Mycosphere

The mycorrhizal status of indigenous arbuscular mycorrhizal fungi of physic nut (*Jatropha curcas*) in Thailand

Charoenpakdee S^{1,2}, Phosri C², Dell B³ and Lumyong S^{1*}

¹Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, 50200 Thailand

²Biology Program, Faculty of Science and Technology, Pibulsongkram Rajabhat University, Phitsanulok 65000, Thailand

³Sustainable Ecosystems Research Institute, Murdoch University, Western Australia, 6150 Australia

Charoenpakdee S, Cherdchai P, Dell B, Lumyong S (2010). The mycorrhizal status of indigenous arbuscular mycorrhizal fungi of physic nut (*Jatropha curcas*) in Thailand. Mycosphere 1(2), 167–181.

The dependence of physic nut (*Jatropha curcas* L.) on beneficial soil fungi for growth is not known. Therefore, the spore density and species diversity of arbuscular mycorrhizal fungal (AMF) associated with physic nut was assessed by extracting spores from physic nut plantings from 10 sites across 6 provinces in northern and north-eastern Thailand. Approximately 700 AMF spores, obtained using the wet sieving and sucrose gradient centrifugation methods, were identified into morphospecies. Colonization by AMF was assessed under a compound microscope using root samples stained with trypan blue. The following 34 morphospecies of AMF were identified: *Acaulospora* (16 species), *Entrophospora* (1 species), *Gigaspora* (2 species), *Glomus* (10 species) and *Scutellospora* (5 species). The diversity index ranged from 0.28 to 0.86 (average 0.64) and the species richness of AMF ranged from 3 to 11 (average 6.2). Roots of physic nut were colonized by AMF at all sites sampled and infection levels ranged from 38 to 94% of root length. The presence of mycorrhizas in soils varying in pH from acidic to calcareous, of low to moderate organic matter and of low to high available P suggests that physic nut may be highly dependent on AMF.

Key words – ecology – species diversity – soil chemistry – spore density

Article Information Received 10 May 2010 Accepted 1 June 2010 Published online 3 August 2010 *Corresponding author: Saisamorn Lumyong; – e-mail –scboi009@chiangmai.ac.th

Introduction

Physic nut (*Jatropha curcas* L.) is a multipurpose plant and is grown in many parts of the world for example Brazil, India, Mexico, Nicaragua and Thailand (Foidl et al. 1996, Heller 1996, Prueksakorn et al. 2006, David et al. 2009). It is a widely used species for traditional medicine, hedging fences and preventing soil erosion. The species is introduced from Central America. It belongs to the botanical family Euphorbiaceae, which has 300 genera and around 7,500 species. Most species are tropical trees and shrubs which grow in the

lower storey of forests. Many members of this family are known to be dependent on AMF, for example species of *Euphorbia*, *Glochidion*, *Hevea* and *Manihot* (Tawaraya et al. 2003, Zhao & Zhiwei 2007, Straker et al. 2010). Currently, physic nut is becoming an increasingly attractive plant for producing biofuels. The optimistic yield estimate for physic nut is 1,300 litre of oil per hectare, lower than oil palm but higher than canola (Anonymous 2007). As diesel fuel prices continue to escalate, opportunities will open for conversion from crude-oil into bio-diesel based fuel consumption. Several countries as well as domestic and international organizations have proposed greatly increasing the area under physic nut cultivation for oil production.

Arbuscular mycorrhizal fungi (AMF) are abundant and ubiquitous in almost all natural terrestrial communities and form obligate symbiotic associations with some 80% of vascular plants (Harley & Smith 1983, Smith & Read 1997). It is apparent that these fungal symbionts are an integral component of plant communities in both natural and agricultural ecosystems. They play a vital role in sustaining plant diversity, increasing plant productivity and maintaining ecosystem processes by promoting plant fitness through a range of mechanisms including protecting the host from pathogens, improving soil structure, and enhancing water and nutrient uptake (Borkowska 2002, Jansa et al. 2002, Kapoor et al. 2004, Pasqualini et al. 2007). A number of authors have documented that associations between agronomic plant species and AMF are likely to increase the efficiency of fertilizer use and plant growth (Schreiner 2007, Tewari 2007, Porras-Soriano et al. 2009).

It has been reported that some members of the Euphobiaceae are highly dependent on AMF (Chen et al. 2005). However, there is limited knowledge of AMF status in the rhizosphere of physic nut. This study was undertaken to determine the diversity of AMF in physic nut plantings in northern and northeastern Thailand. We hypothesized that the mycorrhizal status and species richness differ between sites. Furthermore, soil conditions and plant age are likely to play a key role for determining species diversity on root tips of physic nut.

Methods

Sample collection

Ten physic nut plantation sites in Chiang Rai (CR1, CR2), Chiang Mai (CM1, CM2, CM3 and CM4), Loei (LO1), Lumphun (LP1), Khon Kaen (KK1) and Nong Kai (NK1) provinces were selected as study sites for AMF diversity (Table 1, Fig.1). Ninety five soil samples were collected from beneath physic nut in the planting row during October-December 2007. At each of the field sites, 4 soil core samples per tree were taken at a depth

Approximately 1 kg total of rhizosphere soil from each site was collected. Soil samples were mixed into composite samples and root samples were removed from the soil and preserved in 70% ethanol for each tree. Each composite sample representing one plot was a mixture of four soil core samples. The samples were kept in an ice-box and transported by car to a laboratory. All soil samples were kept in a cold room and processed within one month The analysis of soil samples included AMF spore isolation and enumeration, identification of species; and determination of the following soil parameters: soil moisture content (Lambe & Whitman 1969), pH by water extraction (Thomas 1996), organic matter using wet oxidation (Nelson & Sommers 1996), available phosphorus (P) using the Olsen method (Kuo 1996), extractable potassium (K) using the molybdenum blue method and stannous chloride as the reducing agent and ammonium acetate (NH₄OAc) as extractant (Helmer & Sparkers 1996, Helrich 1990), and total soil nitrogen (N) content using the Kjehldahl method (Bremner 1996). Soil nutrient analysis (Table 2) was conducted by the Department of Soil Science, Faculty of Agriculture, Chiang Mai University.

of 5-30 cm using a soil corer (5 cm diameter).

AMF spore isolation and identification

AMF spores occurring in the rhizosphere soil samples were extracted by wet sieving and sucrose density gradient centrifugation methods (Brundrett et al. 1996). 100 g of each soil sample was suspended in 500 ml of water and stirred for 10 mins. Sieve sizes of 250, 106 and 45 µm, were used for spore collection. The spores retained on each sieve were transferred to filter paper and subsequently examined under a stereomicroscope (Olympus CX31) at a magnification of up to 400X and identified based on spore morphology. Each spore morphotype was mounted in polyvinyl-lactoglycerol (PVLG) and PVLG mixed with Meltzer's reagent in 1:1 (v/v) ratio (Morton 1988). Identification was based on current species descriptions and identification manuals (International Culture Collection of Vesicular and Arbuscular Endomycorrhizal Fungi [http:// invam.caf.wvu.edu/Myc Info/Taxonomy/speci es.htm]).

Fig. 1 – Ten sampling sites in 6 provinces of Thailand. (a) CR2: Chiang Rai site 2, (b) CM1: Chiang Mai site 1, (c) CM2: Chiang Mai site 2, (d) CM3: Chiang Mai site 3, (e) CM4: Chiang Mai site 4, (f) LP1: Lumphun, (g) CR1: Chiang Rai site 1, (h) KK1: Khon Kean, (i) LO1: Loei, (j) NK1: Nong Khai.

Coography		Site *														
Geography	CR1	CR2	CM1	CM2	CM3	CM4	L01	LP1	KK1	NK1						
Latitude	E99°48′	E99°26′	E98°55′	E98°30′	E98°55′	E98°54′	E101°21′	E99°07′	E102°53′	E102°43′						
Longitude	N19°54′	N19°52′	N18°45′	N18°09′	N18°45′	N18°44′	N17°27′	N18°34′	N16°23′	N17°51′						
MSL**(m)	398	399	340	1,137	340	360	800	337	150	163						
Sample no.	5	10	10	10	10	10	10	10	10	10						

*Chiang Rai site 1 (CR1), Chiang Rai site 2 (CR2), Chiang Mai site 1 (CM1), Chiang Mai site 2 (CM2), Chiang Mai site 3 (CM3), Chiang Mai site 4 (CM4), Loei (LO1), Lumphun (LP1), Khon Kean (KK1), and Nong Khai (NK1). **MSL=Mean Sea Level

Spore density (SD) is the number of spores in 100 g soil. Relative abundance (RA) was defined as the percentage of spore numbers of a species divided by the total spores observed (Dandan & Zhiwei 2007). The frequency isolation of each AMF species was calculated by the percentage of the number of the samples in which the species or genus was The dominant observed. AMF species according to relative abundance (RA > 6%) and spore density in 100 g soil (spore density higher than 40 spores) and species richness were determined for each sampling site.

Mycorrhizal root colonization assessment

Roots fixed in 70% ethanol were cleared in 10% (w/v) KOH solution and autoclaved at 121°C and 15 lb/inch² for 15 minutes. Then, roots were washed with distilled water to remove KOH, stained with 0.05% trypan blue dye (C.I. 23850) and reautoclaved. Thirty stained roots (each about 1 cm in length) were assessed for colonization using the intercept method under a compound Olympus CX31 microscope (Brundrett et al. 1996).

Diversity index and concentration of dominance

AMF diversity was evaluated using the Shannon-Weiner diversity index which has two main components, evenness and number of species (Shannon & Weiner 1963). The Shannon–Weiner index (H') was calculated according to the formula $H' = -\sum (n_i/N) \log 2(n_i/N)$, where n_i represents individuals of a species and N represents the total number of species. Concentration of dominance (C) was also measured by the Simpson's index (Simpson 1949) using the formula $C = \sum (n_i/N)^2$, where n_i and N are the same as for Shannon–Weiner diversity index.

Statistical analysis

The percentage of infection data were arc sin transformed prior to analysis. One-way analysis of variance (ANOVA) was carried out for root colonization and spore density. Statistical analyses were performed with the Statistical Package for Social Sciences version 11.5 (SPSS Inc., Wacker Drive, Chicago, IL). All factors were analyzed at $\alpha = 0.05$.

Results

Soil characteristics

Soil pH ranged from 5.3 to 8.0, OM 0.63 to 7.22%, N 0.02 to 0.44%, P 11.5 to 175.5 mg/kg, K 22.2-1058.0 mg/kg and soil moisture 7-23% across the sites (Table 2).

AMF status

In total, 699 AMF spores and sporocarps were derived using wet sieving and sucrose gradient centrifigation methods from 95 rhizosphere soil samples of physic nut. Spore density in samples ranged from 19 to 163 spores 100 g⁻¹ soil (mean 70.0 ±22.9 spores) (Table 3). Maximum spore density was observed in NK1 (163.0 ±1.5) and minimum in CM1 (66.0 ±4.9). There was a significant difference (P < 0.05) in spore density between many of the sites (Table 3).

Thirty four morphospecies of AMF were identified using spore characteristics. Species richness of AMF ranged from 3 to 11 (average 6.1). Species were distributed as follows: 3 species from CR1, 4 from CR1, 6 from CM1, 7 from CM2, 5 from CM3, 11 from CM4, 7 from LO1, 6 from LP1, 4 from KK1 and 8 species from KK1 (Table 4). Acaulospora and Glomus occurred most frequently and, overall, were the most prevalent, containing 16 and 10 species, respectively. There were 5 species in Scutellospora, 2 species in Gigaspora and 1 species in Entrophospora across the 10 sampling sites (Table 4).

In this study, Acaulospora scrobiculata was the most widely distributed species. It was found in 7 out of 10 sampling sites, namely CR1, CR2, CM1, CM2, CM3, CM4 and NK1 (70% IF). The next most widely distributed taxon was A. excavate which appeared in 5 sites, CM1, CM3, CM4, LO1 and LP1 (50% IF). Some species were only found at one site (10% IF), for example, Acaulospora sp.2 and Acaulospora sp.3 in CR2, A. denticulata, Glomus sp.5 and Scutellospora sp.1 in CM4, A. spinosa in KK1, Acaulospora sp.1, Acaulospora sp.4 and G. etunicatum in NK1, G. clavisporum and Scutellospora sp.2 in CM2, E. colombiana and Gi. rosea in CM3, G. fulvum in CR1 and Glomus sp.1, Glomus sp.2 and Scutellospora sp.3 in LP1 (Table 4).

Site	Plantation age	pH _{H2O}	Moisture	OM	Ν	Р	K
	(year)		(%)	(%)	(%)	(mg/kg)	(mg/kg)
CR1	>1	6.0	13.7	1.54	0.09	111.8^{VH}	158.0
CR2	5	5.3	17.0	7.22	0.44	121.4^{VH}	1058.0
CM1	<1	6.0	14.0	3.30	0.15	94.3 ^{VH}	198.5
CM2	10	6.0	18.7	6.94	0.26	$150.5^{ m VH}$	521.4
CM3	10	6.9	9.5	4.30	0.19	75.2 ^{VH}	204.0
CM4	10	5.9	23.0	2.42	0.07	19.8 ^M	171.0
LO1	4	5.9	13.8	2.68	0.15	$147.4^{ m VH}$	232.4
LP1	1	6.1	10.0	1.86	0.07	11.5 ^M	171.8
KK1	5	8.0	16.4	0.63	0.02	11.8 ^M	22.1
NK1	5	6.0	18.8	1.74	0.12	175.5 ^{VH}	746.3

Table 2. Soil characteristics of 10 physic nut plantings in northern and north-eastern Thailand.

Remark: According to Land Development Department, Thailand (Phosri et al. 2010); P<10 mg/kg is Low (L), P ranging between 11 and 25 mg/kg is Medium (M), P ranging between 26 and 45 mg/kg is High (H), P>45 mg/kg is Very High (VH).

Table 3. Spore density (SD), Shannon-Weiner index (H'), Simpson's index (D) and root colonization by AMF at each sampling site.

Site	SD*	H'	D	Colonization (%)*
CR1	$27\pm0.9a^{2}$	0.43	0.61	37.7±5.9a ¹
CR2	45±1.4bc	0.28	0.32	85.8±1.3d
CM1	19±0.6a	0.75	0.86	66.0±4.9b
CM2	34±0.7ab	0.78	0.84	87.5±1.5d
CM3	150±2.0f	0.52	0.64	93.2±2.7e
CM4	86±1.8d	0.83	0.81	94.3±2.8e
LO1	112±0.6e	0.65	0.71	64.4±4.2b
LP1	42±0.6bc	0.68	0.77	76.5±5.5c
KK1	21±0.6a	0.30	0.35	77.3±8.7b
NK1	163±1.5f	0.60	0.69	66.4±5.4c

*The same letter in each column indicates that there is no significant difference at $\alpha = 0.05$

 1 mean±SD, n = 30

 2 mean \pm SD, n = 2

Based on spore density and relative abundance, seven species were dominant (> 40 spores 100 g⁻¹soil, RA \geq 6%); *A. dilatata* (51 spores, 7.3%), *A. excavata* (42 spores, 6%), *A. foveata* (74 spores, 10.6%), *A. lacunosa* (74 spores, 10.6%), *E. colombiana* (74 spores, 10.6%), *Gigaspora* sp.1 (53 spores, 7.6%) and *Gi. rosea* (51 spores, 7.3%) (Table 5). The morphological characteristics of some dominant AMF are illustrated in Fig. 2.

Species diversity was calculated using two indices. The Shannon–Weiner diversity index ranged from 0.28 to 0.83. The highest occurred in CM4 (H'=0.83) and the lowest in CR2 (H'=0.28). Similarly, the Simpson's index ranged from 0.32 to 0.86, the highest was in

CM1 and the lowest was in CR2 (Table 3).

All samples of physic nut roots were colonized by AMF (Fig. 3a-d). The mean percentage of root length infection ranged from 38% in CR1 to 94% in CM4 (P < 0.05), and generally exceeded 60% (Table 3). Significant differences in percentage of root colonization occurred between sampling sites (P < 0.05). Physic nut appears to be readily colonized by AMF under a range of field conditions in acidic and calcareous soils, in low to moderate organic matter and in low to high available P (Table 2). A few months old seedlings were moderately colonized by AMF (66% root length in CM1).

Species	Code	Sample	site*																		
		CR1		CR2		CM1		CM2		CM3		CM4		LP1		L01		KK	K 1	NK	1
		S	RA	S	RA	S	RA	S	RA	S	RA	S	RA	S	RA	S	RA	S	RA	S	RA
Acaulospora		5	18.5	45	100	8	42.1	13	38.2	19	12.7	74	49.3	10	23.8	51	45.5	2	9.5	156	95.7
A. colossica	CMU04	-	-	-	-	-	-	-	-	-	-	-	-	3	7.1	7	6.2	-	-	-	-
A. denticulata	CMU08	-	-	-	-	-	-	-	-	-	-	2	2.3	-	-	-	-	-	-	-	-
A. dilatata	CMU09	-	-	-	-	-	-	-	-	-	-	11	12.8	-	-	-	-	-	-	40	24.5
A. excavata	CMU12	-	-	-	-	4	21.0	-	-	12	8.0	13	15.1	6	14.3	7	6.2	-	-	-	-
A. foveata	CMU02	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1	4.8	73	44.8
A. lacunosa	CMU14	-	-	37	82.2	-	-	-	-	-	-	31	36.0	-	-	6	5.4	-	-	-	-
A. morrowiae	CMU16	-	-	-	-	-	-	-	-	-	-	12	14.0	-	-	7	6.2	-	-	-	-
A. nicolsonii	CMU11	-	-	-	-	-	-	3	8.8	-	-	-	-	1	2.4	-	-	-	-	2	1.2
A. rehmii	CMU10	-	-	-	-	2	10.5	2	5.9	-	-	-	-	-	-	-	-	-	-	-	-
A. scrobiculata	CMU06	5	18.5	3	6.7	2	10.5	5	14.7	7	4.7	5	5.8	-	-	-	-	-	-	2	1.2
A. spinosa	CMU01	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1	4.8	-	-
A. tuberculata	CMU03	-	-	-	-	-	-	3	8.8	-	-	-	-	-	-	31	27.7	-	-	-	-
A. sp.1	CMU07	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	2	1.2
A. sp.2	CMU13	-	-	2	4.4	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
A. sp.3	CMU15	-	-	3	6.7	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
<i>A</i> . sp.4	CMU26	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	37	22.7
Entrophospora		-	-	-	-	-	-	-	-	74	43.3	-	-	-	-	-	-	-	-	-	-
E. colombiana	CMU05	-	-	-	-	-	-	-	-	74	49.3	-	-	-	-	-	-	-	-	-	-
						_												10			
Glomus	0.0101	15	55.5	0	0	5	26.3	14	41.2	6	4	3	3.5	22	52.4	3	2.7	19	90.5	3	1.8
G. clavisporum	CMU21	-	-	-	-	-	-	10	29.4	-	-	-	-	-	-	-	-	-	-	-	-
G. etunicatum	CMU18	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	3	1.8
G. fulvum	CMU27	15	55.6	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
G. sinuosum	CMU22	-	-	-	-	5	26.3	4	11.8	-	-	-	-	-	-	-	-	-	-	-	-
<i>G</i> . sp.1	CMU17	-	-	-	-	-	-	-	-	-	-	-	-	-	-	3	2.7	2	9.5	-	-
G. sp.2	CMU19	-	-	-	-	-	-	-	-	-	-	-	-	6	14.3	-	-	-	-	-	-
G. sp.3	CMU20	-	-	-	-	-	-	-	-	-	-	-	-	16	38.1	-	-	-	-	-	-
<i>G</i> . sp.4	CMU23	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	17	80.9	-	-
<i>G</i> . sp.5	CMU24	-	-	-	-	-	-	-	-	-	-	1	1.2	-	-	-	-	-	-	-	-
<i>G</i> . sp.6	CMU25	-	-	-	-	-	-	-	-	6	4.0	2	2.3	-	-	-	-	-	-	-	-
Gigaspora		0	0	0	0	0	0	0	0	51	34	2	2.3	0	0	51	45.5	0	0	0	0

Table 4. Spore density (S) and relative abundance (RA) of AMF at each sample site.

Species	Code	Sample																			
_		site*																			
		CR1		CR2		CM1		CM2		CM3		CM4		LP1		L01		Kŀ	۲1	NK1	1
		S	RA	S	RA	S	RA	S	RA	S	RA	S	RA	S	RA	S	RA	S	RA	S	RA
Gi. rosea	CMU29	-	-	-	-	-	-	-	-	51	34.0	-	-	-	-	-	-	-	-	-	-
Gi. sp.	CMU28	-	-	-	-	-	-	-	-	-	-	2	2.3	-	-	51	45.5	-	-	-	-
Scutellospora		7	25.9	0	0	6	31.6	7	20.6	0	0	7	8.1	10	23.8	0	0	0	0	4	2.4
S. pellucida	CMU31	7	25.9	-	-	3	15.8	-	-	-	-	3	3.5	-	-	-	-	-	-	4	2.4
S. heterogama	CMU33	-	-	-	-	3	15.8	-	-	-	-	-	-	-	-	-	-	-	-	-	-
S. sp.1	CMU30	-	-	-	-	-	-	-	-	-	-	4	4.7	-	-	-	-	-	-	-	-
S. sp.2	CMU32	-	-	-	-	-	-	7	20.6	-	-	-	-	-	-	-	-	-	-	-	-
<i>S</i> . sp.3	CMU34	-	-	-	-	-	-	-	-	-	-	-	-	10	23.8	-	-	-	-	-	-
Total spore		27	100	45	100	19	100	34	100	150	100	86	100	42	100	112	100	21	100	163	100
Species richness		3		4		6		7		5		11		7		6		4		8	

Table 4 (Continued). Spore density (S) and relative abundance (RA) of AMF at each sample site.

Fig. 2 – Spore characteristics of the dominant AMF collected from physic nut rhizosphere under light (a-g) and scanning electron (h) microscopes. *Acaulospora foveata* (CMU02) [a], *Entrophospora colombiana* (CMU05) [b, h], *A. dilatata* (CMU09) [c], *A. lacunosa* (CMU14) [d], *Gigaspora rosea* (CMU29) [e], *Gigaspora* sp.1 (CMU28) [f], and *A. scrobiculata* (CMU06) [g] with Melzer's reagent. Bars: a, b, c, d, g = 38 μ m (40×); e, f = 150 μ m (10×); h = 50 μ m.

Fig. 3 – AMF colonization in physic nut roots collected from the field. (a) AMF structures near the root tip (arrow), (b) a highly infected root, (c) vesicles (arrows), and (d) arbuscules (arrows).

Code	Species	S	IF	RA
CMU04	Acaulospora colossica P.A. Schultz, Bever & J.B. Morton	10	10	1.4
CMU08	Acaulospora denticulata Sieverd. & S. Toro	2	10	0.3
CMU09	Acaulospora dilatata J.B. Morton	51	20	7.3
CMU12	Acaulospora excavata Ingleby & C. Walker	42	50	6.0
CMU02	Acaulospora foveata Trappe & Janos	74	20	10.6
CMU14	Acaulospora lacunosa J.B. Morton	74	30	10.6
CMU16	Acaulospora morrowiae Spain & N.C. Schenck	19	20	2.7
CMU11	Acaulospora nicolsonii C. Walker, L.E. Reed & F.E. Sanders	6	30	0.9
CMU10	Acaulospora rehmii Sieverd. & S. Toro	4	20	0.6
CMU06	Acaulospora scrobiculata Trappe	29	70	4.1
CMU01	Acaulospora spinosa C. Walker & Trappe	1	10	0.1
CMU03	Acaulospora tuberculata Janos & Trappe	34	20	4.9
CMU07	Acaulospora sp.1	2	10	0.3
CMU13	Acaulospora sp.2	2	10	0.3
CMU15	Acaulospora sp.3	3	10	0.4
CMU26	Acaulospora sp.4	37	10	5.3
CMU05	Entrophospora colombiana Spain & N.C. Schenck	74	10	10.6
CMU29	Gigaspora rosea T.H. Nicolson & N.C. Schenck	51	10	7.3
CMU28	Gigaspora sp.1	53	20	7.6
CMU21	Glomus clavisporum (Trappe) R.T. Almeida & N.C. Schenck	10	10	1.4
CMU18	Glomus etunicatum W.N. Becker & Gerd.	3	10	0.4
CMU27	Glomus fulvum (Berk. & Broome) Trappe & Gerd.	15	10	2.1
CMU22	Glomus sinuosum (Gerd. & B.K. Bakshi) R.T. Almeida & N.C. Schenck	9	20	1.3
CMU17	Glomus sp.1	5	20	0.7
CMU19	Glomus sp.2	6	10	0.9
CMU20	Glomus sp.3	16	10	2.3
CMU23	Glomus sp.4	17	10	2.4
CMU24	Glomus sp.5	1	10	0.1
CMU25	Glomus sp.6	8	20	1.1
CMU31	Scutellospora pellucida (T.H. Nicolson & N.C. Schenck) C. Walker & F.E. Sanders)	17	40	2.4
CMU30	Scutellospora sp.1	4	10	0.6
CMU32	Scutellospora sp.2	7	10	1.0
CMU33	Scutellospora heterogama (T.H. Nicolson & Gerd.) C. Walker & F.E. Sanders	3	10	0.4
CMU34	Scutellospora sp.3	10	10	1.4
Total: AM	IF 34 species	699		100

Table 5. Identified AMF with their spore density (S), isolation frequency (IF) and relative abundance (RA) in physic nut rhizosphere (dominant species are in bold).

Discussion

Members of the plant family Euphorbiaceae are known to form mycorrhizal symbioses (Tawaraya et al. 2003, Youpensuk et al. 2004, Zhao & Zhiwei 2007, Straker et al. 2010). In this study we report for the first time the population density, composition of AMF and root colonisation in selected physic nut plantings in Thailand. AMF were present in all the study sites both in physic nut roots and in soil with moderate to high levels of colonisation regardless of plant age as grapevine (Schreiner & Mihara 2009). In contrast Narendra et al. (2009) observed higher colonisation in older plants in India. Nevertheless, this suggests that the plant is strongly mycorrhizal dependent.

The number of AMF species obtained in the present study (34 species) is similar to other studies for a range of hosts in Thailand (Table 6). Weravart (2003) identified 27 AMF species from Acacia mangium in the North and Northeastern part of Thailand whilst Nandakwamg et al. (2008) described 24 AMF species from indigeneous forest trees in the North of Thailand. Furthermore, Youpensuk et al. (2004) reported 29 AMF species associated with Macaranga denticulata in upland shifting agriculture in the North of Thailand. The number of AMF species in the present study, however, were double the number of AMF species detected under continuous maize cropping in central Thailand where high P and N inputs were applied in long-term fertilization trials

Host plant			Total						
	Α	Ar	Ε	Gi	G	Pg	S	U	AMF species
Macaranga denticulata (Youpensuk et al. 2004)	6	1	-	2	17	1	2	-	29
Acacia mangium (Weravart 2003)	6	-	-	7	7	-	6	1	27
Zea mays (Nabhadalung et al. 2005)	2	-	2	-	9	-	1	2	16
Indigenous trees (Nandakwang et al. 2008)	6	-	-	-	15	-	3	-	24
Jatropha curcas (current study)	16	-	1	2	10	-	5	-	34

Table 6. Comparison of AMF diversity in the current study with previous studies in Thailand.

*A = Acaulospora, Ar = Archaeospora, E = Entrophospora, Gi = Gigaspora, G = Glomus, Pg = Paraglomus, S = Scutellospora, and U = unknown.

(Nabhadaluang et al. 2005).

Studies undertaken in China have provided the same order of AMF diversity as recorded so far in Thailand. For example, in tropical rain forests in south China, Zhao et al. (2003) identified 27 AMF species and Dandan & Zhiwei (2007) recorded 43 AMF morphospecies from a hot and dry valley in south-west China. By contrast, Singh et al. (2008) detected a total of 51 AMF morphospecies associated with the rhizosphere of tea growing in natural and cultivated ecosites. In comparison, from our study there were 34 AMF species associated with physic nut roots but the species richness at a site level was low (average 3.4 AMF species per site).

Previous studies have shown that agricultural management practices, such as tillage, fertilization and cropping systems, have a negative impact on the AMF associated with temperate and tropical agronomic plant species (van der Heijden et al. 1998; Douds & Millner 1999; Cardoso & Kuyper 2006; Wang et al. 2009). Fertilization is an important abiotic factor influencing growth, colonisation, sporulation, composition and distribution of AMF (Johnson 1993, Egerton-Warburton & Allen 2000, Nabhadalung et al. 2005, Zhang et al. 2006, Wang et al. 2009). In general, high levels of P fertilizer can negate the mycorrhizal effect in the field, reducing infection of roots and sporulation (Douds & Schenck 1990, Tang et al. 2001, Rubio et al. 2003, Alguacil et al. 2010). Several authors have indicated that increasing P fertilization significantly reduced the species diversity of AMF and altered the species composition (Johnson 1993, Kahiluoto et al. 2001, Wang et al. 2009). Alguacil et al. (2010) clearly demonstrated that P fertilization affected AMF diversity and composition in a tropical savanna forage system when different sources and high doses of P were applied.

Apart from their P contents, high soil N contents can also influence the species composition of AM fungi and colonisation (Blanke et al. 2005, Treseder & Allen 2002, Wang et al. 2009). In our case, most soil samples had medium to very high concentrations of available P. The high P contents may have contributed to the low species richness and diversity at the site level. However, other factors can also affect AMF diversity and community structure such as vegetation type, host specificity between fungi and plants and temporal variation (Johnson et al. 1992: Barni & Siniscalco 2000; Boddington & Dodd 2000; Burrows & Pfleger 2002; Husband et al. 2002; Narendra et al. 2009). Gaidashova et al. (2009) concluded that AMF diversity varies considerably depending on edapho-climatic conditions, including rainfall, soil texture and soil management practices. In addition, large samples are likely to contain more AMF species which could result in a high species diversity including species richness, Shannon-Weiner index and Simpson's index (Barrow et al. 1997; Nandakwang et al. 2008). Therefore a greater sampling effort would be required to prove this.

The present study showed that Acaulospora was the predominant genus in terms of spore density and species diversity (Table 4). A similar finding was obtained from rhizosphere soil under food crops planted into an upland swidden farm and in dry tropical forests in northern Thailand (Nandakwang et al. 2008, Wongmo 2008). Species of Acaulospora have been identified mainly in low input farming systems, forest and grassland soils. They are considered as facultative symbionts adapted to a wide array of soil and host species, appearing in soils of widely different pH and nutrient availability (Sieverding 1991, Shepherd et al. 1996, Straker et al. 2010). Moreover, Acaulospora species are frequently associated with

acidic soil (Abbott and Robson, 1991). Our study indicated that *A. scrobiculata* was frequently found in many sites. This is in agreement with several reports (Shepherd et al. 1996, Jefwa et al. 2006, Straker et al. 2010).

Glomus species are considered as cosmopolitan fungi in many ecosystems (Sýkorová et al. 2007). They dominate habitats in cold, temperate and tropical regions. They usually occur in neutral and slightly alkaline soil (Mukerji et al. 2002). In particular, G. etunicatum has a worldwide distribution and can be found in many ecotypes (Becker & Gerdemann, 1977). In Thailand, Glomus was the most prevalent AMF genus under Macaranga denticulata (Youpensuk et al. 2004), an indigenous colonizing tree of North Thailand (Nandakwang et al. 2008). Most of the soils in our study sites were acidic. Therefore, this could explain our less frequent detection of Glomus.

Other genera were less common in the present study, with only a few examples of species, such as Entrophospora colombiana, Gigaspora rosea, Scutellospora pellucida and S. heterogama. There were only a small number of species present in the Gigasporaceae. Often, Gigaspora species predominate in sandy soils such as dunes (Lee & Koske 1994). Many soils in northern Thailand have a low sand content. Scutellospora is an ancestor of Gigaspora (Walker 1992). Both Gigaspora and Scutellospora produce large spores and these require a longer period to develop than the small-spored species (Hepper 1984). It has been suggested that the latter are therefore more adaptive to changing environmental conditions (Stutz & Morton 1996). It also appears that Scutellospora might be a poor competitor in colonizing plant roots and that the host plants favours fungi from the Glomerales (Sýkorová et al. 2007). Species of Gigaspora and Scutellospora are much more frequently associated with wild plants than with field crops (Gai et al. 2006).

Physic nut was well colonized by AMF in all field locations studied. The ability of this crop to harbor AMF across a wide range of site conditions makes it a good potential crop for large scale plantations. To our knowledge, the establishment of physic nut plantations in Thailand is often directed towards land that previously supported crops such as cassava or was forested or has become degraded. With land degradation, topsoils become eroded and leached. The associated loss of indigenous AMF means that the land has a limited capability to support growth of either indigenous or agronomic plants species without addition of considerable amounts of fertilizer. Under these situations, application of suitable and effective AMF should benefit the establishment of physic nut plantations.

Further research is required to identify effective AMF for physic nut in Thailand that can be used in inoculation programs in order to restore AMF diversity to degraded lands.

Acknowledgements

This work was supported by grants from the Thailand Research Fund: DBG4980004, Chiang Mai University Graduate School, the Higher Education Commission and the National Research University program, Thailand.

References

- Abbott LK, Robson AD. 1991 Factors influencing the occurrence of vesiculararbuscular mycorrhizas. Agriculture, Ecosystems and Environment 35, 121– 150.
- Alguacil M del M, Lozano Z, Campoy MJ, Roldán A. 2010 – Phosphorus fertilisation management modifies the biodiversity of AM fungi in a tropical savanna forage system. Soil Biology and Biochemistry.

doi:10.1016/j.soilbio.2010.03.012.

- Anonymous. 2007 The little shrub that couldmaybe. Nature 449, 652–655
- Barni E, Siniscalco C. 2000 Vegetation dynamics and arbuscular mycorrhiza in old-field successions of the western Italian Alps. Mycorrhiza 10, 63–72.
- Barrow JR, Havstad KM, McCaslin BD. 1997 – Fungal root endophytes in four-wing saltbush, *Altiplex canescens*, on arid rangeland of southwestern USA. Arid Soil Research and Rehabilitation 11, 177–185.
- Becker WN, Gerdemann JW. 1977 *Glomus etunicatus* sp. nov. Mycotaxon 6, 29–32.

- Blanke V, Renker C, Wagner M, Fillner K, Held M, Kuhn AJ, Buscot F. 2005 – Nitrogen supply affects arbuscular mycorrhizal colonization of *Artemisia vulgaris* in a phosphate-polluted field site. New Phytologist 166, 981–992.
- Boddington CL, Dodd JC. 2000 The effect of agricultural practices on the development of indigenous arbuscular mycorrhizal fungi. I. Field studies in an Indonesian ultisol. Plant and Soil 218, 137-144.
- Borkowska B. 2002 Growth and photosynthetic activity of micropropagated strawberry plants inoculated with endomycorrhizal fungi (AMF) and grown under drought stress. Acta physiologiae plantarum 24, 365–370.
- Bremner JM. 1996 Nitrogen total. In: Methods of Soil Analysis: Chemical Methods, Part 3, (ed. DL Sparks). Soil Science Society of America and American Society of Agronomy, Madison, Wisconsin pp 1085–1021.
- Brundrett M, Bougher N, Dell B, Grove T, Malajczuk N. 1996 – Working with Mycorrhizas in Forestry and Agriculture. ACIAR Monograph. Canberra, Australia.
- Burrows RL, Pfleger FL. 2002 Arbuscular mycorrhizal fungi respond to increasing plant diversity. Canadian Journal of Botany 80, 120–130.
- Cardoso IM, Kuyper TW. 2006 Mycorrhizas and tropical soil fertility. Agriculture, Ecosystems and Environment 116, 72–84.
- Chen X, Tang J, Zhi G, Hu S. 2005 Arbuscular mycorrhizae enhance metal lead uptake and growth of host plants under a sand culture experiment. Chemosphere 60, 665–671.
- Dandan Z, Zhiwei Z. 2007 Biodiversity of arbuscular mycorrhizal fungi in the hotdry valley of the Jinsha River, southwest China. Applied Soil Ecology 37, 118–128.
- David ML, Joerg AP, Alberte B. 2009 Modeling the land requirements and potential productivity of sugarcane and *Jatropha* in Brazil and India using the LPJmL dynamic global vegetation model. Biomass and Bioenergy 33, 1087–1095.
- Douds DD Jr, Millner PD. 1999 Biodiversity of arbuscular mycorrhizal fungi in

agroecosystems. Agriculture, Ecosystems and Environment 74, 77–93.

- Douds DD Jr, Schenck NC. 1990 Relationship of colonization and sporulation by VA mycorrhizal fungi to plant nutrient and carbohydrate contents. New Phytologist 116, 621-627.
- Egerton-Warburton LM, Allen EB. 2000 Shifts in arbuscular mycorrhizal communities along an anthropogenic nitrogen deposition gradient. Ecological Applications 10, 484–496.
- Foidl N, Foidl G, Sanchez M, Mittelbach M, Hackel S. 1996 – *Jatropha curcas* L. as a source for the production of biofuel in Nicaragua. Bioresource Technology 58, 77–82.
- Gai JP, Christie P, Feng G, Li XL. 2006 Twenty years of research on community composition and species distribution of arbuscular mycorrhizal fungi in China: a review. Mycorrhiza 16, 229–239.
- Gaidashova SV, van Asten PJA, Jefwa JM, Delvaux B, Declerck S. 2009 – Arbuscular mycorrhizal fungi in the East African Highland banana cropping systems as related to edapho-climatic conditions and management practices: case study of Rwanda. Fungal Ecololy doi:10.1016/j.funeco.2009.09.002.
- Harley JL, Smith SE. 1983 Mycorrhizal Symbiosis. Academic Press, London.
- Heller J. 1996 Physic Nut. Jatropha curcas L.
 Promoting the conservation and use of underutilized and neglected crops. 1.
 Institute of Plant Genetics and Crop Plant Research, Gatersleben / International Plant Genetics Resources Institute, Rome.
- Helmer PA, Sparkers DL. 1996 Lithium, sodium, potassium, rubidium and cesium.
 In: Methods of Soil Analysis: Chemical Methods, Part 3. (ed. DL Sparks). Soil Science Society of America and American Society of Agronomy, Madison, Wisconsin, 551–575.
- Helrich K. 1990 Official Methods of Analysis of the Association of Official Analytical Chemists. 2 Volumes. 15th edn. Arlington: AOAC.
- Hepper CM. 1984 Isolation and culture of VA mycorrhizal (VAM) fungi. In: VA Mycorrhizae. (eds. CL Powell, DJ

Bagyaraj) CRC Press, Florida, USA. 95–112.

- Husband R, Herre EA, Young JPW. 2002 Temporal variation in the arbuscular mycorrhizal communities colonizing seedlings in a tropical forest. FEMS Microbiology Ecology 42, 131–136.
- Jansa J, Mozafar A, Anken T, Ruh R, Sanders IR, Frossard E. 2002 – Diversity and structure of AMF communities as affected by tillage in a temperate soil. Mycorrhiza 12, 225–234.
- Jefwa JM, Sinclair R, Maghembe JA. 2006 Diversity of glomale mycorrhizal fungi in maize/sesbania intercrop and maize monocrop systems in southern Malawi. Agroforestry Systems 67, 107–114.
- Johnson NC. 1993 Can fertilization of soil select less mutualistic mycorrhizae? Ecological Applications 3, 749-757.
- Johnson NC, Tilman D, Wedin D. 1992 Plant and soil controls on mycorrhizal fungal communities. Ecology 73, 2034–2042.
- Kahiluoto H, Ketoja E, Vestberg M, Saarela I. 2001 – Promotion of AM utilization through reduced P fertilization: 2. Field studies. Plant and Soil 231, 65–79.
- Kapoor R, Giri B, Mukerji KG. 2004 Improved growth and essential oil yield and quality in *Foeniculum vulgare* Mill on mycorrhizal inoculation supplemented with P-fertilizer. Bioresource Technology 93, 307–311.
- Kuo S. 1996 Phosphorus. In: Methods of Soil Analysis: Chemical Methods. Part 3. (ed. DL). Soil Science Society of America and American Society of Agronomy, Madison Wisconsin, 869 –921.
- Lambe TW, Whitman RV. 1969 Soil Mechanics: Series in Soil Engineering, 1st edn. John Wiley & Sons, USA.
- Lee PJ, Koske RE. 1994 *Gigaspora gigantia*: Seasonal, abundance and ageing of spores in a sand dune. Mycological Research 98, 453–457.
- Morton JB. 1988 Taxonomy of mycorrhizal fungi: classification, nomenclature, and identification. Mycotaxon 32, 267–324.
- Mukerji KG, Manoharachary C, Chamola BP. 2002 – Techniques in mycorrhizal studies. Kluwer Academic Publishers, Dordrecht, Boston, London.

- Nabhadalung N, Suwanarit A, Dell B, Nopamornbodi O, Thamchaipenet A, Rungchuang J. 2005 – Effect of longterm NP-fertilization on abundance and diversity of arbuscular mycorrhizal fungi under a maize cropping system. Plant and Soil 270, 371–382.
- Nandakwang P, Elliott S, Dell B, Teaumroong N, Lumyong S. 2008 – Arbuscular mycorrhizal status of indigenous tree species used to restore seasonally dry tropical forest in Northern Thailand. Research Journal of Microbiology 3, 51– 61.
- Narendra KS, Ashwani K, Satyawati S, Naik SN. 2009 – Interaction of *Jatropha curcas* plantation with ecosystem. Proceedings of International Conference on Energy and Environment, Taj Chandigarh, India, 19-21 March, 2009.
- Nelson DW, Sommers LE. 1996 Total carbon, organic carbon and organic matter. In: Sparks DL (Ed) Methods of Soil Analysis: Chemical Methods. Part3 Soil Science Society of America and American Society of Agronomy, Madison, Wisconsin, 961–1011.
- Pasqualini D, Uhlmann A, Stürmer LS. 2007 Arbuscular mycorrhizal fungal communities influence growth and phosphorus concentration of woody plants species from the Atlantic rain forest in South Brazil. Forest Ecology and Management 245, 148–155.
- Phosri C, Rodriguez A, Sander IR, Jeffries P. 2010 – The role of mycorrhizas in more sustainable oil plam cultivation. Agriculture, Ecosystems and Environment 135, 187–193.
- Porras-Soriano A, Soriano-Martin ML, Porras-Piedra A, Azcon R. 2009 – Arbuscular mycorrhizal fungi increased growth, nutrient uptake and tolerance to salinity in olive trees under nursery conditions. Journal of Plant Physiology 166, 1350– 1359.
- Prueksakorn K, Shabbir HG, Pomthong M, Sébastien B. 2006 – Energy analysis of *Jatropha* plantation systems for biodiesel production in Thailand, Energy for Sustainable Development, The 2nd Joint International Conference on Sustainable

Energy and Environment (SEE 2006), 21-23 November 2006, Bangkok, Thailand.

- Rubio R, Borie F, Schalchli C, Castillo C, Azcón R. 2003 – Occurrence and effect of arbuscular mycorrhizal propagules in wheat as affected by the source and amount of phosphorus fertilizer and fungal inoculation. Applied Soil Ecology 23, 245–255.
- Schreiner RP. 2007 Effects of native and nonnative arbuscular mycorrhizal fungi on growth and nutrient uptake of 'Pinot noir' (*Vitis vinifera* L.) in two soils with contrasting levels of phosphorus. Applied Soil Ecology 36, 205–215.
- Schreiner RP, Mihara KL. 2009 The diversity of arbuscular mycorrhizal fungi amplified from grapevine roots (*Vitis vinifera* L.) in Oregon vineyards is seasonally stable and influenced by soil and vine age. Mycologia 101, 599–611.
- Shannon CE, Weiner W. 1963 The Mathematical Theory of Communication. University of Illionis Press, Urbana, USA.
- Shepherd KD, Jefwa J, Wilson J, Ndufa JK, Ingleby K, Mbuthu KW. 1996 – Infection potential of farm soils as mycorrhizal inocula for *Leucaena leucocephala*. Biology and Fertility of Soils 22, 16–21.
- Sieverding E. 1991 Vesicular-arbuscular mycorrhizal management in tropical agro systems. German Technical Co-operation (GZT). Eschborn, Geramany. 52.
- Simpson EH. 1949 Measurement of diversity. Nature 163, 688.
- Singh S, Pandey A, Chaurasia B, Palni LMS. 2008 – Diversity of arbuscular mycorrhizal fungi associated with the rhizosphere of tea growing in 'natural'and 'cultivated' ecosites. Biology and Fertility of Soils 44, 491–500.
- Smith SE, Read DJ. 1997 Mycorrhizal Symbiosis. Second Edition. Academic Press, London, UK.
- Straker CJ, Hilditch AJ, Rey MEC. 2010 Arbuscular mycorrhizal fungi associated with cassava (*Manihot esculenta* Crantz). South African Journal of Botany 76, 102– 111.
- Stutz JC, Morton JB. 1996 Successive pot cultures reveal high species richness of arbuscular endomycorrhizal fungi in arid

ecosystems. Canadian Journal of Botany 74, 1883–1889.

- Sýkorová Z, Ineichen K, Wiemken A, Redecker D. 2007 – The cultivation bias: different communities of arbuscular mycorrhizal fungi detected in root from the field, from biat plants transplanted to the field, and from a greenhouse trap experiment. Mycorrhiza 18, 1–14.
- Tang F, White JA, Charvat I. 2001 The effect of phosphorus availability on arbuscular mycorrhizal colonization on *Typha angustifolia*. Mycologia 93, 1042–1047.
- Tawaraya K, Takaya Y, Turjaman M, Tuah SJ, Limin SH, Tamai Y, Cha JY, Wagatsuma T, Osakid M. 2003 – Arbuscular mycorrhizal colonization of tree species grown in peat swamp forests of Central Kalimantan, Indonesia. Forest Ecology and Management 182, 381–386.
- Tewari DN. 2007 *Jatropha* and Biodiesel. Ocean Books Ltd, New Delhi.
- Thomas GW. 1996 Soil pH and soil acidity. In: Methods of Soil Analysis: Chemical Methods, Part 3. (ed. JM Bigham). Soil Science Society of America Book Series No.5. Soil Science Society of America and American Society of Agronomy, Madison, Wisconsin, 475–490.
- Treseder KK, Allen MF. 2002 Direct nitrogen and phosphorus limitation of arbuscular mycorrhizal fungi: a model and field test. New Phytologist 155, 507– 515.
- van der Heijden MGA, Klironomos JN, Ursic M, Moutoglis P, Streitwolf-Engel R, Boller T, Wiemken A, Sanders IR. 1998 – Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity. Nature 396, 69–72.
- Walker C. 1992 Systematics and taxonomy of the arbuscular endomycorrhizal fungi (Glomalea) - a possible way forward. Agronomie 12, 887-897
- Wang MY, Hu LB, Wang WH, Liu ST, Li M, Lui RJ. 2009 – Influence of long-term fixed fertilization on diversity of arbuscular mycorrhizal fungi. Pedosphere 19, 663–672.
- Weravart N. 2003 Genetic diversity of arbuscular mycorrhizal fungi infected

Acacia mangium Willd. Ph.D. Thesis, Suranaree University, Nakornratchaseema, Thailand

- Wongmo J. 2008 Influences of arbuscular mycorrhizal fungi on different food crops.
 Ph.D. Thesis, Chiang Mai University, Chiang Mai, Thailand.
- Youpensuk S, Lumyong S, Dell B, Rerkasem B. 2004 – Arbuscular mycorrhizal fungi in the rhizosphere of *Macaranga denticulata* Muell. Arg. and their effect on the host plant. Agroforestry Systems 60, 239–246.
- Zhang XH, Zhu YG, Wang YS, Lin AJ, Chen BD, Zhang MQ 2006 – Effect of long-

term fertilization on the diversity and distribution of arbuscular mycorrhizal fungi in Northeast China. Acta Ecologica Sinica/Shengtai Xuebao (in Chinese). 26, 3081–3087.

- Zhao D, Zhiwei Z. 2007 Biodiversity of arbuscular mycorrhizal fungi in the hotdry valley of the Jinsha River, southwest China. Applied Soil Ecology 37, 118–128.
- Zhao ZW, Wang GH, Yang L. 2003 Biodiversity of arbuscular mycorrhizal fungi in a tropical rainforest of Xishuangbanna, southwest China. Fungal Diversity 13, 233–242.