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Abstract 

This study evaluated the effect of animal temperament measured using flight speed (FS) on 

plasma lactate, muscle glycogen and lactate concentrations at slaughter plus ultimate pH in 

648 lot finished cattle of mixed breed and sex. Muscle samples were collected at slaughter 

from the m. semimembranosus (SM), m. semitendinosus (ST) and m. longissimus thoracis 

(LT) for analysis of glycogen and lactate concentration. Blood was collected after 

exsanguination and analysed for plasma lactate concentration and ultimate pH of the LT was 

measured. FS had no effect on muscle glycogen concentration in any muscle or ultimate pH 

of the LT (P>0.05). As FS increased from 1 to 5 m/s, plasma and muscle lactate 

concentration increased by 54% and 11.4% respectively (P<0.01). The mechanisms through 

which animal temperament contributes to variation in glycogen metabolism remain unclear. 
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The risk of dark cutting was not impacted by temperament, indicating that other production 

and genetic factors have a greater impact on the incidence of dark cutting. 

Keywords: Ultimate pH, glycogenolysis, muscle contraction, dark cutting, catecholamines, 

stress 
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Abstract 

This study evaluated the effect of animal temperament measured using flight speed (FS) on 

plasma lactate, muscle glycogen and lactate concentrations at slaughter plus ultimate pH in 

648 lot finished cattle of mixed breed and sex. Muscle samples were collected at slaughter 

from the m. semimembranosus (SM), m. semitendinosus (ST) and m. longissimus thoracis 

(LT) for analysis of glycogen and lactate concentration. Blood was collected after 

exsanguination and analysed for plasma lactate concentration and ultimate pH of the LT was 

measured. FS had no effect on muscle glycogen concentration in any muscle or ultimate pH 

of the LT (P>0.05). As FS increased from 1 to 5 m/s, plasma and muscle lactate 

concentration increased by 54% and 11.4% respectively (P<0.01). The mechanisms through 

which animal temperament contributes to variation in glycogen metabolism remain unclear. 

The risk of dark cutting was not impacted by temperament, indicating that other production 

and genetic factors have a greater impact on the incidence of dark cutting. 

Keywords: Ultimate pH, glycogenolysis, muscle contraction, dark cutting, catecholamines, 

stress 

1.0 Introduction 

Dark cutting beef is one of the most prominent meat quality issues worldwide. Dark cutting 

beef has a reduced shelf life, bland flavour, and variable levels of tenderness, rendering it 

unacceptable for retailers, food service and consumers alike (Ferguson, et al., 2001). These 

negative impacts on meat quality have led to its exclusion from the Meat Standards Australia 

(MSA) grading system (Grunert, Bredahl, & Brunsø, 2004; Thompson, 2002; Watson, 

Polkinghorne, & Thompson, 2008).  

Dark cutting beef  is defined by MSA as any muscle tissue with an ultimate pH greater than 

5.7 (Thompson, 2002) or an AUSmeat meat colour greater than 3 (AUS-MEAT, 2005; 

Watson, et al., 2008). The major determinant of ultimate pH is the concentration of muscle 

glycogen at slaughter, which in the anaerobic conditions of the muscle post-mortem, is 

metabolised through glycolysis to form lactate. The formation of lactate and the production of 

hydrogen ions lowers the intracellular pH of the muscle from a pH of around 7, which is 

standard in a living animal (Tarrant, 1989), down to a pHu of around 5.4 to 5.7 during the first 
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24 to 48 hours post mortem (Maltin, Balcerzak, Tilley, & Delday, 2003). However, if there is 

insufficient muscle glycogen concentration at slaughter, there will only be limited formation 

of lactate post mortem, and thus a pHu of less than 5.7 will not be reached and dark cutting 

will result.  

Muscle glycogen concentration at slaughter is a function of glycogen synthesised „on-farm‟ 

through nutrition, minus the glycogen mobilised for muscle energy during the pre-slaughter 

period in response to stress or muscle contraction (McGilchrist, Alston, Gardner, Thomson, 

& Pethick, 2012). One factor which may impact both glycogen synthesis and mobilisation is 

temperament, a notion supported by Voisinet et al., (1997a). Cattle with flighty temperaments 

have been shown to have consistently lower feed intakes and growth rates relative to calm 

cattle (Busby, 2010; Cafe, et al., 2011; Fell, Colditz, Walker, & Watson, 1999; Petherick, 

Holroyd, Doogan, & Venus, 2002; Vann, Parish, & McKinley, 2008; Voisinet, Grandin, 

Tatum, O'Connor, & Struthers, 1997b). This indicates that flighty cattle may have a reduction 

in substrate available for glycogen synthesis, lowering their muscle glycogen concentrations 

prior to the pre-slaughter period.  

In addition, it is well established that flighty cattle have higher basal concentrations of 

catecholamines and cortisol than calm cattle (Burdick, et al., 2010b; Curley, 2004; Vann, 

Burdick, Lyons, Welsh, & Randel, 2010). Catecholamines and cortisol are released in the 

event of stress and directly stimulate glycogen mobilisation. Furthermore, muscle 

contractions also stimulate glycogen mobilisation, and as cattle with „excitable‟ or „flighty‟ 

temperaments are more active than cattle with „calm‟ temperaments during routine handling 

practices (Grandin, 1993) it is reasonable to expect that „flighty‟ cattle will have increased 

muscle contractions during the pre-slaughter period and a greater mobilisation of glycogen 

during this period, thus less muscle glycogen at slaughter. Given the likely increase in 

stimulation of the catecholamine, cortisol and contraction linked mechanisms of glycogen 

mobilisation in flighty cattle, it can be assumed that they will also have elevated levels of 

muscle and plasma lactate, as lactate is the end product of mobilised glycogen under 

anaerobic conditions. Therefore, the combination of these factors is likely to result in reduced 

muscle glycogen at slaughter and a higher incidence of dark cutting in flighty cattle. However 

no study to date has measured the effect of temperament on glycogen concentration within 

muscle which maybe a more sensitive measure of potential risk to dark cutting.  
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This study aims to identify whether a relationship exists between cattle temperament 

measured using flight speed and muscle glycogen concentration. We hypothesise that cattle 

with flighty temperaments and high flight speeds will have higher muscle and plasma lactate 

concentrations, higher ultimate pH and lower muscle glycogen concentrations at slaughter.  

2.0 Material and Methods 

2.1 Animals 

Data were collected on cattle at two sites in Western Australia. Cattle at site A comprised of 

547 feedlot steers (n=313) and heifers (n=234) of both Bos taurus (Angus, Murray Grey, 

Limousin, Charolais and Simmental) and Bos indicus (Brahman, Santa Gertrudis, 

Droughtmaster) descent. Cattle were sourced from sale yards and direct from producers. 

Cattle at site A ranged in age from 9 months (weaning age) through to 18 months at the time 

of induction into the feedlot. The source of each herd was recorded as the „origin‟ of the 

cattle. At site A, the cattle came from 10 different origins, and there were between 1 and 4 

breeds of cattle from each origin. Cattle were inducted into the commercial feedlot over a 

period of three months and were assigned to „lots‟ in the feedlot according to their origin 

and/or weight at induction. Cattle from each origin were of similar age. Lots were formed by 

cattle from 1 or more origins. Lots were A1 to A8 for the cattle from site A. Upon induction 

into the feedlot, live weight (kg) and hip height (cm) measurements were recorded. All cattle 

were introduced to grain feeding using a „step up‟ ration program where energy levels in the 

diet were increased over a 21 day period, after which time they were placed on the finisher 

ration. The finisher ration contained 12.6 MJ/kg dry matter of metabolisable energy and 11% 

crude protein on a dry matter basis and had a digestibility of 82.8%. Cattle were harvested 

based on liveweight (minimum 420 kg) after a minimum of 70 days in the feedlot, targeting a 

carcass weight of 220 to 320 kg.  

Cattle at site B consisted of Angus steers (n= 101) which were inducted on a single date. 

Cattle were penned in groups of 10 or 11 and were not mixed with other cattle between 

induction and slaughter. These cattle were assigned to a single lot for analysis called B1. Live 

weight and hip height measurements were recorded monthly over the period of feeding. 

These cattle were also introduced to grain feeding using a „step up‟ ration programme, with 

the finisher ration containing 10.6 MJ/kg dry matter of metabolisable energy and 19% crude 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

 

protein on a dry matter basis and a digestibility of 73.2%.  Cattle were harvested after 111 

days on feed, when the average weight was 450 kg. 

Cattle at site A were selected for slaughter 0 to 48 hours before departure from the feedlot, 

and cattle from different lots were transported in separate pens on the trucks to fill a 

consignment of cattle which met market specifications. Cattle were sent for slaughter on a 

weekly basis to either processor „H‟ or processor „W‟ which were 2 commercial export 

licensed processing plants. Each consignment was referenced as a „slaughter group‟ (H1 to 

H10 and W1 to W3), to identify cattle by the date and location of slaughter.  

The use of cattle at site A was approved by the Murdoch University Animal Ethics 

Committee (Permit No. O2391/11). The use cattle at site B was approved by the Department 

of Agriculture and Food Western Australia Animal Research Committee (Permit No. 6-10-

44). 

2.2 Temperament assessment 

Temperament was assessed using flight speed (FS) (Burrow et al., 1988). FS measures the 

speed at which cattle exit the crush, with high flight speeds indicative of poor or „flighty‟ 

temperaments (Burrow & Corbet, 2000). At site A, FS measurement was taken during 

induction into the feedlot on all cattle and 46% of cattle at site A had FS measured again 3 

weeks later when the cattle were re-weighed for assessment of performance. For the 46% of 

cattle with 2 FS measurements, average FS of cattle at Site A was calculated for each animal. 

At site B, FS measurements were taken once at weaning time (7 months) and twice at the 

beginning of their time in the feedlot (9 months of age). Average FS for cattle at site B was 

the average of the 3 FS measurements.  

Burrow and Corbet (2000) stated that the use of an average flight speed score substantially 

increased heritability of the trait (0.50) when compared with use of a single flight speed 

score, which is why an average was used for all cattle at site B and 46% of cattle at site A. 

Burrow and Corbet (2000) also noted that the heritability of single flight speed scores was in 

the moderate range (0.29 to 0.39), with heritability decreasing with age from weaning to 18 

months of age, hence why at site A, FS was recorded at the time of induction. Cafe et al. 

(2011) states that the correlations between 8 different FS measures were moderate to high and 

all significant in Brahman cattle and 90% of correlations were significant in Angus cattle 
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when measured at the same location, which is the case with cattle at sites A and B for this 

experiment. 

Cattle were individually confined in a weighing chute before being released. Upon release 

from the weighing chute the cattle entered into a wide straight race and flight speed was 

measured over a distance of 1.7 to 2.2 m at both sites using dual laser beams. The time 

required to travel the measured distance was divided by the distance to calculate FS in metres 

per second (m/s) for analyses.  

2.3 Plasma and muscle sampling  

At slaughter, muscle samples from the m. semimembranosus (SM) and m. semitendinosus 

(ST)  were taken on the slaughter floor immediately after the hide was peeled back from the 

hind leg (~10 minutes post slaughter), while the m. longissimus thoracis (LT) sample was 

taken after the carcasses had been split and was entering the chiller (~60 minutes post 

slaughter). The sample of LT was obtained from the superficial (dorsal) region of the muscle, 

adjacent and caudal to the 12th rib. Samples of SM and ST were obtained from dorsal, 

proximal regions of each muscle. Immediately after each sample was taken, visible fat was 

removed and samples were frozen in liquid nitrogen and later stored at –20°C for glycogen 

and lactate analysis.  

Blood samples were collected from 275 head only. Blood was collected post slaughter after 

exsanguination using K3 EDTA vacutainers
TM

 (Becton Dickinson, Franklin Lakes, NJ, Cat. 

No. 366457). Blood was collected from slaughter groups H6, H7, H8, H9 and H11. The 

blood tubes were placed on ice, centrifuged at 3000 x g for 15 minutes at 5ºC and the 

harvested plasma was frozen at -20°C for later laboratory determination of lactate.  

2.4 Ultimate pH measurement 

Ultimate pH is measured in the rib eye muscle (longissimus thoracis) of the chilled carcass at 

the quartering site approximately 20hrs post-mortem. The ultimate pH of all cattle 

slaughtered at processing plant H were measured. Temperature and pH were measured using 

an Meat Standards Australia approved TPS MC-80 or TPS WP-80M ph Meter (TPS Pty Ltd., 

Springwood, Brisbane, Qld, 4127, Australia). pH and temperature probes were calibrated to 

pH 4 and 7 at 25ºC. The probes were inserted into the muscle in close proximity to each other 
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with enough time allowed for reading to be stabilised. Carcass grading could not commence 

if the loin temperature was above 12°C (AUS-MEAT, 2005). 

2.5 Plasma and muscle analysis 

Laboratory analyses of plasma lactate concentration was carried out using an enzymatic 

method (Barham & Trinder, 1972; Trinder, 1969). Analyses were automated using the 

Olympus AU400 automated chemistry analyser (Olympus Optical Co. Ltd, Melville, New 

York) and the Olympus regent kit for lactate (Olympus Cat. No. OSR6193). 

Muscle samples (approximately 2g from each muscle) were weighed and homogenized in a 

30Mm HCl solution using a 10:1 ratio for 45 seconds at 27,000 rpm using a Bosch GGS 27C 

Professional. Laboratory analyses of lactate in the muscle homogenate was then carried out 

using the enzymatic methods for plasma lactate as described above.  

Glycogen in the homogenate was hydrolised to glucose using a double enzyme method 

(Passonneau & Lauderdale, 1974). 125 μl of muscle homogenate was digested in 1ml of 

enzyme mixture (8mg amylase and 8mg amyloglucosidase in 50ml of 40mM sodium acetate 

buffer pH 4.8) for one hour in a water bath at 37
o
C. Laboratory analyses of digested 

homogenate was carried out using an enzymatic method for glucose (Barthelmai & Czok, 

1962). Again analyses were automated using the Olympus AU400 automated chemistry 

analyser (Olympus Optical Co. Ltd, Melville, New York) and Olympus regent kits for 

glucose (Olympus Cat. No. OSR6121). Total glycogen was calculated by halving the lactate 

value and adding it to the glucose value, expressed as grams of glycogen per 100 g wet 

muscle tissue. Total glycogen concentration was calculated to give a reflection of muscle 

glycogen at the time of slaughter, even though some of the lactate may have been in the 

muscle prior to the time of slaughter. The lactate in the muscle at the time of slaughter will 

still contribute to the ultimate pH of the muscle, hence why it is included.  

2.6 Statistical analysis 

The effect of production parameters on animal temperament measured using FS was analysed 

using a general linear model in SAS (2001). Gender (heifer or steer), feedlot (Site A or B), lot 

(A1 to A8 and B1) within feedlot, origin within feedlot and breed within origin by feedlot 

were included as fixed effects in the model. Hip height and entry weight were also included 

as covariates in the model in both the linear and curvilinear forms, plus interacted with the 
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fixed effects. Terms in the model were deleted in a step-wise manner if non-significant (P> 

0.05). Significant terms were interacted with FS for the analysis of muscle glycogen and 

lactate concentrations outlined below.  

Muscle glycogen and lactate concentrations were analysed using linear mixed effects models 

(SAS, 2001). Animals with missing or incomplete data were excluded from the analysis. The 

initial model included fixed effects and their interactions for gender (heifer or steer), feedlot 

(Site A or B), lot number (A1 to A8 and B1) within feedlot, origin within feedlot, breed 

within origin by feedlot, slaughter group within feedlot and muscle (SM, ST and LT). 

Individual animal ID was used as a random term to account for multiple muscle samples 

taken from the same animal. Terms in both models were deleted in a step-wise manner if 

non-significant (P<0.05) in order to arrive at the base model.  The linear and curvilinear 

forms of the covariate FS were then interacted with the significant terms in the base model. 

This model was regressed in a step-wise manner deleting terms which were non-significant 

(P<0.05) in order to arrive at a FS adjusted model. Muscle lactate data for the LT was 

removed from the analysis as it was sampled at an inconsistent time post slaughter between 

animals.  

Plasma lactate concentrations and ultimate pH were analysed using a general linear model 

(SAS, 2001). The initial model included fixed effects and their interactions for gender (heifer 

or steer), feedlot (Site A or B), lot (A1 to A8 and B1) within feedlot, origin within feedlot, 

breed within origin by feedlot and slaughter group within feedlot. Terms were deleted in a 

step-wise manner if non-significant (P<0.05) in order to arrive at the base model.  The linear 

and curvilinear forms of the covariate FS were then interacted with the significant terms in 

the base model. This model was regressed in a step-wise manner deleting terms which were 

non-significant (P<0.05) in order to arrive at a FS adjusted model. 
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3.0 Results 

Suggested position of Table 1 

3.1 Effect of flight speed on muscle glycogen, ultimate pH and lactate concentration 

Flight speed had no significant effect on muscle glycogen concentration in the SM, ST or LT 

muscles (P>0.05, Table 2). FS also had no significant impact on ultimate pH (P>0.05, Table 

2).   

As FS increased from 1 to 5 m/s, muscle lactate concentration increased by 11.4% (P< 0.01) from 

0.605 g/100g to 0.674 g/100g (Figure 1). The interaction of muscle and FS was not significant, 

indicating that the impact of FS on muscle lactate in the SM and ST muscles is the same. When FS 

was included in the statistical model, the effect of lot became non-significant demonstrating that the 

significance of Lot was due to animals within different lots having different temperaments or FS.  

Suggested position of Figure 1 and Table 2 

3.2 Effect of flight speed on plasma lactate 

Flight speed had a significant effect on plasma lactate concentration (P<0.01, Table 2). As FS 

increased from 1 to 5 m/s, plasma lactate at slaughter increased by 54% from 8.83 mmol/L to 

13.6 mmol/L (Figure 2).  

 Suggested position of Figure 2 

3.3 Effect of muscle on glycogen  

Muscle had a significant effect on glycogen (P<0.001, Table 2). The SM muscle had the 

highest concentration at 1.48 ± 0.024 g /100g (Figure 3) and was 8% higher than that of the 

LT (1.37 ± 0.024, P<0.001) and 16.3% higher than that of the ST (1.27 ± 0.024, P<0.001). 

The LTL muscle glycogen concentration was 7.6% higher than that of the ST (P<0.001). 

These differences between muscles did not change with the inclusion of FS in the statistical 

model. 
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Suggested position of Figure 3 

3.4 Effect of lot number on glycogen 

Lot number had a significant effect on muscle glycogen (P<0.05, Table 2). Lot Number 5 had 

significantly lower muscle glycogen than all other lots at 1.23 ± 0.047 g/100g (P<0.05, Figure 

4). A1, A2, A3, A4, A6, A7, A8 and B1 had 13.2%, 25.5%, 9.7%, 12.1%, 10.6%, 14.6%, 

16.7% and 10.1% higher muscle glycogen than lot A5 (Figure 4). The effect of lot number on 

muscle glycogen concentration did not change with the inclusion of FS in to the model. 

Suggested position of Figure 4 

3.5 Effect of slaughter group on muscle glycogen  

Slaughter group had a significant effect on muscle glycogen (P<0.001, Table 2). Muscle 

glycogen concentrations were lowest in slaughter group H7 at 1.26 ± 0.06 g/ 100g and 

highest in slaughter group W1 at 1.62 ± 0.06 g/ 100g (Figure 5). There was also a significant 

interaction between muscle and slaughter group on muscle glycogen concentration (P<0.01, 

Table 2). The interaction was similar to the effect of muscle on glycogen, where the SM 

muscle glycogen concentration was higher than that of the LT and ST in each slaughter 

group, and the LT muscle glycogen concentration was higher than that of the ST. These 

differences were generally consistent across all slaughter groups, with only a few instances 

where the ST or the LT demonstrated the highest muscle glycogen concentrations. The effect 

of slaughter group on muscle glycogen concentration did not change with the inclusion of FS 

in to the model.  

Suggested position of Figure 5 

Due to all the cattle being grain finished, there were very few (n=11) which were classified as 

dark cutters or non-compliant to MSA with a pH greater than 5.7 or a meat colour greater 

than 3 (Watson, et al., 2008). This is why muscle glycogen and not MSA compliance was 

analysed. Feedlot, origin within feedlot, breed within origin by feedlot, or gender did not 

have a significant impact on muscle glycogen (P>0.05, Table 2). Feedlot, origin within 

feedlot, breed within origin by feedlot, lot within feedlot or gender did not have a significant 

impact on muscle lactate or plasma lactate (P>0.05, Table 2).  
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4.0 Discussion 

4.1 Effect of flight speed on muscle glycogen concentration and ultimate pH 

This study demonstrated that as FS increased or the animals became more flighty or reactive 

to human interaction, muscle glycogen concentration or ultimate pH did not change, 

contradicting our initial hypothesis. The muscle glycogen and ultimate pH results suggest 

cattle of all temperaments have an equal risk of dark cutting. The results of this study are 

supported by Gruber, et al. (2010) and Burnham, Purchas, and Morris (2005) which both 

showed that cattle with varying behavioural characteristics based on chute scores (unease on 

the scale, agitation, speed of exit) did not show any differences in ultimate pH of the LT or in 

the incidence of dark cutters. Further support for the results is presented by McGilchrist 

(2011) which showed that there was no association between temperament and muscle 

glycogen concentration in the SM or ST muscles of 80 Angus steers at slaughter. 

Interestingly, McGilchrist (2011) also reported that flighty cattle had significantly lower 

resting muscle glycogen than calm cattle during the finishing period on-farm in the SM and 

ST muscles, which contradicted the glycogen results at slaughter.  McGilchrist (2011) 

suggested that the calm animals had mobilised significantly more glycogen during the pre-

slaughter period, which could be an explanation why there was no effect again of 

temperament on muscle glycogen at slaughter in this study.  

Based on the findings of Curley (2004), it can be extrapolated that flighty have significantly 

lower stress responses during the pre-slaughter period and thus lower glycogenolysis. Curley 

(2004) found that calm cattle had greater responses to exogenous ACTH and CRH challenges 

than flighty cattle, even though the flighty cattle had higher baseline serum cortisol levels. 

Work by Ebner et al., (2005)  found that non-aggressive animals had increased plasma ACTH 

levels in response to social confrontation, whereas aggressive animals did not have a 

significant ACTH response at all, further supporting the aforementioned theory that 

temperament does indeed influence the stress responsiveness of animals. This highlights the 

prospect that cattle with higher flight speeds may have started with less glycogen as 

hypothesised but due to lower stress responsiveness to acute stressors during the pre-

slaughter period, muscle glycogen concentration at slaughter is equal to that of calmer cattle.  
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Even though the theory presented above is plausible, the results are not supported by Cafe et 

al. (2011) who reported that increasing flight speeds resulted in a higher ultimate pH and a 

darker meat colour and the study by Voisinet et al., (1997a) which showed that cattle with 

excitable temperaments are more likely to be borderline dark cutters, classified using meat 

colour only. Thus the effect of temperament differs between studies and its true impact on 

intermediary metabolism in particular glycolysis must be multifactorial. Further studies are 

required to determine the mechanism through which temperament acts on muscle glycogen 

concentration.  

4.2 Effect of flight speed on plasma and muscle lactate 

As FS increased, plasma and muscle lactate increased supporting the initial hypothesis that 

flighty cattle mobilise more glycogen in the period immediately prior to slaughter. The lactate 

produced is either shuttled into the blood as lactate or remains in the muscle cells and 

influences the quantity of lactate in the muscle immediately post-slaughter. These results are 

supported by those of Gruber, et al. (2010) which showed that cattle with adverse behavioural 

reactions to handling and chute restraint had higher plasma lactate at slaughter. King et al., 

(2006) also found that at 0.5 h post mortem, muscle samples from flighty cattle (temperament 

measured using FS) had lower muscle pH than calm cattle suggesting that the flighty cattle 

had higher levels of muscle lactate at the time of slaughter, causing an increased rate of pH 

decline in the first 30 minutes post slaughter. This is further supported by the work of 

Petherick et al., (2002) who found that cattle with flighty temperaments reached a pH of 6 

faster than calm cattle, again possibly indicating a higher level of muscle lactate at slaughter. 

However, Cafe et al., (2011)  found that as FS increased, the time taken to reach pH 6 

increased, which contradicts the findings of this study and those of Petherick et al., (2002) 

and King et al., (2006). Considering temperament did impact muscle pH in the study by Cafe 

et al., (2011), then it can be assumed that the flighty cattle did have slower rates of 

glycogenolysis and glycolysis post mortem. Without taking numerous muscle samples at all 

times during the pre and post-slaughter period, it is impossible to tease apart the contributions 

of pre and post slaughter glycolysis to muscle lactate and therefore pH measurements. 

Several studies have shown that calm cattle have lower basal levels of catecholamines and 

serum cortisol than flighty cattle (Burdick, et al., 2010a; Burdick, et al., 2010b; Burdick, 

Randel, Carroll, & Welsh, 2011; Vann, et al., 2010). Gruber, et al. (2010) also demonstrated 

that epinephrine levels at slaughter were lower in calm cattle. Seeing as though 
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glycogenolysis and glycolysis are regulated by the concentration of catecholamines and 

cortisol, it makes sense that more reactive animals with higher concentrations of regulatory 

hormones have higher plasma and muscle lactate as seen in this study.  

The results of this study do however indicate that the flighty cattle were mobilising glycogen 

at a greater rate than the calm cattle immediately before slaughter as measured by plasma 

lactate and lactate in the SM and ST muscles themselves. However, this concept completely 

challenges the muscle glycogen results of this study, in which FS did not impact on muscle 

glycogen concentrations. The reason why flighty cattle have higher glycogenolysis 

immediately pre-slaughter, yet no difference in muscle glycogen is unclear. One possible 

explanation is that calm cattle may have a higher level of glycogenolysis during the entire 

pre-slaughter period compared to flighty cattle due to upregulated stress responsiveness as 

discussed in section 4.1. This would result in cattle of all temperaments having equal muscle 

glycogen at slaughter. Thus, the susceptibility of calm cattle to stress may have had a greater 

influence on muscle glycogen over the entire pre-slaughter period than that experienced by 

the flighty cattle during the period immediately before slaughter. Therefore, it is reasonable 

to suggest that the effect of temperament on glycogenolysis varies depending on the intensity 

of stress, and the period of time the animals are exposed to stressor. 

4.3 Effect of lot number and slaughter group on muscle glycogen 

There was a significant variation in muscle glycogen concentration among cattle from 

different lot numbers and from different slaughter groups (cattle harvested on different days). 

The significant term for lot number suggests that cattle which are penned and finished 

together in a lot at a feedlot react similarly to each other in regards to nutrition, stress 

responsiveness and ultimately muscle glycogen concentrations.   

The significant slaughter group effect suggests that there are factors unique to each date of 

slaughter, asides from lot number and animal temperament, that influence glycogen 

mobilisation. Such factors may include pre-slaughter drafting, trucking distance, time spent in 

lairage, weather and stockperson handling during mustering, transport, lairage and 

immediately prior to slaughter. This is supported by Johnston et al., (2001) who also found 

slaughter group (defined as animals run together from intake to slaughter) to be the second 

largest source of variation in LT shear force, after additive genetic variance. 
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The commercial cattle were drafted between 24 to 48 hours before slaughter. The variation in 

time allowed for co-mingling may have impacted glycogen mobilisation in numerous ways. 

The cattle that were co-mingled up to 48 hours before slaughter may have had higher muscle 

glycogen depletion than those co-mingled for up to 24 hours, because of increased time 

available for antagonistic behaviour such as aggression and sexual activity to re-establish 

dominance (Ferguson, et al., 2001; Kenny & Tarrant, 1990). Alternatively, the increased time 

available may have allowed for a period of adaptation to the new social environment, 

preventing further glycogen depletion, whereas cattle co-mingled for only 24 hours or even 

less may still have been establishing the social structure up until and during lairage. McVeigh 

and Tarrant (1982) reported muscle glycogen levels of regrouped bulls to be significantly 

lower than those in the control group, remaining so until day 7 of the recovery period, 

whereas Warriss et al., (1984) found that the effect of regrouping cattle could be removed 

with a recovery period as little of 2 to 4 days.  

Handling methods have been found to significantly impact glycogen depletion during the pre-

slaughter period. Commercial handling methods, simulating stress, has been reported to 

increase plasma cortisol and plasma lactate, indicative of adrenaline release (Brown, Warriss, 

Nute, Edwards, & Knowles, 1998). Similarly, Gardner et al., (1999) found that lambs 

subjected to commercial handling methods had low muscle glycogen post mortem, high pHu 

and a significant loss of glycogen between the holding pen and slaughter.  

The effect of weather has been included in several studies, but not specifically focussed on. 

Immonen et al., (2000) found that cattle mobilised more muscle glycogen when transported 

during hot weather in comparison to transportation during cool weather. This is supported by 

Scanga et al., (1998) who found that the incidence of dark cutters significantly increased 

when the temperature exceeded 35°C up to 2 days before slaughter. On the other hand the 

rate of dark cutting has been reported as been at its highest during very cold wet weather, and 

when there are large fluctuations in temperature over short periods of time (Grandin, 1992; 

Smith, Tatum, & Morgan, 1993). This suggests that cattle are at risk of extensive glycogen 

depletion during weather events which create conditions outside of their thermo-nuetral zone, 

as the glycogen is mobilised for physiological responses to maintain the core body 

temperature.  
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5.0 Conclusion 

The temperament of cattle, as characterised by FS, does not influence muscle glycogen 

concentration in the LT, SM or ST muscles or the ultimate pH of the LT. This suggests that 

cattle of all temperaments have an equal risk of dark cutting, all else being equal. However 

the plasma and muscle lactate results showed that animals with high FS do mobilise more 

glycogen during the period immediately before slaughter than calm cattle. Thus the duration 

and quantity of periods of high stress, close confinement and human interaction need to be 

minimised during the pre-slaughter period to ensure that flighty cattle do not become dark 

cutters due to excess glycogenolysis during these times. The muscle type and date of harvest 

had the largest impacts on muscle glycogen concentration. The lot number from which the 

cattle originated at the feedlot also affected muscle glycogen. As many of the stress events 

which occur during the pre-slaughter period can be minimised to some extent, these results 

highlight the opportunity for both producers and processors to reduce the risk of cattle 

becoming dark cutters. Therefore, it is recommended that best management handling 

practices should be used at all times during the pre-slaughter period to minimise the effect of 

acute stressors.   
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Figure 1. Effect of flight speed on muscle lactate concentration in the m. semimembranosus and m. 

semitendinosus muscle approximately 10 minutes post slaughter. Line represents least square means 

while dashed lines denote standard error of least square means. 

Figure 2. Effect of flight speed on plasma lactate concentration at exsanguination. Line represents 

least square means while dashed lines denote standard error of least square means. Muscles with 

different letters are different (P<0.001) 

Figure 3. Effect of the m. longissimus thoracis (LT), m. semimembranosus (SM) and m. 

semitendinosus (ST) on muscle glycogen concentration. Bars denote standard error. Muscles with 

different letters are different (P<0.001) 

Figure 4. The effect of Lot number on total muscle glycogen concentration. Lot numbers A1 to A8 

are from site A and B1 is from site B. Bars denote standard error. Lots with different letters are 

different (P<0.05) 

Figure 5.  Effect of slaughter group on total muscle glycogen concentration. H1 to 10 represents 

slaughter groups at processor “H”, whereas W1 to W3 represents slaughter groups at processor “W”. 

Slaughter groups with different letters are different (P<0.05). 
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Table 1. Descriptive statistics for number of samples (n), mean, standard error (Std Err), maximum 

and minimum values of  hot standard carcass weight (HSCW) for cattle at Feedlots A and B, hip 

height (cm) of cattle at Feedlots A and B, total muscle glycogen concentration in the m. 

semimembranosus (SM), m. semitendinosus (ST) and m. longissimus thoracis (LT), muscle 

lactate concentration in the SM and ST, flight speed (FS), plasma lactate concentration and ultimate 

pH of the LT of cattle from Feedlots A and B.  

Table 2.  F values for the effects of feedlot, origin within feedlot, breed within origin by feedlot, lot 

within feedlot, slaughter group within feedlot, muscle, muscle by slaughter group within feedlot, 

flight speed (FS) and FS by muscle on muscle glycogen and lactate concentrations, plasma lactate 

concentration and ultimate pH from general linear models 

Table 1 

  n Mean Std Err Minimum Maximum 

HSCW Feedlot A (kg) 544 239.5 0.8 202.7 308.5 

HSCW Feedlot B (kg) 101 234 2.13 184.6 299.9 

Hip Height Feedlot A (cm) 544 127.4 0.23 115 140 

Hip Height Feedlot B (cm) 101 123.8 0.42 113 137 

LTL Glycogen (g/100g) 599 1.36 0.27 0.39 2.18 

SM Glycogen (g/100g) 611 1.46 0.3 0.64 2.48 

ST Glycogen (g/100g) 611 1.25 0.26 0.48 2.19 

SM Lactate (g/ 100g) 611 0.59 0.18 0.26 1.17 

ST Lactate (g/ 100g) 611 0.63 0.16 0.21 1.49 

FS (m/s) 612 1.98 0.81 0.3 4.69 

Plasma Lactate  (mmol/ L) 275 9.79 4.63 2.91 24.67 

Ultimate pH Feedlot A 476 5.58 0.003 5.49 5.83 

Ultimate pH Feedlot B 101 5.55 0.003 5.5 5.66 

 

  



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

 

Table 2 

Effect 
Glycogen Model Muscle Lactate Plasma Lactate Ultimate pH 

NDF, DDF F Value NDF, DDF F Value NDF, DDF F Value NDF, DDF F Value 

Feedlot       
1, 519 14.33*** 

Origin(Feedlot)       
9, 519 2.94** 

Breed (Origin*Feedlot)       
14, 519 2.3** 

Lot(feedlot) 7, 1145 2.14* 
      

Slaughter Group(feedlot) 11, 1145 8.66*** 12, 574 79.42*** 4, 267 3.93** 8, 519 4.9*** 

Muscle 2, 1145 28.64*** 1, 574 35.45*** 
    

Muscle*Slaughter Group (feedlot) 24, 1145 2.17*** 12, 574 6.7*** 
    

FS 1, 1145 0.03  1, 574 10.81** 1, 267 6.99** 1, 519 0.06 

FS*Muscle 2, 1145 2.52              

NDF, DDF – Numerator and Denominator degrees freedom *P<0.05, **P<0.01,***P<0.001 
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