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Abstract 

BACKGROUND: Identifying stored-product insects is essential for granary management. 

Automated, computer-based classification methods are rapidly developing in many areas. A 

hyperspectral imaging technique could potentially be developed to identify stored-product 

insect species and geographical strains. This study tested and adapted the technique using 

four geographical strains of each of two insect species, the rice weevil and maize weevil to 

collect and analyze the resultant hyperspectral data.  

RESULTS: Three characteristic images that corresponded to the dominant wavelengths, 505, 

659 and 955 nm were selected by multivariate image analysis. Each image was processed and 

22 morphological and textural features from regions of interest were extracted as the inputs 

for an identification model. We found the back propagation neural network model to be the 

superior method for distinguishing between the insect species and geographical strains. The 

overall recognition rates of the classification model for insect species were 100% and 98.13% 

for the calibration and prediction sets respectively, while the rates of the model for 

geographical strains were 94.17% and 86.88% respectively.  

This article has been accepted for publication and undergone full peer review but has not 
been through the copyediting, typesetting, pagination and proofreading process, which 
may lead to differences between this version and the Version of Record. Please cite this 
article as doi: 10.1002/ps.3893 
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CONCLUSION; This study demonstrated that hyperspectral imaging, together with the 

appropriate recognition method, could provide a potential instrument for identifying insects 

and could become a useful tool for identification of Sitophilus oryzae and Sitophilus zeamais 

to aid in the management of stored-product insects.  

 

Key words: stored-product insects; geographical strains; rice weevil; maize weevil; 

identification; hyperspectral imaging 
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Introduction 

Cereal grains are the major source of food for humans and many domesticated animals. In 

both  developed and developing countries, most cereal grains are stored in granaries for 

years before being sent to consumers. This can simply be the result of over-production or it 

can be caused by other factors, such as differences in the point and time of production and 

consumption. Consequently, populations of stored-product insects can develop causing 

deterioration in grain quantity and quality. A survey from the Ministry of Agriculture of the 

People’s Republic of China shows that pests cause approximately 6.5–11.4% of the loss of 

rural stored-grain in China every year.1 The total economic losses due to stored-product 

insects and microorganisms in grains and oilseeds could be in the millions of dollars 

annually.2  

Stored-product insects have been widely researched in an effort to better manage them 

around the world. There are approximately 600 known species of stored-product insects in 

the world, 224 of which are found in China. Different species of stored-product insect can 

cause different levels of grain loss and each requires a different approach to be controlled. 

Different insects with different behavior require different control strategies. For example, the 
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red flour beetle, Tribolium castaneum (Herbst) (Coleoptera: Tenebrionidae) shows better 

flight capabilities than the confused flour beetle, Tribolium confusum Jacquelin du Val 

(Coleoptera: Tenebrionidae), so relatively quicker action may be required to control it. On the 

other hand, the rice weevil, Sitophilus oryzae (Linnaeus) (Coleoptera: Curculionidae) is more 

resistance to phosphine than its sibling species, the maize weevil, Sitophilus zeamais 

Motschulsky (Coleoptera: Curculionidae). Furthermore, insect species that develop in 

different regions can live in environments that are exposed to different chemical levels and, 

therefore, have differing levels of resistance.3 Identification the insect species and strain can, 

therefore, provide an index for pesticide dosing appropriately for control. Identifying 

stored-product insects is an essential task for granary managers as it is necessary to determine 

correct control procedures and whether the captured species are invasive. 

Optical microscopes have always been used to observe the external characteristics of 

insects for identification, including their overall color, shape, texture and modality of body 

parts. Sometimes dissection plays an indispensable role in finding the distinction between 

species. For example, the aedeagus is used to differentiate between male rice and maize 

weevils, being smooth and shiny on its dorsal surface in the rice weevil, but having two 

longitudinal grooves on its dorsal surface in the maize weevil. Although the traditional 

method for insect identification is accurate, it has obvious disadvantages, being 

time-consuming, labor-intensive, and requiring professional knowledge and experience. In 

the last 30 years, electron scanning microscopy, molecular marker technology, and analytical 

biochemical techniques have been applied to insect taxonomy. This has resulted in the 

determination of classificatory characteristics at the microscopic or molecular level.4,5,6,7 

However, these methods are complex and require sample pretreatment with chemicals that 

maybe harmful to humans.  

However, automatic computer-based classification for insects has rapidly been developed 

in recent years as a safer alternative. Al-Saqer et al.8 identified pecan weevils through 

geometric feature extraction and image processing techniques based on template matching. 

Larios et al.9 employed Haar random forest features and a Support Vector Machine (SVM) for 

spatially matching kernels to efficiently identify stonefly species. Similarly, Wen et al.10 

extracted local features as the input for an orchard insect classifier. There are also a number 
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of reports on the classification of stored-product insects based on machine vision.2,11 There is 

some research on the potential of near-infrared (NIR) spectroscopy for examining insects; for 

example, for the detection of insect infestation externally and internally in wheat12,13,14. Baker 

et al.13 showed that 100% of kernels containing parasitoid pupae, weevil pupae, and weevil 

larvae were correctly identified using a NIR system (400–1700 nm). However, for more 

accurate classification of parasitoid larvae, the detection threshold had to be adjusted. 

Maghirang et al.14 accurately classified sound kernels (unaffected by insects) and kernels 

containing live insects at various stages of growth at a rate of about 80%. Identifying 

stored-grain insect species by NIR spectroscopy has also been studied by Dowell et al. 15 A 

classifier with Partial Least Squares (PLS) regression or neural network was used to classify 

11 insect species into primary and secondary pests with 96% accuracy, whilst in an 11-way 

classification, the accuracy ranged from 30–100%.15 These studies demonstrate that machine 

vision and near-infrared spectroscopy, combined with the appropriate pattern recognition 

methodology, are feasible tools for accurate insect detection. However, a conventional 

imaging system operating at visible wavelengths is incapable of distinguishing between 

specimens of similar color and shape, classifying complex objectives, and analyzing 

differences in specimen components. On the other hand, the spectroscopy technique can only 

perform at some levels, and not always accurately. Therefore, hyperspectral imaging, which 

integrates the two classical optical sensing technologies of imaging and spectroscopy, are 

brought together to identify insects with greater accuracy.  

Hyperspectral imaging systems with optically tunable filters can record images at hundreds 

of contiguous wavelengths (narrow spectral resolution) in the form of a hypercube 

(three-dimensional hyperspectral data). The hyperspectral imaging technique, therefore, has 

the ability to rapidly and simultaneously monitor morphological characteristics. As an 

emerging non-destructive and reagent-less analytical technique, hyperspectral imaging has 

been widely employed in diverse fields, such as agriculture,16,17 pharmaceutics18 and the food 

industry.19,20,21 NIR hyperspectral imaging has also been attempted for the detection of 

insect-damaged wheat kernels,22,23 but reports on the identification of insect species using 

hyperspectral imaging have not been found. 

In this study, we used a visible/near infrared (VNIR) hyperspectral imaging system to 
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identify insect species and geographical strains of those species. The sibling species, rice 

weevil and maize weevil, were used as the subjects of the study. Insect specimens were 

created first, then hyperspectral images of the specimens were collected using the adjusted 

apparatus and lastly, a series of image processing and model recognition methods were 

applied for the actual insect classification. Through the data processing, three optimal 

wavelength bands were extracted to construct multi-spectral imaging systems that offer a 

rapid, simple and convenient instrument for stored-product insect detection, which could be 

used to help make decisions in the management of stored products. 

 

1. Materials and methods 

1.1. Insects 

All insects used in this experiment were acquired from the Academy of State Administration 

of Grain, China. To ensure consistency within the experiment, adult rice and maize weevils of 

different geographical strains were kept for 5-15 days after emergence. About 200 

first-generation adults were mixed with 60g whole wheat for 4 days in a growth chamber at 

30°C and 70% relative humidity (r.h.). The adults where then sieved out to get wheat that 

contained only insect eggs, which was then also kept at 30°C and 70% r.h. As soon as the 

adult insects emerged from the wheat kernels, they were transferred to new whole wheat and 

kept at the same temperature and r.h. conditions for another 5–15 days before imaging. A total 

of 400 weevil adults (see Table 1) were selected for hyperspectral imaging. The entire process 

was completed at the Academy of State Administration of Grain, Beijing, China. 

 

1.2. Hyperspectral imaging system  

A VNIR hyperspectral imaging system at Jiangsu University was used for this study. The 

system consisted of a spectral imager (Model no. V10EB1610, Spectral Imaging Ltd., 

Finland) with a 50 mm f/1.1 C-mount lens (Model no. 1-19179, Navitar OptiStar, New York, 

USA), a 150W quartz-halogen illuminator (Fiber-Lite DC-950, Dolan-Jenner Industries Inc., 

USA), a linear motorized slide (SC300-1A, Zolix Instruments Co. Ltd, Beijing, China),  

data acquisition and pre-processing software, and a personal computer. The imaging 

spectrograph operates in line-scanning mode, giving a 430–960 nm spectral range. It can 
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disperse the light entering through the entrance slit (30 μm) into different wavelengths 

instantaneously with a spectral resolution of 2.73 nm. The area detector converts incident 

photons into electrons to quantify the intensity of the acquired light and adopts a 

charge-coupled device (CCD) with a 1628×1236 pixel spatial resolution. A lens with a longer 

focal length was chosen to give a smaller object area for the small target samples and the 

linear motorized slide was used to move the sample perpendicular to the scanning camera. All 

of these parts were mounted in an enclosure protected by a duralumin shield to avoid 

interference from external light. Fig. 1(A) shows a schematic of the hyperspectral imaging 

system. 

 

1.3. Image acquisition and pre-processing 

To get the static images of stored-product insects, selected specimens were prepared as 

samples according to the following steps:  

• The insect was killed by placing it in an oven at about 80°C for 10 seconds. 

• Due to rigor mortis which often resulted in distortion and fragility of the body, the 

insect was then made pliable. This was achieved using a simple ‘relaxing chamber’. 

The chamber was constructed from a conical flask and a covered dish. The flask was 

filled with hot water to provide a damp environment and a piece of filter paper 

supporting the insect was placed between the flask and the dish for half an hour.  

• The insect was finally fixed on a ready-made stand (Fig. 1B) with the legs and head 

placed in position to complete the specimen. The stand was a glass slide with ink 

daubed on the surface and transparent double-sided adhesive tape placed on top of 

that. The ink provided a dark background that could handle higher light intensities so 

that the specimen did not become overexposed, resulting in clearer images. We had 

previously tried black cardboard; however, it failed to create a clear distinction 

between the object and background at the long-wavelengths. Ink was therefore chosen 

as the background in this experiment. According to the steps above, 50 insects per 

geographical strain were pasted with the same orientation onto a single stand (Fig. 

1C). In total there were eight stands containing 400 adult insect specimens prepared 

for the experiment. 
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The reflectance mode was used to acquire hyperspectral images of the insect samples. The 

insect specimens were passed through the spectral imager’s field of view at the optimized 

speed of 0.17mm/s. The light intensity was set to 60% of the maximum and the camera 

exposure was set to 40ms. These parameters were optimized through trial and error to ensure 

the best image quality, and SpectraCube software controlled the image acquisition process. 

Six hundred and eighteen images were captured for each sample in the 400–960 nm 

wavelength range (0.858 intervals) and with 1628×618 pixels spatial resolution. Thus, the 

hypercube corresponding to each sample was 1628×618×618 pixels. The information was 

stored on the personal computer for subsequent analyses.  

As the light intensity was not consistent across all wavelengths and there was some dark 

current, a reflectance calibration had to be performed to calibrate the raw spectral image, 

which is actually the detector signal intensity. The calibration image (R) was obtained based 

on a dark image and a white image using equation (1), and implemented in a Spectral Image 

Analyzer (Isuzu Optics, Inc., China). The dark image was obtained when the camera lens was 

completely covered and the white image was a picture of a white Teflon board obtained under 

the same conditions as the raw image. 

 

R
BW
BI

−
−=       (1) 

 

Where I is the raw spectral image, B is the dark image, and W is the white image. 

 

Although the light intensity and exposure time were modulated, the gray-scale value of the 

image had a nonhomogeneous distribution. Linear enhancement was used to improve the 

image quality. Linear transformation is frequently used to enhance images, mainly through 

contrast manipulation, by applying a linear function. Contrast stretching can make the overall 

image clearer and so improve the usability of the image. 

Insects are relatively small organisms with complex structures and their legs and head are 

rarely fixed in the same position across specimens. To account for this variation, a 
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morphological open algorithm was applied to the hyperspectral images to eliminate legs and 

head, and focus on the tergum of the thorax and abdomen. A threshold segmentation was then 

applied to exclude the background and to obtain the region of interest (ROI) for the test 

insect’s image. 

 

1.4. Characteristic wavelength selection and feature extraction 

Hyperspectral imaging provides hundreds of continuous spectral bands of images, much 

larger than those of multispectral images. In most cases, variables based on conjoint 

wavelengths have similar spectral information and the neighboring band’s images are highly 

correlated, which leads to multicollinearity. Multicollinearity means that the correlations 

among the independent variables are strong. The optimal wavelengths that relate most to the 

properties of interest must be selected and used as a reference to extract images that are 

characteristic of each species or strain. Moreover, hyperspectral data consist of images for 

each of the 618 bands, so the huge data set substantially increases the computational burden 

and unavoidably creates redundant information. The selection of optimal wavelengths that 

have characteristic information can be used to design a multispectral imaging system with the 

advantage of a simple structure and low cost. 

A Multivariate Image analysis (MVI)22 based on principle component analysis (PCA) was 

used to find the optimal wavelength. First, one of the hyperspectral images of an insect 

sample was converted to a binary image using global threshold segmentation and then labeled 

to create a labeled matrix, excluding the background. The three-dimensional hypercube was 

then reshaped into a two-dimensional array in which all the pixels reflected intensities of a 

sample rearranged into a column at each of the 618 wavelengths. This resulted in an array 

with a size of k×618, where k is the number of pixels enclosed in the labeled matrix. Next, 

PCA was applied to the two-dimensional array data. PCA is a mathematical procedure that 

decomposes the characteristic variables into several principal components (PCs) using an 

orthogonal transformation. This transformation is defined in such a way that the first PC 

accounts for as much of the variability in the data as possible and each subsequent component 

in turn has the highest variance possible under the constraint that it be orthogonal to the 

preceding components. The front three wavelengths corresponded to bigger coefficients for 
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the first three principle components (PCs) and were selected as the characteristic wavelengths 

to be used for feature extraction.  

After the characteristic wavelengths had been identified, the ROI images corresponding to 

the optimal wavelength for each insect sample were selected for feature extraction. Because 

of the biological variations among the test insects, each sample reflected and absorbed 

electromagnetic energy at a specific spectral band. In essence, the intensity value of each 

pixel of the picture corresponded to its spectral value at a specific spectral band. In other 

words, the intensity level of the picture can be used to characterize chemical and physical 

variations in the insect. There is a general belief that rice weevils are smaller than maize 

weevils. On close examination, there are distinguishing features on the pronotal punctures as 

well. On rice weevils, the pronotal punctures are separated by a flat, median, longitudinal 

puncture-free zone, while on maize weevils, pronotal punctures have no median 

puncture-free area and are almost equally spaced apart. The different distribution in punctures 

would certainly lead to changes in textural features.6 As a result, four morphological features 

were extracted from the ROI image for each insect sample at one optimal wavelength. These 

were: Area (w), Eccentricity (Ec), MajorAxisLength (Ma) and MinorAxisLength (Mi). Six 

texture descriptors based on the statistical properties of the histogram of the ROI images at 

three optimal wavelengths were also extracted. These were: Mean (m), Standard Deviation 

(σ), Smoothness (R), Third Moment (μ3), Uniformity (U) and Entropy (e).  

For the four shape features, w is the pixel number in the ROI; Ec, Ma and Mi are 

respectively the eccentricity, major axis length and minor axis length of the ellipse, whose 

secondary moment is the same size as the region. The six textural features are calculated 

according to the following equations:  
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Where: )( izp  is the probability of y density of a pixel’s intensity distribution in a 

two-dimensional (2D) region, that is the histogram of the intensity levels in this 

region  

L is the number of possible intensity levels  

m computes the average level of intensity in the image  

σ describes the variation of intensity around the mean  

R is a measure of flatness of the histogram  

μ3 is an indication of symmetry in the histogram  

U is a measure of histogram uniformity and finally  

e is an amount that reflects the complexity of the image texture  

 

In addition, a ratio image was created by comparing two band ROI images from an insect 

sample to extract six textural features. A ratio image usually eliminates the disturbance of 

drop shadows and reflects the actual information of the sample. By calculating two 

wavelength images, some textural features changed. For example, by increasing the 

difference in mean gray value of two classes of images, this helped distinguish between the 

sample classes.  

To test the usefulness of extracted features during insect species identification, an 

independent samples t-test was used to analyze the morphological data for all the insect 

samples. Group variables were defined according to insect species, in which the value 1 stood 

for rice weevils and 2 for maize weevils. The significance level was set to 0.05. Significant 

features constituted the data matrix column. Lastly, an n×m sized array, where n is the 
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number of samples and m is the number of features (independent variables), was obtained as 

the input for the recognition model to identify the insect species and distinguish between the 

geographical strains. 

1.5. Model development 

This study used a Back Propagation Neural Network (BPNN) to develop identification 

models. BPNN is one of the most popular predictive tools at present and is widely used in 

various other fields.24,25,26 BPNN is an Artificial Neural Network (ANN) with three or more 

layers. Sample data imported into the network were sent from the input layer and through the 

intermediate layer to obtain a response signal from the output layer. Back propagation refers 

to the back-sending of the error between output error and correct error from output layers to 

the input layers to upgrade the weights and biases in the learning process of the ANN.27 In the 

development of the BPNN model, a three-layer (input, hidden, and output) back propagation 

network with three hidden slabs was used and had a tan h transfer function. The epoch was 

set to 1000, a learning rate and momentum gene set to 0.1, and initial weight set to 0.3. All 

the data analysis, feature extraction and recognition algorithms were implemented in Matlab 

R2009b (Matworks Inc., Natick, MA, USA). 

 

2. Results 

2.1. Feature extraction 

ROI image extraction was based on the gray level image of the test insect and the 

morphological opening was applied. A processing flow chart is shown in Fig. 2. The 

structural element was a disk with a 9 pixel radius. Threshold segmentation using the Otsu 

method was then used to exclude the background and the ROI of the test insect image (the 

white area, Image D, Fig. 2) was extracted. The ROI image for feature extraction (Image F, 

Fig. 2) was acquired through algorithms between image D and gray scale images under the 

characteristic wavelength (Image E.).  

The characteristic wavelengths selected in the MVI analysis were 505, 659 and 955 nm, as 

they have the maximal coefficient in the first three PC loadings (Fig. 3). Pictures of samples 

corresponding to the three characteristic wavelengths are shown in Fig. 4. Near-infrared 

spectroscopy is based on the molecular overtone and combination vibrations in organic 
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compounds. In a previous study, by Ridgway et al.,28 wavelengths 982 and 1014 nm were 

selected to develop a two-wavelength classification model for insect-damaged wheat kernels 

with near-infrared reflectance spectroscopy. Furthermore, Perez-Mendoza et al.29 found 890 

nm to be one of the significant wavelengths for detecting insect fragments in wheat flour. It is 

thus clear that wavelengths around 890 and 980 nm are appropriate for insects. The difference 

in optimal wavelength may be due to the effect of wheat flour or kernels on the insect species. 

The bands of 505 and 659 nm may be sensitive to the color of the weevils, as there is a slight 

difference between the two species. Variance in the visible spectra was dominated by 

extremes in color development. The wavelengths 505 and 660 nm correspond to turquoise 

and red respectively, however, the insect bodies displayed brown or black, which are not 

caused by homogeneous light and might be the mixing of 505 and 660 nm. The ratio image 

was used to calculate gray values of the ROI corresponding to wavelengths of 955 and 659 

nm.  

Six textural features were then extracted from each characteristic wavelength ROI image 

(containing the ratio image). Four shape features were extracted from images corresponding 

to 955 nm, because the samples that were highly reflective were clearly distinguished from 

the background at 955 nm (Fig. 4D). Therefore, four shape features and 24 textural features 

were extracted from each insect sample. This resulted in a 400×28 sample sized matrix for 

the subsequent analyses.  

In the sample matrix, there were 28 independent variables for each of the 400 insect 

samples. Independent samples t-test was used to analyze the matrix to test the usefulness of 

the 28 independent variables (Table 2). The result indicated that most of the variables, 

especially those based on the ratio images, were significant for the identification of the insect 

species, whereas five of the textural features (σ, R, μ3, U, e), based on the ROI image at 955 

nm, did not reach a significant level. We attempted to exclude the six features extracted from 

images that corresponded to 955 nm and were left with a 400×22 sample sized matrix.  

Normalization and PCA were performed in order. The score plot of the first three PCs 

derived from PCA is shown in Fig. 5. The first three PCs accounted for 70.41% of the overall 

variance (PC1=27.08%, PC2=24.90%, PC3=18.43%). As shown in Fig. 5, the two species are 

clearly separate in space and the majority of insects from each geographical strain congregate 
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into separate groups in the three-dimensional score plot. It illustrates that there are obvious 

differences between the insects. First, the plot has only the first three PCs, which does not 

explain the useful information completely. Second, the plot only describes the score of PCs, 

and doesn’t take account of the weight of each PC. Lastly, PCA is a linear transformation of 

the initial independent variables and does not yet consider the actual sample class. Therefore, 

other recognition model methods were developed for further analysis. 

 

2.2. Identification of insect species  

To develop the model, the sample was stochastically divided into an independent 

calibration set (three fifths of the insect samples) and a prediction set (two fifths of the insect 

samples). The calibration data set (240×22 sized) was used for model’s development, while 

the prediction data set (160×22 sized) was used for the model’s validation. The insect class 

(categorical variable) was labeled numerically (1 stood for rice weevils and 2 stood for maize 

weevils) and used as the dependent variable for the BPNN identification model.  

The top PCs were extracted to be the inputs for the model and the optimal number of PCs 

was determined using the discriminating rate from the calibration set. The result was that the 

BPNN model with seven PCs performed with the highest recognition rate: 100% in the 

calibration set and 98.13% in the prediction set (Fig. 6). The detailed recognition result of the 

BPNN model with seven PCs for each class of insect in the prediction set is shown in Table 3. 

There was only one sample of rice weevil misclassified as maize weevil and two samples of 

maize weevil misclassified as rice weevil. This is a very promising result suggesting great 

potential in hyperspectral imaging systems combined with BPNN models for nondestructive 

identification and classification of insect species.  

 

2.3. Classification of geographical strains of an insect species  

For the classification of geographical strains of an insect species, rice and maize weevils 

were separately processed with each comprising four different geographical strains. As in the 

preceding test, BPNN was adopted to classify the insect strains. The recognition results with 

different numbers of PCs are shown in Fig. 7. The optimal recognition models were acquired 

with 7 PCs for the rice and maize weevils. For the rice weevils, the optimal model classified 
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the strains with 90.83% accuracy in the calibration set, and 86.25% in the prediction set. For 

the maize weevils, the accuracy was 97.50% and 90.00% in the calibration and prediction set, 

respectively. The overall accuracy for the entire set of insects in the experiment reached 94.17% 

and 86.88% in two sample sets. The detailed recognition results of the optimal BPNN model 

are given in Table 4 and 5. Table 4 shows the rice weevils from Australia are 100% accurately 

classified by the model and the misclassification of geographical strains occurred only among 

the three Chinese strains. The lowest recognition rate is 77.78% for SO-SC. Table 5 shows 

there are several maize weevils in each strain that are misclassified by the model. Overall, the 

classification results for the rice weevils and maize weevils are similar. There is no doubt that 

the difference in characteristics between species is larger than that between strains. 

Additionally, the transportation and mixing of different grain loads which may carry insects 

from other areas is likely to reduce the occurrence of visibly distinctive strains. Consequently, 

the overall recognition rate of the strains would be lower than that of the species.  

 

3. Discussion  

3.1. The data  

The major limitation of the hyperspectral imaging technique is the large size of the data set 

that demands proper processing to interpret the results accurately. In this study, three 

characteristic wavelengths were selected according to MVI, which greatly reduced the 

amount of data and improved the data processing speed. Features describing the shape and 

texture of the insects were extracted and screened for model recognition. PCA was also 

employed for dimension and noise reduction to simplify the BPNN model. This not only 

reduced the data processing time but also enhanced the model’s robustness. It is hoped that a 

multispectral imaging system based on the three selected wavelengths will be developed for 

insect identification. 

The identification of insect species is based on their morphology and their absorbance 

characteristics. That cuticular lipids have peaks in NIR regions corresponding to the C-H 

overtone regions has been reported by Ridgway and Chambers,30 Dowell et al.31 and Baker et 

al.13 Different geographical strains of insect species may reveal some distinction that helps in 

the identification of insect strains. In addition, insect are complex organisms with subtle 
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physical structures. It is assumed that the relationship between the insects and their 

hyperspectral data is non-linear. The overlap of samples in the score plot of PCA and the high 

recognition rate of the BPNN model, which is a complex nonlinear algorithm, are accordant 

with this hypothesis. The BPNN model used in this work has a triple-layer structure with 

three nonlinear hidden layers, and has weights and biases that are self-adjusted to assist 

analysis.  

 

3.2. The technique  

As mentioned above, rice and maize weevils are both from the family Curculionidae and 

are very similar in morphology. Highly similar patterns of the resultant amplicons in DNA 

amplification fingerprinting (DAF) have confirmed that the two weevils are closely related.5 

Indeed, it is difficult to identify the rice and maize weevils with an optical microscope, even 

for those who have worked in the field for years. Dissection and molecular methods are 

complex, need professional knowledge and are not online remote identification methods. In a 

study by Dowell et al.15 using NIR spectroscopy to identify stored-grain insect species, the 

classification accuracies for rice and maize weevil were 70% and 90%. Thus, NIR 

spectroscopy alone was not found able to classify closely related insects to the species level 

with a high degree of accuracy. However, hyperspectral imaging contains rich spectral and 

spatial information, and is particularly good at detecting and discriminating objects with even 

imperceptible differences. Our results have proven that the hyperspectral imaging technique 

is superior for distinguishing between very similar sibling insect species such as the rice and 

maize weevils. Although previous studies have shown that the most significant region for 

detecting insects within wheat kernels is in longer wavelengths, this work has shown the 

feasibility of visible and shorter wavelengths in NIR to identify insect species. This can cut 

costs because Vis/NIR hyperspectral systems are cheaper than NIR. In addition, 

hyperspectral imaging does not require as intense a source of light and has a higher level of 

imaging processing as machine vision.32  

 

4.3. Future work 

In this study, the tergum of the thorax and abdomen was selected as the region of interest 
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(ROI), and a morphological method was used to automatically extract the ROI. This is 

enough for insect species and strain detection, but is far from satisfactory for insect gender 

determination. For identifying differences between male and female insects, the sternum of 

the abdomen is recommended as the ROI, since genitalia are the primary difference between 

male and female specimens. 

Further research is needed on other stored-product insects or granary weevils to develop a 

profile database of species and of variation within species for convenient identification. In the 

short-term, the insect sample preprocessing procedure must be simplified. It is possible to 

develop a multi-spectral imaging system coupled with an image processing method in the 

granary to detect and identify the insect species and number of individuals to facilitate the 

automatic selection of management strategies as needed. Alternatively, a portable insect 

identification tool could be designed to be integrated with the daily work of the granary.  

 

Conclusion 

The results show that hyperspectral imaging coupled with a BPNN technique is able to 

classify two species of weevil with an overall discriminating rate of 98%, and to distinguish 

each geographical strain at an accuracy greater than 77.78%. Three characteristic 

wavelengths, 505, 659 and 955 nm, were selected by MVI analysis for data reduction, and 

can be considered as the base bands for multispectral imaging. The development of a 

multispectral imaging system with the appropriate image processing and model recognition 

method will sufficiently cut down the detection time and improve the accuracy and stability 

of the system. There is scope for more work, such as simplifying the processing of insect 

samples, obtaining further evidence to elucidate the characteristic wavelengths and genetic 

analysis of geographical strains. 
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Table 1. Contents of each insect sample 

Insect species Geographical strains Number of insects 

Rice weevil (SO) Tongzhou (SO-TZ) 50 

 Guangdong (SO-GD) 50 

 Sichuan (SO-SC) 50 

 Australia (SO-Aus) 50 

Maize weevil (SZ) Miyun (SZ-MY) 50 

 Guangzhou (SZ-GZ) 50 

 Wuhan (SZ-WH) 50 

 Zibo (SZ-ZB) 50 
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Table 2. Results of independent samples t-test for 28 features  

Wave length  
Featurea 

Insect speciesb Mean SDc Significance 

955nm w SO 7255.600 947.199 0.000 
  SZ 9068.400 994.560  
 Ec SO 0.897 0.010 0.000 
  SZ 0.891 0.010  
 Ma SO 145.350 10.750 0.000 
  SZ 160.530 10.558  
 Mi SO 64.149 4.242 0.000 
  SZ 72.616 3.947  
 m SO 122.710 18.189 0.000 
  SZ 109.370 18.456  
 σ SO 40.710 8.560 0.274 
  SZ 39.792 8.197  
 R SO 0.026 0.011 0.260 
  SZ 0.025 0.009  
 μ3 SO 0.207 0.365 0.068 
  SZ 0.279 0.416  
 U SO 0.009 0.005 0.051 
  SZ 0.008 0.002  
 e SO 7.192 0.250 0.966 
  SZ 7.191 0.297  

659nm m SO 0.996 0.512 0.000 
  SZ 0.405 0.483  
 σ SO 0.412 0.099 0.000 
  SZ 0.554 0.108  
 R SO 3.279 1.572 0.000 
  SZ 4.904 1.860  
 μ3 SO 3.173 3.140 0.000 
  SZ 5.204 2.799  
 U SO 0.688 0.145 0.874 
  SZ 0.686 0.101  
 e SO 0.723 0.257 0.000 
  SZ 0.853 0.218  

505nm m SO 155.600 12.921 0.000 
  SZ 148.440 12.993  
 σ SO 38.569 6.347 0.001 
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  SZ 36.548 5.136  
 R SO 0.023 0.007 0.000 
  SZ 0.021 0.005  
 μ3 SO -0.315 0.209 0.004 
  SZ -0.255 0.210  
 U SO 0.009 0.003 0.208 
  SZ 0.008 0.001  
 e SO 7.100 0.182 0.152 
  SZ 7.074 0.184  

Ratio band m SO 74.662 9.254 0.000 
  SZ 84.973 18.881  
 σ SO 25.433 4.684 0.000 
  SZ 32.362 8.502  
 R SO 0.010 0.004 0.000 
  SZ 0.017 0.008  
 μ3 SO 0.220 0.728 0.000 
  SZ 0.324 0.312  
 U SO 0.012 0.002 0.000 
  SZ 0.010 0.003  
 e SO 6.594 0.238 0.000 
  SZ 6.902 0.385  

a. Four shape features and 24 textural features 
b. See Table 1 for species codes. 
c. SD is standard deviation 
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Table 3. The recognition of insect species samples in the prediction set with the optimal 
BPNN model. 

Actual species a Recognized species Recognition rate% 

 SO SZ  

SO 79 1 98.75 

SZ 2 78 97.50 

a See Table 1 for species codes.  
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Table 4. The recognition of geographical strains of rice weevil samples with the optimal 

BPNN model. 

Actual strain a Recognized strain Recognition rate% 

 SO-TZ SO-GD SO-SC SO-Aus  

Calibration set SO-TZ 19 3 0 0 86.36 
 SO-GD 1 29 2 0 90.63 
 SO-SC 0 5 27 0 84.38 
 SO-Aus 0 0 0 34 100.00 

Prediction set SO-TZ 22 6 0 0 78.57 
 SO-GD 2 15 1 0 83.33 
 SO-SC 0 4 14 0 77.78 
 SO-Aus 0 0 0 16 100.00 

a See Table 1 for strains codes.  
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Table 5. The recognition of geographical strains of maize weevil samples with the optimal 

BPNN model. 

Actual straina Recognized strain Recognition rate% 

 SZ-MY SZ-GZ SZ-WH SZ-ZB  

Calibration set SZ-MY 22 0 0 0 100.00 
 SZ-GZ 0 31 1 0 96.88 
 SZ-WH 0 0 32 0 100.00 
 SZ-SD 0 0 2 32 94.12 
Prediction set SZ-MY 25 3 0 0 89.29 
 SZ-GZ 0 16 2 0 88.89 
 SZ-WH 0 0 17 1 94.44 
 SZ-ZB 0 0 2 14 87.50 
a See Table 1 for strain codes.  
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Figure Legends 

 

Fig. 1. Schematic of the hyperspectral imaging system with detail of the specimen stand (the 

hyperspectral imaging system (A), sketch map of the stand (B) and a photograph of 

insect specimens on the stand (C)). 
 
 
 

 
Fig. 1. 
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Fig. 3. The first three PC mean factor loadings (absolute values) for insect samples. 
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Fig. 4. Pictures of insect samples in RGB color and three characteristic wavelengths (RGB 

color (A), 505.21 nm (B), 658.56 mn (C), 955.42 nm (D)). 
 

 

 
Fig. 4. 
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Fig. 5. Score plot of the first three PCs of insect samples. 
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Fig. 6. Insect species recognition result of the BPNN model with a different number of PCs. 
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Fig. 7. Insect geographical strains recognition result of the BPNN model with a different 

number of PCs for rice weevils (A) and maize weevils (B). 
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