting Australian wildlife, only one species has been implicated with the 

decline and extinction of an indigenous Australian mammal. This was the case of the 

exotic T. lewisi, which was introduced into Christmas island with fleas on ship rats 

(Rattus rattus) and was suggested to be a likely cause of the extinction of the native rat, 

R. macleari using ancient DNA sequencing of museum specimens of both native and 

ship rats collected from the island during this time (Pickering et al. 1996, Wyatt et al. 

2008, MacPhee et al. 2013). T. lewisi-like trypanosomes have also been described from 

the Western Australian endangered marsupial, the dibbler (Parantechinus apicalis) 

(Averis et al. 2009). However, there is a complete lack of information about the 
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potential pathogenicity of this trypanosome and its influence on the population decline 

of the dibbler.  

 

Considering the pathogenic potential of trypanosomes when encountering new host 

species or during concomitant infections, it is becoming increasingly important to 

determine the diversity of trypanosomes infecting the woylie. Therefore, the aim of this 

study is to investigate and compare the diversity and potential pathogenicity of 

trypanosomes infecting the woylie in declining and stable populations in the Upper 

Warren region and Karakamia Sanctuary respectively. 

3.3 Materials and methods 

3.3.1 Woylie samples  

A total of 494 blood samples and 154 tissue samples previously collected from woylies 

(Chapter 2) were used. 237 blood samples were from woylies in the stable population in 

Karakamia Sanctuary and 257 from woylies in the declining population in the Upper 

Warren Region. Tissues were collected from twenty-seven fresh or frozen carcasses of 

woylies and at least two of the following tissues were collected from each carcass: 

spleen, liver, lung, heart, kidney, brain, oesophagus, tongue, skeletal muscle and bone 

marrow. All tissue samples were extensively washed with phosphate buffered saline 

(PBS) and stored in 10% formalin for histopathological analysis. 
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Figure 1. Geographical origin of the woylies analysed in this study 

3.3.2 Detection of trypanosomes in blood and tissues by PCR 

Trypanosoma clade-specific primers and PCRs used in Chapter 2, which amplify T. 

copemani (Clade A), T. vegrandis (Clade B) and T. sp H25 (Clade C) genotypes per 

separate, were used to determine the species of Trypanosoma present in each sample. 

PCR reactions for all blood and tissue samples were performed as described in Chapter 

2. Prevalence of infection with trypanosomes was expressed as the percentage of 

samples found positive by PCR, with 95% confidence intervals calculated assuming a 

binomial distribution, using the software Quantitative Parasitology 3.0 (Rózsa et al. 

2000). When samples were infected with T. copemani (Clade A) genotypes, further 

sequencing of the PCR products was performed to differentiate between T. copemani 

G1 and G2 as described in Chapter 2.  
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3.3.3 Histopathology 

PCR positive tissues showing single infections with genotypes from T. copemani, T. 

vegrandis and T. sp H25 clades and also tissues infected with more than one 

Trypanosoma species were paraffin embedded and 3 μm-thick sections were cut and 

stained with hematoxylin and eosin (H&E). Each section was examined microscopically 

for inflammatory lesions and the presence of trypomastigotes in blood vessels and 

amastigotes inside tissue cells. Histopathology sections of 10 tissues taken from two 

non-infected road kill woylies were used as controls. 

3.3.4 Stable population vs. declining population  

Prevalence of the different genotypes of trypanosomes and pathological findings were 

compared in woylies from the stable and declining populations.  

3.3.5 Statistical Analysis 

Statistical significance was evaluated using the Student’s t-test (95% confidence 

interval) with the GraphPad Prism version 6.0 for Mac (GraphPad Software, San Diego 

California USA, www.graphpad.com). Trypanosoma infection data in euthanised and 

road kill woylies was compared using the Fisher's exact test. 

3.4 Results 

3.4.1 Comparison of trypanosome infections between the stable and declining 

population 

Woylies showed a rate of infection of 68% in the blood of trapped and released animals 
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and 67% in carcasses of dead and euthanised animals (Table 1). There was a 

significantly higher prevalence of trypanosome infection in sick and euthanised woylies 

compared with those found dead on roads; while only four out of 12 road kills were 

infected with trypanosomes, almost all (nine out of 10) euthanised animals were 

positive for trypanosome infection (Fisher exact test, P=0.01).  

 

Table 1. Overall prevalence of Trypanosoma infection in blood and tissues of woylies 

 

A significant difference in the prevalence of infection with genotypes from T. copemani 

(Clade A) and T. vegrandis (Clade B) in the stable and declining populations was found 

(Fisher exact test, P=0.0001).  Among positive samples, the genotypes most frequently 

found in the stable population were from T. vegrandis (Clade B), present in 89% (95% 

CI=82-94) of the samples (including mixed infections involving this species). In 

contrast, genotypes from T. copemani (Clade A) were most frequently found in the 

declining population, present in 96% (95% CI=93-98) of the samples (including mixed 

infections involving this species). T. sp H25 G8 (Cade C) presented the lowest 

prevalence of infection in both declining and stable populations and mixed infections 

were found more frequently in the declining than in the stable population (Fisher exact 

test, P=0.001) (Figure 1, Table 2). 

 

Marsupial species Blood samples (%, 

95% CI) 

Carcasses 

(%, 95%CI) 

Tissue samples 

(%, 95% CI) 

Woylie (Bettongia 

penicillata) 

335/494 

(68, 63-71) 

18/27 

(67, 46-81) 

67/154 

(43, 35-51) 
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Figure 1. Prevalence of infection with trypanosomes within the different clades in woylies 

from the stable and declining populations.  Clade A (T. copemani), Clade B (T. vegrandis), 

Clade C (T. sp H25). 95% confidence intervals (95% CI) 

 

Table 1. Overall prevalence of Trypanosoma infection in blood and tissues of woylies 

 

* T. veg: T. vegrandis genotypes (Clade B); T. cop: T. copemani genotypes (Clade A);  

T. sp H25:  T. sp H25 G8 (Clade C). 

Woylie 

(Bettongia 

penicillata) 

T. veg 

 

T. sp H25 

 

T. cop T. cop + 

T. veg 

T. veg + 

T. sp H25 

T. cop + 

T. veg + 

T. sp H25 

Stable 

Population 

83/109 

(76%) 

2/109 

(2%) 

9/109 

(9%) 

7/109 

(6%) 

 

2/109 

(2%) 

5/109 

(5%) 

Declining 

Population 

5/226 

(2%) 

0/226 

(0%) 

180/226 

(80%) 

37/226 

(16%) 

 

1/226 

(1%) 

 

1/226 

(1%) 
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3.4.2 Histopathology 

All tissue samples examined for histopathology were obtained from euthanised woylies 

and were collected immediately after euthanasia. Tissues from road kills and from 

woylies that died naturally with no apparent signs of injury or trauma and with minimal 

post-mortem decomposition were also used. Of the 13 woylie carcasses that were shown 

to be infected with trypanosomes by PCR, all had poor body and coat conditions and 

heavy infestation with ectoparasites (lice and ticks). Eight carcasses that were found 

polyparasitised with genotypes from all clades exhibited areas of mild to severe alopecia 

accompanied by multifocal areas of keratinocyte hyper eosinophilia with nuclear 

condensation (epithelial necrosis), and loss of structure and focal basophilic debris in 

the underlying dermis (dermal necrosis) (Figure 2). Six of these carcasses were from the 

declining population in the Upper warren region and two of them from the stable 

population at Karakamia Sanctuary.  

 

 

Figure 2. Multifocal alopecia in a woylie from the Upper warren region 
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Tissue sections infected with genotypes either from T. vegrandis or T. sp H25 clades, 

showed an absence of tissue lesions associated with infection. However, a mild 

inflammatory process was seen in some tissues with a dual infection of genotypes from 

these two trypanosome species.  

 

A moderate to marked inflammatory process was seen in tissues infected either with  

T. copemani G2 or in co-infections involving this genotype. This process consisted, in 

general, predominantly of plasma cells, lymphocytes, macrophages, neutrophils and 

mast cells. The pathology seen in heart sections of three woylies showed a multifocal, 

severe and chronic pyogranulomatous myocarditis, epicarditis and endocarditis 

accompanied by muscle degeneration and necrosis (Figures 3A, B and C) similar to that 

seen in T. cruzi infections. One heart sample presented mild right atrial enlargement and 

occasionally multifocal mild mineralisation. 

 

Tongue and oesophagus were tissues commonly infected. Multifocal, chronic, 

pyogranulomatous oesophagitis and glossitis, both accompanied by prominent skeletal 

muscle degeneration was also seen in these tissues (Figures 3D and E). Inflammatory 

cells were occasionally observed clustering around blood vessels (Figure 3F). 

Trypanosomes were not observed intravascularly, but structures suggestive of 

amastigotes were seen in heart tissue of three woylies (Figure 4). Histopathology of 10 

sections taken from different tissues of two non-infected road kill woylies showed an 

absence of tissue lesions. 
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Figure 3. Histopathology of two woylies naturally infected with T. copemani G2 (H&E 

stained). A: Multifocal, moderate to severe, chronic, pyogranulomatous myocarditis and, B: 

endocarditis; C: mineralisation of heart tissue; D: tongue showing multifocal, moderate, chronic, 

pyogranulomatous glossitis; E: skeletal muscle degeneration; F: inflammatory cells around a 

blood vessel. Scale bars: 20 m.  
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Figure 4. Structures suggestive of amastigotes (arrows) of T. copemani G2 in heart tissue 

positive by PCR (H&E stained). Arrows: T. copemani G2 amastigote clusters. Scale bars A, C, 

D: 20 m, B: 10 m. 

3.5 Discussion 

Several species of trypanosomes have been described infecting humans, livestock and 

wildlife. They range from non-pathogenic species to those that are highly pathogenic 

and are the causative agents of many diseases of medical and veterinary importance, 

including Chagas disease in South America and sleeping sickness and Nagana in Africa 

(Hamilton et al. 2007). Trypanosoma cruzi, the agent of Chagas disease in humans has 

also been described naturally infecting several marsupial species in South America 

(Rozas et al. 2007). Despite a few studies that have shown pathological signs in 
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marsupial tissues, a lack of information regarding the pathogenicity of this parasite in 

wild animals is evident (Legey et al. 2003). Similarly, some trypanosomes, normally 

considered as non-pathogenic, are capable of inducing detrimental effects in the host, 

particularly when the parasite encounters new or naïve host species following their 

introduction into a new habitat (Maraghi et al. 1989) or when an infected host is 

exposed to additional or increased levels of stress (Brown et al. 2000, Wyatt et al. 2008). 

This was the case with the introduction of Trypanosoma lewisi to immunologically 

naïve rodent hosts on Christmas Island, which caused a collapse in the population of the 

endemic rat Rattus macleari to the point of complete extinction (Pickering et al. 1996, 

Wyatt et al. 2008). Studies have also shown that T. theileri, a non-pathogenic 

trypanosome of bovids that infects most cattle worldwide, may be considered 

potentially pathogenic in the presence of stress, gestation, poor nutritional status, and 

concurrent infections (Hussain et al. 1985, Doherty et al. 1993, Seifi. 1995). The 

pathogenicity of Australian trypanosomes has never been explored. However, this study 

has shown for the first time a correlation between trypanosome infections and 

pathogenicity in the critically endangered Australian marsupial, the woylie or Brush 

tailed bettong (Bettongia penicillata ogilbyi).  

 

Woylies have undergone an unexpected, rapid and substantial decline (90%) in the last 

three remaining natural populations throughout Western Australia: Upper Warren 

region, Tutanning Nature Reserve and Dryandra Woodland, with a total species loss 

from around 200,000 in 1999 to only 18,000 in 2010 (Wayne et al. 2013b). The nature 

of the decline is unknown, however predation and disease have been considered key 

factors. Predation by feral cats and foxes were initially associated with most woylie 

mortalities in the Upper Warren (DEC. 2008). However, a recent study showed the 
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patterns and magnitudes of the decline could not be solely explained by predation given 

current evidence from predation activity monitoring in the Upper Warren region and 

general understanding of cat and fox ecology and movements (Wayne et al. 2013b). 

Interestingly, it was shown that the decline has spread around 4 kilometres per year 

through the Upper Warren region, leading to the hypothesis that this spatiotemporal 

pattern of the decline might be due to an agent with limited mobility, such as an 

infectious diseases moving through the woylie population (Wayne et al. 2013b).  

 

Unquestionably, disease has been a key factor in population declines in the past. A 

Parapoxvirus was implicated in the decline of the red squirrel in the United Kingdom, 

and the pathogenic fungus Batrachochytrium dendrobatidis has been involved in the 

population decline and extinction of amphibians worldwide including Europe, America 

and Australia (Berger et al. 1998, Skerratt et al. 2007, Ramsey et al. 2010). 

Interestingly, in addition to Trypanosoma, the woylie has been found infected with 

different parasites including piroplasms from the genera Babesia and Theileria (Paparini 

et al. 2012). Despite Babesia being pathogenic in livestock and companion animals, the 

prevalence of infection in the woylie was too low (6.2%) to be considered as a major 

contributor to the decline. In contrast, the prevalence of infection with Theileria 

penicillata was much higher (80.4%), but microscopic evaluations of woylie blood 

smears revealed no red cell injury or anaemia suggesting that infections with this 

parasite might be benign and therefore might not be associated with the decline (Rong et 

al. 2012). Benign infections of Theileria have also been observed in another critically 

endangered marsupial, the Gilbert’s potoroo, and in platypuses, where this parasite does 

not seem to cause any harm to the marsupial host (Collins et al. 1986, Lee et al. 2009). 

Toxoplasma, an obligate intracellular protozoan parasite, has also been reported 
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infecting woylies. However, the prevalence of infection was too low (3.61% - 271 

woylies examined) to be considered as a major contributor to the decline 

(Parameswaran et al. 2008). Trypanosoma infections were reported in woylies for the 

first time in 2008, and it was suggested that infections with this parasite should be under 

consideration as an important factor influencing the decline (Smith et al. 2008). Smith 

et al. (2008) reported a prevalence of infection of not more than 35% in woylies from 

Karakamia sanctuary and the Upper Warren region. Interestingly, this study showed 

higher rates of infection of 68% in woylies from the same localities. This noticeable 

difference could be explained by an active dispersion of Trypanosoma infections in the 

woylie population, therefore, supporting Wayne et al. (2013b) previous hypothesis that 

suggested that the spreading of the decline might be consistent with an infectious agent 

disseminating through the woylie population. Unfortunately, the insect vectors of 

Australian trypanosomes are unknown and therefore the transmission pathway is still to 

be elucidated. Austen et al. (2011) found live trypomastigotes of T. copemani in the 

midgut and faeces of the tick Ixodes australiensis collected from Australian marsupials 

after 3 months of collection. Despite the different developmental changes in 

morphology that trypanosomes normally undertake in the insect vector gut as part of 

their life cycle, these were not described for T. copemani (Austen et al. 2011). Further 

studies are needed to demonstrate the presence of all developmental stages of  

T. copemani in the tick gastrointestinal tract (such as the non-replicative blood 

trypomastigote, the replicative epimastigote, and the infective metacyclic 

trypomastigote) (Tyler et al. 2001), as well as to verify that the trypomastigotes in 

faeces are infective to the vertebrate host.  
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This study demonstrates, for the first time, a correlation between the presence of 

Australian trypanosomes and pathological changes in woylie tissues, during single 

infections with T. copemani G2 and also during mixed infections involving two or three 

trypanosome species. The pattern of inflammatory reactions during these infections was 

very similar and showed frequent muscle degeneration and occasional necrosis. The 

pathological changes seen in woylie tissues are similar to those seen in Didelphis 

marsupialis infected with the pathogenic T. cruzi from South and North America: 

myocarditis characterised by inflammatory infiltrates in skeletal muscles and 

oesophagus (Teixeira et al. 2006, Barr et al. 1991). It has also been demonstrated that 

the Australian marsupial, Trichosurus vulpecula is susceptible to T. cruzi infections 

under experimental conditions (Backhouse et al. 1951). This early study showed  

T. cruzi was able to trigger a strong immune response, similar to the one seen in woylies 

infected with T. copemani G2 that ended in cardiac failure and death of the marsupial 

host (Backhouse, and Bolliger. 1951). The fact that pathological changes were seen 

during single and mixed infections involving T. copemani G2 may merely reflect the 

virulence of this genotype. However, pathological changes were also observed in mixed 

infections involving T. vegrandis and T. sp H25 (in the absence of T. copemani), 

suggesting alternative scenarios where the woylie immune system may be less efficient 

at resolving multiple infections or when mixed infections have potentiated 

pathogenicity. This latter hypothesis regarding heightened pathogenicity during mixed 

infections is in agreement with a previous study that suggested T. gilletti might be 

potentiating other disease syndromes affecting koalas such as chlamydiosis. McInnes et 

al. (2011b) showed that koalas infected with T. gilletti and with signs of chlamydiosis 

had significantly lower body scores compared to koalas that were not infected with T. 

gilletti. Furthermore, a significantly higher proportion of koalas with mixed 
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trypanosome infections (T. gilletti, T. irwini, and T. copemani) did not survive 

compared to uninfected koalas (McInnes et al. 2011b).  

 

Natural mixed infections between different species or genotypes of trypanosomes occur 

frequently in nature, with both parasite and host factors determining the overall 

parasitemia, virulence and pathogenicity (Martins et al. 2006, Pinto et al. 2006, Pollitt et 

al. 2011). Although several studies have reported the intrinsic characteristics of single 

trypanosome infections, it has not been clearly demonstrated whether the interaction of 

different trypanosomes in a single host can affect or modify the infection dynamics by 

either reducing or enhancing parasitemia, virulence and pathogenicity (Reifenberg et al. 

1997). Rodrigues et al. (2010) showed that the combination of two strains of T. cruzi 

was able to trigger both protective inflammatory immunity and regulatory immune 

mechanisms that attenuate damage caused by inflammation in experimentally infected 

mice.  However, in natural infections, virulence is difficult to predict when interactions 

are not restricted to a single parasite species, but involve multiple infections as in the 

case of woylies. 

 

It has been shown that within the Upper Warren region, the woylie decline is most 

severe and has reached 95% within a 6-year period (Wayne et al. 2013b). Our results 

showed a marked difference in the composition of trypanosome infections between 

woylies in the stable and the declining population at Karakamia and the Upper warren 

region respectively. The greater prevalence of T. copemani and mixed infections in the 

declining population of woylies in the Upper warren region, together with the 

demonstrated potential of these trypanosomes to cause pathological changes in woylies, 

suggests that infections with trypanosomes within this species could be important 
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contributors to the dramatic decline of the woylie. Given that we only examined woylies 

from a single stable population and a single declining population, there is a clear need 

for further studies to test this hypothesis, although it is important to note that  

T. copemani has been reported in the blood of other critically endangered and 

vulnerable Australian marsupials including Gilbert’s potoroos, and quokkas from 

Western Australia (Austen et al. 2009) and koalas from Queensland (McInnes et al. 

2011b). A similar pattern of distribution of the different species of Trypanosoma in 

woylies from the stable and declining populations was reported recently. Thompson et 

al. (2014) found a high prevalence of T. copemani infections in woylies from the 

declining population and not from the stable population, and a high prevalence of 

infection with T. vegrandis (100%) in woylies from the stable population at Karakamia 

sanctuary. Considering the high prevalence of T. copemani infections in woylies from 

the declining population and the inflammatory process observed in tissues, there is an 

urgent need for future studies to investigate the impact of this parasite on the health of 

other co-habiting threatened or endangered species such as the quenda (Isoodon 

obesulus), chuditch (Dasyurus geoffroii), Dunnart (Sminthopsis spp.), Wambenger 

(Phascogale tapoatafa), and Ngwayir  (Pseudocheirus occidentalis) (Wayne et al. 

2011). 

 

Interestingly, Wayne et al. (2013b) showed a periodicity in the pattern of the woylie 

declines in the Upper Warren region since 1999. He found the decline occurred for an 

average of four years (range 3-5 years) with post declining capture rates remaining low 

for at least four years. Warrup, one of the sampled sites in the Upper Warren region, 

began the first apparent recovery in 2005, but having recovered to a 40% capture rate, 

subsequently declined again, beginning in 2009. Following a similar pattern to Warrup, 
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after four years at low post-decline numbers, two other sampled sites in the Upper 

Warren region, Camelar and Boyicup, experienced a slight recovery beginning in 2009 

(Wayne et al. 2013b). The cause of this periodicity in the decline is unknown. However, 

it might be explained in part by seasonal fluctuation of insect vectors (climate related) 

and therefore increased parasitemias in woylies when there is abundance of vectors. 

Alternatively, it can be explained by a chronic condition caused by Trypanosoma 

parasites that might be debilitating the woylie and accounting for a high morbidity and 

mortality after several years of infection. It has been shown that deaths are common in 

the latest stage of Trypanosoma infections and especially when tissues are compromised. 

T. cruzi for example, presents different stages of infection. An acute stage at the 

beginning of the infection, characterised by high parasitemias, and followed by a latent 

stage, which is asymptomatic, and can last for years. Finally, a chronic stage where 

parasites replicate inside cells in target tissues that usually ends in tissue damage and 

death. Unfortunately, it is not easy to undertake long-term monitoring of Trypanosoma 

infections in woylies in the wild. However, during this study there was the opportunity 

to screen monthly eight woylies naturally infected with trypanosomes, for three years. 

Although, in general infections persisted over the time and parasitemias were always 

detected by PCR and haemoculture (Thompson et al. 2014), woylies infected with  

T. copemani G2 exhibited temporal fluctuations in parasitemia. To explain the 

disappearance and appearance of parasites in blood, it was suggested that trypanosomes 

might have migrated to tissues (Thompson et al. 2014). Because the average life 

expectancy of woylies is between 4 to 6 years (Christensen. 1995), there is the need to 

continue monitoring those woylies to confirm that the woylie trypanosomiasis might 

progress to a chronic condition that ends up affecting vital organs in the marsupial host. 
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The reported decrease in the genetic background of woylies cannot be excluded as a 

possible contributor to the decline. The woylie has suffered genetic bottlenecks due to 

habitat fragmentation and translocations, and a loss in their genetic variability is evident 

(Pacioni. 2010). It has been shown that a decrease in the genetic variability at the 

species level can reduce the fitness of populations and increase their susceptibility to 

infectious agents. The Tasmanian devil, for example, is a species in which low genetic 

diversity (Jones et al. 2007, Miller et al. 2011) has increased susceptibility to disease 

(Siddle et al. 2007). This might be happening also in the woylie, and the reduced 

genetic variability within the species could explain their greater vulnerability to the 

pathogenic effects of Trypanosoma infections compared with the other marsupials 

examined. 

 

In summary, the research reported in this chapter has revealed for the first time the 

pathogenic potential of T. copemani either in single or mixed infections and showed a 

strong association between Trypanosoma infections and the dramatic decline of the 

woylie. These results provide evidence for the potential role of trypanosomes in the 

decline of a formerly abundant marsupial that is now critically endangered. 
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Chapter 4 

Isolation of Australian trypanosomes: a comparison of growing requirements and 

morphology 
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4.1 Abstract 

To better understand the biology and life cycle of trypanosomes infecting Western 

Australian marsupials, different trypanosome strains were isolated from the blood of 

woylies, and their growth requirements and morphology were described. Woylie blood 

was inoculated in culture tubes containing a biphasic medium composed of agar-BHI 

and horse blood as a solid phase and an overlay of four different media as a liquid phase, 

RPMI 1640 (Roswell Park Memorial Institute 1640), HMI-9 (Iscove's modified 

DMEM-based), Schneider’s (Schneider. 1964) or Grace’s (Grace et al. 1966) media. 

Trypanosomes were observed in 24 haemocultures after eight days post-inoculation 

when RPMI 1640 was used as a liquid phase medium. PCR results using trypanosome 

species-specific primers showed that all isolates were T. copemani G1 and G2. Most 

bloodstream trypomastigotes had differentiated into epimastigotes by the first week 

post-inoculation and spheromastigotes and metacyclic trypomastigotes were observed in 

two week old cultures. The enhancement of growth by different concentrations of hemin 

was investigated, and morphological features and social motility behaviour shared with 

other trypanosomatids are discussed. 
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4.2 Background  

The use of biphasic media containing a solid phase of agar enriched with blood has been 

shown to be the best method to isolate primary cultures of different and new species of 

trypanosomes (Stohlman et al. 1973, Tanuri et al. 1985, Lemos et al. 2013). However, 

establishing and maintaining cultures in the laboratory is laborious and requires finding 

the optimum medium that provides the best nutritional conditions for growth.  

 

Growth requirements differ according to the species of Trypanosoma. HMI-9 medium, 

based on Iscove's modification (IMDM) of Dulbecco's MEM (Modified Eagles 

Medium), for example, is the most commonly used to culture blood forms of T. brucei 

and T. congolense parasites that replicate in blood of the vertebrate host (Baltz et al. 

1985, Hirumi et al. 1991, Uzureau et al. 2013). This medium produced double rates of  

T. brucei replication in vitro when compared with RPMI 1640 and Leibovitz’s media 

(Zweygarth et al. 1990, Schuster et al. 2002). T. cruzi, a parasite that replicates in host 

tissues, is able to grow in different media, but Liver Infusion Tryptose (LIT) is the most 

widely used (Camargo. 1964, Botero et al. 2010, Pereira et al. 2011). 

 

Different growth-promoting factors have been used to improve trypanosome isolation 

and growth rates in culture. A nutritional characteristic of all different species of 

Trypanosoma is that in vitro they need a haem-compound as a growth factor. Studies 

have shown that haemin plays an important role in growth and differentiation of 

trypanosomes. An increased parasite proliferation in a haemin dose-dependent manner 

was demonstrated in cultures of T. cruzi (Lara et al. 2007). Ciccarelli et al. (2007) also 

showed that a concentration of haemin of 5 mg/l yielded an optimum growth of T. cruzi 

cultured under different haemin concentrations.  
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Furthermore, an uncharacterised trypanosome isolated from an American kestrel (Falco 

sparverius) and T. theileri require haemin in the media for in vitro growth (Sollod et al. 

1968, Kirkpatrick et al. 1986). The use of growth-promoting factors and different media 

that mimic the environmental conditions (amino acid composition) in haemolymph of 

the insect vector, and/or in blood or tissues of the vertebrate host has also been used to 

obtain different developmental stages of Trypanosoma in in vitro cultures (Koerich et al. 

2002). 

 

Trypanosomes are pleomorphic, adopting a variety of forms/stages in the course of their 

life cycle. The trypomastigote of T. cruzi for example, is found in the bloodstream of the 

vertebrate host and is able to infect cells in tissues where trypomastigotes transform into 

amastigotes (intracellular stage). Both the trypomastigote and the amastigote can be 

maintained in vitro in axenic media with cells. In contrast, the epimastigote, the form 

found in the insect vector, is maintained in vitro in cell-free axenic medium, and is 

commonly used in in vitro studies because once established in culture it is easy to obtain 

large numbers of parasites (Nakayasu et al. 2009).  

 

Within Australia, several species and genotypes of trypanosomes have been described 

infecting wildlife. The description of these species has been based on molecular data, 

host occurrence and morphology of blood forms.  However, little is known about 

trypanosomes life cycle and the different developmental stages present in the 

invertebrate and vertebrate host. To date, only a few trypanosomes have been isolated in 

culture from Australian marsupials. Trypanosoma sp. H25, Trypanosoma sp. H26 and  

T. copemani were isolated from a kangaroo, a wombat and a Gilbert’s potoroo 

respectively and established in culture in Sloppy Evans semi-solid agar culture medium 
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(Noyes et al. 1999, Austen et al. 2009). Although both studies described their 

morphology in culture, little is known about the different developmental stages of these 

parasites in natural infections and under experimental conditions. 

 

Considering the lack of information regarding Australian trypanosomes, the aims of this 

study were to (i) isolate Australian trypanosomes in culture; (ii) determine their optimal 

growth requirements and; (iii) investigate their different developmental forms and 

morphology in culture, including their ultrastructural organization. 

4.3 Materials and Methods 

4.3.1 Haemocultures 

Considering the high prevalence of infection and the presence of eight different 

genotypes of trypanosomes in woylies (Bettongia penicillata) (Chapter 2), different 

trypanosome strains were isolated from the blood of this marsupial. Woylies were 

trapped in small cage traps (20 cm x 20 cm x 56 cm) baited with a mixture of rolled oats 

and peanut butter. Traps were placed at set intervals (usually 200 m) along tracks in the 

study sites. Approximately 100l of blood was collected from the lateral caudal vein 

from each individual. Cultures were established by inoculation of approximately 100l 

of peripheral blood into 25cm
2
 tissue culture flasks or in Nunc™ cell culture tubes 

(Thermo scientific) with biphasic medium containing Brain-Heart Infusion (BHI) 

medium, agar, gentamicin and 10% defibrinated horse blood as a solid phase, and either 

RPMI 1640 (Roswell Park Memorial Institute 1640), HMI-9 (Iscove's modified 

DMEM-based), Schneider’s (Schneider. 1964) or Grace’s (Grace, and Brozostowski. 

1966) media as a liquid phase, each supplemented with 10% of Fetal Cow Serum (FCS) 
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and Penicillin-Streptomycin (Table 1). Haemocultures were checked every two days 

under the microscope for motile trypanosomes. When trypanosomes were seen for the 

first time, cultures were left for one week and then the supernatant was removed and 

replaced with new liquid medium. The liquid medium was replaced every two weeks in 

each culture flask. Optimal growth requirements in liquid medium alone were 

determined after haemocultures were established in biphasic medium. Cultures were 

maintained in liquid medium by successive passages every three days at 28C and 5% 

CO2. 
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Table 1. Different media used to grow trypanosomes in culture 

 

Reagent Concentration 

Brain heart Infusion (BHI) 

Agar 11,1gr/L 

BHI 22gr/L 

Gentamycin 2,4ml/L 

Defibrinated horse blood 10% 

RPMI 1640  

RPMI 1640 (invitrogen) 10,3g/L 

Sodium bicarbonate 2g/L 

L-glutamine 0,3g/L 

HEPES (15mM) 3,6g/L 

Heat inactivated FCS (fetal calf serum) 10% 

Penicillin (10000 IU/ml)  

& Streptomycin (10000 MCG/ml)    & Streptomycin (10000 MCG/ml) 

10ml/L 

HMI-9 

Iscove's modified Dulbecco's MEM (IMDM)  795ml 

Hypoxanthine 100 x solution  13,6mg/ml 

Bathocuproine Sulphate 100x solution 2,82mg/ml 

Cysteine 100x solution 18,2mg/ml 

Cysteine 100x solution 18,2mg/ml 

Pyruvate 100x solution 11mg/ml 

Thymidine 100x solution 3,9mg/ml 

ß Mercaptoethanol solution 14µl/L 

Heat inactivated HCS (Horse calf serum) 10% 

Penicillin (10000 IU/ml)  

 & Streptomycin (10000 MCG/ml)    & Streptomycin (10000 MCG/ml) 

10ml/L 

SCHNEIDER 

Schneider medium (invitrogen) 880ml 

Heat inactivated FCS (fetal calf serum) 10% 

Penicillin (10000 IU/ml)  

& Streptomycin (10000 MCG/ml)    & Streptomycin (10000 MCG/ml) 

10ml/L 

GRACES 

Grace’s insect medium (invitrogen) 880ml 

Heat inactivated FCS (fetal calf serum) 10% 

Penicillin (10000 IU/ml)  

& Streptomycin (10000 MCG/ml)    & Streptomycin (10000 MCG/ml) 

10ml/L 

 

*Final volume completed with H2Odd - pH 7.2 and filter sterilised (0.22µn filter) 

4.3.2 Trypanosome detection by PCR with species-specific primers 

DNA of trypanosomes growing in culture was isolated and the species determined using 

species-specific PCR’s described in Chapter 2. To differentiate between T. copemani 
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G1 and G2, T. copemani positive cultures were resubmitted to a second PCR using the 

generic primers described in Chapter 2 and followed by sequencing. Sequences were 

aligned with previous known sequences of T. copemani G1 and G2 using ClustalX 

(Thompson et al. 1994). 

4.3.3 Trypanosome development in culture 

Trypanosome growth was monitored under the microscope in all different liquid media 

(RPMI 1640, HMI-9, Schneider and Grace’s) every day for one month. Growth curves 

of trypanosomes growing in RPMI 1640, Grace’s and HMI-9 media were generated. 

Schneider’s medium did not support the growth of both strains, thus growth curves with 

this medium were not generated. To investigate the growth kinetics in all three media, 

trypanosomes were counted under the microscope and 1x10
3
, 1x10

4
 and 1x10

6 
parasites 

were seeded in triplicate wells in a 96 well plate. The number of trypanosomes in each 

well was calculated using a haemocytometer chamber for eight consecutive days and 

growth curves were generated using the Prism 6 software. 

4.3.4 Evaluation of different concentrations of haemin on growth  

Because haem-compounds play an essential role in trypanosome growth, the effect of 

haemin on growth and differentiation was investigated. Different concentrations of 

haemin, 2.5mg/L, 5mg/L, 10mg/L, 15mg/L and 20mg/L were added to Grace’s and 

RPMI 1640 media, media that produced the best rate of growth. 1x10
6
 parasites were 

seeded into 24-well plates containing each medium with differing haemin 

concentrations. To investigate the growth rate, trypanosomes were counted in a 
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haemocytometer chamber every day for six consecutive days and mobility and motility 

were observed. 

4.3.5 Light, scanning and transmission electron microscopy 

The morphology of trypanosomes from direct thin blood smears and smears of 

logarithmic and stationary phase cultures were compared. Smears were fixed in 

methanol and stained with the commercial Diff-Quick staining system for examination 

by light microscopy. 

 

For scanning electron microscopy (SEM), culture forms were fixed in a 1:1 mixture of 

5% glutaraldehyde in 0.01 M PBS: cell culture medium (pH 7.2), before being mounted 

on poly-L-lysine coated coverslips, progressively dehydrated through a series of ethanol 

solutions and critical point dried as previously described (Edwards et al. 2011). 

Coverslips were mounted on stubs with adhesive carbon, coated with 2 nm platinum 

(Pt) and imaged at 3kV using the in-lens secondary electron detector on a Zeiss 55VP 

field emission SEM. 

 

For transmission electron microscopy (TEM), trypanosomes were also fixed in a 1:1 

mixture of 5% glutaraldehyde in 0.01 M PBS: cell culture medium (pH 7.2). All 

subsequent processing was performed in a PELCO Biowave microwave, where samples 

were post-fixed in 1% OsO4 in PBS followed by progressive dehydration in 

ethanol/acetone, before being infiltrated and embedded in the epoxy resin Procure-

Araldite. Sections 120nm-thick were cut with a diamond knife and mounted on copper 

grids. Digital images were collected from unstained sections at 120kV on a JEOL 2100 

TEM fitted with a Gatan ORIUS1000 camera. 
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4.4 Results 

4.4.1 Isolation of trypanosomes in biphasic media and identification of Trypanosoma 

species by PCR  

Due to the fact that woylies exhibited high levels of parasitaemia and were detected 

harbouring all of the different trypanosome genotypes found in this study, additional 

peripheral blood samples were taken from animals at Karakamia (stable population) and 

Upper Warren (declining population) and cultured in biphasic medium. Of the 30 

haemocultures obtained from the blood of woylies from the stable population, no 

evidence of protozoa morphologically similar to trypanosomes was detected after 30 

days post-inoculation in culture flasks containing either RPMI 1640, Grace’s, 

Schneider’s or HMI-9 media as a liquid phase. Furthermore, no trypanosomes were 

detected in direct peripheral blood smears from these animals, but PCR and sequencing 

of blood samples inoculated in the biphasic media revealed that 21 of them were 

infected with trypanosomes from Clade B (T. vegrandis clade). Although this study did 

not use a quantitative PCR, results showed very strong PCR products comparable with 

PCR products from woylies in the declining population that presented positive smears 

and haemocultures as shown in Figure 1. 
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Figure 1. 18S rDNA PCR results from the blood of woylies at the stable and declining 

populations. M: molecular weight marker (100 bp ladder). 

 

 

In contrast, of the 30 haemocultures obtained from woylies from the declining 

population, 24 exhibited trypanosomes in culture flasks containing RPMI 1640 as a 

liquid phase. Trypanosomes were never detected in haemocultures containing Grace’s, 

Schneider’s, and HMI-9 media as a liquid phase. PCR’s using species-specific primers 

revealed the presence of only T. copemani G1 and G2 in the haemocultures. The 

sequence alignment obtained from the T. copemani haemocultures showed that 16 

haemocultures were T. copemani G1 and 8 were T. copemani G2 (Figure 2).  

 

 1        2        3        4       5        6        7        8        9      10      11      12       (-)      M 

 
BLOOD SAMPLES DECLINING POPULATION 

• Clade A (T. copemani) (blood PCR+) 
• Positive haemocultures 
• Trypanosomes in blood smears 

                    

 
BLOOD SAMPLES STABLE POPULATION 

• Clade B (T. vegrandis) (blood PCR+) 
• Negative haemocultures 
• No trypanosomes in blood smears 
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Figure 2. Alignment of the 18S rDNA sequences of T. copemani G1 (16 strains), and T. 

copemani G2 (8 strains) isolated from the declining population 

 

Cultures showed emerging trypanosomes after two to three weeks post-inoculation. 

During these times, trypanosomes started to emerge from the blood-agar and small nests 

were commonly seen in the liquid phase of the medium. Trypanosomes were also seen 

attached to the blood-agar surface and actively multiplied there. Nests continuously 
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grew in size and after two weeks large circular masses of trypanosomes settled down in 

the surface of the agar and small circular holes were visible in the agar under the 

microscope. 

4.4.2 Trypanosomes growth curves 

Both T. copemani G1 and G2 were successfully subcultured in biphasic medium for 

long periods at weekly intervals, but they differed in growth requirements when only 

liquid media were used. Both T. copemani G1 and G2 showed a growth rate 

significantly higher in RPMI 1640, followed by Grace’s and HMI-9 media. However, 

Grace’s and HMI-9 media supported the growth of T. copemani G2 better than G1. 

Trypanosomes growing in RPMI 1640 were seen actively dividing until day 8 post-

inoculation. At this time they reached the maximum number and then they started to die 

(possibly because of the nutrients in the medium were exhausted). Schneider medium 

failed to support the growth of both strains of T. copemani. The doubling growth time of 

parasites in RPMI 1640 and Grace’s media was approximately 2 days. Growth curves of 

both Trypanosoma strains grown separately in the three different media are shown in 

Figures 3 and 4.  
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Figure 3. Growth curves T. copemani G1 in three different media: RPMI 1640, Grace’s 

and HMI-9. X-axis: number of parasites/ml. Y-axis: days. 

 

 

 

Figure 4. Growth curves T. copemani G2 in three different media: RPMI 1640, Grace’s 

and HMI-9. X-axis: number of parasites/ml. Y-axis: days. 
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4.4.3 Role of haemin in growth 

T. copemani G1 and G2 were grown in different concentrations of haemin between 

2.5mg/L to 20mg/L. Although, both genotypes of T. copemani grew well without 

haemin, the addition of haemin to the media (at some concentrations) significantly 

improved growth, mobility and motility. Growth curves could not be generated due to 

trypanosomes being compacted firmly in nests that could not be homogeneously 

separated. Therefore, trypanosome growth was followed as a qualitative observation of 

proliferation (size of nests), mobility (ability to move spontaneously and actively - does 

not involve displacement) and motility (ability to move spontaneously and actively - 

involves displacement) under the microscope. The haemin concentrations that produced 

more and larger nests were 2,5mg/L and 10mg/L for T. copemani G1 and G2, 

respectively (Figure 5). These concentrations improved trypanosome activity in the 

media in terms of mobility and motility, and free trypanosomes (not in the process of 

division in nests) moved continuously from side to side in the wells in both T. copemani 

G1 and G2 cultures. However, at the other concentrations of haemin (5mg/L, 15mg/L 

and 20mg/L) both trypanosomes were not very active and did not divide quickly. 

 

 

 

Figure 5. Different size of trypanosomes nests growing in 24 well plates.  Scale bars: 30 μm. 
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Interestingly, trypanosomes formed groups of big and small densely-packed cells (nests) 

within 24h post-plating. Nests moved across the plate surface, recruiting neighbouring 

nests (social motility) and forming fusions of large groups as shown in the sequential 

images (1 to 10) in Figure 6. 

 

Haemin concentrations higher than 10mg/L and 15mg/L decreased the growth rate of T. 

copemani G1 and G2 respectively and also induced morphological changes. Most of the 

parasites adopted a spherical shape and lost partially or completely the prominent 

flagella at these haemin concentrations (Figure 7).  
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Figure 6. Social motility of T. copemani. Trypanosome bigger nests recruiting small 

neighbouring nests. Sequential images (1 to 10) were taken at 2-minutes intervals. Scale bar: 20 

μm. 

 

 

Figure 7. Light microscopy of Diff-quick stained spheromastigotes of T. copemani in 

culture medium containing high concentrations of haemin. Scale bars: 10 μm. 

 

4.3.4 Trypanosomes morphology  

Peripheral blood smears from woylies infected with T. copemani showed blood 

trypomastigotes with large body width (6.53±0.31m over the nucleus) and length 

(31.82±0.53 m) (Figure 8A). These forms exhibited a small rounded kinetoplast and an 

oval and bigger nucleus. The kinetoplast stains densely purple and is positioned close to 

the nucleus in the posterior end of the cell. The nucleus stains light pink and is located 

clearly in the center. Trypomastigotes presented also a conspicuous undulating 

membrane with well-pronounced undulations and flagella that originates just anterior to 

the kinetoplast. Morphological features were almost identical between both T.copemani 

G1 and G2. Dividing forms were never observed in blood smears. 
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Figure 8. Light microscopy of Diff-quick stained T. copemani. A: trypomastigote forms in 

blood smears from woylies at the declining population; B: trypomastigote forms growing in 

culture at 37C. Scale bars: 10 μm. 

 

 

In the exponential or logarithmic phase of trypanosomes growing in culture, the 

epimastigote was the predominant form (Figure 9). Epimastigotes presented highly 

variable shapes with a small kinetoplast positioned adjacent to the nucleus; some of the 

forms were long and thin undergoing binary division, giving rise to nests or rosettes and 

transitional forms of variable shape and length of body. Some of these transitional forms 

were spheromastigotes that were often seen to be dividing (Figure 9). Figure 10 shows 

scanning electron microscopy images of an epimastigote and a spheromastigote from 

culture. 
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Figure 9. Light microscopy of exponential phase culture forms of T. copemani G1 and G2 

strains (Clade A) and stained with Diff-Quick. A and B: nests of epimastigotes; C and D: 

epimastigotes with different shape; E: spheromastigote; F: spheromastigote dividing. Scale bars: 

10 μm. 

 

 

Figure 10. Scanning electron micrograph of T. copemani grown in culture. A: epimastigote; 

B: spheromastigote. Scale bars: 1 μm (A) and 2 μm (B). 
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Both strains reached the stationary or non-proliferative phase when the concentration of 

parasites was approximately 4x10
7
 parasites/ml (Figures 2 and 3). Most parasites at this 

late phase were slender and long flagellates that exhibited a rounded small kinetoplast 

positioned far away from an elongated nucleus and close to the posterior end of the cell 

resembling metacyclic trypomastigote forms (Figure 11). Interestingly, when 

trypomastigotes from the stationary phase were transferred from 28C (the temperature 

used to grow epimastigotes in culture) to 37C, an undulating membrane appeared again 

and trypanosomes morphology resembled the trypomastigote morphology observed in 

marsupial blood (Figure 8B). However, the size of the trypomastigote form in blood 

was notably bigger (Figure 8A). 

 

 

 

Figure 11. Light microscopy of stationary phase culture forms of T. copemani G1 and G2 

strains (Clade A) and stained with Diff-Quick. A: T. copemani G1; B: T. copemani G2. Scale 

bars: 10 μm. 

 

 

Analysis of the scanning and transmission electron microscopy images showed that  

T. copemani G1 and G2 shared morphological features with other trypanosomatids. 

Trypomastigotes, epimastigotes and spheromastigotes presented numerous spherical 
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electron-dense particles randomly distributed along the cytoplasm and morphologically 

very similar to acidocalcisomes described in other trypanosomatids.  The size and 

number of acidocalcisomes per cell was variable ranging from only 3 or 4 big 

acidocalcisomes to more than 10 small acidocalcisomes (Figure 12). These structures 

were also observed in fresh smears by light microscopy (Figure 13). A dense corset of 

cross-linked microtubules that form the subpeculliar membrane was observed 

surrounding the body of the cell (Figures 12A and 14B). 

 

 

 

Figure 12. Transmission electron microscopy images of T. copemani acidocalcisomes.  

A and B: epimastigotes; C: trypomastigotes; D: spheromastigotes; Ac: acidocalcisomes; Ax: 

axoneme; Arrows: subpellicular microtubules (cytoskeleton). Scale bars: 0.5 m (A and B), and  

1 m (C and D). 
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Figure 13. Light microscopy images of T. copemani with numerous acidocalcisomes (light 

green dots) in the cytoplasm. Scale bars: 10 m.  

 

Scanning electron microscopy images showed flagella that emerged from a small 

invagination in the cell body, the flagellar pocket. The flagellum of T. copemani 

consisted of an axoneme (AX) with nine duplets of microtubules in the periphery and 

two microtubules at the center, and the paraflagellar rod (PFR) (Figures 12A and 14).  

 

 

 

Figure 14. T. copemani epimastigotes and its flagellum structure. A: scanning electron 

microscopy image of epimastigotes B: transmission electron microscopy cross-section of an 

epimastigote. FP: flagellar pocket; AX: axoneme; PFR: paraflagellar rod; SPM: subpellicular 

microtubules. Scale bar: 2 m. 
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4.5 Discussion 

Although PCR results revealed infection with genotypes from Clade B trypanosomes in 

the majority of the blood samples from the stable population of woylies at Karakamia, 

no evidence of protozoa morphologically similar to Trypanosoma was observed in 

direct blood smears taken from these animals. Although a quantitative PCR was not 

used, PCR results from the 18S rDNA gene showed strong PCR products comparable 

with those obtained using DNA extracted from T. copemani growing in culture, 

possibly indicating high parasitemias with genotypes from this clade in the samples. A 

possible explanation for this finding is that the growth nutritional conditions that this 

species requires in culture were not supplied for the media used. However, the question 

remains as to why trypanosomes were not observed in any blood smears from samples 

that were positive by PCR. Interestingly, similar results were reported in previous 

studies. Smith et al. (2008) and Paparini et al. (2011) did not detect any trypomastigote 

forms in blood films, taken from woylies that were positive for different genotypes 

within Clade B by PCR and sequencing. Moreover, the description of T. gilletti, a 

Trypanosoma species closely related to Clade B trypanosomes, was based on molecular 

evidence alone, due to lack of definitive morphological measurements, since no 

trypomastigotes were observed in the blood smears from koalas infected with only this 

Trypanosoma species (McInnes et al. 2011). In an attempt to visualise and describe 

trypanosomes within this clade, a collaborative study was developed with Craig 

Thompson from Murdoch University. Smears of blood (previously found infected with 

trypanosomes from this clade by PCR) were processed by Fluorescence in situ 

Hybridization (FISH) using the Clade B species-specific forward primer (designed in 

Chapter 2) as a fluorescent probe. The results obtained revealed the presence of 

trypanosomes in the smears, much smaller than T. copemani (Clade A) and other 
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trypanosomes. This small Trypanosoma species is almost invisible under light 

microscopy demonstrating the difficulty in finding this parasite in smears of highly 

infected woylies. As a result of this investigation, we named all the genotypes belonging 

to this clade “T. vegrandis”, which was published in the Journal “Parasites and Vectors” 

(See attached paper in the Appendix II) (Thompson et al. 2013).  

 

Although hemin was not necessary for the growth of T. copemani in vitro, it enhanced 

cell proliferation considerably. A haemin concentration of 2.5 mg/l added to Grace’s 

medium was the optimum concentration for the growth of both genotypes of  

T. copemani in culture. Haemin concentrations higher than 15 mg/l produced markedly 

significant morphological changes. Most of the forms present in these cultures were 

spherical with a short or no flagella consistent with amastigote forms of other 

Trypanosoma species, suggesting that transformation from epimastigotes to amastigotes 

could be induced by high concentrations of haemin. These results are in agreement with 

previous studies that showed that differentiation of T. cruzi epimastigotes to amastigotes 

could be achieved by high concentrations of haemin in the media used (Ciccarelli et al. 

2007). Pal et al. (2001) also showed that high concentrations of haemin in cultures of 

Leishmania donovani triggered promastigote-amastigote transformation. 

 

The differentiation of epimastigotes to metacyclic infective trypomastigotes could be 

triggered by nutritional stress. It has been shown that the change of T. cruzi 

epimastigotes from a nutrient rich medium to a nutrient poor medium resulted in 

differentiation to metacyclic trypomastigotes (Figueiredo et al. 2000). Furthermore,  

T. cruzi metacyclogenesis has been shown to occur in cultures where the medium has 

not been replaced with fresh medium (Camargo. 1964, Figueiredo et al. 2000). The 
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results of this study are consistent with these previous studies and show 

metacyclogenesis of T. copemani is induced by nutrients and growth factor limitations.  

 

T. copemani nests moved across the plate surface, recruiting neighbouring smaller nests 

establishing large communities of cells similar to what have been described in bacteria 

and what is termed “social motility” (Velicer et al. 2000). Several studies have 

demonstrated cooperative movements or social motility among bacteria in the surface of 

semisolid medium in response to external signals (Harshey. 2003). It has also been 

shown that T. brucei engages in social behaviour when cultivated on semisolid agarose 

surfaces. Oberholzer et al. (2010) showed in in vitro experiments that T. brucei is able 

to assemble into multicellular communities with polarised and coordinated movements 

that are not apparent in single cells and are in response to an external stimulus. It has 

been suggested that the social motility in T. brucei may facilitate colonisation of host 

tissues and may have impact in pathogenesis.  In the mammalian host for example,  

T. brucei penetration of the blood brain barrier represents a critical and defining step of 

disease pathogenesis, and social motility might be enhancing it (Velicer et al. 2000).  In 

bacteria, social motility provides many advantages, such as enhanced tissue colonisation, 

and increased resistance to host defense mechanisms (Bassler et al. 2006, Zusman et al. 

2007). The apparent social motility observed in T. copemani could have some important 

consequences in infectivity and pathogenicity and might enhance their ability to 

colonise, penetrate and migrate through different tissues in the vertebrate and 

invertebrate host.  

 

 T. copemani displayed morphological features including ultrastructural organisation 

which is consistent with other trypanosomatids. Acidocalcisomes are rounded electron-
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dense acidic organelles, rich in calcium, that have been reported in different 

trypanosomatids such us T. cruzi (Docampo et al. 1996, Miranda et al. 2000), 

Leishmania amazonensis (Lu et al. 1997), T. erneyi (Lima et al. 2012), T. evansi 

(Mendoza et al. 2002), T. brucei (Scott et al. 1995). The finding of numerous 

acidocalcisomes in the cytoplasm of T. copemani may be relevant from the point of 

view of infectivity. It has been demonstrated that these structures play an important role 

in host cell invasion and in the intracellular development of trypanosomes. In 

Trypanosoma cruzi for example, an increase in the acidocalcisome Ca
2
+ concentration 

of trypomastigotes occurs upon invasion, and pretreatment of trypomastigotes with 

intracellular Ca
2
+ chelators prevented the increase of acidocalcisome Ca

2
+ and resulted 

in an inhibition of cellular invasion (Docampo, and Moreno. 1996, Moreno et al. 1994, 

Yakubu et al. 1994). A morphometric study in different trypanosomatids showed that 

“acidocalcisomes are often large when present in low numbers and small when there are 

many present” (Miranda et al. 2004). Although the number and size of T. copemani 

acidocalcisomes is variable, the size of the organelle seems to be inversely proportional 

to the number of organelles present. When acidocalcisomes were large in size, the 

number of these structures in each cell was no more than three. In contrast, when the 

size of the acidocalcisomes was small, more than ten structures were found in each cell. 

The significance of the presence and abundance of acidocalcisomes in T. copemani 

needs to be further investigated especially from the point of view of infectivity.  

 

Another important organelle present in most trypanosomes is the flagellar pocket. This 

organelle is a deep invagination of the membrane at the site where the flagellum exits 

the cytoplasm. The flagellar pocket is the unique site of trypanosome exocytosis and 

endocytosis, and together with the flagella is involved in cell division (Field et al. 2009). 

The flagellum of T. copemani consists of the axoneme (AX) and the paraflagellar rod 
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(PFR). The axoneme, similar to other trypanosomes, presented nine duplets of 

microtubules, and the PFR was situated adjacent to the axoneme. Although the 

ultrastructure of the PFR appears conserved throughout Kinetoplastids, the PFR 

ultrastructure differs in size at the interspecies level and in some cases a significantly 

reduced PFR is present (Bastin et al. 1996, Maga et al. 1999, Portman et al. 2010). 

Some trypanosomatids such as Crithidia deanei, C. oncopelti, Blastocrithidia culicis 

and Herpetomonas roitmani have been described as lacking a PFR (Freymuller et al. 

1981). Although T. copemani possess a PFR, its internal structure needs to be 

investigated. 

 

In summary, this study describes the isolation and growth requirements of two different 

strains of T. copemani from the woylie, and highlights important morphological features 

shared between this parasite and other pathogenic trypanosomes.  
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Chapter 5 

Infection kinetics of two strains of Trypanosoma copemani: a comparative in vitro 

study with the pathogenic Trypanosoma cruzi  
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 5.1 Abstract  

The in vitro kinetics of infection of two strains of T. copemani and one strain of T. cruzi 

was investigated and compared in four different cell lines: the non-phagocytic L6, 

VERO and HCT8 cells, and the phagocytic human derived cell line THP1. Results 

showed that both strains of T. copemani were able to infect cells.  However, significant 

differences in infection capability and intracellular replication were seen between them 

and in comparison to T. cruzi. The rate of infection of T. copemani G1 and G2 in most 

cell lines was always below 7% and 15% respectively. However, T. copemani G2 rate 

of infection in VERO cells was considerably higher, with 70% of cells infected at 48 

hours post-infection. T. cruzi was highly infective to all cell lines, with L6 and VERO 

cells presenting the highest (82%) and lowest (33%) percentage of infection 

respectively.  Despite the higher rate of infection of T. copemani G2 in VERO cells, 

when compared with T. cruzi, the number of intracellular forms was lower. The 

capability of T. copemani to infect cells in vitro and the findings of structures suggestive 

of intracellular amastigotes in woylie tissues infected with T. copemani G2 (Chapter 3) 

suggests that this parasite might employ similar strategies to complete its life cycle in 

the vertebrate host to those seen in T. cruzi. The capability of T. copemani to infect cells 

may have important consequences for pathogenicity. 
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5.2 Background 

Trypanosoma comprises a large number of species and subspecies with a complex life 

cycle that involves both invertebrate and vertebrate hosts (Teixeira et al. 2012). The life 

cycle in the vertebrate host varies from one species to another and may involve different 

stages of the parasite. This variability mainly lies in the ability of some trypanosomes to 

migrate to tissues and to replicate inside host cells.  

 

The replication of trypanosomes such us T. theileri, a parasite of cattle, T. lewisi a 

parasite of rodents, and trypanosomes from the T. brucei complex that infect humans 

and several ungulates, occurs extracellularly in peripheral blood, where they replicate as 

trypomastigotes. This stage of the parasite has also been found in extravascular sites of 

lymph nodes, kidney, spleen, bone marrow, and brain (Hoare. 1972, Molyneux. 1976, 

Tizard et al. 1980, Sudarto et al. 1990, D’Alessandro et al. 1991, Rodrigues et al. 2003). 

In contrast, T. cruzi, the agent of Chagas disease does not replicate in blood, but 

presents a life cycle that involves invasion and replication inside host cells (Oliveira et 

al. 2009, De Souza et al. 2010). During its life cycle in the vertebrate host, T. cruzi 

alternates between two different developmental stages, the bloodstream trypomastigote 

(non-dividing form), and the amastigote in tissues (intracellular and replicative form). 

Bloodstream trypomastigotes invade a large number of mammalian cells, and once in 

the cytoplasm of the cell they differentiate into amastigotes. After an intense 

multiplicative phase, amastigotes transform into trypomastigotes that are released upon 

rupture of the cells. Trypomastigotes infect neighbouring cells, and are eventually 

disseminated throughout the body, leading to the establishment of the infection in 

several tissues in the host (De Souza et al. 2010). Although T. cruzi can infect several 

tissues in the vertebrate host, such as spleen, liver, colon, skeletal muscle, and heart, it 
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has been demonstrated that different populations of the parasite present distinct tissue 

preferences or “tissue tropism” (Andrade et al. 1999). Studies have shown a correlation 

between in vitro and in vivo tissue tropism using two different strains of T. cruzi. 

Andrade et al. (2002) showed that the T. cruzi strain JG was more predominant in the 

hearts of experimentally chronically infected BALB/c and DBA-2 mice than the T. cruzi 

strain Col1.7G2. In a more recent study, the same authors showed that in in vitro studies 

using cardiomyocytes cells, the JG strain exhibited a higher intracellular multiplication 

than the Col1.7G2 strain (Andrade et al. 2010).  

 

A few other Trypanosoma species are capable of infecting and multiplying within cells. 

For example, T. dionsii, T. erneyi, and T. livingstonei, all trypanosomes of bats, are 

capable of invading and replicating inside cells and have been shown to exhibit some 

similar features of host cell invasion with T. cruzi (Oliveira et al. 2009, Lima et al. 2012, 

Lima et al. 2013). For T. rangeli, a parasite that infects a large number of mammals in 

Central and South America, contradictory results have been reported regarding the life 

cycle within the vertebrate host. The replication of this species does not occur in blood, 

however, its ability to infect and replicate inside cells has been debated with some 

studies showing that T. rangeli is able to infect cells, whilst others show the opposite 

(Zúñiga et al. 1997a, Zuñiga et al. 1997b, Tanoura et al. 1999, Eger-Mangrich et al. 

2001). 

 

Within Australia, several species of Trypanosoma have been described infecting 

wildlife. These include T. thylacis in northern brown bandicoots (Isoodon macrourus) 

(Mackerras. 1959); T. lewisi from the chuditch (Dasyurus geoffroii), ash-grey Mouse 

(Pseudomys albocinereus), bush rat (Rattus fuscipes), and the dibbler (Parantechinus 
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apicalis) (Averis et al. 2009); T. irwini and T. gilletti in koalas (Phascolarctos cinereus) 

(McInnes et al. 2009,  2011b); T. binneyi in platypus (Ornithorhynchus anatinus) 

(Noyes et al. 1999); T. sp H25 in eastern Grey Kangaroos (Macropus giganteus), 

woylies (Bettongia penicillata), banded hare wallabies (Lagostrophus fasciatus) and 

boodies (Bettongia lesueur) (Chapter 2) (Botero et al. 2013); T. sp H26 in the common 

wombat (Vombatus ursinus); T. vegrandis in woylies (Bettongia penicillata), tammar 

wallabies (Macropus eugenii), the chuditch (Dasyurus geoffroii), and western grey 

kangaroos (Macropus fuliginosus) (Chapter 2) (Botero et al. 2013, Thompson et al. 

2013); and T. copemani in quokkas (Setonix brachyurus), Gilbert’s potoroo (Potorous 

gilbertii) (Austen et al. 2009), koalas (Phascolarctos cinereus) (McInnes et al. 2011a, 

2011b), woylies (Bettongia penicillata), common brush-tailed possums (Trichosurus 

vulpecula), the quokka (Setonix brachyurus), the chuditch (Dasyurus geoffroii), and 

southern brown bandicoots (Isoodon obesulus) (Chapter 2) (Botero et al. 2013, 

Thompson et al. 2013). Despite such an extensive list, only one study has provided 

insights into the life cycle of Australian trypanosomes in the vertebrate host. Noyes et al.  

(1999) showed that T. sp H25 isolated from a kangaroo, and T. sp H26 isolated from a 

wombat were not able to infect LLCMK2 cells in vitro or in immunocompetent mice in 

vivo.  

 

Considering that T. copemani is able to migrate to different organs in the marsupial host 

and has the ability of producing pathogenic lesions in tissues, the aims of this study 

were to: (i) investigate the capability of T. copemani to infect cells in vitro; and (ii) 

compare the infection kinetics of T. copemani and the pathogenic T. cruzi in four 

different cell lines. 
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5.3 Materials and methods 

5.3.1 Cells and parasites 

The non-phagocytic cell lines L6 (skeletal myoblast cells), VERO (kidney epithelial 

cells), and HCT8 (human ileocecal adenocarcinoma cells) and a phagocytic cell line 

(macrophage-like cells) derived from the human monocyte cell line THP1 were used. 

Cells were grown in RPMI medium supplemented with 10% foetal calf serum (FCS) at 

37C and 5% CO2. THP1 cells were grown in media that also included phorbol 12-

myristate 13-acetate (PMA). T. copemani G1 and G2 and the T. cruzi strain 10R26 were 

maintained in RPMI medium containing 10% FCS plus 5mg/ml penicillin-streptomycin. 

All cell lines and trypanosomes were stored in a cryobank at Murdoch University. 

5.3.2 Cell infection 

Monolayers of each cell line were trypsinised and seeded onto tissue culture-slides (16-

wells) at a concentration of 1.5 x 10
3
 cells/ml. Two sets of six culture-slides were used. 

The first set contained L6 and VERO cells and the second set contained THP1 and 

HCT8 cells. After 24 hours, the media was discarded to remove non-adherent cells and 

100 µl of parasite suspension containing 1.5 x 10
5
 trypanosomes/ml was added to each 

well (1:10 cell/parasite ratio). Cultures from the stationary phase containing metacyclic 

trypomastigote forms of T. copemani G1 and G2, and T. cruzi were used to infect cells. 

Slides were incubated at 37°C and 5% CO2. Experiments were replicated on three 

separate occasions. 
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5.3.3 Kinetics of infection 

The progress of cellular infection was monitored at 3, 6, 12, 24, 48, 72, and 96 hours 

post-infection. Non-adherent parasites were removed by washing the culture-slides 

three times with phosphate buffer solution (PBS) at each interval of time. Coverslips 

were removed and culture-slides were air-dried and stained with a Diff-Quik staining 

system. The percentage of infected cells was determined under 100x magnification by 

counting 100 cells/well per triplicate using an optical microscope and comparing the 

number of cells containing intracellular parasites to the total number of cells.  

5.3.4 Scanning and Transmission Electron Microscopy 

For scanning electron microscopy (SEM) cells were pre-seeded on poly-L-lysine coated 

coverslips in 24-well plates (2 x 10
5
 cells/well) and infected with T. copemani G1 and G2 

as above. After 48 hours post-infection, the coverslips were removed, washed in PBS, 

and fixed in a 1:1 mixture of 5% glutaraldehyde in 0.01 M PBS : cell culture media (pH 

7.2). Coverslips were subsequently progressively dehydrated through a graded series of 

ethanols, using a PELCO Biowave microwave and critical point dried as previously 

described (Edwards et al. 2011). Coverslips were mounted on stubs with adhesive carbon, 

coated with 2 nm Pt and imaged at 3 kV using the in-lens secondary electron detector on 

a Zeiss 55VP field emission SEM.  

 

For transmission electron microscopy (TEM), infected cells were trypsinised at 48 hours 

post-infection and fixed in a 1:1 mixture of 5% glutaraldehyde in 0.01 M PBS : cell 

culture media (pH 7.2). Cells were pelleted, with all subsequent processing performed in 

a PELCO Biowave microwave. Briefly, samples were post-fixed in 1% OsO4 in PBS 
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followed by progressive dehydration in a graded series of ethanol/acetone, before being 

infiltrated and embedded in the epoxy resin Procure-Araldite. Sections 120 nm-thick 

were cut on a diamond knife and mounted on copper grids. Digital images were collected 

from unstained sections at 120 kV using a JEOL 2100 TEM fitted with a Gatan 

ORIUS1000 camera. 

5.3.5 Statistical analyses 

All statistical analyses were performed using GraphPad Prism 6 (GraphPad Software, San 

Diego, California, USA). Analysis of the data was performed using one-way and two-

way analysis of variance (ANOVA). The results were expressed as means ± SEM.  

5.4 Results  

To help elucidate the life cycle of T. copemani, four different cell lines were infected 

with two strains of T. copemani (G1 and G2) and with one strain of the intracellular  

T. cruzi, which was used as a control of cell infection and a point of comparison. 

Stationary phase culture smears from all the strains were stained and checked under the 

microscope to confirm that metacyclic trypomastigotes were used to infect cells. Results 

showed both strains of T. copemani were able to infect all cell lines used. However, 

significant differences in the infection rate were seen between T. copemani G1 and G2, 

and between both T. copemani G1/G2 and T. cruzi in all cell lines (p<0.0001). No signs 

of intracellular replication were observed in the cytoplasm of any cell line infected with 

either T. copemani G1 or G2. Therefore, the results regarding the number of 

amastigotes inside cells were not quantified and are expressed as qualitative 

observations. 
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5.4.1 Kinetics of infection in L6 cells 

Intracellular amastigotes of T. copemani G1 and G2 and T. cruzi were observed for the 

first time at 6 hours post-infection. The progression of the infection was similar for  

T. copemani G1 and G2. However, the number of cells infected with T. copemani G2 

was significantly higher (P<0.0001). The highest rate of infection by T. copemani G1 

was 5% at 48 hours post-infection, while the highest rate of infection by T. copemani 

G2 was 15% at the same time post-infection. In contrast, the percentage of L6 cells 

infected with T. cruzi was significantly higher (p<0.0001), increasing rapidly after 24 

hours post-infection and reaching a peak of 82% at 72 hours post-infection (Figure 1). 

Cells infected with T. cruzi exhibited a larger number of intracellular amastigotes at 12, 

24, 48, 72 and 96 hours post-infection compared with both T. copemani G1 and G2, 

where no more than three amastigotes were seen inside cells at any time post-infection 

(Figure 1 - light micrographs). After 48 hours post-infection, T. cruzi amastigotes were 

seen differentiating into trypomastigotes inside cells (Figure 2). 
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Figure 1. Kinetics of infection and intracellular development in L6 cells infected with T. 

copemani G1 and G2, and T. cruzi. The data represents the mean of three independent 

experiments (triplicate values in each experiment)  SEM.  

 

 

 

Figure 2. T. cruzi amastigotes differentiating into trypomastigotes. Scale bar: 10 m. 
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5.4.2 Kinetics of infection in VERO cells 

In general, both T. copemani G1 and G2, and T. cruzi were able to infect VERO cells at 

6 hours post-infection, with no significant differences in the number of cells infected 

between them (p<0.07). An increase in the number of cells infected was observed over 

the time, reaching a maximum of 7% with T. copemani G1, 74% with T. copemani G2, 

and 33% with T. cruzi at 48 hours post-infection. After this time, the percentage of 

infected cells decreased for all trypanosomes (Figure 3). T. copemani G2 induced a 

significant stronger infection at all times post-infection when compared with T. cruzi 

(p<0.0001). Although almost 70% of cells were infected with T. copemani G2 and only 

33% of cells were infected with T. cruzi at 48 hours post-infection, the number of 

intracellular amastigotes was higher in T. cruzi infected cells (Figure 3 - light 

micrographs). 
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Figure 3. Kinetics of infection and intracellular development in VERO cells infected with T. 

copemani G1 and G2, and T. cruzi. The data represents the mean of three independent 

experiments (triplicate values in each experiment)  SEM.  

 

5.4.3 Kinetics of infection in HCT8 and THP1 cells 

The rate of infection of each Trypanosoma strain was very similar in both human 

derived cell lines HCT8 and THP1 (Figure 4). Neither T. copemani G1 or G2 were able 

to infect more than 7% of either cell line at any time post-infection. In contrast, the 

percentage of cell infected with T. cruzi was significantly higher (p<0.0001), and 
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showed a continual increase in infection rates, which peaked at 34% in HCT8 cells and 

40% in THP1 cells at 96 hours post-infection. Active intracellular replication was 

clearly evident only in T. cruzi where large numbers of amastigotes were seen inside 

cells (Figure 4 - light micrographs). 
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Figure 4. Kinetics of infection and intracellular replication in HCT8 and THP1 cells 

infected with T. copemani G1, T. copemani G2 and T. cruzi. The data represents the mean of 

three independent experiments (triplicate values in each experiment)  SEM.  

 

5.4.4 Transmission and scanning electron microscopy 

Trypomastigotes were commonly observed attached to cells by light microscopy 

(Figure 5). They appeared to attach to the cell by the posterior end in a manner similar 

to T. cruzi.  

 

 

 

Figure 5. Trypomastigotes of T. copemani G2 attached and penetrating VERO cells. A: 

light micrograph of a trypomastigote attached to a VERO cell; B: light micrograph of 

trypomastigotes penetrating VERO cells. Arrows: trypomastigotes. Scale bars: 10 m.  

 

 

Scanning electron microscopy further confirmed that attached trypanosomes were 

invading cells and commonly revealed debris of dead cells surrounded by amastigotes 

and trypomastigotes after the second day of infection (Figure 6). The presence of free 

amastigotes in proximity to dead cells could indicate that they were released after the 

death of the cell. 
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Figure 6. Scanning electron micrographs of trypomastigotes and amastigotes of T. 

copemani G2 in VERO cells. A and B: trypomastigotes invading a cell; B: trypomastigotes and 

amastigotes in cellular debris. Black arrows: trypomastigotes. White arrow: amastigotes. Scale 

bars A, C and D: 2 m. Scale bar B: 1 m. 

 

 

Analysis of thin sections by TEM confirmed that T. copemani is able to attach (Figures 

7A and B), and invade cells (Figures 8A and B). Intracellular T. copemani G2 

amastigotes containing numerous acidocalcisomes were identified within the cell 

cytoplasm (Figures 8 A and B). 
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Figure 7. Transmission electron micrographs of trypomastigotes of T. copemani G2 

attached to cells. Arrows: trypomastigotes. Scale bar: 1 m.  

 

 

 

 

 

Figure 8. Transmission electron micrographs of intracellular amastigotes of T. copemani 

G2. Circles: intracellular amastigotes. Arrow: remaining flagella. Scale bars: 1 m. 

5.5 Discussion 

A few species of Trypanosoma have been isolated in culture from Australian mammals 

(Noyes et al. 1999, Austen et al. 2009). However, the biological life cycle of these 

parasites in the vertebrate host remains unknown. To date, the only in vitro study 

investigating the life cycle of Australian trypanosomes showed that two Trypanosoma 

species, T. sp H25 and T. sp H26 isolated from a kangaroo and a wombat respectively, 



196 

 

failed to infect LLCMK2 cells (Rhesus monkey kidney cells) (Noyes et al. 1999). As 

previously demonstrated in Chapters 2 and 3, T. copemani is able to colonise different 

tissues in naturally infected marsupials. Findings of DNA of T. copemani in tissues and 

structures in the cytoplasm of these tissue cells consistent with amastigote forms of 

other Trypanosoma species (Chapters 2 and 3) (Carreira et al. 1996, Botero et al. 2013), 

suggested a T. copemani life cycle in the marsupial host that might involve infection of 

cells and intracellular replication.  

 

In attempts to demonstrate this, this study investigated the in vitro capability and 

progress of infection of two different strains of T. copemani (G1 and G2) in four 

different cell lines and compared it with the progress of infection of the well-known 

intracellular parasite T. cruzi. Interestingly, this study found marked differences in cell 

infection between both genotypes of T. copemani.  Irrespective of the cell line used,  

T. copemani G1 infection rates were very low, always below 7%. Although T. copemani 

G2 infection rates were slightly higher in some cell lines, this strain was highly infective 

to VERO cells, with 70% of cells infected at 48 hours post-infection. These results are 

consistent with previous findings (Chapters 2 and 3) (Botero et al. 2013), which showed 

that only T. copemani G2 was present in multiple marsupial host tissues, while  

T. copemani G1 was only found in blood. Taking this into account, it seems that the life 

cycle of both T. copemani G1 and G2 may differ considerably, therefore raising the 

question as to whether they are two different species. However, this requires further 

exploration. 

  

T. cruzi as well as T. copemani G2 exhibited significant differences in infectivity 

between cell lines. T. copemani G2’s rate of infection in VERO cells was double that the 
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rate of infection produced by T. cruzi. However, in L6 and in both human derived cell 

lines, T. cruzi showed a higher level of cell invasion. It seems that the intensity of the 

infection depends on the cell line, or in other words, some cell lines are more 

susceptible to Trypanosoma infections. In vitro studies looking at the host cell 

interaction during infections with T. cruzi have demonstrated similar results (Yoshida et 

al, 2008). Furthermore, Andrade et al. (2010) suggested that the differences in 

infectivity and intracellular multiplication rates of T. cruzi in different cell lines are key 

factors influencing its tissue distribution in the vertebrate host. T. cruzi JG strain was 

shown to infect and replicate efficiently inside BALB/c cardiomyocytes in vitro 

(Andrade et al. 2010), and also exhibited a preferential development in cardiac tissue of 

experimentally infected BALB/c mice (Andrade et al. 1999). Interestingly, results that 

showed the kidney of naturally infected marsupials to be frequently infected with  

T. copemani G2 (Chapter 2 and 3) (Botero et al. 2013), are consistent with results of the 

present study in which the kidney epithelial derived VERO cell line was frequently 

invaded by T. copemani G2, thus supporting Andrade’s hypothesis. 

 

T. cruzi, which infects several mammals species and causes pathology in humans, dogs, 

and in experimentally infected mice and rats, has also been shown to produce an active 

infection in different cell lines isolated from humans, dogs, mice and rats in vitro (Barr 

et al. 1996, Andrade et al. 2010, Vargas-Zambrano et al. 2013). Moreover, a 

correspondence between in vitro studies and what is seen in natural infections has also 

been demonstrated in mosquitoes and ticks-borne viruses. It was shown that tick-

derivated cell lines isolated in culture are susceptible to infection with tick-borne 

viruses and not to mosquito-borne viruses, while mosquito-derivated cell lines isolated 

in culture are susceptible to infection with mosquito-borne viruses and not to tick-borne 
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viruses (Lawrie et al. 2004). Interestingly, both HCT8 and THP1 (human derived) and 

L6 (rat derived) cell lines exhibited a markedly lower infection with T. copemani, 

suggesting that there might be a low susceptibility of these hosts to both strains of the 

parasite. Smith et al (2008) examined Australian native wild rats for the presence of 

trypanosomes by PCR and sequencing of a fragment of the 18S rDNA gene using 

generic primers that recognise many species of trypanosomes, including T. copemani. 

Results showed some wild rats were infected with T. lewisi, but not with T. copemani 

(Smith et al. 2008). In a similar manner, the high infection rate found in the monkey 

derived VERO cells, might suggest an increased susceptibility of this host to  

T. copemani G2 infections. However, T. copemani has never been reported to naturally 

infect any other vertebrate host except marsupials. It has been demonstrated that 

culture-derived metacyclic forms of T. cruzi maintained for long periods of time 

(several years) in axenic culture have reduced capacity to invade cells and/or to 

replicate intracellularly, due to an alteration in the expression of proteins in the infective 

stage of the parasite (Contreras et al. 1994, 1998). However, the T. copemani strains 

used in this study have been maintained in culture for only one year. 

 

The intracellular mechanism of replication in host tissues that some trypanosomes use 

evidently plays an important role in the pathogenesis of the parasite. Several studies 

have demonstrated that the presence of DNA and/or intact intracellular forms of T. cruzi 

in tissues is often accompanied by a strong inflammatory process triggered by the 

presence of the parasite in vital tissues such as heart, which ends in tissue damage and 

commonly in the death of the host (Tanowitz et al. 2009, Gutierrez et al. 2011, Corral et 

al. 2013) . The fact that T. copemani G2 was highly infective to one cell line proves the 

capacity of this parasite to infect tissue cells in the marsupial host and raises questions 
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about the potential virulence and pathogenicity of this parasite and its possible 

association with the rapid and substantial decline of the woylie (Chapter 3). Although a 

small number of Trypanosoma species have been shown to infect and multiply within 

host cells in vitro, including T. dionsii, T. erneyi, and T. livingstonei from bats, their 

potential pathogenicity in these animals has not been assessed (Oliveira et al. 2009, 

Lima et al. 2012,  Lima et al. 2013). 

 

Although some intracellular amastigotes were seen in cells infected with T. copemani 

G2, it was not comparable with that produced by T. cruzi. All cell lines infected with  

T. cruzi exhibited large numbers of intracellular amastigotes, indicating that cells were 

probably invaded more effectively and/or were more susceptible to intracellular 

replication by T. cruzi. Despite the rate of infection of T. copemani G2 in non-

phagocytic VERO cells being high, no sign of active Trypanosoma multiplication was 

seen inside cells. This lack of intracellular replication of T. copemani G2 might be due 

to a number of different reasons. Firstly, it could be due to the inability of T. copemani 

to replicate inside cells. However, the findings of numerous structures suggestive of 

intracellular amastigotes of T. copemani G2 in woylie tissues (Chapter 3) (Botero et al. 

2013) suggests that this parasite might be able to replicate inside tissue cells. Secondly, 

it has also been shown that the host genetic background plays an important role in 

susceptibility or resistance to infections with T. cruzi (Andrade et al. 2002), and 

therefore the origin of the cell line cannot be ruled out because it could determine the 

success or failure of the in vitro infections. It was shown previously that the intracellular 

multiplication efficiency of different strains of T. cruzi differs among cell lines 

(Andrade et al. 2010). Finally, there is the possibility that the nutritional conditions 

provided by the medium were sub-optimal to support the intracellular division of  
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T. copemani. Unfortunately, T. copemani is highly pleomorphic in culture and finding 

the optimal conditions (i.e. - nutrients in media, temperature, etc) to maintain all the 

different stages of the parasite in culture, including its infective stage is difficult to 

achieve, and therefore the conditions used may not have been the most appropriate to 

support the intracellular development of this parasite.  

 

The similarity in the biological behaviour of T. copemani and T. cruzi suggests that 

these parasites might use similar strategies to complete their life cycle in the vertebrate 

host. However, the use of a better in vitro model, possibly a marsupial derived cell line, 

as well as complementary in vivo studies are required to fully understand the life cycle 

and virulence of T. copemani in Australian wildlife. 
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Chapter 6 

In vitro drug susceptibility of two strains of Trypanosoma copemani: a comparison 

with the pathogenic Trypanosoma cruzi 
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6.1 Abstract 

Trypanosomes are blood protozoan parasites that are capable of producing illness in the 

vertebrate host. Within Australia, several Trypanosoma species have been described 

infecting wildlife. However, only Trypanosoma copemani G2 has been suggested to 

produce harmful effects on the health of marsupials and has recently been associated 

with the dramatic decline of the woylie (Bettongia penicillata). The impact that some 

trypanosomes have on the health of the vertebrate host has led to the development of 

numerous drug compounds that could inhibit the growth or kill the parasite. This study 

investigated and compared the in vitro susceptibility of both T. copemani G1 and G2, 

and T. cruzi to drugs currently used against pathogenic trypanosomatids (benznidazole, 

posaconazole, miltefosine and melarsoprol) and to four new compounds (two pyridine 

and two fenarimols derivatives) developed primarily against T. cruzi. The in vitro 

cytotoxicity of all drugs against L6 cells was also assessed. Results showed that both 

strains of T. copemani were more susceptible to all drugs and compounds than T. cruzi, 

with all IC50 values in the low and sub-μM range for both species. Melarsoprol and 

miltefosine exhibited the highest drug activity against both T. copemani and T. cruzi, 

but they also showed the highest toxicity in L6 cells. Interestingly, fenarimol and 

pyridine compounds were more active against T. cruzi and T. copemani than the 

reference drugs benznidazole and posaconazole. T. copemani G1 and G2 exhibited 

differences in susceptibility to all drugs demonstrating once again considerable 

differences in their biological behaviour. 
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6.2 Background 

Trypanosoma comprises a large number of species and subspecies that are capable of 

producing detrimental effects on the host. T. cruzi for example, is an intracellular 

protozoan that causes Chagas’ disease in humans and is an important contributor to 

heart disease in Latin America (Kirchhoff. 1996). This parasite is able to infect different 

marsupial species in America and has been shown to produce inflammatory lesions in 

tissues similar to those seen in human infections (Barr et al. 1991, Carreira et al. 1996). 

Trypanosomes from the “T. brucei complex” are pathogenic trypanosomes from Africa 

that affect humans causing sleeping sickness, and animals causing nagana. Common 

signs of the infection in humans are swollen lymph nodes, fever, anaemia, oedema, 

neurological involvement, and rapid weight loss. Other trypanosomes considered non-

pathogenic, may cause harm when they find a new or naïve vertebrate host. Within 

Australia, the accidental introduction of the exotic T. lewisi to Christmas Island caused a 

collapse in the population of the endemic rat Rattus macleari to the point of complete 

extinction (Pickering et al. 1996, Wyatt et al. 2008). More recently, a native Australian 

trypanosome, T. copemani G2, was associated with the rapid and substantial population 

decline (90% within 10 years) of the critically endangered marsupial, the woylie 

(Bettongia penicillata) (Wayne et al. 2013). This parasite has been shown to colonise 

several tissues in the marsupial host, with evidence of cell invasion, and production of 

extensive inflammatory cell infiltrates and tissue damage (Chapter 3) (Botero et al. 

2013), thus demonstrating a pathogenic potential previously not associated with 

trypanosomes of wildlife from Australia.  

 

The impact that pathogenic trypanosomes have on the health of the vertebrate host has 

led to the development of numerous drug compounds that could inhibit or kill the 
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parasite. Drugs currently used to treat Chagas disease and that have been the focus of 

many in vitro studies include benznidazole, and posaconazole. Benznidazole (N-benzyl-

2-nitro-1-imidazole-acetamide) is currently used in the treatment of T. cruzi infections.  

Despite this drug not being completely effective, especially in the chronic stage of the 

disease ((WHO. 2007, Soeiro et al. 2009, Batista et al. 2011), it is one of the main drug 

therapies available to treat the disease. Posaconazole is an ergosterol biosynthesis 

inhibitor that has also shown potent in vitro and in vivo activity against T. cruzi (de 

Figueiredo Diniz et al. 2013). However, a recent clinical trial of posaconazole in 78 

adults with chronic T. cruzi infections showed a very poor efficacy of this drug, and 

greater percentage of treatment failure when compared with benznidazole treated 

patients (Molina et al. 2014). 

 

On the other hand, drugs currently used to treat human but also livestock 

trypanosomiasis caused by the T. brucei complex include melarsoprol and miltefosine. 

Melarsoprol is an arsenical drug that has been used against late-stage infections with  

T. brucei subspecies (Denise et al. 2001), and miltefosine is an alkylphosphocholine 

that was the first and still the only oral drug that can be used to treat visceral and 

cutaneous Leishmaniasis, a disease caused by protozoan parasites of the Leishmania 

genus (Dorlo et al. 2012). Although, all these drugs are the main treatment used to 

combat trypanosomatids infections, they are less than ideal due to toxicity and adverse 

side effects (Castro et al. 2006, Hasslocher-Moreno et al. 2012, Pinazo et al. 2013). 

 

CYP51 is an enzyme of critical importance to organisms that require sterol biosynthesis 

for membrane function. Inhibition of T. cruzi CYP51 has been shown to affect sterol 

composition and damages parasite ultrastructure leading to the death of the parasite 
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(Lepesheva et al. 2011). Attempts to develop new compounds with potent activity 

against trypanosomes and low toxicity in mammalian cells has led to the discovery of 

different ergosterol biosynthesis inhibitor compounds with demonstrated in vitro and in 

vivo activity against all T. brucei subspecies and T. cruzi. Most of these compounds 

have exhibited good activity against trypanosomes, low toxicity in mammalian cells and 

good pharmacokinetic properties in the vertebrate host suggesting suitable drug-like 

properties for preclinical evaluation (Keenan et al. 2012, Keenan et al. 2013, Hargrove 

et al. 2013). 

 

Considering not only the potential pathogenicity of T. copemani G2 in the woylie, but 

also that this parasite has been found infecting other critically endangered and 

vulnerable Australian marsupials such as quokkas (Setonix brachyurus), chuditches 

(Dasyurus geoffroii), and southern brown bandicoots (Isoodon obesulus) (Chapter 3) 

(Botero et al. 2013) there is a need to evaluate the susceptibility of T. copemani to drugs 

that can be used to protect wildlife health and conservation. Evaluating and comparing 

the drug susceptibility of both T. copemani G1 and G2 might also provide new evidence 

to suggest their status as separate species. Therefore, this chapter aims to investigate and 

compare the in vitro susceptibility of T. copemani G1 and G2, and T. cruzi to reference 

drugs and compounds currently used against pathogenic trypanosomatids. 

6.3 Materials and methods 

6.3.1 Parasites  

Trypanosoma copemani strains G1 (Genotype 1) and G2 (Genotype 2) isolated from the 

blood of woylies (Chapter 4) (Botero et al. 2013), and T. cruzi 10R26 strain were used 
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and maintained as epimastigotes by successive passages every 3 days at 28C in RPMI 

medium containing 10% of FCS, 5mg/ml of penicillin-streptomycin and 2.5mg/L of 

haemin.  

6.3.2 Cell culture 

For drug toxicity assays, L6 cells (skeletal myoblast cells) purchased from the American 

Type Culture Collection were used. Cells were grown in RPMI medium supplemented 

with 10% of foetal calf serum (FCS) at 37C and 5% of CO2.  

6.3.3 Test compounds 

Miltefosine and melarsoprol were kindly provided by Dr Vanessa Yardley (London 

School of Hygiene and Tropical Medicine, UK). Benznidazole tablets (Rochagan - 100 

mg) were purchased from Roche (Rio de Janeiro, Brazil). Posaconazole was purchased 

as an oral suspension (Noxafil Schering Corporation, 40 mg/mL) and isolated from the 

suspension by dilution with water and centrifugation, followed by extraction and 

recrystallization from hot i-propyl alcohol (Keenan et al. 2012). Four CYP51 inhibitor 

compounds, two pyridine derivatives (EPL-BS967 or PDB1 and EPL-BS1246 or 

PDB2) and two non-azole antifungal fenarimoles (EPL-BS1937 or FN1 and EPL-

BS2391 or FN2) were developed, synthetised and kindly provided by Epichem Pty Ltd. 

Their molecular structures are shown in Figure 1. Drug compounds were dissolved in 

dimethyl sulfoxide (DMSO) and stored at 4 ºC. Immediately before use, drugs were pre-

diluted in RPMI media to the desired concentration. The final DMSO concentration did 

not exceed 1% (v/v) and had no effect by itself on the proliferation of the parasites. 
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Figure 1. Molecular structure of the two fenarimols and two pyridine compounds.  

6.3.4 In vitro compound activity against trypanosomes 

Epimastigotes of T. copemani G1 and G2 and T. cruzi 10R26 strains in the log phase of 

growth were diluted in RPMI media to 1x10
6 

parasites/ml. 100 µl of parasite suspension 

(1x10
5 

parasites/well) was seeded into 96-well flat-bottom plates (Corning, Corning, 

N.Y.), and then incubated at 28 ºC in a seven-fold dilution series covering a range from 

1 µM to 0.004 µM for melarsoprol and ranging from 10 µM to 0.013 µM for the rest of 

the drugs. Each drug concentration was evaluated in triplicate. Control wells with only 

compounds and with only parasites (without compounds) were included. After 48 hours 

of compounds exposure, 15 µl of AlamarBlue (Resazurin - AbD Serotec) was added 

to each plate allowing for a colour change through metabolic oxidation-reduction by 
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viable trypanosomes. Plates were incubated for an additional 24 hours. After this time, 

absorbance was quantified using a Dynex microplate reader at an excitation wavelength 

of 570 nm and emission wavelength of 590 nm. The percentage of inhibition was 

calculated by the following equation:  

% Inhibition = 100 - [(Trypanosomes with compound - compound only) 

                                      (Trypanosomes only - media only)] × 100  

 

For each compound, percentage of inhibition values were used to generate dose-

response curves by average of triplicate data points. The concentration (µM) of the drug 

necessary to inhibit 50% of cell proliferation of that observed in control cultures 

(parasites grown in the absence of test compound) was calculated (IC50). Graphs were 

created and analysed using the statistical software program Prism (GraphPad Software 

Inc., San Diego, Cali). The statistical significance of results was estimated by 2way 

ANOVA.  Each experiment was performed on three independent occasions. 

6.3.5 In vitro compound toxicity in L6 cells 

An evaluation of mammalian cell cytotoxicity was carried out in parallel. 100 μL of 

RPMI 1640 medium supplemented with 10% fetal bovine serum and containing 5 x 10
3 

L6 cells were seeded into 96-well plates. Plates were incubated overnight and drugged 

with seven 3-fold-dilutions covering a range from 10 µM to 0.013 μM for melarsoprol 

and miltefosine, and 100 µM to 0.13 μM for the rest of the drugs. Control wells with 

only compounds and with only cells were included. After 72 hours of incubation with 

the drugs, plates were inspected under an inverted microscope to assure growth of cells 

in the control wells (no drugged) and sterile conditions. 15 μL of AlamarBlue was 

then added to wells and the plates incubated for another 2 hours. Absorbance was 
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quantified using a Dynex microplate reader at an excitation wavelength of 570 nm and 

emission wavelength of 590 nm. Podophyllotoxin was used as a reference drug for 

toxicity. The therapeutic index (TI) of all drugs was calculated as TD50/ED50, where 

TD50 is the dose of drug that causes a toxic response in 50% of the L6 cells (IC50 value 

for cytotoxicity) and ED50 is the dose of drug that is active in 50% of trypanosomes 

(IC50 value for anti-trypanosomal activity), as shown in Figure 2. The statistical 

significance of results was estimated by 2way ANOVA.  Each experiment was 

performed on three independent occasions. 

 

 

Figure 2. How the therapeutic index was determined.  

Modified from http://pharmacologycorner.com/therapeutic-index 

http://pharmacologycorner.com/therapeutic-index
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6.4 Results 

6.4.1 In vitro compound efficacy of reference drugs 

The reduction of resazurin, converted from blue to a bright-red colour by metabolically 

active trypanosomes/cells, was used as an indicator of cell/trypanosome viability and 

therefore as a measure of drug activity/toxicity (Figure 3).  

 

 

Figure 3. Percentage of inhibition of posaconazole against T. copemani G1. This figure 

illustrates the percentage of inhibition (change of colour) in tissue culture plate-wells (three 

replicates with three data points each) containing T. copemani parasites drugged with different 

concentrations of posaconazole ranging from 10 µM to 0.013 μM. Clear wells contain only 

medium. 

 

 

All reference drugs exhibited potent in vitro activity against all trypanosomes. However, 

both strains of T. copemani were more susceptible to all drugs than T. cruzi. 

Benznidazole was approximately eight times more active against T. copemani G1 (IC50 

1.053 μM) and G2 (IC50 0.713 μM) than against T. cruzi (IC50 8.537 μM) (Figure 4).  
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Figure 4. Sigmoidal dose-response curves of T. copemani G2 and T. cruzi drugged with 

benznidazole. X-axis: percentage of inhibition. Y-axis: drug concentration. 

 

 

Posaconazole exhibited a similar activity against T. cruzi and T. copemani G2, both 

with IC50 of 5.429 μM and 6.147 μM respectively. This drug was more active against  

T. copemani G1, which exhibited an IC50 of 1.254 μM. Melarsoprol and miltefosine 

were the most active drugs against all parasites tested. However, melarsoprol was much 

more active with IC50s in the sub-μM range. Significant differences in drug 

susceptibility between T. copemani G1 and G2 (p<0.0001) were found. T. copemani G2 

was more susceptible to benznidazole and melarsoprol. In contrast, T. copemani G1 was 

more susceptible to melarsoprol and miltefosine (Table 1, Figure 5). 
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Table 1. Inhibitory concentration 50 (IC50) of all reference drugs against T. copemani 

G1 and G2, and T. cruzi and toxicity against L6 cells. Values are in μM. SD: standard 

deviation.  

 

Compounds T. copemani G1 

(IC50±SD) 

T. copemani G2 

(IC50±SD) 

T. cruzi 

(IC50±SD) 

Toxicity on L6 

cells (IC50±SD) 

Benznidazole 1.053 ± 0.183 

(>94.9) 
0.713 ± 0.186 

(>140.2) 
8.537 ± 0.306 

(>11.7) 
>100 μM 

Posaconazole 1.254 ± 0.418 

(>79.7) 
6.147 ± 0.154 

(>12.3) 
5.429 ± 0.151 

(>18.4) 
>100 μM 

 
Melarsoprol 0.007 ± 0.001 

(8.8) 
0.005 ± 0.0006 

(12.1) 
0.010 ± 0.001 

(6.2) 
0.062 μM 

Miltefosine 0.095 ± 0.007 

(2.4) 
0.745 ± 0.034 

(0.31) 
2.109 ± 0.112 

(0.1) 
0.231 μM 

Podophyllotoxin
a - - - 0.01 μM 

 

a
: reference drug for toxicity 

() 
Therapeutic indices are given in parenthesis 

 

 

 

Figure 5. Drug susceptibility of T. copemani G1, G2, and T. cruzi against reference drugs. 

X-axis: IC50. Y-axis: drugs. Bars: standard deviation. 
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6.4.2 In vitro compound efficacy of new compounds 

Both fenarimols and both pyridine derivatives exhibited potent in vitro activity against 

all trypanosomes in the low and sub-μM range. However, they were more active against 

both strains of T. copemani, with the exception of PDB1 that was less active against T. 

copemani G2 than T. cruzi (Table 2). All four compounds exhibited similar activity 

against T. cruzi, with IC50 values ranging from 4.5 μM to 6.1 μM. FN2 was the 

compound that presented the highest activity against both T. copemani G1 and G2, with 

IC50 of 1.122 μM for G1 and 0.969 μM for G2. There was a significant difference in 

susceptibility of both T. copemani strains to all compounds (p<0.0001), with T. 

copemani G2 more susceptible to fenarimol compounds and T. copemani G1 more 

susceptible to pyridine derivative compounds (Table 2, Figure 6). 

 

Table 2. Inhibitory concentration 50 (IC50) of fenarimols and pyridine derivatives 

against T. copemani G1 and G2, and T. cruzi and toxicity against L6 cells. Values are in 

μM. SD: standard deviation. FN: fenarimol derivatives. PDB: pyridine derivatives. 

 

a
: reference drug for toxicity 

() 
Therapeutic indices are given in parenthesis 

 

Compounds T. copemani G1 

(IC50±SD) 

T. copemani G2 

(IC50±SD) 

T. cruzi 

(IC50±SD) 

Toxicity on L6 

cells (IC50±SD) 

FN1 3.316 ± 0.1021 

(>30.1) 

2.395 ± 0.302 

(>41.7) 

6.112 ± 0.0655 

(>16.4) 

>100 μM 

FN2 1.122 ± 0.3971 

(53.1) 

0.969 ± 0.188 

(61.4) 

5.979 ± 0.2281 

(10) 

59.52 μM 

PDB1 2.675 ± 0.7263 

(>37.4) 

7.178 ± 0.713 

(>14) 

5.261 ± 0.6828 

(>19) 

>100 μM 

PDB2 1.51 ± 0.2736 

(33.1) 

3.343 ± 0.197 

(15) 

4.533 ± 0.3151 

(11) 

50.06 μM 

Podophyllotixin
a 

- - - 0.01 μM 
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Figure 6. Drug susceptibility of T. copemani G1, G2, and T. cruzi against the new 

fenarimol and pyridine derivatives. X-axis: IC50. Y-axis: drugs. Bars: standard deviation. 

 

6.4.3 In vitro drug toxicity in L6 cells 

Cells were exposed to various concentrations of each drug, and viable cell number was 

determined by the AlamarBlue metabolic assay. The therapeutic indices (TI = IC50 

value for cytotoxicity divided by IC50 value for antiprotozoal activity) of all 

compounds were calculated and given for each parasite (Tables 1 and 2). The higher the 

TI, the better the drug is due to the very small dose of the drug that is needed to be 

effective.  

 

The highest cytotoxicity for L6 cells was exerted by melarsoprol (IC50, 0.062 μM) and 

miltefosine (IC50, 0.231 μM), which, interestingly, had the highest activity against all 

trypanosomes as well (Table 1). Furthermore, TI of both drugs was in general 
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significantly low (Melarsoprol TI <12.1 and Miltefosine TI <2.4) suggesting the effect 

of the drug was in part due to cytotoxicity instead of only to anti-trypanosomal activity 

(Table 1).  

 

FN2 and PDB2 compounds exhibited IC50s of 59.52 μM and 50.06 μM respectively in 

L6 cells, followed by benznidazole, posaconazole, FN1 and PDB1, which exhibited 

IC50s bigger than 100 μM. However, benznidazole and FN1 presented better 

therapeutic indices against both T. copemani strains, and PDB1 exhibited a better 

therapeutic index against T. cruzi than benznidazole and posaconazole (Tables 1 and 2). 

6.5 Discussion 

The effect of different drugs and new compounds on the growth of two strains of  

T. copemani and one strain of T. cruzi was investigated and compared using the 

AlamarBlue assay. The AlamarBlue assay is a simple, sensitive and reproducible 

method to measure the viability of different cell lines (Ansar Ahmed et al. 1994). It has 

been extensively used to determine the in vitro activity/toxicity of different drugs 

against different trypanosomatids such as T. cruzi, T. brucei and Leishmania spp. 

(Rolón et al. 2006, Morais-Teixeira et al. 2011). A previous study found AlamarBlue 

was a good method to quantify the activity of different compounds against T. brucei 

gambiense and T. b. rhodesiense in vitro and demonstrated that results were comparable 

to those obtained with other fluorochrome dyes (Räz et al. 1997). Furthermore, it has 

been shown to be slightly superior in sensitivity to the MTT cell proliferation assay (3-

(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide), which has been 

extensively used in high throughput screenings (Hamid et al. 2004, Ho et al. 2012). The 
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results of the present study showed IC50 values for benznidazole and miltefosine 

similar to IC50 values reported in previous studies for T. cruzi, confirming the 

reliability and reproducibility of this assay (Santa-Rita et al. 2000, Lira et al. 2001, 

Saraiva et al. 2002, Luna et al. 2009).  

 

This is the first study looking at the in vitro susceptibility of Australian trypanosomes to 

different drugs and new compounds developed against different trypanosomatids. All 

reference drugs benznidazole, posaconazole, melarsoprol and miltefosine, displayed 

promising trypanocidal activity against both strains of T. copemani isolated from the 

critically endangered marsupial the woylie and against T. cruzi, showing a broad anti-

trypanosomal spectrum. Previous studies have also demonstrated that some of these 

reference drugs present a broad-spectrum of activity. Miltefosine for example, 

originally developed as an anticancer agent and now used for treatment of both visceral 

and cutaneous leishmaniasis, has also been shown to be active in vitro against T. cruzi, 

with IC50 ranging from 1 μM to 3.5 μM (Santa-Rita et al. 2000, Lira et al. 2001, 

Saraiva et al. 2002). Melarsoprol, an organoarsenic compound that is mainly used 

against late-stage sleeping sickness caused by T. brucei subspecies (Schweingruber. 

2004), has also been shown to be active in vitro and in vivo against T. lewisi, a 

trypanosome that infect rats (Howie et al. 2006, Verma et al. 2011, Dethoua et al. 2013) 

 

Miltefosine was highly active against T. cruzi and T. copemani G1 and G2, with IC50 of 

0.095 μM, 0.745 μM and 2.1 μM respectively. However, it has been shown to present a 

significantly lower activity in vitro and in vivo against T. brucei subspecies with 18-fold 

and 43-fold greater IC50 values of 35.5 μM for T. brucei brucei and 47.0 μM for  

T. brucei rhodesiense in in vitro experiments (Croft et al. 1996), and 76 μM for  
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T. brucei gambiense and 88 μM for T. brucei rhodesiense in experimentally infected 

mice (Konstantinov et al. 1997). The significant differences in miltefosine activity 

between species is not surprising if we take into account the fact that antiparasitic drugs 

are usually developed to target and/or inhibit intracellular signaling pathways that are 

crucial in cell replication and survival, and those pathways may differ between species. 

Hence, the significant similarities in the activity of miltefosine against both T. cruzi and 

T. copemani may be due to intrinsic similarities between them in the target site of the 

drug. The mechanism of action of miltefosine in T. cruzi seems to be related to the 

inhibition of the novo phosphatidylcholine biosynthesis and phospholipid signaling 

pathways (Croft et al. 1996, Malaquias et al. 1999). However, the underlying 

mechanism of action of miltefosine against Australian Trypanosoma species is 

unknown, and although it could be the same pathway used in T. cruzi, it needs to be 

further investigated. 

 

Surprisingly, benznidazole and posaconazole, drugs currently used to combat T. cruzi 

infections, presented lower activity against this parasite than the drugs miltefosine and 

melarsoprol. Similar studies evaluating the susceptibility of different strains of T. cruzi 

to miltefosine found this drug presented a greater activity against each strain than the 

reference drug benznidazole with IC50s ranging between 0.9 μM to 3.0 μM for 

miltefosine and 9.0 μM to 27 μM for benznidazole (Saraiva et al. 2002, Luna et al. 

2009). However, it cannot be ignored that miltefosine and melarsoprol exhibited the 

highest toxicity to the mammalian cell line used and the lowest therapeutic indices. This 

suggests that the greater activity of both drugs against T. cruzi and T. copemani may in 

part be due to drug cytotoxicity and not entirely due to their trypanocidal activity. This 

is not the first study showing cytotoxicity of melarsoprol and miltefosine. Melarsoprol 
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has been shown to induce programmed cell death or apoptosis in leukemic and plasma 

cell lines in vitro (König et al. 1997, Rousselot et al. 1999) as well as miltefosine in 

numerous tumour cell lines (Engelmann et al. 1995, Henke et al. 1998, Rybczynska et 

al. 2001).  

 

All fenarimol and pyrimidine derivatives exhibited potent activity against T. cruzi and  

T. copemani epimastigotes. Moreover, both fenarimol and pyrimidine compounds 

presented a better activity against T. cruzi than the T. cruzi reference drug benznidazole. 

These results are consistent with those obtained by Keenan (Keenan et al. 2013), who 

showed that both FN1 and FN2 exhibited a curative activity in mice infected with  

T. cruzi Tulahuen strain and a significant activity in vitro against T. cruzi amastigotes, 

as well as low toxicity in L6 cells. However, the T. cruzi IC50s of both fenarimol 

compounds obtained in the present study are generally higher than those previously 

reported (Keenan et al. 2013). These discrepancies derive from the use of different  

T. cruzi strains but most probably may derive from the use of different trypanosome life 

cycle stages in both studies. Several studies have revealed that some drugs or 

compounds, including benznidazole are more active against intracellular amastigotes 

than against axenically grown epimastigotes of T. cruzi (Freire-de-Lima et al. 2008, 

Luna et al. 2009). It has also been shown with Leishmania, that promastigotes tended to 

be less sensitive than intracellular stages to different drugs (Vermeersch et al. 2009). 

Those results might be attributed to cell-mediated antiparasitic mechanisms of the drugs. 

 

T. copemani G1 and G2, although grouped within the same clade in a phylogeny, 

exhibited genetic differences with both 18SrDNA and gGAPDH loci (Chapter 2) 

(Botero et al. 2013). Interestingly, the present study showed that both strains of  
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T. copemani exhibited significant differences in susceptibility to the different drugs 

used, supporting previous hypotheses suggesting that genetic variation within species 

could determine the degree of susceptibility to drugs (Campos et al. 2011, Plourde et al. 

2012). Previous studies have shown an association between T. cruzi genetic diversity 

and their susceptibility to different drugs. Toledo (de Ornelas Toledo et al. 2003) 

reported a different response to the drugs benznidazole and itraconazole among 

genetically different T. cruzi group I and group II strains. Moreover, the observation of 

differences in susceptibility to benznidazole among several T. cruzi strains isolated from 

humans, vectors and marsupials has also been reported (Toledo et al. 1997). 

Phylogenetic studies have shown a considerable intra-specific genetic variability within 

T. copemani isolates and the presence of co-infections with different T. copemani 

genotypes/strains in naturally infected animals (Botero et al. 2013). This variability and 

its possible association with the different phenotypic responses to drugs may complicate 

the scenario and may have important consequences on future attempts to combat  

T. copemani infections. However, it can not be ignored that T. copemani G1 and G2 

have exhibited other phenotypic differences distinct to drug susceptibility, such as 

different growth kinetics in culture (Chapter 4) and different cell infection in vitro 

(Chapter 5), indicating once again that they might correspond to different Trypanosoma 

species.  

 

Finally, the fact that benznidazole and FN2 had the highest therapeutic indices against  

T. copemani G1 and G2 (Benznidazole TI> 94.9 and TI>140.2; FN2 TI> 53.1 and 

TI>61.4) suggests these drugs could be used as potential therapeutics for ameliorating 

the clinical effects of infections with this parasite. Therefore, they may be of 

conservation value in managing the declines of naturally infected native marsupials in 
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the future.  
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Chapter 7 

Novel insights into the Kinetoplast DNA structure of the Australian Trypanosoma 

copemani 

    



235 

 

7.1 Abstract 

The kinetoplast is an organelle that is present in all trypanosomatids. It contains a giant 

network of thousands of catenated circular DNAs (kDNA) with unique structure and 

function. KDNA consists of a few dozen maxicircles that encode mitochondrial gene 

products, and several thousand minicircles that encode guide RNAs for the editing of 

mitochondrial RNA transcripts. Minicircles have been extensively used in the 

development of sensitive and specific diagnostic molecular tools due to their abundance 

and heterogeneity in size and sequence between species. They contain a 12-nucleotide-

sequence named “The Universal Minicircle Sequence” (UMS) that is conserved within 

most trypanosomatids. The number of UMS elements and their location in each 

minicircle differ between species. This chapter reports novel insights into the 

kinetoplast structure and kDNA organisation of Trypanosoma copemani, a parasite 

associated with the drastic decline of the Australian marsupial Bettongia penicillata. 

Transmission electron microscopy images showed classical disk-shaped kDNA network 

morphology, similar to that seen in late-emerging trypanosomatids such as T. cruzi,  

T. brucei and C. fasciculata. PCR, sequencing, and Western blot analysis showed the 

presence of the UMS elements in the minicircles of T. copemani and the existence of the 

UMS-Binding Protein (UMSBP), which is also present in all trypanosomatids and is 

involved in minicircles replication. Sequences obtained from the minicircles of  

T. copemani G1 and T. copemani G2 strains revealed significant similarities with the 

minicircles of T. cruzi. 
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7.2 Background 

The kinetoplast is an organelle that contains the mitochondrial DNA (kDNA) of 

trypanosomatid protozoa. The kinetoplast DNA or kDNA consists of thousands of 

interlocked or catenated DNA circles in two forms, maxicircles and minicircles that 

form a complex network (Lukeš et al. 2002, Jensen et al. 2012). Maxicircles comprise 

only a small portion of the kDNA network, with only a few dozen identical copies. 

Their size range from about 20 to 40 Kb, according to the species, and their function is 

to encode mitochondrial gene products (Shlomai. 2004). In contrast to maxicircles, 

minicircles comprise a big portion of the kDNA network and are present in several 

thousand copies that differ in size and sequence according to the species (Ray. 1987). 

Minicircles encode guide RNAs (gRNAs) that contain the genetic information for 

editing of mitochondrial RNA transcripts (Lukeš et al. 2002).  

 

A huge diversity in kDNA structure and conformation has been demonstrated within 

different kinetoplastids including free-living microorganisms and trypanosomatid 

protozoa. A classical disk-shaped kDNA network has been reported in T. cruzi,  

T. brucei, L. tarentolae and C. fasciculata. Minicircles within the network are catenated, 

and are released from the network through decatenation by DNA topoisomerase II 

enzymes prior to their replication (Shapiro et al. 1995). In contrast, the minicircles in 

species of the early and late branching family Bodonidae such as Bodo caudatus and 

others are not organised in a network. Instead, they are distributed in diverse forms 

across the mitochondrial matrix known as poly-kDNA, pan-kDNA, mega-kDNA, and 

pro-kDNA (Vickerman. 1990, Lukeš et al. 2002). Correlations between these diverse 

patterns of kDNA organization and genetic analysis based on nuclear rRNA genes have 
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contributed to a better understanding of the evolution of kDNA and have facilitated the 

establishment of phylogenetic relationships between kinetoplastids (Lukeš et al. 2002).   

A common feature within minicircles is the presence of a 12-nucleotide sequence 

named “Universal Minicircle Sequence” (UMS) that is conserved in most 

trypanosomatids and is part of the minicircle replication origin (Ray. 1989). However, 

the number of the UMS elements, their location in each minicircle, and the size of each 

minicircle differ among the species (Ponzi et al. 1984, Sugisaki et al. 1987b, Degrave et 

al. 1988). The regions of the minicircles flanked by the different UMS elements are 

heterogeneous in sequence and have been used to investigate intraspecific variations 

within species (Telleria et al. 2006). Due to the minicircle abundance and heterogeneity 

in sequence, they have been used considerably in the development of sensitive and 

specific diagnostic molecular tools using PCR (Noyes et al. 1998, Botero et al. 2010, 

Ceccarelli et al. 2014). The UMS is the specific binding site for the UMS-Binding 

Protein (UMSBP), a protein involved in kDNA replication (Tzfati et al. 1995b). The 

UMSBP of C. fasciculata for example, has been extensively studied (Onn et al. 2006).  

It was shown that its UMSBP is a single-stranded sequence-specific DNA binding 

protein that binds the UMS (12-mer) and a hexameric sequence (Abu-Elneel et al. 1999) 

that are conserved at the replication origins of C. fasciculata kDNA minicircles, as well 

as in the minicircles of many trypanosomatid species (Ray. 1989). Recent studies using 

antibodies raised against C. fasciculata UMSBP have found the presence of  

C. fasciculata UMSBP orthologues in other trypanosomatids such as T. cruzi and  

T. brucei (Coelho et al. 2003, Milman et al. 2007). These results were not surprising 

considering that the replication origin sequences of minicircles in all trypanosomatids 

are highly conserved. The importance of the UMSBP in the survival of trypanosomatids 

was demonstrated using RNA interference (RNAi) experiments. It was shown that 
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knocking down UMSBPs by RNAi not only affects the initiation of minicircle 

replication, but also inhibits segregation of the daughter networks and blocks nuclear 

division (Milman et al. 2007), suggesting this protein as a potential drug target against 

pathogenic trypanosomes.   

 

The kDNA has been of major interest not only because of its peculiar mitochondrial 

genome organisation, but also because its heterogeneity between species can be a clue 

to understanding the evolutionary history of trypanosomatids (Simpson et al. 2002). 

Although several species and genotypes of Australian trypanosomes have been 

described since the 50’s (Mackerras. 1959, Noyes et al. 1998, Smith et al. 2008, Austen 

et al. 2009, Averis et al. 2009, McInnes et al. 2009, McInnes et al. 2011, Paparini et al. 

2011, Thompson et al. 2013), there is a complete lack of knowledge about their 

kinetoplast and the organization of the DNA (kDNA) within this organelle. Therefore, 

the aims of this study were to investigate the ultrastructure and organization of the 

kDNA of the Australian T. copemani, including the organisation of the minicircles and 

the presence of the Universal Minicircle Sequence (UMS) element and the UMS-

Binding Protein (UMSBP), which are present in all trypanosomatids studied.  

7.3 Materials and methods 

7.3.1 Parasites 

Epimastigotes of T. copemani G1 and G2 were grown in 75 ml flasks containing 

Grace’s medium with 10% of FCS and penicillin-streptomycin.  T. cruzi epimastigotes 

were grown in 75 ml flasks containing RPMI 1640 media with 10% of FCS and 
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penicillin-streptomycin and C. fasciculata cultures were grown with agitation (150–200 

rpm) in brain-heart infusion media (BHI- Difco) containing 10 mg/ml haemin. All 

strains were grown at 28° C and 5% of CO2.  

7.3.2 Transmission Electron microscopy 

T. copemani G1 and G2 epimastigotes were fixed in a 1:1 mixture of 5% glutaraldehyde 

in 0.01 M PBS: cell culture medium (pH 7.2). All subsequent processing was performed 

in a PELCO Biowave microwave, where samples were post-fixed in 1% OsO4 (osmium 

tetroxide) in PBS (Phosphate buffered saline) followed by progressive dehydration in 

ethanol/acetone, before being infiltrated and embedded in epoxy resin Procure-Araldite. 

120nm-thick sections were cut with a diamond knife and mounted on copper grids. 

Digital images were collected from unstained sections at 120kV on a JEOL 2100 TEM 

fitted with a Gatan ORIUS1000 camera. The thickness and length of the kinetoplast 

were measured in trypanosome sections where the basal body of the flagellum was seen 

and where most of the DNA fibers within the kinetoplast were continuously distributed 

from side to side (indicating that the kinetoplast disk was cut parallel to its long axis and 

through its central region respectively).  

7.3.3 Isolation of kinetoplast DNA networks  

Ethidium bromide-cesium chloride stepwise gradients were used to isolate the kDNA of 

T. copemani and C. fasciculata (Saucier et al. 1981, Hajduk et al. 1984). 1x10
10  

T. copemani G1 and G2 parasites and 1x10
10 

C. fasciculata cells from the stationary 

phase were harvested by centrifugation at 14,000 rpm/4C for 5 minutes and then 

washed once with PBS and once with NET100 buffer (10mM tris-Cl pH: 8, 100mM 
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NaCl, 100mM EDTA pH: 8).  The pellet containing trypanosomes was submitted to 

lysis by re-suspending it in NET100 buffer and 1mg/ml of proteinase K.  Sodium 

Sarkosinate (Sarcosyl) was added slowly (3% final concentration) and the suspension 

was gentle mixed and incubated for 30 minutes at 4C. After this time, 24ml of CsCl 

(1.386 density) and 4ml of CsCl (1.750 density - mixed previously with 20l of EtBr) 

were added to an ultra-clear SW28 rotor tube. 10ml of sample lysate was then added to 

the tube and centrifuged in a SW28 rotor at 20,000rpm/ 4C for 30 minutes. The upper 

phase of the suspension was discarded and the middle phase (fluorescent band under 

UV light: KDNA-EtBr) was collected. The EtBr was removed by several washes with 

isoamyl-alcohol (0.1X SSC saturated) and then dialyzed overnight against tris EDTA 

buffer (TE) at 4C. KDNA was finally purified using proteinase K (as above) followed 

by and phenol-chloroform extraction and ethanol precipitation. 

7.3.4 Universal Minicircle Sequence PCR and sequencing 

DNA from both T. copemani strains and T. cruzi Tulahuen strain was isolated using the 

DNeasy Blood & Tissue MiniKit (Qiagen, Hilden, Germany) according to the 

manufacturer’s instructions. Because of the lack of sequence data of the minicircles 

from any Australian trypanosome on GenBank and the absence of designed primers to 

amplify them, this study attempted to amplify the minicircles of T. copemani using the 

12-mer Universal Minicircle Sequence (5'-GGGGTTGGTGTA-3') that is conserved 

between the minicircles of most kinetoplastids and should be present in T. copemani as 

a forward primer (UMSF 5'-GGGGTTGGTGTA-3'), and its complementary sequence 

as a reverse primer (UMSR 5'-TACACCAACCCC-3'). PCR reactions were performed 

in a total volume of 25 l containing 0.2 U of Taq DNA polymerase, 200 M of dNTPs, 
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1.5 M of MgCl2, 1 l of DNA template, and 1.5 M of each primer. The primer 

concentration used was higher than the normally used (0.8 M) in order to have enough 

primers annealing to target DNA, despite the competition of self-annealing. 

Amplification was performed in a PT100 thermocycler (MJ-Research) and consisted of 

an initial step of 95 C for 5 min, followed by 35 cycles of 30 s at 95 C, 30 s at 40 C 

and 60 s at 72 C and a final extension step at 72 C for 5 min. PCR products were run 

on a 1% agarose gel stained with SYBR safe (Invitrogen, USA), and visualised with a 

dark reader trans-illuminator (Clare Chemical Research, USA). Bands were cut from the 

gel and purified using Agencourt AMPure PCR Purification system (manufacturer’s 

instructions) and sequenced using an ABI Prism™ Terminator Cycle Sequencing kit 

(Applied Bio-systems, California, USA) on an Applied Bio-system 3730 DNA 

Analyzer. Sequences were aligned using MUSCLE (Edgar. 2004) with sequences from 

the minicircles of T. cruzi CL and Y strains retrieved from GenBank. 

7.3.5 Cell lysates and Western blot analysis 

Different concentrations of T. copemani G1 and G2, T. cruzi and C. fasciculata ranging 

from 20x10
6
 to 80 x10

6
 parasites were collected and centrifuged at 14,000 rpm for 5 

minutes at room temperature. The pellet was washed once with PBS and then 

resuspended in 40 μL of double-distilled water (H2Odd). Then, 10 μL of Sodium 

dodecyl sulfate (SDS 10%) was added and samples were sonicated for 5 minutes. After 

sonication, cell lysates were solubilised in cracking buffer containing final 

concentrations of 50 mM Tris-HCl, pH 6.8, 4% (wt/vol) SDS, 3.5% (vol/vol) -

mercaptoethanol, 10% (vol/vol) glycerol, and 10 mM EDTA. The suspensions were 

then boiled at 100
o
C for 5 minutes and loaded onto a 16.5% Tris-tricine SDS-

polyacrylamide gel. Upper electrophoresis buffer was 0.1 M Tris-tricine, pH 8.2, 
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containing 0.1% SDS; lower buffer was 0.2 M Tris-HCl, pH 8.9. Protein bands on the 

gel were transferred onto nitrocellulose membranes (Schleicher and Schuell). 

Membranes were incubated with Ponceau staining for 5 minutes to confirm that protein 

bands were transferred to the nitrocellulose membrane, and then were washed with 

H2Odd for several times.  After this, membranes were blocked by incubation in 5% 

skim dry milk (Difco) diluted in PBS-Tween for 30 min, and then were probed with a 1: 

4,000 dilution of anti-UMSBP for 90 min and with a 1:10,000 dilution of HRP-

conjugated goat anti–rabbit secondary antibodies (Jackson ImmunoResearch 

Laboratories, Inc.) for 40 min, followed by ECL detection as recommended by the 

manufacturer (Amersham Pharmacia Biotech). 

7.3.6 DNA Topoisomerase II assay 

It has been demonstrated that minicircles within the kDNA network of trypanosomatids 

such as C. fasciculata are catenated and can be released from the network through 

decatenation by the enzyme DNA topoisomerase II (Shapiro, and Englund. 1995). In 

attempts to investigate if the minicircles of T. copemani were catenated into the kDNA 

network, the enzyme DNA topoisomerase II (TopoGen Inc, Port Orange, Florida, USA) 

was used. The 10 l final volume reactions containing 4 units of DNA topoisomerase II, 

50 mM Tris-Cl (pH 8), 120 mM KCl, 10mM MgCl2, 0.5 mM of dithiothreitol (DTT), 

0.5 mM of ATP and 30 g BSA/ml (Topo II reaction buffer TG4040) and 1 L of 

kDNA were incubated for 60 min at 37 C, and then stopped by the addition of 0.1 

volume of stop buffer (5% sodium lauroyl sarcosinate, 0.025% bromophenol blue, 50% 

glycerol). Samples were loaded onto 1% agarose gel, containing 1g/ml ethidium 

bromide (Life Technologies) and electrophoresed at 100 volts for 30 minutes.  
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C. fasciculata topo II decatenated kDNA and C. fasciculata linear kDNA markers were 

purchased (TopoGen Inc, Port Orange, Florida, USA) and used as controls in the assay.  

7.4 Results 

7.4.1 Kinetoplast morphology 

The kinetoplast of both T. copemani strains exhibited the classical disk-shaped 

conformation present in other trypanosomatids such as T. cruzi, T. brucei, Leishmania 

and C. fasciculata (Shapiro, and Englund. 1995). It measured about 0.8 m in length 

and about 0.24 m in thickness, and was positioned adjacent to the basal body of the 

flagellum (Figure 1). Within the kinetoplast, the kDNA network was organised in the 

form of a giant and condensed disk-like structure. It was extended through the length of 

the kinetoplast (0.8 m in length) and exhibited a thickness of approximately 0.19 m 

(Figure 2).  
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Figure 1. Electron microscopy cross-sections of T. copemani showing a disk-shaped 

kinetoplast. A: T. copemani G1, B: T. copemani G2, k: kinetoplast, n: nucleus, bb: basal body 

of the flagellum, m: mitochondrion. Scale bars: 0.5 µM. 
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Figure 2. Electron microscopy cross-sections of the kDNA network of T. copemani and a 

schematic representation of minicircles organization within the network. A: kDNA of T. 

copemani G1, B: kDNA of T. copemani G2. Scale bars: 0.1 µM. 
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7.4.2 Universal Minicircle Sequence PCR and sequencing 

A gradient PCR using different annealing temperatures and MgCl2 concentrations was 

used initially to find the optimal conditions to amplify the variable regions of the 

minicircles using the UMS element as a forward primer and its complementary 

sequence as a reverse primer. When the PCR optimal conditions (described in materials 

and methods) were used, a band of approximately 300 bp was seen in both T. copemani 

G1 and G2 samples (Figure 3).  

 

 

 

Figure 3. UMS-PCR products on agarose gels. MW: molecular weight markers. Lane 1 

and 6: negative controls. Lanes 2 and 3: C. fasciculate, lane 4: T. copemani G1, lane 5: T. 

copemani G2, lanes 1 and 6: PCR negative controls, MW: molecular weight marker.  

 

 

However, when the annealing temperature was decreased from 40 C (optimal 

temperature) to 38 C, additional diffuse bands of approximately 600 bp, 900 bp, and 

1200 bp where observed (Figure 4).  In contrast, when DNA of C. fasciculata and  
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T. cruzi were used as templates in the PCR, two bands of approximately 1,225 bp and 

2,250 bp were seen for C. fasciculata (Figure 3), and four bands at approximately 350 

bp, 700 bp, 1000 bp and 1400 bp were observed for T. cruzi (Figure 4).  

 

 

 

Figure 4. UMS-PCR products on agarose gels. Lane 1 and 2: T. cruzi, lane 3: T. copemani G1, 

lane 4: T. copemani G2, MW: molecular weight markers. 

 

 

Interestingly, previous studies have shown the presence of two conserved regions in the 

minicircles of C. fasciculata and the presence of four conserved regions in the 

minicircles of T. cruzi (Sugisaki, and Ray. 1987b, Degrave et al. 1988) suggesting that 

the PCR amplifications obtained for both C. fasciculata and T. cruzi might be from the 

minicircles. The fact that the UMS-PCR exhibited four bands when T. copemani (either 

G1 or G2) was used suggests the presence of four UMS motifs in each minicircle (like 

in T. cruzi) and a full size of approximately 1200 bp as shown in Figure 5.  
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Figure 5. Proposed schematic representation of the position of the UMS elements in the 

minicircles of T. copemani.  It also illustrates the structure of the minicircles of T. cruzi,  

T. lewisi and T. brucei and the position of the four, two and one UMS elements in the 

minicircles of each species respectively.  

 

 

Sequencing of the PCR products confirmed they corresponded to the minicircles of  

C. fasciculata and T. cruzi. The C. fasciculata sequence was 431 bp long and when 

blasted to the NCBI database the closest related kinetoplastids was C. fasciculata clone 

M13CFK120 minicircle, with 92% of identity within 94% of query coverage.   

T. copemani G1 and G2 sequences were approximately 270 bp long and exhibited 27% 

of heterogeneity between them, with the majority of the heterogeneity in the first part of 

the sequence. Both sequences were blasted to the NCBI database and the closest related 
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kinetoplastid was T. cruzi with an 85% similarity within 44% of query coverage - most 

of the identical positions were at the downstream end (approximately 100 bp) (Figure 6). 

Alignments with the minicircles sequences of two strains of T. cruzi retrieved from 

GenBank revealed the presence of three conserved sequence blocks previously reported 

in all trypanosomatids (Table 1). The first and second blocks (CBS-1: 10 base pair 

sequence; CBS-2: 8 base pair sequence), which have been shown to differ between 

species, were exactly the same as the ones in both T. cruzi strain sequences. The third 

block CBS-3, which is the same UMS element (12 base pair sequence) was exactly the 

same as the one reported in several species of trypanosomatids (Table 1). Figure 6 

shows the alignment of T. copemani G1 and G2 minicircle sequences with two 

sequences from the minicircles of the T. cruzi CL and Y strains.  

 

 

 

Figure 6. Alignment of the minicircles of T. copemani and T. cruzi. CSB-1, CSB-2 and CSB-

3 or UMS: conserved sequence blocks between both T. copemani and T. cruzi.  
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Table 1. Conserved sequence blocks CSB-1, CSB-2 and CSB-3 (UMS) of different 

Trypanosoma species and T. copemani 

 

Organism CSB-1 D1-2 CSB-2 D2-3 CSB-3 or UMS UMS per 

minicircle 

Sequence 

Reference 

T. brucei ATGGGCGTGC 20 TCCCGTGC 41 GGGGTTGGTGTA 1 (Jasmer et al. 1986) 

T. congolense AAGGGCGTTC 29 TCCCGTAC 47 GGGGTTGGTGTA 1 (Nasir et al. 1987) 

T. lewisi GAGGGCGTTC 29 CCCCGTAT 47 GGGGTTGGTGTA 2 (Ponzi et al. 1984)  

T. equiperdum ATGGGCGTGC 21 TCACGTGC 38 GGGGTTGGTGTA 1 (Barrois et al. 

1981) 

T. cruzi Y strain AGGGGCGTTC 28 CCCCGTAC 47 GGGGTTGGTGTA 4 (González. 1986) 

T. copemani G1 AGGGGCGTTC 29 CCCCGTAC 48 GGGGTTGGTGTA 4 This study 

T. copemani G2 AGGGGCGTTC 29 CCCCGTAC 48 GGGGTTGGTGTA 4 This study 

 

D1-2: average distance (in base pairs) between CSB-1 and CSB-2 

D2-3: average distance (in base pairs) between CSB-2 and CSB-3 or UMS 

 

7.4.3 Universal Minicircle Sequence Binding Protein (UMSBP)  

Considering that the UMS element is present in C. fasciculata minicircles, and that it 

was also found in T. copemani minicircles (by PCR and sequencing), we investigated 

the presence of a UMSBP in T. copemani using antibodies raised against C. fasciculata 

UMSBP (Tzfati et al. 1995b). A preliminary staining with Ponceau dye to evaluate the 

transfer (blotting) efficiency of the proteins to the membrane, showed the same pattern 

of protein bands for both T. copemani G1 and G2, and a different pattern when 

compared with T. cruzi and C. fasciculata (Figure 7). Western blot analysis using  

C. fasciculata anti-UMSBP antibodies showed this antibody recognised two peptides of 

approximately 14 kDa and 25 kDa in both T. copemani G1 and G2 protein extracts. 

These bands were detected only when more than 30 x 10
6
 T. copemani epimastigotes 

were loaded per lane in the SDS-PAGE gel (Figure 8). 

 



251 

 

  

 

Figure 7. Nitrocellulose membrane stained with Ponceau dye for protein detection. Each 

lane contains different numbers of epimastigotes of T. copemani G1 and G2, T. cruzi and  

C. fasciculata. 

 

 

When C. fasciculata protein extracts were used, the antibody recognised a peptide of 

approximately 13.7 kDa when all the three different concentrations of parasites were 

loaded per lane (Figure 9). However, when recombinant UMSBP from this 

trypanosomatid was used the antibody recognised an extra peptide of about 27.4 kDa. 

These results are consistent with previous studies that showed the UMSBP of this 

trypanosomatid is about 13.7 kDa and its dimer is double in size (27.4 kDa) (Tzfati et al. 

1992, Tzfati et al. 1995b, Onn et al. 2004). When T. cruzi protein extracts were used, 

the antibody recognised a peptide of approximately 15 kDa (Figure 8). 
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Figure 8. Western blot analysis using C. fasciculata UMSBP antibodies. Total protein cell 

extracts from different concentrations of epimastigotes of T. copemani G1, T. copemani G2, T. 

cruzi and C. fasciculata were used. Electrophoresis was carried out along with protein size 

marker (M); A and B: same membrane with different time of exposure; RCF: C. fasciculata 

recombinant UMSBP. White asterisks: T. copemani UMSBPs (~14 kDa and ~25 kDa). Red 

asterisks: T. cruzi (~15 kDa). Blue asterisks: C. fasciculata (~13,7 kDa). 
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7.4.4 KDNA decatenation  

Incubation of purified kDNA with the enzyme DNA topoisomerase II revealed that the 

minicircles of T. copemani are catenated within the network. Released minicircles by 

topoisomerase II were analysed by electrophoresis in agarose gels. Intact kDNA  

networks where topoisomerase II was not added failed to enter the agarose gel 

(catenated minicircles). However, decatenated kDNA migrated into the gel and 

generated several bands (free minicircles released by topoisomerase II) (Figure 9).  

 

 

Figure 9. DNA Topoisomerase II products in T. copemani and C. fasciculata kDNA.  

A: pure kDNA in presence of topoisomerase II (decatenation); B: pure kDNA without 

topoisomerase II (non-decatenation). In red: T. copemani kDNA. In blue: C. fasciculata kDNA 

and markers. Lanes 1 and 5: T. copemani G2. Lanes 2 and 6: T. copemani G1. Lanes 3 and 4:  

C. fasciculata. M1: C. fasciculata nicked open circular minicircles marker. M2: C. fasciculata 

relaxed minicircles marker. NC: decatenated nicked kDNA minicircles. LC: linearised kDNA 

minicircles. CC: decatenated covalently-closed minicircles. 
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Three bands were observed in the gel lane where topoisomerase II was added to kDNA 

of C. fasciculata. The upper and lower bands were equivalent to the bands in the 

decatenated kDNA marker (C. fasciculata marker) and corresponded to two decatenated 

products, nicked and covalently-closed minicircles respectively. The middle band was 

equivalent to the linear kDNA minicircles marker (C. fasciculata marker). In the same 

way, T. copemani G1 and G2 purified kDNAs yielded three bands, although, of smaller 

sizes when compared with C. fasciculata extracts.  The upper and lower bands 

corresponded to nicked and covalently closed minicircles respectively. The middle band 

corresponded to linearised kDNA minicircles (Figure 9). The separation between the 

decatenated nicked and covalently-closed (relaxed) minicircles is due to the presence of 

EtBr in the gel, which results in the supercoiling of the covalently-closed, but not of the 

nicked minicircles. Topoisomerase II does not induce the formation of linear minicircle 

products suggesting that nicks possibly occurred during the purification of kDNA due to 

the presence of nucleases activity in the kDNA purification process. There was a high 

molecular weight band in all kDNA extracts that could be maxicircles or catenated 

minicircles (dimers, trimers, etc).  

7.5 Discussion 

Kinetoplastids are a group of flagellates that include Trypanosomatid parasites and free-

living bodonid species. They have a mitochondrion termed a “kinetoplast” that contains 

DNA in two forms, known as maxicircles and minicircles. The organisation of 

minicircles and maxicircles within the kinetoplast DNA (kDNA) differs within species 

and these differences have been used to cluster them into various groups (Lukeš et al. 

2002). The most complex type of kDNA organisation is the kDNA network structure. 

This type of kDNA is present in pathogenic trypanosomes such as T. cruzi and T. brucei, 
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and in the insect trypanosomatid C. fasciculata - all late diverging kinetoplastids (Lukeš 

et al. 2002). In the network, the kDNA is condensed into a disk-shaped structure where 

minicircles are covalently closed, and each is catenated on the average to three 

neighbours (Chen et al. 1995), and aligned side-by-side in a non-supercoiled structure 

(Rauch et al. 1993). Pro-kDNA is the second more organised kDNA structure and is 

present in the late-diverging free-living bodonid Bodo saltans. The majority of 

minicircles in pro-kDNA are covalently closed, topologically relaxed and organised in a 

single bundle-like structure with only a few catanenes (Blom et al. 2000). In contrast, 

all other types of kDNA structure, poly-kDNA, pan-kDNA and mega-kDNA are present 

in early diverging kinetoplastids such as Dimastigella trypaniformis, Bodo caudatus, 

Cryptobia helicis, and Trypanoplasma borreli (Lukeš et al. 2002). The kDNA is 

distributed from filling most of the kinetoplast such as Pan-kDNA, to filling various 

separate foci throughout the kinetoplast such as poly-kDNA, all lacking the highly 

ordered kDNA-packaging seen in trypanosomatids (Lukeš et al. 2002). Interestingly, 

the kinetoplast of T. copemani presented a classical kDNA network conformation 

similar to the one seen in late diverging kinetoplastids such as T. cruzi and T. brucei. 

Furthermore, topoisomerase II products demonstrated that the minicircles of this 

parasite are catenated, confirming that the arrangement of the kDNA of T. copemani is 

in the form of a catenated network as seen in T. cruzi and T. brucei. The shared features 

in the kinetoplast ultrastructure between late diverging kinetoplastids and T. copemani 

might be of significance from the point of view of the evolution of Australian 

trypanosomes. However, further studies are needed to better understand these 

relationships.  
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Not only does the kDNA organization differ between species, several studies have 

reported differences in size of minicircles, and also differences in the number and 

position of the UMS elements in each minicircle. The size of the minicircles of  

C. fasciculata and T. lewisi for example, are approximately 1 Kb and 2.5 Kb 

respectively. All minicircles of both species contain two UMS elements located 180 

degrees apart  (Ponzi et al. 1984, Sugisaki, and Ray. 1987b, Degrave et al. 1988). In 

contrast, T. brucei and Leishmania tarentolae minicircles, are about 1 Kb in size, and 

contain only one UMS element (Kidane et al. 1984, Jasmer, and Stuart. 1986, Hines et 

al. 2011). The results of this study are consistent with those previously published for  

T. cruzi and C. fasciculata. T. cruzi UMS-PCR showed the amplification of four bands 

of approximately 350 bp, 700 bp, 1000 bp and 1400 bp, suggesting that primers aligned 

at the UMS elements present at zero and 90 degrees amplifying a quarter of the 

minicircles; at zero and 180 degrees amplifying half of the minicircle; at zero and 270 

degrees amplifying three quarters; and at zero and 360 degrees amplifying the full 

minicircle (Figures 4 and 5). In contrast, when C. fasciculata kDNA was used, two 

bands of approximately 1125 bp and 2250 bp were obtained suggesting that primers 

aligned either in the UMS located at zero and 180 degrees amplifying half of the 

minicircles, and at zero and 360 degrees amplifying the full minicircles (Figures 3 and 

5). Interestingly, when T. copemani kDNA was employed, the amplification of four 

bands slightly smaller than those obtained with T. cruzi were seen. The size of the four 

bands doubled in size (300 bp - 600 bp - 900 bp -1200 bp) suggesting the presence of 

four UMS elements (conserved regions) located at zero, 90, 180 and 270 degrees in 

each minicircle, and a full size of the minicircles of T. copemani of approximately 1200 

bp (Figures 4 and 5). Although the use of a pair of complementary short primers (like 

the 12-mer UMS primers used in this study) is not ideal due to possible nonspecific and 
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self-annealing amplifications, the lack of sequence data of the minicircles of  

T. copemani in GeneBank and the lack of any primers to amplify them made these short 

sequences the only options to explore. Supporting the PCR results, sequencing of the 

UMS-PCR products confirmed that the regions amplified by these primers corresponded 

to minicircle DNA. Similarly, the use of the UMS element as a forward and reverse 

primer to amplify the minicircles of Herpetomonas samuelpessoai was demonstrated 

previously (Fu et al. 1999).  

 

As previously discussed, the thickness of the kinetoplast disk varies among different 

species and is about half the circumference of a minicircle (Simpson. 1972). In  

T. carassii for example, the kDNA network disk thickness is about 0.233 µM and its 

minicircles are 1.6 Kb (Lukeš et al. 2000). Assuming this demonstrates correlation 

between the kDNA disk thickness and the size of minicircles, the suggested size of the 

minicircles of T. copemani of around 1.2 Kb seems to be correct. However, further 

cloning and sequencing of the full length of the minicircles of T. copemani is required to 

verify this. 

 

The sequence regions flanked by the UMS elements have been shown to differ at the 

intraspecific level. In T. cruzi for example, these variable regions have been used as 

powerful markers to discriminate between different stocks or strains using minicircle 

restriction fragment profiles (Morel et al. 1980), low stringency single specific primer 

PCR (LSSP-PCR) (Rodríguez et al. 2009), and Southern hybridization analysis using 

labelled minicircles variable regions (Botero et al. 2010). Sequencing of the regions 

amplified by the UMS element primers showed a high heterogeneity between both 

strains of T. copemani and both strains of T. cruzi at the beginning of the sequence (first 
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150 bp). Most likely, this region corresponds to a portion of the variable regions of the 

minicircles of both parasites. In contrast, a low heterogeneity in sequence was observed 

at the end of the sequence (last 100 bp). This region contained the three conserved 

sequence blocks CSB1, CSB2, and CSB3 or UMS, and therefore may correspond to the 

conserved region of the minicircles.  

 

When sequences were individually compared with those in GenBank, the closest match 

were minicircle sequences of T. cruzi with 83% of identity in the last 138 nucleotides of 

the sequence (half of the sequence). When this more conserved part of the sequence 

between both species was analysed more carefully, three conserved sequence blocks 

were found in both species including the UMS element block (which is also known as 

CSB-3).  Those three conserved sequence blocks have been reported previously from 

different species of trypanosomatids including C. fasciculata, L. tarentolae, T. brucei, T. 

congolense, T. equiperdum and T. lewisi (Barrois et al. 1981, Kidane et al. 1984, Ponzi 

et al. 1984, Jasmer, and Stuart. 1986, Nasir et al. 1987, Sugisaki et al. 1987b) and are 

believed to be important for DNA replication (Shapiro et al. 1995). However, 

differences in the sequence of both first and second blocks (CSB-1 and CSB-2) between 

different trypanosomatids have been reported (Ray. 1989). Interestingly, T. copemani 

CSB-1 and CSB-2 block sequences were exactly the same as the ones seen in different 

clones of T. cruzi minicircles. The fact that CSB-1, CSB-2 and CSB-3 minicircle blocks 

are involved in the initiation of kDNA replication and all were identical in both T. cruzi 

and T. copemani suggest that both parasites might share common features in the process 

of kDNA replication. However, the significance of these genetic similarities and this 

assumption needs to be further investigated. 
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The UMSBP of C. fasciculata has been extensively studied. This protein is a single-

stranded DNA-binding protein that has been thought to act as an initiator in the 

minicircles replication process (Milman. 2007) after binding to the UMS elements in the 

minicircles (Tzfati et al. 1992, Tzfati et al. 1995b). It has been shown that antibodies 

raised against the UMSBP of C. fasciculata can cross react with the UMSBP of other 

trypanosomatids such as T. cruzi and T. brucei (Coelho et al. 2003, Milman. 2007).  

T. cruzi UMSBP was previously shown to be approximately 14 kDa and to bind to the 

dodecamer UMS element (Coelho et al. 2003). The present study confirmed these 

previous results and showed that antibodies raised against C. fasciculata UMSBP 

recognise T. cruzi UMSBP as well. However, there was a slight difference in the size of 

the protein (approximately 15 kDa in this study). This study reports for the first time the 

presence of UMSBP in T. copemani.  Antibodies raised against the UMSBP of  

C. fasciculata detected two proteins in T. copemani cell extracts, suggesting the 

presence of two UMSBP orthologues in this parasite, of about 14 and 25 kDa each. The 

identification of T. copemani UMSBP, a protein that has been involved in the process of 

kDNA replication in other trypanosomes, is the first step to understanding this 

mechanism in this parasite. It has been demonstrated that knocking down the UMSBP 

gene in vitro, not only affects the initiation of minicircle replication, but also inhibits 

segregation of the daughter networks and stops nuclear division and caused cell growth 

arrest (Milman et al. 2007). Considering the observation that T. copemani was 

associated with the drastic decline of the woylie and knowing the UMSBP of this 

parasite, open the doors to the development of new drug candidates that target this 

indispensable protein in the pursuit of strategies to reduce the impact of Trypanosoma 

infections within Australia. 
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This study demonstrated not only strong similarities in the kDNA structure and 

minicircle organisation and sequence between T. copemani and late emerging 

trypanosomatids such as T. cruzi, but it also provided preliminary information and a 

foundation to better understanding the minicircle organisation and the mechanism of 

kDNA replication in Australian trypanosomes.  
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8.1 Summary 

This chapter reviews the findings of this whole research and links the different chapters 

in the context of the overall aims. First, it describes the aims and summarises the 

methodology used to accomplish the genotypic and phenotypic characterisation of 

Australian trypanosomes. Secondly, it briefly describes the main results of each chapter 

and emphasises the importance of the overall findings. Finally, it considers the findings 

in a broad perspective and suggests directions for future research. 

8.2 General overview 

The overall aim of this research project was to investigate the genotypic and phenotypic 

diversity of Trypanosoma spp. infecting Western Australian marsupials and to 

determine the potential role that trypanosomes are playing in the drastic decline of the 

woylie. On one hand, the genotypic characterisation involved the sequencing and 

phylogenetic analysis of trypanosomes in the blood and tissues of ten different 

marsupial species using two different loci: the nuclear 18S rDNA and the mitochondrial 

gGAPDH gene, as well as the sequencing of partial fragments of the minicircles of the 

kinetoplast DNA of trypanosomes isolated in culture. On the other hand, the phenotypic 

characterisation involved different aspects of trypanosome biology and behaviour 

including: (i) investigation of trypanosomes capacity to migrate to different tissues in 

naturally infected marsupials; (ii) description of the different morphological stages of 

trypanosomes in the vertebrate host and in culture media; (iii) investigation of 

trypanosomes capacity to infect different cell lines in vitro (iv) evaluation of their 

susceptibility to different drugs in vitro; and finally (v) the description of the 

ultrastructure of their kinetoplast.  
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The core of both genotypic and phenotypic characterisation was the critically 

endangered Australian marsupial “the woylie”, or brush-tailed bettong, Bettongia 

penicillata, which interestingly was the only marsupial host infected with all eight 

different Trypanosoma genotypes described, and from which trypanosomes were 

isolated in culture. The drastic population decline - where disease is believed to be 

playing an important role, and the high prevalence of Trypanosoma infections in the 

woylie, made this marsupial species the perfect candidate to investigate the potential 

pathogenicity of Australian trypanosomes. This study also provided a unique biological 

comparison of Australian trypanosomes with the pathogenic T. cruzi in order to better 

understand the potential pathogenicity of Australian trypanosomes. 

 

The main results of each chapter are briefly summarised as following: 

 

Chapter 1: This chapter comprised a review of different aspects of trypanosome life 

history including evolution, genetic diversity, taxonomy, host range, life cycle, 

pathogenicity, and drug efficacy.  

Chapter 2: This chapter described the presence of eight different genotypes belonging 

to three different species of indigenous Australian trypanosomes (T. sp H25,  

T. copemani and T. vegrandis) circulating in blood and tissues of ten different species of 

marsupials and revealed a remarkably high prevalence of trypanosome infection in the 

critically endangered marsupial the woylie. 

Chapter 3: This chapter demonstrated a high prevalence of infection with T. copemani 

in woylies in the declining population and a high prevalence of T. vegrandis in woylies 

in the stable population. It showed also that woylie tissues infected with T. copemani 

G2 or co-infected with some genotypes of T. vegrandis and T. sp H25 exhibited 
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pathological lesions similar to those seen in infections with the pathogenic T. cruzi, 

suggesting an association between Trypanosoma infections and the drastic decline of 

the woylie. 

Chapter 4: This chapter described the isolation and morphology of trypanosomes, and 

showed differences in the nutritional requirements and behaviour in culture of  

T. copemani G1 and G2. 

Chapter 5: This chapter revealed that T. copemani G2 was able to infect different cell 

lines in vitro, and was able to produce a higher infection in VERO cells than the 

pathogenic T. cruzi.  

Chapter 6: This chapter demonstrated remarkable differences in drug sensitivity 

between T. copemani G1 and G2 and showed that drugs currently used to combat  

T. cruzi infections are effective against these parasites. 

Chapter 7: This chapter showed outstanding similarities between the organisation and 

sequence of the minicircles of the kinetoplast DNA of T. copemani and T. cruzi. 

 

Importance of the results 

Understanding the life cycle of parasites is essential in the development of strategies to 

reduce the infection pressure generated in the host. The findings of this PhD study 

provided novel and unique insights into the capacity of Australian trypanosomes to 

migrate and infect different tissue cells in the vertebrate host, greatly advancing the 

understanding of the life cycle of these parasites within Australian wildlife. The 

similarities found in the life cycle of T. copemani G2 and T. cruzi has important 

implications for the pathogenicity of these trypanosomes and conservation of marsupial 

species where this Australian trypanosome is known to be at high prevalence levels.  
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Together all the data presented in this study helped to clarify the high genetic diversity 

of Australian trypanosomes and provided new evidence for the potential role of 

trypanosomes in the decline of a formerly abundant marsupial that is now critically 

endangered, the woylie. The results not only contributed valuable information towards 

directing management decisions for endangered species where these parasites are 

known to be present at high prevalence levels, but also provided new knowledge about 

the evolutionary biology and relationship that Australian trypanosomes have to the 

exotic and pathogenic T. cruzi. The information gained on host-parasite associations and 

pathogenicity will be significantly informative in fauna translocation planning and 

captive breeding. 

 

The data generated provided a framework for future research into developing strategies 

for limiting the risk of infection and spread of trypanosomes within Australian wildlife, 

and invites to the investigation of the role that these infections are playing in the decline 

of other native marsupials that are threatened or endangered. 

8.3 Perspectives and future directions 

8.3.1 The Isolation of Australian trypanosomes in culture 

The investigation of parasite biology and host-parasite interactions cannot be fully 

understood without the isolation of parasites in culture. The fact that some 

trypanosomes have been isolated in culture has facilitated not only a full understanding 

of their life cycle, but also the biological mechanisms underlying host-parasite 

interactions such as virulence and pathogenicity.  
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Unfortunately, culture-based methods tend to miss much of the diversity of 

trypanosomes in nature due to the wide and different spectrum of nutritional conditions 

required among Trypanosoma species, and finding the most effective culture medium 

that contains all the nutrients required for growth of certain species can be very difficult. 

Trying to overcome this problem, and taking into account the huge diversity of 

trypanosomes circulating in Australian marsupials, this study used different culture 

media in attempts to isolate all genetically distinct trypanosomes infecting Western 

Australian marsupials. Although, several isolates were successfully established in 

culture, PCR and sequencing showed all of them were T. copemani G1 or G2. The 

isolation of T. copemani G1 and G2 in culture allowed the investigation of diverse 

phenotypic characteristics including morphology, growth kinetics, cell infection, drug 

susceptibility, and kinetoplast DNA organisation, thus considerably increasing our 

knowledge about the biology of these parasites. The isolation of these trypanosomes in 

culture also opened doors for future in vitro and in vivo investigations towards 

understanding the mechanisms they employ for cell invasion and replication, and thus 

better defining their pathogenic potential.  

 

Although several different media were used, neither T. vegrandis or T. sp H25 were 

established in culture suggesting that the nutritional growth conditions required by both 

species might not be supplied by the different media used. However, the difficulty in 

isolating T. sp H25 could also be reflected by the low prevalence of this parasite in all 

marsupials examined. It is important to isolate T. vegrandis and T. sp H25 in culture, 

not only because they have been found infecting several tissues of various threatened 

and endangered marsupial species (Botero et al. 2013), but also because pathological 

signs were seen in woylie tissues co-infected with both species.   
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Polyparasitism is a term commonly used when referring to concurrent, mixed or co-

infections of either different species and/or intraspecific parasite genotypes (Lymbery et 

al. 2012). Mixed infections involving different species or genotypes of trypanosomes 

occur frequently in nature (Martins et al. 2006, Pollitt et al. 2011, Charles et al. 2013), 

and their interaction in a single host can influence their life history traits and dynamics 

in natural infections (Reifenberg et al. 1997). In T. cruzi for example, natural infections 

are composed of different genotypes of the parasite (multiclonal infections) (Tibayrenc 

et al. 1986, Tibayrenc et al. 1988), with each genotype exhibiting a preferential tissue 

tropism (Andrade et al. 1999, Vago et al. 2000, Macedo et al. 2004, da Silva Manoel-

Caetano et al. 2008, Ramírez et al. 2010). Charles et al. (2013) showed that Southern 

plains woodrats (Neotoma micropus) could be co-infected with two genotypes of  

T. cruzi and a novel Trypanosoma species. Moreover, polyparasitism involving two 

different species, T. cruzi and T. rangeli, has been reported in the critically endangered 

species of tamarin, Saguinus bicolor (Maia da Silva et al. 2008).  

 

Considering that polyparasitism with different species and genotypes of trypanosomes 

were prevalent and associated with pathology in tissues from woylies in the declining 

population there is a need to better understand if the presence of competing genotypes 

or species in a single host can modify the infection dynamics by either reducing or 

enhancing parasitemia, virulence, and pathogenicity. The first step to understand this 

will be to perform controlled in vitro and in vivo laboratory mixed infection experiments 

that can only be achieved with the isolation of both T. sp H25 and T. vegrandis in 

culture. Developing and using two/three-trypanosomes in co-infection models will 

assist in identifying if the competition for resources in vitro (with or without cells) or in 

vivo (in an experimental model) will select for higher or lower virulence trypanosomes. 
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Understanding if a species or genotype of trypanosomes in mixed infections reduces the 

virulence of others could be a clue to developing strategies to control trypanosomes that 

are causing problems in wildlife. The isolation of both Trypanosoma species in culture 

will also help to understand their life cycle, which can be particularly interesting for  

T. sp H25 that was shown to be genetically closely related with the pathogenic T. cruzi.  

8.3.2 The remarkable genetic diversity within the Trypanosoma copemani and 

Trypanosoma vegrandis clades 

Over the past two decades, the advent of molecular techniques has uncovered a large 

degree of genetic diversity within species of trypanosomes. Interestingly T. copemani 

and T. vegrandis clades exhibited a remarkably high intraspecific genetic variation, with 

ten and thirteen different genotypes respectively with polymorphisms at the 18S rDNA 

and gGAPDH genes described in both clades (including T. copemani G1 and G2 and  

T. vegrandis G3, G4, G5, G6 and G7 described in this study) (Austen et al. 2009, 

Paparini et al. 2011, Botero et al. 2013). Intraspecific genetic variation between 

trypanosomes has been attributed to genetic exchange, which has been widely described 

in T. brucei (Tait et al. 1990, Peacock et al. 2011), or to the multiclonal population 

structure described in T. cruzi (Tibayrenc et al. 1986). T. brucei for example, uses DNA 

recombination to periodically switch the expression of variant surface glycoprotein 

genes to evade the mammalian immune response in a process named antigenic variation 

(Hall et al. 2013). In contrast, a multiclonal population structure has been the 

explanation of the high intraspecific genetic diversity within T. cruzi (Tibayrenc et al. 

1986, Valadares et al. 2012). However, recent evidence has demonstrated that genetic 

exchange events also occur in T. cruzi (Ramírez et al. 2013, Roellig et al. 2013), and 
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that it could be a possible source of the genetic diversity observed in T. cruzi sylvatic 

populations (Miles. 1996). 

  

It is unclear at this time whether the genetic diversity observed within T. copemani and 

T. vegrandis is a product of either genetic exchange or multi-clonality and the fact that 

only some genotypes within both clades were found infecting tissues could be explained 

by both mechanisms. On one hand, genetic exchange might be yielding T. copemani or 

T. vegrandis genotypes with new combinations of biological properties such as 

virulence and pathogenicity. It was shown that under experimental conditions genetic 

recombination gave rise to more virulent trypanosomes. T. b. rhodesiense is pathogenic 

to humans due to the presence of a serum resistance associated gene, SRA, which 

prevents the lysis of the parasite by human serum. In contrast, T. b. brucei is not 

pathogenic to humans because it lacks the SRA gene (Tomlinson et al. 1998). However, 

under experimentally conditions, it was shown that the transfection of T. b. brucei with 

the SRA gene is sufficient to confer resistance to human serum (Van Xong et al. 1998). 

Furthermore, a recent study showed that the SRA gene could be gained by genetic 

recombination events in natural infections. Balmer et al. (2011) demonstrated that 

multiple infections enable the transference of the SRA gene from T. b. rhodesiense to  

T. b. brucei giving rise to new pathogenic strains. Thus, genetic exchange could be the 

explanation of the genetic diversity within both T. copemani and T. vegrandis clades, 

and might explain the appearance of some genotypes within each clade that are able to 

infect tissues and to cause pathology in the vertebrate host. On the other hand, it could 

also be possible that trypanosomes in natural infections are multiclonal with each clone 

presenting a different biological behaviour, some being able to establish better in host 

tissues and some being preferentially established in blood. However, the occurrence of 
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genetic exchange with a later clonal expansion of specific genotypes that become stable 

in the host could also be possible. To demonstrate that either genetic exchange and/or a 

multiclonal structure is accounting for the intraspecific genetic diversity observed 

within both T. copemani and  T. vegrandis clades, additional studies involving the direct 

cloning and genotyping from single cells and their use in controlled mixed infections 

are necessary.  

 

In addition, the lack of host specificity reflected by the capacity of all Trypanosoma 

species found in this study to infect several marsupial species could indicate that host-

switching events might have contributed to recombination events, or to the appearance 

of multiclonal infections. The implications of the genetic diversity of Australian 

trypanosomes on virulence and pathogenicity needs to be further investigated, not only 

because of their capacity to adapt and exploit different hosts, but also because this 

plasticity can determine their successful ability to become established in new hosts after 

their introduction into new habitats.  

8.3.3 Trypanosoma copemani G1 and G2  

Combined genotypic and phenotypic data are fundamental when finding and delimiting 

new Trypanosoma species. The level of morphological and genetic heterogeneity that 

defines a Trypanosoma species is not yet established. However, data on the extent of 

variation within and between known Trypanosoma species that are genetically and 

biologically related could help in determining what constitutes a new species. This 

study found remarkable phenotypic differences between T. copemani G1 and G2, but at 

the genotypic level variation was insufficient to consider them as separate species. The 

genetic polymorphisms in both the 18S rDNA or gGAPDH sequences and the genetic 
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distances between both T. copemani G2 and T. copemani G1 (and other genotypes 

closely related to G1 - see chapter 2) were lower than the diversity seen between two 

closely related Trypanosoma species, T. cruzi and T. marinkellei.  

 

New molecular markers such as cytochrome B and more biological differences must be 

investigated before definitive statements concerning T. copemani G2 as a separate 

species can be made. Furthermore, the development of primers that can discriminate 

between T. copemani G1 and G2 are necessary to better understand the dynamic of 

infection of both genotypes in a single host. This will also facilitate longitudinal studies 

looking at the prevalence of infection with both genotypes and comparing the health 

outcome of infections in wildlife. If T. copemani G1 and G2 are the same species, 

further studies will be needed to identify the parasite key mechanisms involved in their 

diverse phenotypic behaviour, for example the genes determining T. copemani G2 

virulence and pathogenicity. Knowledge of these genes could provide insights into the 

understanding of the evolution of pathogenicity in Australian trypanosomes. 

8.3.4 The Australian Trypanosoma copemani G2 and the South American 

Trypanosoma cruzi  

Both T. copemani G2 and T. cruzi have been shown to cause pathology in vertebrate 

host tissues. Like the pathogenic T. cruzi, the Australian T. copemani G2 migrates to 

different tissues in the vertebrate host and once there is able to infect cells, as 

demonstrated in natural infections in the woylie and in in vitro infections using different 

cell lines (see chapters 3 and 5). The significance of these findings has important 

implications for pathogenicity. Firstly, T. copemani G2 might infect cells to evade the 

host immune system and to complete its life cycle similar to T. cruzi.  This may explain 
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the persistence of trypanosomes in the blood of naturally infected woylies that were 

examined consecutively for long periods of time (Thompson et al. 2014), and the 

presence of T. copemani G2 in host tissue cells (Botero et al. 2013). Secondly,  

T. copemani G2 might trigger an immune inflammatory response that results in tissue 

damage and necrosis of host tissues, similar to that seen in T. cruzi infections in 

marsupials and humans in South and North America. Although the phylogenetic 

analysis based in the 18S rDNA and gGAPDH sequences showed that T. copemani does 

not clade with T. cruzi (such as T. sp H25), sequence blocks from the conserved regions 

of the minicircles of the kDNA of both parasites were identical. The fact that these 

identical regions are involved in the initiation of kDNA replication suggests that both 

parasites might share common features in the process of kDNA replication. 

 

The capability of both T. copemani and T. cruzi to infect cells suggests that these 

parasites might explore similar strategies to complete their life cycle in the vertebrate 

host (Figure 1 illustrates the proposed life cycle of T. copemani G2 in the vertebrate 

host). However, the use of a better in vitro model and an in vivo model will be necessary 

to confirm this. A marsupial cell line isolated from any Australian native marsupial 

known to be susceptible to T. copemani infections may be a good in vitro model to use. 

The use of a marsupial cell line in experimental infections with T. copemani G2 and  

T. cruzi, may contribute to better understanding the potential of T. copemani for 

intracellular replication and also may provide insights into the potential capacity of  

T. cruzi to infect Australian marsupials.  
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Figure 1.  Proposed life cycle of T. copemani G2 in the marsupial host. 

8.3.5 Australia’s biosecurity 

T. cruzi is the agent of Chagas disease in humans and also infects several marsupial 

species in South and North America, whereas T. copemani is a marsupial trypanosome 

that may not be capable of infecting humans. However, with human population growth 

and encroachment on wildlife habitats, the possibility exists that spillover events can 

occur within Australia (Thompson. 2013). It is noteworthy that some Trypanosoma 

species that normally are restricted to animals have been reported atypically infecting 

humans. These included infections with T. b. brucei, T. vivax, T. congolense, T. evansi 

and T. lewisi. While, some of these infections were transient in patients who recovered 

with or without treatments with anti-trypanosomal drugs, others caused illnesses and 

sometimes the death of patients with immature (infants) or depressed immune systems 

(Abebe et al. 1988, Truc et al. 1998, Joshi et al. 2005, Howie et al. 2006, Kaur et al. 
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2007, Sarataphan et al. 2007, Deborggraeve et al. 2008, Haridy et al. 2011, Verma et al. 

2011). In the event that any case of human trypanosomiasis caused by T. copemani 

occurs in Australia, the drugs benznidazole and the fenarimol and pyrimidine 

derivatives, which this study found to be highly effective against this parasite, could be 

a potential treatment to be used. 

 

Exotic vector-borne diseases have emerged as worldwide public health threats due to 

globalization and transfer of goods, along with travel and immigration (Klotz et al. 

2010). Concerns have been raised regarding the possibility of the establishment of local 

transmission of Chagas disease within Australia due to the increasing number of 

migrants infected with T. cruzi from South America (Thompson. 2013). The likelihood 

that this exotic parasite can succeed and become established beyond the limits of their 

native geographical ranges might be enhanced by the presence of wildlife reservoirs that 

can maintain the infection, by the presence of a suitable and competent insect vector, 

and by the introduction of the parasites in humans or imported zoo animals.  An early 

study showed that under experimental conditions the Australian marsupial Trichosurus 

vulpecula is susceptible to T. cruzi infections  - T. cruzi was able to trigger a strong 

immune response in this marsupial similar to the one seen in woylies infected with  

T. copemani G2 (Backhouse et al. 1951, Botero et al. 2013). This study showed that 

other Australian marsupial species are susceptible to infections with different 

Trypanosoma species; thus, the possibility exists that these marsupial species could be 

susceptible to T. cruzi infections as well. There is also the possibility that the vector of  

T. copemani or any other Australian trypanosome could transmit T. cruzi as well. Ticks 

were suggested to be involved in the transmission of T. copemani within Australia 

(Austen et al. 2011) and were also shown to acquire the infection with T. cruzi when 
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feeding on infected dogs in South America (Dias et al. 2005). Moreover, an early study 

showed the presence of the hematophagous “kissing bug”, Triatoma leopoldi 

(Pristhesancus plagipennis), in Cape York Peninsula in Queensland, which could be a 

suitable vector for T. cruzi like many other triatomines in Latin America (Monteith. 

1974, Klotz et al. 2010). More recently, a new triatomine belonging to an undescribed 

species (Triatoma sp.) was described near Jabiru in the northern territory 

(http://www.discoverlife.org/mp/20l?id=UCR_ENT00046634). Anecdotal evidence 

also showed the presence of T. leopoldi in a house backyard in Queensland 

(https://www.youtube.com/watch?v=zn1e0Oma0GY), but further studies are needed to 

taxonomically determine if it is in fact the hematophagous bug Triatoma leopoldi 

(Pristhesancus plagipennis). Finally, zoo imported animals and immigrants from Latin 

America infected with the parasite could be the source of T. cruzi within Australia. 

Although, housing conditions within Australia are not favorable to bug colonization and 

the chance of human infections, in the case of T. cruzi introductions, is very low, 

Australian wildlife may be potentially naïve to T. cruzi infections and could be seriously 

affected.  

 

The likelihood of establishment and spread of T. cruzi within Australia is small, but this 

risk should always be considered, especially in these days where the number of 

immigrants from Latin America and human encroachment on wildlife habitats is 

increasing. The understanding of the potential capacity of Australian marsupials and 

insects to act as reservoirs and amplifiers of emerging and exotic parasitic diseases 

merits further investigations. 

http://www.discoverlife.org/mp/20l?id=UCR_ENT00046634
https://www.youtube.com/watch?v=zn1e0Oma0GY
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8.3.6 Trypanosoma infections and the woylie decline 

Little attention has been paid to the role of infectious agents on wildlife conservation, 

despite the fact of increasing evidence that they can impact significantly on local 

populations by driving temporary or permanent declines and extinctions (Berger et al. 

1998, Skerratt et al. 2007, Ramsey et al. 2010). Although, wildlife hosts are thought to 

“have learnt to live in harmony” with trypanosomes (Legey et al. 1999), under certain 

circumstances such as stress or concurrent infections trypanosomes can become 

pathogenic, and therefore a significant threat to wildlife (Doherty et al. 1993, Seifi. 

1995, Brown et al. 2000, Wyatt et al. 2008, McInnes et al. 2011). Trypanosomes were 

reported for the first time infecting the woylie in 2008 (Smith et al. 2008). However, 

this is the first study to investigate whether Australian trypanosomes can cause 

deleterious effects in the woylie, and consequently contribute to its population decline.  

The remarkably high prevalence of infection with T. copemani in woylies from the 

declining population combined with the capacity of T. copemani G2 to infect host cells 

and to cause pathology in tissues suggest that infections with this parasite may be 

playing an important role in the decline. Judging by the large genetic distances between 

all three different Trypanosoma species, it was remarkable than a single woylie and a 

single tissue could be co-infected with all species at the same time (see chapter 3). This, 

added to the fact that no other marsupial species examined was found co-infected with 

all the different species of trypanosomes, suggests that mixed infections may be 

contributing to the decline. It is possible that the immune response generated by a 

Trypanosoma species may act antagonistically with those elicited by another species, 

impairing (immuno-suppressing) simultaneous control of infections. However, further 

studies are needed to examine the dynamics of these co-infections and their effect on 

woylie host immunity.  
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The host immune response can also be down-regulated due to stressors such as 

predators, habitat lost, climate change and/or human activity (Braun et al. 2002, Villa et 

al. 2008), and this may also account for the increase in susceptibility of woylies to 

different Trypanosoma species. Stress may also be a factor exacerbating Trypanosoma 

infections and reducing the fitness of woylies thereby making them more vulnerable to 

predation (Hing et al. 2014, Thompson et al. 2014). Many pathogens, which have little 

or no effect on healthy animals, may cause disease in individuals that are stressed, and 

may have dramatic and devastating effects on naive populations. However, the fact that 

other small sympatric marsupials such as the common brush-tailed possum, and the 

quenda, that may be experiencing the same stress pressures were found infected with 

single infections with trypanosomes suggests that other factors might be contributing in 

a greater part to the susceptibility of the woylie. 

 

It has been shown that genetically homogenous host populations are more vulnerable to 

pathogens and parasites than genetically diverse populations (King et al. 2012). 

Interestingly, the woylie has suffered two decline events since 1970, and has been 

subject to numerous translocations that have resulted in fragmented populations with 

reduced genetic variability (Pacioni et al. 2010). The low genetic diversity within the 

species may have resulted in an impaired or defective immune system that is unable to 

control infections with trypanosomes; such is the case with the Tasmanian devil and 

facial tumour disease (Morris et al. 2013). A defective immune system in the woylie 

may also explain the persistence of Trypanosoma infections in the woylie for long 

periods of time (Thompson et al. 2014), and may be facilitating the spread of 

trypanosomes through the woylie population. Future studies are needed to demonstrate 

this and to evaluate if the bottlenecks that the woylie has suffered since its first decline 
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(Wayne. 2008, Pacioni. 2010) has reduced its immunocompetence. Studies on the loss 

of diversity of the major histocompatibility complex proteins (MHC), which are critical 

in immune recognition of pathogens, will be a good start.  

 

Understanding the causes of the decline is pivotal to making the best decisions in order 

to manage the woylie species recovery in the short to long term. The causes of the 

woylie decline may be common between other species that have undergone similar past 

and recent declines. Thus, the implications of Trypanosoma infections on the health of 

other endangered and threatened Australian native marsupials needs to be further 

investigated. 

 

The examination of museum woylie specimens prior to the decline may provide 

important insights into understanding the infectious disease-related causes of the decline. 

Comparing woylie samples prior to and post decline may not only provide information 

about the different species of trypanosomes that were cohabiting the woylie, but it may 

also provide significant information about the loss of genetic diversity and implications 

of this on the decline. Comparing the genotypes of trypanosomes present in the woylie 

prior to and post decline may reveal if any introduction of new genotypes preceded the 

decline. Furthermore, it can be also applied to parasites such as Toxoplasma and 

Theileria that are known to infect the woylie.  

 

Investigations into the woylie decline have shown a spatio-temporal pattern in its 

progression, with a front to the decline moving at an average of 4 km per year 

throughout the Upper Warren region (Wayne et al. 2013). Moreover, studies on the 

prevalence of Trypanosoma infections have shown a considerable increase since its first 
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report in 2008 (Smith et al. 2008, Botero et al. 2013, Thompson et al. 2014). Little is 

known about the mechanisms of transmission and vectors that may have facilitated the 

rapid spread of Trypanosoma infections throughout the woylie population (Figure 1) 

(Hamilton et al. 2005, Austen et al. 2011). The large genetic distances between all three 

Trypanosoma species described in this study and the greater prevalence of infection of T. 

copemani (97%) in the Upper Warren region (declining population) and T. vegrandis 

(89%) in the Karakamia Sanctuary (stable population) support the idea that a different 

arthropod vector might be involved in the transmission of each Trypanosoma species. 

The vector of T. vegrandis might be more prevalent in Karakamia than in the Upper 

Warren region, while the vector of T. copemani might be more prevalent in the Upper 

warren region than in Karakamia Sanctuary. However, judging by the high prevalence 

and rapid spread of Trypanosoma infections through the woylie population, it may be 

possible that mechanical or direct transmission between hosts (insect biting, oral, or 

sexual) may occur. Oral transmission with T. cruzi has been experimentally 

demonstrated when infected Rhodnius prolixus were fed to raccoons (Roellig et al. 

2009). Furthermore, it was shown that lice of the suborder Anoplura (Pedicinus 

obtusus) are capable of disseminating T. cruzi infections among captive-reared baboons 

(Papio hamadryas), either by contamination of mucosal surfaces with its faeces, or by 

the oral route (Arganaraz et al. 2001). 

 

Although this study found that some anti-trypanosomal drugs exhibited high efficacy 

against T. copemani in vitro, the possibility that these drugs can be administrated to 

wildlife is rather remote at this point. It will be necessary to test these drugs in vivo in 

captive woylies, before they can be safely used in wild populations. At this stage, 

finding the vector and investigating if others ways of transmission are involved in the 
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dispersion of trypanosomes is of most importance. Understanding the mechanisms of 

transmission of Australian trypanosomes will facilitate the development of strategies to 

control and limit the rate of transmission and spread of trypanosomes within Australian 

wildlife.  
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