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Abstract: Historically, cobalt-chromium, stainless steel and titanium alloys have been the main principal materials used in a 

variety of medical procedures for load-bearing implants in the body. Magnesium and magnesium-based alloys have the potential 

to be used as short-term structural support during the healing process of damaged hard tissues and diseased bone. Unlike 

traditional biologically compatible metals, which are not biologically degradable, magnesium based alloys offer both biological 

degradability and biological absorbability. Despite the many advantages offered by magnesium, its rapid degradation rate in the 

highly aggressive and corrosive body fluid environment has severely limited its present day medical application. This article 

reviews the chemical immersion technique for producing calcium phosphate coatings on magnesium substrates for slowing down 

the degradation rate while maintaining the biological compatibility and absorbability. 
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1. Introduction 

Biologically compatible materials have been engineered 

into a variety of medical devices and implants to assist in 

healing, replace diseased tissues and in some drastic cases 

completely replace damaged tissues. The repair and 

replacement of diseased or damaged hard tissues presents a 

major challenge to patient health, wellbeing and quality of life. 

A major consequence of tissue damage or loss resulting from 

accidents or diseases is the psychological impact on patient 

wellbeing. For example, even minor injuries to fingers or toes 

that interfere with function and usually heal without much 

trouble can have a significant impact. While severe bone 

diseases and injuries that result in the loss of a limb creates 

functional problems for patients for many years. In many 

cases the device or implant is temporary and only needs to 

remain in the body during the healing process. Once the 

healing process is complete, a second surgical procedure is 

required to remove the device or implant which significantly 

increases patient site morbidity and associated health costs 

[1-3]. Alternatively, when an implant needs to remain in the 

body permanently, as in the case of a total joint replacement, 

long-term biocompatibility, mechanical strength and 

structural stability become important factors that must be 

addressed. 

Biologically compatible polymers have been extensively 

investigated since the 1950’s for a variety of potential tissue 

engineering applications. Natural polymers such as collagen 

[4, 5], chitosan [6, 7], hyaluronic based derivatives [8, 9], 

polysaccharides [10, 11], and a variety of protein based 

materials such as fibrin gel[12, 13] have all been extensively 

studied and found to be suitable for a wide range of tissue 

engineering applications. Synthetically manufactured 

biologically degradable and biologically absorbable polymers 

such as Poly (lactic acid), PLA [14, 15], Poly (L-lactic acid), 

PLLA [16, 17], Poly (lactic-co-glycolic acid), PLGA [18, 19], 

Poly-caprolactone PCL [20, 21] and Poly (glycolic acid) PGA 

[22, 23] have all being investigated and used in a variety of 

biomedical applications. For example, biodegradable sutures 

currently in clinical use are made from PLA and PGA. These 

have also been extensively investigated for the controlled 

delivery of drugs to specific organs within the body [24-26]. 

Advantages of using biological compatible polymers arise 

from their low toxicity within the body and the ability to 
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control their degradation rate. Furthermore, the by-products of 

degradation can be easily handled by the body’s natural 

processes and excreted in the urine [27]. Polymers can also be 

produced in a variety of shapes and structures such as disks, 

films, fibres and pellets to meet the specific requirements for a 

particular application. In addition, polymers can be produced 

with micrometre and nanometre scale typographical surface 

features to enhance cell-substrate interactions with the surface 

of the implant [28].  

Unfortunately, polymers with all their many advantages are 

limited by their low mechanical strength, which severely 

restricts their use in load bearing and hard tissue supporting 

applications. Metals have more desirable mechanical 

properties due to their relatively high strength, elastic modulus, 

fracture toughness and resilience and as a result several 

metallic biomaterials such as cobalt-chromium-based steel 

alloys, titanium-based alloys, nickel-based alloys and stainless 

steels have been widely used as implant materials [29-31]. 

However, studies have shown that conventional surgical metal 

alloys are not biologically absorbable and because of 

corrosion and wear, there is a release toxic metallic ions into 

surrounding cells and tissues [32-34]. These detrimental 

metallic ions induce an unfavourable inflammatory response 

from the body’s immune system and the surrounding tissues, 

which significantly reduces the biocompatibility of the 

implant [33]. Furthermore, the significant difference in 

mechanical properties between metal implants and 

surrounding bone tissue results in a clinical phenomenon 

known as stress shielding. For example, the elastic modulus of 

both cobalt-chrome alloys and stainless steel is approximately 

ten times larger than that of bone, while a titanium alloy such 

as Ti-6Al-4V is around five times greater [35]. Normally, bone 

tissues are constantly undergoing remodelling and 

modification in response to the stresses produced during 

everyday activities. However, the presence of a metal implant 

creates stress-shielding, which results in a major portion of the 

load been carried by the implant. Thus, with most of the load 

been carried by the implant, the surrounding bone tissues 

experience significantly less load related stress and as a result 

leads to bone resorption, mechanical instability and the 

ultimate failure of the implant [36]. In addition, metallic 

implants used as temporary structural supports, such as pins, 

screws, and plates often need to be removed by a second 

surgical procedure once the healing process has taken place. 

The increased health costs and morbidity associated with the 

second surgical procedure highlights the need for new 

biologically compatible materials that can provide short-term 

structural support during the healing process. Then after 

healing has taken place to an acceptable level, the material 

would then biologically degrade and safely be reabsorbed and 

metabolized by the body. 

One interesting alternative to conventional metals used as 

current bio-implants is magnesium. Magnesium (Mg) is a 

lightweight, silvery-white metal that has been extensively 

used in alloy form in a wide range of engineering applications 

such as aerospace and automotive [37]. The density of Mg and 

its alloys are around 1.74 g/cm
3 
at 20

o
C, which is 1.6 and 4.5 

times less dense than aluminium and steel, respectively. 

Interestingly, the density of pure Mg is 1.74 g/cm
3
, while 

natural bone ranges from around 1.8 to 2.1 g/cm
3
 and the 

elastic modulus of Mg and human bone are 45 GPa and 40 to 

57 GPa respectively [38, 39]. It is because of the close 

similarity in the respective densities and elastic moduli that 

have made Mg a promising candidate for hard tissue 

engineering applications. The mechanical properties of Mg 

being similar to natural bone means that it has the potential to 

significantly reduce the possibility of stress shielding and 

prevent the associated bone resorption problems. Mg is also 

biologically degradable and biologically absorbable, with both 

Mg and its corrosions products considered physiologically 

beneficial, with as much as 30 g stored in the bone tissues and 

muscles of an adult body [40]. The body uses Mg, a bivalent 

ion, in a number of metabolic processes and to form apatite in 

the bone matrix [41]. And recent studies by Robinson et al. 

have shown that Mg has novel antibacterial properties against 

pathogens such as Escherichia coli, Pseudomonas aeruginosa 

and Staphylococcus aureus [42]. Because of these 

advantageous properties Mg has gained significant interest as 

a potential biologically degradable material that removes the 

need for additional surgeries to reclaim pins, screws, and 

plates used in the short term while the healing process takes 

place. Figure 1 presents an ideal life span of an Mg implant 

that slowly degrades and allows regenerating bone tissues to 

progressively carry the load.  The use of Mg as an implant 

material also has the potential to avoid the long-term 

complications associated with conventional metal implants in 

the body.  

 

Figure 1. Graphical representation of an ideal load carrying transition 

between a slowly degrading Mg implant and progressively regenerating bone 

tissue 

2. Biological Degradation of Magnesium 

The main limitation that prevents Mg being used in 

orthopaedic applications is its low corrosion resistance in 

body fluids, which are composed of water, dissolved oxygen, 

proteins and electrolytic ions such as chloride and hydroxide. 

In this highly corrosive aqueous environment results in the 

rapid release of ions from the metal surface which combine 
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with ions in the fluid to form chemical species, such as metal 

oxides, hydroxides, chlorides and other compounds [43]. 

Generally metals have a tendency to corrode in electrolytic 

environments with some metals having a greater propensity to 

degrade more rapidly than others as seen in Table 1.  

However, the interfacial region has also a significant bearing 

on the overall performance of metallic bio-implants. This can 

be shown in table The formation of metal oxides results in the 

creation of an oxide layer composed of Mg(OH)2 that adheres 

to the metal surface. The oxide layer is slightly soluble and 

reacts with chorine ions to form highly soluble magnesium 

chloride and the rapid production of hydrogen gas bubbles [44, 

45]. The localised formation of gas bubbles generally begins 

just after surgery and continues for periods as long as three 

weeks. During this post surgery period, the pH around the 

implant increases and results in alkalization of the surrounding 

tissue environment. The presence of hydrogen bubbles and 

local alkalization can severely affect pH dependent 

physiological processes in the vicinity of the implant and 

delay tissue healing [46]. However, the use of a subcutaneous 

needle can be used to prevent significant build up of gas 

around the implant. Furthermore, in his study Song has 

suggested that small hydrogen evolution rates of around 0.01 

ml/cm
2
/day can be easily handled by the human body and does 

not constitute a serious threat [47]. The high initial corrosion 

rate produces a thick oxide layer, which fully covers and seals 

the metal surface to form a passive layer, which physically 

stops or severely limits the migration of ionic species and 

hydrogen gas across the metal oxide solution interface. 

Unfortunately, the high corrosion rate during the first two to 

three weeks can cause a significant reduction in the 

mechanical and structural integrity of the implant before the 

bone tissues have had sufficient time to fully heal. 

Table 1. Electrochemical series of selected metallic ions and their voltage 

potential [78]  

Metal ions Potential (Volts) 

Au3+ +1.420 

Pt2+ +1.200 

Cu2+ 0.345 

Cd2+ -0.402 

Fe2+ -0.440 

Cr2+ -0.710 

Zn2+ -0.762 

Al3+ -1.670 

Mg2+ -2.340 

In atmospheric air at room temperature Mg corrodes to 

form a thin grey oxide layer over its surface. The oxide layer 

then reacts with atmospheric moisture to form a more stable 

magnesium hydroxide [Mg(OH2)] and hydrogen gas 

[43].Under standard environmental conditions, the Mg(OH2) 

layer is able to provide some degree of protection and is also 

capable of slowing down the corrosion rate even under 

aqueous conditions [48]. When Mg is exposed to an aqueous 

environment the corrosion process can be expressed by the 

following equations. The primary anodic reaction involves 

metallic Mg being converted to Mg
2+

 ions as seen in equation 

(1), meanwhile the reaction occurring at the cathode, 

presented in equation 2, involves the reduction of protons.   

Anodic reaction: 

Mg → Mg2- + 2e-               (1) 

Cathodic reaction: 

2H2O + 2e- → 2OH- + H2            (2) 

The general reaction of the overall corrosion process is 

represented by equation (3) below. 

Mg (s) + 2H2O (l) → Mg(OH)2 (s) + H2 (g)      (3) 

However, when Mg is exposed to chloride ions present in 

the physiological environment, the Mg(OH)2 interfacial layer 

reacts with the chloride ions to form highly soluble MgCl2. 

The high solubility of MgCl2 and the significant reduction in 

corrosion resistance provided by the reacting Mg(OH)2 layer 

results in rapid dissolution of the underlying Mg substrate and 

the formation of hydroxide ions and hydrogen gas [49]. The 

resulting dissolution and corrosion rate are import factors in 

the use of Mg as a biomaterial, since corrosion is likely to 

result in mechanical failure of an implant. Therefore, the 

corrosion rate must be taken into account when considering 

Mg and Mg based materials for hard tissue engineering and 

surgical applications. Ideally, the corrosion rate should be at a 

rate that allows temporary support of tissues during the 

recovery period. During the recovery period, initial 

mechanical strength would be maintained until the effects of 

corrosion start to occur. This would be followed by a gradual 

decrease in strength over the period of tissue recovery and 

finally the implant would be absorbed leaving the recovered 

tissues to carry the full load [50]. Other corrosion related 

factors that need to be considered is the increase in local pH 

and hydrogen evolution, both of which could have significant 

effects on tissues surrounding the implant. If Mg and Mg 

based materials are to be successfully used as an orthopaedic 

biomaterial, then the degradation behaviour and related 

factors of these materials need to be effectively controlled. 

3. Controlled Degradation Via Chemical 

Immersion Treatment 

In spite of magnesium’s many advantageous material 

properties, its high chemical reactivity and poor corrosion 

resistance has prevented its widespread use in orthopaedic 

applications. In general, materials used in orthopaedic 

application such as titanium alloys will only experience load 

induced stresses in the inner core of the implant, while its 

surface will be exposed and interact with the surrounding 

physiological environment. Because the interfacial properties 

between the implant surface and the physiological 

environment are very important, different processing 

techniques such as alloying, thermal spray coating, ion 

implantation, micro-arc oxidation, anodizing and surface 

coating treatments have been widely used to improve the 

biocompatibility of the underlying material [43, 51, 52]. In the 
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case of Mg, the processing techniques have primarily focused 

on improving the corrosion resistance of the metal when 

exposed to the biological environment [53, 54].   

Bioactive coatings such as calcium phosphate materials 

have been successfully applied to a variety of metallic 

implants in order to improve biocompatibility, promote 

attachment to surrounding hard tissues and to suppress the 

release of corrosion products into the human body [31]. 

Calcium phosphate (CaP) coating can be applied to a variety 

of substrate materials of varying sizes and shapes using a 

relatively straight forward technique known as chemical 

immersion [55, 56]. Apart from convincing experimental 

results of a number of independent studies that indicate CaP 

coatings can significantly improve corrosion resistance 

[57-59], the coatings also have the advantages of being 

non-toxic, display good biocompatibility and have enhanced 

bioactivity properties with respect to bone cells and other 

body tissues [60]. Despite these many advantages, a number 

of studies have also shown a number of shortcomings such as 

poor coating adherence, surface cracking and effective control 

of the CaP phases formed during immersion [54]. Regardless 

of these shortcomings, biologically mimicking CaP coating 

formed via the chemical immersion technique have the 

potential to control the corrosion rate and enhance the 

biocompatibility of Mg and Mg based alloys for orthopaedic 

applications. 

 

Figure 2. Magnesium substrate coated with a DCPD coating: (a) Optical 

microscopy image of surface coating and (b) Higher resolution field emission 

scanning electron microscopy micrograph showing plate-like surface 

structures present in the coating. 

The results of a number of recent studies have confirmed 

that CaP coatings were able to enhance the corrosion 

resistance and improve the biocompatibility of Mg and Mg 

based alloys [61-63]. For example, a study by Xu et al. using a 

chemical immersion based technique was able to form a 

brushite (CaHPO4.2H2O) surface coating on an Mg-Mn-Zn 

alloy substrate using an alkaline electrolyte. Regrettably, 

subsequent testing revealed that the coating was porous and 

failed to prevent corrosion of the substrate in a simulated body 

fluid. Nonetheless, the coating did significantly reduce the 

corrosion rate and provide some degree of protection against 

the simulated body fluid [64]. The study not only found 

improved corrosion resistance, but also found that the brushite 

layer improved biocompatibility, promoted bone formation 

and subsequently transformed into hydroxyapatite [Ca10(OH)2 

(PO4)6] (HAP) with time [65]. In another study, Wang et al. 

was able to produce a calcium-phosphate coating by 

immersing an Mg substrate into a solution containing Ca and P 

[Ca (NO3)2 and Na2HPO4] to form a di-calcium phosphate 

di-hydrate (DCPD) surface coating [56]. The surface coating 

of DCPD was effective in improving the corrosion resistance 

of the substrate for the first 21 days of immersion in a 

simulated body fluid. Figure 2 and the enlarged micrograph 

shown in Figure 3 reveal structures in a typical DCPD coating 

formed by a chemical immersion technique developed by the 

authors. In a novel chemical immersion technique, Yanovska 

et al. incorporated low magnetic fields into a one-step 

immersion method. During this process the Mg substrate was 

immersed into an aqueous electrolyte containing 

Ca(NO3)2.4H2O and Na2HPO4.12H2O. The influence of 

magnetic fields in orientating the crystals during the coating 

formation was investigated, along with the types of phases 

present. The technique produced coatings composed of DCPD 

and HAP phases, the coatings were found to enhance 

corrosion resistance and significantly reduced the degradation 

rate of the substrate [66]. For example, Figure 4 presents a set 

of representative potential-dynamic polarization curves 

showing the improvement in corrosion resistance of an Mg 

substrate after receiving a DCPD coating. The corrosion 

testing was carried out in a phosphate buffer saline (PBS) 

solution at 37 ºC as a first step in assessing the coating 

bioactivity. 

 

Figure 3. Enlarged field emission scanning electron microscopy micrograph 

showing the DCPD flower-like plate structures present in the coating. 

The use of HAP coatings has a number of advantages 

besides improving the corrosion resistance of Mg and Mg 



International Journal of Biomedical Materials Research 2014; 2(2): 7-14 11 

 

based alloys in the physiological environment. HAP is a major 

inorganic component found in natural bone tissues, therefore 

using HAP as a biological coating on Mg offers a number of 

attractive properties such as its good biocompatibility and 

bioactivity properties with respect to bone cells and other 

body tissues [67]. Other desirable properties include slow 

biodegradability in situ and its ability to promote 

osteoconductivity and osteoinductivity, which can accelerate 

the in-growth of surrounding tissues [68-70]. These properties 

are of particular importance in the case of bone tissue that are 

constantly being replaced and removed by bone cells such as 

osteoblasts and osteoclasts, via a process known as 

remodelling. Studies have also shown that HAP displays an 

excellent biocompatible response to soft tissue such as skin, 

muscle and gums [71]. However, due to its low mechanical 

strength HAP is restricted to low load bearing clinical 

applications. Typical examples include coating the surface of 

conventional metallic implants to improve their 

biocompatibility and bioactivity, bone augmentation, drug 

delivery, and as filler material for both bone and dental 

implants [72-76]. 

 

Figure 4. Polarization curves showing the improvement in corrosion 

resistance of an Mg substrate after receiving a DCPD coating. The testing 

solution used was a phosphate buffer saline solution at 37 ºC and a pH of 7.4 

HAP coatings can be directly deposited directly onto Mg 

substrates using chemical immersion techniques or by 

chemically converting modifying a pre-existing calcium 

phosphate coating. For example Tomozawa et al. have treated 

pure magnesium substrates with Calcium-EDTA and KH2PO4 

based solutions [77]. The solution concentrations were varied 

from 0.01 M/L to 0.25 M/L, while the treatment temperatures 

were varied from 313 K to 373 K. Optimisation of their 

immersion process revealed that by adjusting the 

concentration and thermal treatment time to 0.25 M/L and 2 h, 

respectively, dense rod-like HAP crystals grew along the 

c-axis. HAP formation produced a dense, crystalline and 

uniform coating without the formation of a Mg(OH)2 

intermediate layer. The HAP coating formed by this chemical 

immersion technique was found to be stable and capable of 

significantly improving the corrosion resistance of the Mg 

substrates. Alternatively, a two-step immersion technique can 

be adopted to synthesize HAP coating on an Mg substrate. 

During the first step a CaP coating is deposited onto the 

substrate. Then during the second step the process converts the 

calcium phosphate into HAP. For example, the authors have 

produced a dicalcium phosphate dehydrate (brushite DCPD) 

coating on Mg substrates from aqueous solutions containing 

Ca(NO3)2 and KH2PO4 at 298 K. During the second step 

DCPD coated substrates are immersed into a solution of 

sodium hydroxide (NaOH) at 80 ºC for 2 h. At the end of this 

low temperature thermal treatment the DCPD is converted to 

HAP. The authors are currently carrying out degradation 

studies to determine the corrosion resistance of DCPD and 

DCPD converted to HAP coatings, Figure 4. Preliminary 

results indicate that significant improvement in corrosion 

resistance can be achieved by applying CaP coatings to Mg 

substrates. The chemical immersion technique is a 

straightforward and economic technique for synthesizing CaP 

coatings such as HAP on magnesium substrates. The coatings 

produced by chemical immersion were capable of slowing 

down the degradation rate by significantly improving 

corrosion resistance of the coated substrate.  

4. Conclusion 

In recent years, there has been significant research into 

developing novel biologically absorbable materials for 

orthopaedic applications. Mg has demonstrated that it has 

some attractive properties and the potential to be used as a 

biologically degradable implant material. Mg is an extremely 

biocompatible material with mechanical properties similar to 

bone tissue. However, in spite of having good 

biocompatibility and bioactivity properties, Mg’s poor 

corrosion resistance to the physiological environment has 

prevented its successful use in orthopaedic applications. 

Chemical immersion is an economic, efficient and 

straightforward technique that offers a direct method of 

depositing CaP coatings such as DCPD and HAP on Mg 

substrates. Not only do CaP coatings have the potential to 

reduce the corrosive effects of the physiological environment, 

but they also offer the potential to significantly improve 

biocompatibility and promote bone formation at the surface of 

an Mg based implant. Coating Mg with a dense CaP layer that 

significantly reduces the corrosion rate makes this an 

attractive material for the manufacture of biodegradable 

orthopaedic implants. While a significant amount of research 

has been conducted in recent years investigating the potential 

medical use of Mg and commercially available Mg alloys, 

further research is needed to fully evaluate methods of 

reducing the degradation rate in the physiological 

environment. Chemical immersion is one method that has the 

potential to deliver CaP coated Mg based materials with the 

potential to be used in the manufacture of biodegradable 

implants. However, further research is needed to fully 

optimize the operational parameters of the chemical 

immersion technique so that there is greater control of the 

resulting coating properties. In addition, further in vitro and in 

vivo studies are needed to verify the mechanical integrity of 
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the coatings and their biological compatibility with bone 

tissues.  
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