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Abstract—Demand response is an important demand-side 

resource that allows consumers to consume less electricity when 

the system is under stress.  Existing demand response mechanism 

reduces power consumption by forcefully shutting down the 

consumers’ loads or punishing the consumers with high 

consumption prices during high peak hours without considering 

their comfort level. This paper presents a methodology to design 

a model for domestic load management based on fuzzy logic 

techniques where three optimization parameters – comfort, cost 

and demand response are taken into account. Furthermore a 

comparative analysis for the power consumption and cost saving 

performance is carried out to show the benefit of using renewable 

energy sources along with a fuzzy logic based load controller. 

Simulation results show that the proposed controller successfully 

limits the power consumption during the peak hours and 

concurrently maximizes the savings of energy consumption cost 

without violating consumers’ comfort level.  

Index Terms-- Consumer comfort level; Demand Response (DR); 

Direct Load Control (DLC); Energy savings; Fuzzy logic 

techniques. 

I. INTRODUCTION 

Demand response (DR) is an electric market mechanism by 
which consumers can reduce consumption in response to 
energy price fluctuations, demand charges or a direct request to 
reduce demand when the power grid reaches critical levels. It is 
estimated that a 5% lowering of demand would result in a 50% 
price reduction during the peak hours [1]. The power 
consumption in buildings represent a 30-40% of the final 
energy usage, which is caused by: HVAC (heating, ventilation 
and air conditioning), lighting and appliances with any 
connection to the power grid. Recent research shows that load 
management at home level using computational intelligent 
techniques provide a reduction of power consumption by 
around 10 - 30% [2]. 

Direct load control (DLC) is nowadays popular in 
controlling the demand response which utilities use to force the 
consumer to switch off the appliances or postpone their energy 

consumption during peak hours. While reducing peak demands, 
utilities will also need to keep customers satisfied with their 
performance and services. Within a deregulated electricity 
market, customer satisfaction is crucial. Thus, in such a 
business environment, any attempt to reduce the peak load of 
the system requires the full support of customer. Any control 
scheme should consider an adequate representation of the 
customers’ specifications and preferences. If a particular 
customer’s comfort is not kept in mind during the 
implementation of a control strategy, his or her tolerance level 
will decrease. Effectively, the customer’s willingness to 
participate in any peak reduction plan also decreases. The major 
challenge is to minimize the power consumption by optimizing 
the operation of several loads without impacting the customer’s 
comfort. 

II. RELATED WORK  

A Vickrey Clarke Groves (VCG) mechanism [3] has been 
used to control the consumers’ energy consumptions in where 
each home is equipped with an energy consumption controller 
(ECC) as part of the smart meter. The proposed VCG 
mechanism improves the performance of the system by 
encouraging users to reduce their power consumption and shift 
their loads to off-peak hours. This mechanism assumes 
customers as price takers which means customers are only 
considered as energy consumers not as providers. Shuai Lu [4] 
has described a model with detailed household load control 
technique using voltage and frequency dip. This paper 
discusses these two control philosophies and compares their 
response performances in terms of delay time and 
predictability. Only air conditioner system and water heater 
participated in demand response program and other house hold 
loads have not been considered for this model. A fuzzy logic 
controller is designed by Ravibabu [5] to reduce the gap 
between the demand and the supply of electrical energy loads 
in both peaks hours and off peak hours aiming to properly 
utilize the available power for the vital loads and power wastage 
can be restricted. However, by limiting the demand, the impact 
on the customer comfort level has not been considered. 
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Increasing the energy price can significantly limit the total 
power consumptions. The proposed model [6] indicates the 
importance of electricity price and the great impact of time-of-
use price on the total quantity of power demand reduction. 
Quanyan Zhu and Zhu Han [7] have used the framework of 
dynamic games to schedule different home electrical 
appliances. Direct load control and demand management in 
response to market price have been considered to reduce the 
energy consumptions. It showed that by increasing the energy 
price the power consumption will decrease however consumer 
satisfaction has not been considered as well as the efficient use 
of energy. 

Some authors have shown papers that achieved a power 
consumption saving without impacting the customer’s comfort 
[8], [9]. The study proposed in [10] presents the design of two 
levels of a multi-agent controller, central and local coordinators 
are mentioned. Particle Swarm Optimization (PSO) method is 
used to optimize energy efficiency and consumer´s comfort. 
Another proposed work in [11], achieved demand response by 
utilizing dynamic notion price to develop intelligent decision-
making model at home level for increasing the efficiency of 
energy consumption and adapt consumers’ preferences. 

III. SOLUTION METHODOLOGY 

Lacking of intelligence in home energy management have 
made more complex to schedule of multiple devices and 
manual device control is inefficient and unattractive to the 
residents [11]. The home energy management need to be smart 
enough to integrate different sources of renewable energy and 
optimize the best use of available power to the appliances for 
optimal consumptions. In this paper we present an intelligent 
home energy model as shown in Fig. 1, which identifies the 
different types of variables that need to be captured for fuzzy 
logic load controller. Those variables are grid price signals, 
outdoor temperature, room temperature, available renewable 
energy and total consumptions which will be collected through 
smart meter and smart home sensors in certain period of time. 
It has a learning module which learns the consumer’s 
consumption behaviours and stores these data for future use. 
The Intelligent Home Energy Management (IHEM) model in 
Fig. 1, utilizes four steps as depicted here: 

Step 1: The house will always consume the available 
renewable energy generator (such as wind turbine, PV, batteries 
etc.) first. If there is any surplus energy from the renewable 
resources, the batteries will be charged and the remaining 
energy will be sold back to the utility grid. 

Step 2: If the total preferred consumption is higher than 
renewable energy generation and consumer has no priority 
loads, the IHEM system will shed few loads to level down the 
consumption with the generation. 

Step 3: If the total preferred consumption is higher than 
renewable energy generation and consumer has priority loads, 
(such as AC, water heater, room heater etc.), the IHEM system 
will schedule the non-priority loads (such as washing machine, 
dishwasher, clothes dryer etc.) to off peak hours to reduce the 
energy consumptions, and if there is no deficiency of energy 
from renewable energy generators the IHEM system will run 
these priority loads. 

Step 4: If the renewable energy generation is not enough to 
run the priority loads, the IHEM system calculates extra energy 
that need to be purchased from the grid and the total price for 
these consumptions. It will then inform the consumer whether 
to accept the consumption price or not. If the utility electricity 
rate is acceptable, utility power will be purchased to fulfil the 
total load demands of the house. If not the IHEM will shed few 
loads or schedule it according to the consumer settings. 

Figure 1.  Intelligent Home Energy Management model 

IV. USING FUZZY LOGIC BASED LOAD MANAGEMENT 

TECHNIQUES 

Fuzzy logic based load controller is designed in such a way 
that, when the consumers increase their consumptions during 
peak hours, it identifies the nonpriority loads to switch off and 
shifts the consumptions to the off-peak hours.  In this case the 
power consumption during the peak hours is limited by cutting 
some loads off and hence there will be proper utilisation of 
supplied power to the high priority loads. 

The controller also keeps energy consumption within a 
certain limit (in this example 2.5kWh maximum) which means 
consumption will not exceed the limit during the high peak 
hours. However, it will allow the consumer to exceed the limit 
only if the load consumption time is small (2 to 15 minutes). As 
an example if a consumer turns on coffee maker or toaster 
during the peak hours and consumption time is between 2 to 15 
minutes, the fuzzy load controller will not take any action and 
will allow the load to operate in that period of time. 
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In this experiment household appliances are divided into 
four categories which are: Base loads, Priority loads, 
Schedulable loads or Non-priority loads and Short-time loads. 
Table I presents each category of load and their power 
consumption.       

TABLE I.  LOAD CATAGORIES AND POWER CONSUMPTION 

1. Base loads Consumption

s (-kW) 

3. Schedulable   

    loads 

Consumption

s (kW) 

Lights 3*0.04 = 0.12 Washing machine 0.5 

Fans 2*.08 = 0.16 Dishwasher 1 

TV 0.15 Clothes dryer 2 

Computer 0.17 Water heater 4.5 

Fridge 0.5 4. Short-time    

    loads 

Consumption

s (kW) 

2. Priority  

    loads 

Consumption

s (kW) 

Coffee maker 1 

AC 1.5 Toaster 1 

Room heater 1.5 Vacuum cleaner 1 

- - Micro oven 1 

To design the fuzzy load controller and to meet the 
consumers’ constrains the steps followed are:  

1) Fuzzy logic controller. 

2) Fuzzy membership functions. 

3) Fuzzy rules.  

A. Fuzzy Logic Load Controller 

The fuzzy system will have five inputs: Time, Comfort 
Level, Temperature Deviation, Forecast Loads and 
Consumption Time and two outputs: Allow Load Scheduling 
and Run Loads. Fig. 2 shows the block diagram of the proposed 
fuzzy load controller which has 230 rules, five inputs and two 
output signal. Some of the fuzzy rules are given later in the 
paper. 

Figure 2.  Input and Output block diagram 

The inputs and outputs of the above model shown in Fig. 2, 
are as follows: 

Input1- Time: Data was sampled for a period of 24 hours. 
Peak-on, off-peak (moderate) and peak-off are included in 
membership function trapezoidal type. 

Input2- Comfort level: The desired temperature level set 
by the consumers at which they feel comfort. 

Input3- Temperature deviation: Room temperature 
deviation from consumer comfort level temperature.  

Input4 - Forecast load: The total predicted loads 
consumption including existing running loads and new selected 
loads. As an example if existing running loads consumption is 
2 kW and consumer decided to run Air conditioner (1.5 kW), 
the forecast load would be 3.5 kW.   

Input5 – Consumption time: The power consumption 
duration (minutes) of individual load. 

Output1 – Allow load scheduling: The amount of load in 
kW that will be shifted to off-peak hours. 

Output2 – Run load: The total amount of load in kW the 
controller will allow operating in that particular period of time. 

The controller takes the crisp or real input values, fuzzifies 
them and assigns a fuzzified control signal to provide control 
over the loads based on the rules assigned and membership 
functions. The control signal is then converted to two crisp 
signals through defuzzification process.  

B. Fuzzy Membership Functions 

Fuzzy membership functions are needed for all input and 
output variables in order to define linguistic rules that govern 
the relationships between them. The membership functions 
were found to be more suitable for the fuzzy controller inputs 
time (trapezoidal). On the other hand, sharp membership 
functions were chosen for the output variables, allow load 
scheduling and run load because of the sharp constraints on 
those variables. All the input and output membership functions 
are shown in figures 3 to 9.  

Figure 3.  Fuzzy membership function of Time (input)   

Figure 4.  Fuzzy membership function of Compfort level (input) 
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Figure 5.  Fuzzy membership function of Temperature deviation (input) 

Figure 6.  Fuzzy membership function of Forecast loads (input) 

Figure 7.  Fuzzy membership function of Consumption time (input) 

Figure 8.  Fuzzy membership function of Allow load scheduling (output) 

Figure 9.  Fuzzy membership function of Run Load  (output) 

C. Fuzzy Rules 

Fuzzy rules form the vital part of the entire fuzzy logic.The 
number of rules framed depends on the number of membership 
functions considered in the input and output blocks. The more 
the rules the more precise is the output. Considering consumers’ 
preferences and constraints demand profile was obtained using 
230 rules, few of which are listed below. 

D. Rules 

1) If (Time is peak (pm)) and (comfortLevel is Cool) and 
(TemparatureDeviation is Large+) and (ForcastLoads is 
ExtremlyHigh) and (ConsumptionTime is 16>) then 
(AllowLoadSchedulling is 3to 4) (RunLoads is 1.5 to 2.5). 

2) If (Time is peak(am)) and (comfortLevel is Cool) and 
(TemparatureDeviation is Small) and (ForcastLoads is 
VeryHigh) and (ConsumptionTime is 16>) then 
(AllowLoadSchedulling is 2.5 to 3.5)(RunLoads is 0 to 1). 

3) If (Time is peak(am)) and (comfortLevel is Cool) and 
(TemparatureDeviation is Small) and (ForcastLoads is 
Avarage) and (ConsumptionTime is 16>) then 
(AllowLoadSchedulling is 0 to 1)(RunLoads is 0 to 1). 

4) If (Time is peak(pm)) and (comfortLevel is Avarage) and 
(TemparatureDeviation is Large-) and (ForcastLoads is 
VeryHigh) and (ConsumptionTime is 16>) then 
(AllowLoadSchedulling is 1.5 to 2.5)(RunLoads is 1.5 to 2.5). 

5) If (Time is offpeak(Moderate)) and (comfortLevel is 
Avarage) and (TemparatureDeviation is Large-) and 
(ForcastLoads is VeryHigh) and (ConsumptionTime is 16>) 
then (AllowLoadSchedulling is 1 to 2)(RunLoads is 1.5 to 2.5). 

6) If (Time is peak(am)) and (comfortLevel is Cool) and 
(TemparatureDeviation is Medium+) and (ForcastLoads is 
ExtremlyHigh) and (ConsumptionTime is >10) then 
(AllowLoadSchedulling is 3to 4)(RunLoads is 4to5). 

E. Results 

According to the defined rules and the inputs specified by 
the consumers, the fuzzy load controller results are shown in 
Table II. The controller optimizes the loads that need to run 
during peak hours to achieve consumer comfort level 
temperature and shifts the rest of the loads to off-peaks hours. 

TABLE II.  FUZZY LOAD CONTROLLER RESULTS  
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V. CASE STUDY  

A typical -two bed room house power consumption data in 
a summer time has been used for this experiment. Basic 
households appliances are considered in this typical house as 
described in Table. I. The house is fitted with photovoltaic (PV) 
panels and a battery system. The battery system will be charged 
by the photovoltaic (PV) power during the course of the day. 
The batteries will be discharged during high cost periods when 
there is no photovoltaic power available. The specifications for 
the renewable sources of energy were set as follows: 

 Two lithium-ion 100 A-H, 12 V batteries. The batteries 
have 80% deep discharge capacity and provide 2 
discharge cycles per 24 hours and one bulk charge. 
There is a power loss of 20% through the battery 
charger/rectifier. Each battery provides 0.96 kW of 
power during 5 hours of discharge and charges by 0.288 
kW of power during 5 hours of charge.  

 1.5kW of PV system. This 1.5 kW system is only 
produces just a touch over 1 kW of power at its peak. 
The PV system first charges the 2 batteries and rest of 
the energy contributes to the household appliances. 

A daily consumption curve in typical summer day including 
battery charging/discharging and PV power generation are 
shown in Fig. 10.  It shows that the two batteries are discharging 
from 1am to 5am and 6pm to 10pm at 0.192 kW/hour of each, 
and both of them are charging from 11am to 3pm at 0.576 
kW/hour. There are two critical peak demands that occur during 
peak hours from 9am to 11am and 6pm to 9pm. The PV output 
is maximum during the midday. 

Figure 10.  Daily consumptions curve 

The load curves before and after the contribution of PV and 
battery storage systems are shown in Fig. 11. Load priority is 
performed with a fuzzy load controller and results are shown in 
Fig. 12. The fuzzy load controller takes advantage of the hours 
of the day when there are peaks hours, it reduces the 
consumption by predefined rules and schedules the nonpriority 
loads to their respective time. It is clear from Fig. 12, that the 
peaks of the load profile of the household have been reduced 
significantly and shifted to low demand periods.  

Figure 11.  Load reduction using renewable energy 

Figure 12.  Results obtained with fuzzy load controller 

Table III, together with Fig. 13, presents the comparative 
analysis of integration of different load control techniques to 
evaluate the power consumption performance. In this 
experiment direct load control (DLC) is set to switch off the air 
conditioner (1.5kW) when it operates during peak hours. Fig. 
13, shows that utilization of renewable sources of energy with 
fuzzy load control technique presents a better performance 
compared to DLC, since it provides adequate energy savings 
without compromising consumers comfort level. The different 
tariffs [12] for consumption of energy have been used to 
analyse the total cost of energy consumption for the different 
load management criteria and results are summarized in Table 
III. 

Figure 13.  Comparison between different load controllers 
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TABLE III.  ENERGY CONSUMPTION AND COST COMPARISON ANALYSIS 

 

NML = non managed loads (kWh), DLC = direct load control (kWh), LMR = load management with 
renewable (kWh), LMF = load management with fuzzy (KWh), LMFR = load management with fuzzy 
logic and renewable (kWh). 

The results presented in Table III, shows that during 
different time periods in that particular day the total energy 
consumption and cost of consumption were obtained with non 
managed loads (NML) which are 29.7 kWh and $11.82. 
Whereas the cheapest consumption price ($ 6.03) was obtained 
with direct load control with minimum consumptions of 19.2 
kWh. Direct load control performed significant energy and cost 
reduction. However the consumer comfort level and 
preferences were violated due to switch off of the air 
conditioner during peaks hours. The proposed load 
management based on fuzzy logic (LMF) contributed small 
amount of energy reduction 2.35%, compare to direct load 
control which was 35.3%. Conversely with the fuzzy load 
controller consumers were allowed to operate their air 
conditioner during peak hours to reach their comfort level 
temperature and simultaneously reduced their consumptions 
cost. The simulation results obtained with Load Management 
with Fuzzy and Renewable sources (LMFR) shows the better 
management of load reductions with adequate cost savings and 
simultaneously achieved consumers’ satisfaction. 

VI. CONCLUSION 

The proposed fuzzy logic based load controller mitigates the 
excessive consumptions when the energy consumptions prices 
are very high without any adverse impact on consumers’ 
comfort level. From the simulation results it can be seen that 
the load management with fuzzy and renewable sources 
(LMFR) saves almost ten times the energy when compared with 
load management with fuzzy logic (LMF) alone. If the costs are 
compared LMFR saves more than twice of the cost saved by 
LMF. Therefore, it can be concluded that load management 
with fuzzy logic and renewable sources is the best choice. 
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 Energy Cost 

(Cents/kWh) 

NML 

(kWh) 

NML 

Cost ($) 

DLC 

(kWh) 

DLC 

Cost($) 

LMR 

(kWh) 

LMR 

Cost($) 

LMF 

(kWh) 

LMF 

Cost($) 

LMFR 

(kWh) 

LMFR 

Cost($) 

Off-peak time  15.1415 4.4 0.67 4.4 0.67 3.248 0.49 9.4 1.42 8.248 1.25 

Moderate time 26.525 6.2 1.64 8.6 2.28 3.704 0.98 6.2 1.64 3.704 0.98 

Peak time 49.8154 19.1 9.51 6.2 3.08 16.19 8.06 14 6.82 10.79 5.37 

Total           - 29.7 11.82 19.2 6.03 23.1 9.53 29 9.89 22.74 7.60 

% energy of 

saving 

-     - - 35.3 - 22.2 - 2.35 - 23.4 - 

Cost saved/day - - - - 5.79 - 2.29 - 1.93 - 4.22 
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