Hordyk, A. and Prince, J.D. (2013) Extending the principal of Beverton-Holt Life History Invariants for length based assessment of SPR. In: ICES World Conference on Stock Assessment Methods for Sustainable Fisheries (WCSAM 2013), 15 - 16 July, Boston, USA.

4.07 - Extending the principal of Beverton-Holt Life History Invariants for length based assessment of SPR

Adrian Hordyk & Jeremy Prince*

Collected high quality biological parameters for range of marine species (Gislason et al. 2010 – Criteria used).

For each species:

- Growth model
- Natural mortality (M)
- Size-fecundity model or maturity ogive
- Length weight model

Examined patterns life history strategies

SPR at Size

SPR at Size

SPR at Size: r- vs. K- strategists

SPR at Size: r- vs. K- strategists

SPR at Size: r- vs. K- strategists

Beverton-Holt Life History Invariants

Meta-analysis & Beverton (1992)

$$L_m/L_{\infty} = 3/(3 + M/k).$$

Unfished Length Composition

Length Based SPR Estimation Method

: expected unfished length distribution

Standardised to L_{∞}

Length Based SPR Estimation Method

: expected unfished length distribution

: length frequency of catch (Z = F + M)

SPR & F/M: Calculated from $M/k \& L_m/L_{\infty}$

Standardised to L_{∞}

Length frequency of catch representative of exploited stock

Asymptotic selectivity

Same growth curve or female length data

Knowledge of maturity at size

Equilibrium method

Tiger Flathead

Neoplatycephalus richardsoni

Pacific Hake

Merluccius productus

Years

Northern Hake – ICES dataset

Merluccius merluccius

Assessment

2010

Northern Hake – ICES dataset

Merluccius merluccius

Conclusion

Meta-analysisM/k ratio defines life-history strategy & Size
composition e.g. tuna are just scaled up anchovy.
Conceptual framework for borrowing information
from data-rich species.

BH-LHI Only covers a small subset of the species in the meta-analysis.
Productivity of K-strategists parameterised by BH-LHI have been over-estimated.

ApplicationCost-effective estimation of SPR & F/M from
length-data, Lm & meta-analysis for
Data-poor and small scale fisheries.

Acknowledgements

Thank you

Funding

David and Lucile Packard Foundation Marine Stewardship Council The Nature Conservancy Murdoch University

Data & Assistance Kotaro Ono, Sarah Valencia, Keith Sainsbury, Neil Loneragan

Arrowtooth Flounder

Atheresthes stomias

Estimation Model

Model input parameters:

Estimated parameters:

F/M S_{L50} & S_{L95} SPR

$$MLE\left(\widehat{S_{L50}}, \widehat{S_{L95}}, \widehat{F/M}\right) = \frac{\arg\min}{(S_{L50}, S_{L95}, F/M)} \left| \sum_{L=L_{min}}^{L=L_{max}} O_L \log \frac{P_{PL}}{O_{PL}} \right|$$