Murdoch

UNIVERSITY

MURDOCH RESEARCH REPOSITORY

This is the author's final version of the work, as accepted for publication following peer review but without the publisher's layout or pagination.

The definitive version is available at
http://dx.doi.org/10.1093/icesjms/fsu011

> Prince, J., Hordyk, A., Valencia, S.R., Loneragan, N. and Sainsbury, K. (2015) Revisiting the concept of Beverton -Holt life-history invariants with the aim of informing data-poor fisheries assessment. I CES J ournal of Marine Science, 72 (1). pp. 194-203.

http://researchrepository.murdoch.edu.au/23829/

Copyright: © International Council for the Exploration of the Sea 2014.
It is posted here for your personal use. No further distribution is permitted.

Revisiting the concept of Beverton-Holt Life History Invariants with the aim of informing data-poor fisheries assessment.

Journal:	ICES Journal of Marine Science
Manuscript ID:	ICESJMS-2013-334.R2
Manuscript Types:	Symposium Article
Date Submitted by the Author:	n/a
Complete List of Authors:	Prince, Jeremy; Murdoch University, Centre for Fish and Fisheries Research; Biospherics P/L, Hordyk, Adrian; Murdoch University, Centre for Fish and Fisheries Research Valencia, Sarah; University of California, Santa Barbara, Bren School of Environmental Science and Management Loneragan, Neil; Murdoch University, Centre for Fish and Fisheries Research Sainsbury, Keith; University of Tasmania, Institute of Marine and Antarctic Studies
Keyword:	Data-poor assessment, Beverton-Holt Life History Invariant, parameter estimation, Spawning Potential ratio

SCHOLARONE ${ }^{\text {w }}$
Manuscripts
$8 \quad{ }^{2}$ Centre for Fish, Fisheries and Aquatic Ecosystems Research, School of Veterinary and 9 Life Sciences, Murdoch University, Western Australia, A.Hordyk@murdoch.edu.au ,

10 N.Loneragan@murdoch.edu.au

15 Corresponding author: Jeremy Prince, Biospherics P/L, P.O. Box 168 South Fremantle,

Revisiting the concept of Beverton-Holt Life History Invariants with the aim of informing data-poor fisheries assessment.

Jeremy Prince ${ }^{1,2}$, Adrian Hordyk 2, Sarah R. Valencia ${ }^{3}$, Neil Loneragan ${ }^{2}$, Keith Sainsbury ${ }^{4}$
${ }^{1}$ Biospherics P/L, South Fremantle, Western Australia
${ }^{3}$ Bren School of Environmental Science and Management, University of California, Santa Barbara, USA, svalencia@bren.ucsb.edu,
${ }^{4}$ University of Tasmania, Tasmania, Australia, ksainsbury@netspace.net.au W.A. 6162, Australia. Phone: +6189336 3793, Email: biospherics@ozemail.com.au

1

Abstract

The complexity and cost of existing fishery assessment techniques prohibits their application to 90% of fisheries globally. Simple, cost-effective, generic approaches are needed for small-scale and data-poor fisheries that support the majority of the world's fishing communities but cannot currently be assessed quantitatively. This meta-analysis of the relationship between spawning potential and the normalized size and age of 123 marine species suggests that the so-called Beverton-Holt Life History Invariants (BH-LHI; $L_{m} / L_{\infty}, M / k, M \times A g e_{m}$) actually vary together in relation to life history strategy, determining the relationship between size, age and reproductive potential for each species. Although little realized, the common assumption of unique values for the $\mathrm{BH}-\mathrm{LHI}$ also implies that all species share the same relationship between size, age and reproductive potential. This implicit assumption of is not supported by this meta-analysis, which instead suggests there is considerable but predictable natural variation in the $\mathrm{BH}-\mathrm{LHI}$ ratios and the relationships between size, age and reproductive potential that they determine. We believe this reconceptualization of the $\mathrm{BH}-\mathrm{LHI}$ has potential to provide a theoretical framework for 'borrowing' knowledge from well-studied species to apply to related, unstudied species and populations, and when applied together with the assessment technique described by Hordyk et al. (this issue b), could make simple forms of size based assessment possible for many data-poor fish stocks that are currently considered unassessable.

Keywords

Beverton-Holt Life History Invariant, Data-poor assessment, parameter estimation

Introduction

A persistent challenge for sustainable fisheries is the scale, complexity and cost of fishery assessment (Walters and Pearse, 1996; Hilborn et al., 2005; Beddington and Kirkwood, 2005; Mullon et al., 2005). Current assessment techniques require technical expertise, detailed biological knowledge and time-series data on catch, effort and/or surveyed abundance (Walters and Martell, 2004) resulting in an annual cost of \$US50,000 to millions of dollars per stock (Pauly, 2013). This represents a substantial impediment to assessing small-scale, spatially complex and developing-world fisheries (Mahon, 1997). By some estimates, 90% of the world's fisheries, which directly support 14-40 million fishers and indirectly support approximately 200 million people, are un-assessable using current methods (Andrew et al., 2007).

Considerable uncertainty surrounds the status of unassessed stocks (Costello et al., 2012; Hilborn and Branch, 2012; Pauly, 2013) so that overfishing may go unrecognized until stocks collapse. Even where fishing communities want to change fishing practices, the technical difficulty and expense of current assessment techniques can prevent sciencebased harvest strategies from being developed and implemented for these fisheries. A new methodology is needed for small-scale and data-poor fisheries (Andrew et al., 2007; Pauly, 2013) along with theoretical frameworks for informing the assessment of unstudied species with biological knowledge about related species (Punt et al. 2011).

The correlation between biological parameters across species has been widely used to provide generic parameter estimates necessary for assessment modeling (Charnov, 1993) and were first described in fisheries by Beverton and Holt (1959) for the clupeid and engraulid (herring and anchovy-like bony fishes) stocks of the North Sea (Beverton, 1963). They observed correlations between: 1) the instantaneous natural mortality rate (M) and the von Bertalanffy (1938) growth rate constant $(k), 2)$ length at maturity $\left(L_{m}\right)$ and asymptotic length $\left(L_{\infty}\right)$, and 3) M and the age of maturity $\left(T_{m}\right)$. Beverton and Holt's primary interest was in estimating M, a parameter that is notoriously difficult to measure, from studies of k, L_{m} and T_{m}, which by comparison, are easily estimated. Although neither Beverton, nor Holt used the term, these three life history ratios ($M / k, L_{m} / L_{\infty}$ and M $\mathrm{x} A g e_{m}$) are now commonly referred to as the Beverton-Holt Life History Invariants ($\mathrm{BH}-$ LHI). Widely considered to be environmentally influenced constants (Pauly, 1980) the BH-LHI have been used extensively to parameterize fisheries models (Charnov, 2003; Beddington and Kirkwood, 2005; Gislason et al., 2010). In this study we use Jensen's (1996) definition of the three BH-LHI: $M / k=1.5, L_{m} / L_{\infty}=0.66$ and $M \times T_{m}=1.65$.

The Spawning Potential Ratio, or Spawning Per Recruit $(S P R)$, is a commonly used index of the relative rate of reproduction (Mace and Sissenwine, 1993; Walters and Martell, 2004) in an exploited stock. Brooks et al. (2010) recommend its utility for applying to stocks in data limited fisheries. The $S P R$ is defined as the proportion of the unfished reproductive potential left by any given level of fishing pressure. It can be conceptualized as the total reproductive potential of all the cohorts in a population at equilibrium, or the
life-time reproductive potential of an average individual passing through a population at equilibrium. By definition, unfished stocks and individuals in an unfished stock, have an $S P R$ of $100 \%\left(S P R_{100 \%}\right)$ and fishing mortality reduces $S P R_{100 \%}$ from the unfished level to $S P R_{X \%}$. Shepherd (1982) used the $S P R$ concept to integrate the separate approaches to fisheries modeling that had developed on opposite sides of the North Atlantic during the 1970s. Generic $S P R$-based reference points have been developed theoretically and through the meta-analysis of quantitatively assessed fisheries, and have been recognized in international fisheries law (Restrepo and Powers, 1999; Australian Government, 2007), for example $\sim S P R_{40 \%}$ is generally considered a conservative proxy for maximum sustainable yield (Mace and Sissenwine, 1993; Clark, 2002; Walters and Martell, 2004). Until recently, estimating $S P R$ has required unique population models to be parameterised for each stock using estimates of natural mortality, growth, reproduction, and time series of abundance, or age composition data (e.g. Ault et al., 1998; Walters and Martell 2004).

This study and the accompanying studies of Hordyk et al. (this issue $\mathrm{a} \& \mathrm{~b}$) arose from our interest in developing a simple method for using size composition data to evaluate the $S P R$ of exploited populations (Prince et al. 2008; 2011). Prince et al. (2008) observed that the spatial variability of size of maturity in Haliotid populations could be gauged from the shape and appearance of their shells, and that qualitative evaluations of a population's spawning potential can be made on the basis of size composition relative to the visually evaluated size of maturity. This current collection of studies was prompted by a journal editor asking, how the finding of Prince et al. (2008) applied to other species? And our research began by addressing the question do all species exhibit the
same relationship between size of maturity, relative size composition and $S P R$? To this end we began with the empirical and descriptive study described here, of how $S P R$ relates to size of maturity, relative body size and age in 123 species of teleosts, chondrichthyans, invertebrates and marine mammals. The results presented here suggested to us that there are predictable patterns in life history ratios M / k and L_{m} / L_{∞} which are related to each species' life history strategy, unfished size compositions, and the distribution of spawning potential by size. Exploring these results more rigorously Hordyk et al. (this issue a) demonstrates that it is the life history ratios of M / k and L_{m} / L_{∞} together with F / M that determine the shape of size compositions and the $S P R$ of populations, rather than the individual parameter values as generally assumed. On this basis Hordyk et al. (this issue b) developed and tested a new approach to size-based assessment, which we believe may have great application to data-poor assessment. Returning to the empirical observations made in this study, we postulate that extending our meta-analysis of well studied species could make it possible to predict characteristic life history ratios of most exploited populations based on general knowledge about each species life history strategy, and so make simple size based assessments possible for many stocks currently considered too data-poor to assess.

Materials and methods

Selection of Parameter Sets

For our meta-analysis we collected studies of marine and estuarine species for which we could find robust estimates of growth, natural mortality, age/size of maturity or fecundity
at age/size, and length-weight relationships. In order to control the quality of the parameter sets we applied strict selection criteria. Rather than developing our own criteria de novo we based our criteria on the six criteria developed by Gislason et al. (2010), which they define as: "

1. Estimates were rejected if they had been derived from empirical relationships (e.g. Beverton and Holt, 1959; Pauly, 1980) or 'borrowed' from studies of similar species.
2. Estimates by size or age were rejected if they had been derived from multi-species modeling.
3. Parameters were rejected if they were based on an insufficient amount of data, if the authors expressed concern that they could be biased or uncertain, or if the sampling gears and/or procedures for working up the samples were likely to have biased the estimates.
4. Estimates of total mortality based on catch-at-length, or catch-at-age were accepted as estimates of M, only if the data had been collected from an unexploited or lightly exploited stock over a sufficiently long time period to ensure that they reflected mortality and not simply differences in year class strength, and if growth parameters or ageing methods were considered appropriate.
5. Estimates derived from tagging data were included only if the following factors had been considered: mortality associated with the tagging operation, tag loss, differences in mortality experienced by tagged and untagged fish, migration out of the study area and uncertainty regarding tag recovery.
6. Estimates derived from regressions of total mortality and effort were included, only if it was credible that total fishing mortality would be proportional to the measure of fishing effort considered, and if extrapolation did not result in excessively large confidence intervals."

While Gislason et al.'s focus was solely on ensuring the quality of natural mortality estimates, we found that where other aspects of biology had been studied, these criteria also ensured the quality of estimates for the broader list of parameters of interest to this study (i.e. growth, age/size of maturity or fecundity at age/size, and length-weight relationships).

To ensure that each species' parameter set described a single population and a similar population density we also applied a seventh criterion, which we defined as:
7. All parameter estimates for a species should be from the same geographic population, and from the same time period.

Species were only included if they met all seven criteria and all the necessary parameters could be estimated, this limited the number of studies available to our meta-analysis. We were able to gather data for a total of 123 species, including representatives from teleosts, invertebrates, chondrichthyans, and marine mammals. A complete list of species, parameter values and source references are provided in supporting on-line material.

It should be noted that these criteria biased our selection process towards well-studied populations prior to, or during the early phase of exploitation. Thus almost all the studies included in our database are of lightly exploited populations. We do not believe our sample is representative of all, or even groups of, marine species. For this reason we have
not attempted to apply statistical techniques of analysis, as we have no expectation that our samples are distributed normally or are representative of any mean condition, parameter value or relationships. As discussed below we do not believe such statistical concepts are applicable to a study such as this. In this study our aim was entirely qualitative; to look for, and to describe patterns of variation that exist in nature. For the quantitative analysis of the patterns we observed, the reader is directed to the accompanying theoretical study of Hordyk et al. (this issue a)

Spawning Potential Ratio (SPR) Model for Meta-analysis

We modeled the $S P R$ achieved at any given age for the 123 species to examine patterns in the relationships between age, length, weight and reproductive output. The $S P R$ is usually calculated by summing the total reproductive output of all age classes and dividing by the number of recruits in order to obtain a general measure of current rate of reproductive output in relation to the maximum potential reproductive output, i.e. the unfished level. However, here we are interested in calculating the cumulative percentage of total lifetime reproductive output achieved when an individual reaches each age/size, and how that varies across the widest possible range of marine species. For this purpose we developed an age-based equilibrium $S P R$ model for each species with an initial cohort size of 1,000. The number of survivors, average individual length and weight, and percentage of the total index of reproductive output (expressed variously for the differing species as eggs, pups, calves or simply mature biomass) achieved for both individuals and cohorts at each successive time step was calculated. To enable comparisons across species with varying
$\underline{\text { life spans, sizes and forms of reproductive output, all were normalized with respect to }}$ their maximum value. The maximum age class $\left(t_{\max }\right)$ was determined to be the first age class with an abundance of $\leq 1 \%$ of the initial cohort size (i.e. ≤ 10 individuals), and maximum length $\left(L_{\max }\right)$, weight $\left(W_{\max }\right)$ and reproductive output $\left(E P_{\max }\right)$ was defined as the value estimated for that age class. This is consistent with the results of empirical studies of Hewitt and Hoenig (2005) who note that a range of $1-5 \%$ has generally been used for the purpose of estimating M, and who conclude that 1.5% is most appropriate. In this range we tested a number of values and found it had little effect on our results.

For each parameter set, the cohort declined with constant natural mortality:

$$
\begin{equation*}
N_{t+1}=N_{t} e^{-M} \tag{1}
\end{equation*}
$$

where N_{t} is the number of age t individuals, M is natural mortality, and N_{0} is 1,000 . Reproductive output (EP) was estimated at each age t as:

$$
\begin{equation*}
E P_{t}=\left(N_{t-1} e^{-M}\right) f_{t} \tag{2}
\end{equation*}
$$

where f_{t} is mean fecundity at age t. The cumulative Spawning Potential Ratio ($S P R$) was calculated for each age class t :

$$
\begin{equation*}
S P R_{t}=\frac{\sum_{t=0}^{t} E P_{t}}{\sum_{t=0}^{t_{\max }} E P_{t}} \tag{3}
\end{equation*}
$$

where $S P R_{t}$ is the proportion of potential lifetime reproductive output achieved at age t. When no fecundity data were available, the reproductive output of a mature age class was assumed proportional to biomass:

$$
\begin{equation*}
E P_{t}=N_{t} W_{t} m_{t} \tag{4}
\end{equation*}
$$

where W_{t} is mean weight at age t, and m_{t} is the probability of being mature at age t.

We used the simplifying assumption that M remains constant over all age and size classes in a population. This is unlikely to be true in nature, as juvenile mortality rates are generally observed to be greater than adult mortality rates, and mortality rates maybe size related throughout a species' life cycle (Gislasson et al. 2010; Charnov et al. 2013). However as noted by Charnov et al. (2013) juvenile mortality rates do not influence the estimation of life-time reproductive output in a species, and adult mortality rates tend to be more constant than juvenile rates, and so more likely to be compatible with this simplifying assumption.

A broad range of formulations to describe growth, size of maturity, fecundity, mortality and relationships between age, length and weight were found in the literature, and these are described below. We adapted the formulation of the $S P R$ model for each species to the formulations and units used in the source literature. If <15 age classes were present, we converted the unit of time to the next lowest unit (i.e. years to months, or months to weeks) to smooth the functions being modeled.

Formatted: Font: Times New Roman

Five growth models were used by the collected literature to describe the growth for the 123 selected species. The three-parameter von Bertalanffy growth function (VBGF) was used to describe the growth of 117 species:

$$
\begin{equation*}
L_{t}=L_{\infty}\left(1-e^{-k\left(t-t_{0}\right)}\right) \tag{5}
\end{equation*}
$$

where L_{t} is mean length at age t, L_{∞} is asymptotic length, k the growth coefficient, and t_{0} is the theoretical age at zero length. The Schnute growth function was used for three species:

$$
\begin{equation*}
L_{t}=\left[\left(y_{1}^{B}+\left(y_{2}^{B}-y_{1}^{B}\right)\right)\left(\frac{\left(1-e^{-A\left(t-T_{1}\right)}\right)}{1-e^{-A\left(T_{2}-T_{1}\right)}}\right)\right]^{\frac{1}{B}} \tag{6}
\end{equation*}
$$

where T_{1} and T_{2} are reference ages, y_{l} and y_{2} length at each reference age respectively, and A and B are constants $\neq 0$. The Gompertz growth function was used for one species:

$$
\begin{equation*}
L_{t}=\omega_{0} e^{G\left(1-e^{-g t}\right)} \tag{7}
\end{equation*}
$$

where $G, \omega_{0} \& g$ are constants. Two generic length models were used for two species:

$$
\begin{equation*}
L_{t}=L_{\infty}+\alpha \beta^{t} \tag{8}
\end{equation*}
$$

$$
\begin{equation*}
L_{t}=L_{t-1}+\frac{\alpha}{1+e^{\frac{L_{t-1}-\beta}{\varphi}}} \tag{9}
\end{equation*}
$$

where α, β and φ are constants.

Length-weight relationships were described in the literature for all except two species by:

$$
\begin{equation*}
W_{t}=a L_{t}^{b} \tag{10}
\end{equation*}
$$

where a and b are constants. Polynomial regressions were reported for the length-weight relationships for two species:

$$
\begin{equation*}
W_{t}=a-b L_{t}+c L_{t}^{2} \tag{11}
\end{equation*}
$$

where a, b and c are constants.

When fecundity at length, weight, or age was not available, reproductive output was assumed proportional to the biomass of an individual or cohort, based on the reported maturity ogive for each species (Equation 4). Thus, in these cases reproductive output was assumed to be the same as the mature biomass of a cohort. When no maturity ogive was available, whichever available estimate of length at maturity (e.g. L_{0}, L_{50}, L_{100}) was used to delineate between juvenile and adult size classes, and maturity was assumed to be knife edge at that size. Size-fecundity relationships were available for 24 species. For the remaining 99 species, reproductive output was assumed proportional to individual weight for teleosts (75 species) and some crustaceans (4 species) and molluscs (7 species), and size-independent for elasmobranches (8 species) and mammals (5 species).

Where sexual dimorphism was recorded only female parameters were used in the $S P R$ model developed for the species. Our database includes several hermaphroditic species, for these species the maturity ogive was defined as female maturation ogive, and if occurring after the female stage (which is generally the case), the male stage was
considered to contribute to the reproductive potential of the population, and for the purpose of $S P R$ modeling treated as a continuation of the female phase.

Simulation of Length-Composition

To assist with our understanding of the patterns we observed an age-based model was developed to simulate the length frequency composition of the theoretical unfished populations across the range of M / k observed in our meta-analysis. To achieve the desired ratios of M / k for each simulation we fixed M at 0.2 and solved for the appropriate value of k. Size compositions were simulated using nine values of $M / k(4.0,1.65,1.0,0.8,0.6$, $0.4,0.3,0.2, \& 0.1$). We assumed von Bertalanffy growth (mean $L_{\infty}=1, C V_{L_{\infty}}=0.1, t_{0}=0$) in arbitrary units, with L_{∞} distributed normally among individuals, and with the variance in mean length a function of mean cohort length (Sainsbury, 1980). Because of the variation associated with length-at-age, some individuals have lengths greater than mean L_{∞} (1.0); thus the length composition was calculated for lengths between 0 and 1.4. We estimated the size of maturity for these simulated size compositions using the Beverton (1992) equation derived for teleosts:

$$
\begin{equation*}
\frac{L_{m}}{L_{\infty}}=\frac{3}{3+\frac{M}{k}} \tag{12}
\end{equation*}
$$

Results

Figure 1a-d shows the modeled $S P R$ for every species in our meta-analysis as functions of (a) normalized weight $\left(\underline{W} / \underline{W}_{\max }\right)$, (b) normalized length $\left({\left.\underline{L} / L_{\max }\right) \text { and (c) normalized age }}^{\text {(c) }}\right.$
$\left(\underline{t} t_{\max }\right)$. As described in the methods $W_{\max }, \underline{L}_{\max }$ and $\underline{t}_{\max }$ are defined as the value attained when modeled cohort abundance declines to $\leq 1 \%$ of initial abundance. In Figure 1d we standardise the $S P R$-at-weight trajectories (Figure 1a) with respect to both weight-atmaturity and maximum weight $\left(\left(W-W_{m}\right) /\left(W_{\max }-W_{m}\right)\right)$ making it evident that much of the crossing of trajectories observed in Figures $1 \mathrm{a} \& \mathrm{~b}$ is due to variation in size of maturity. The spectrum of curves observed in Figures 1a-d appears to be determined by the range of M / k ratios observed in our meta-analysis; species with the greatest ratio $(M / k=3.5)$ have trajectories in the upper left of Figures 1a, b, and, while those with the lowest ratios $(M / k=0.1)$ have trajectories in the bottom right, and this empirical observation is confirmed theoretically by Hordyk et al. (this issue a).

Also plotted in Figures 1a-d (black lines) are the relationships expected for species with biological parameters conforming to Jensen's (1996) estimates of the three BH-LHI (M/k $=1.5, L_{m} / L_{\infty}=0.66$ and $\left.M \times A g e_{m}=1.65\right)$, and the assumption that reproductive output is proportional to mature weight, which in turn is a cubic function of length. From this we conclude that the three $\mathrm{BH}-\mathrm{LHI}$, proscribe a unique relationship between normalized size, age and $S P R$, however, the BH-LHI relationship is apparently some form of 'median' form of the relationship we observe across all 123 species in our meta-analysis rather than an invariant relationship that is applicable to many species as we expected originally might be the case.

As demonstrated by Hordyk et al. (this issue a) and illustrated by simulation in Figure 2 the M / k ratio determines the relative shape of a population's unfished size composition. Here, we note again our use of the simplifying assumption that M remains constant over
the all age and size classes in a population, and the influence that this assumption has on the shape of these simulated size compositions. However, using the rationale of Charnov et al. (2013) that adult mortality rates are more likely to tend towards a level of consistency, and determine life-time reproductive output, we observe that unfished populations with $M / k>1.0$ do not tend to exhibit an adult modal size (Figure 2). This is because adults grow and die too rapidly to accumulate around a species_ asymptotic size (Hordyk et al. this issue a). This contrasts with unfished populations of species with M / k <1.0 (Hordyk et al. this issue a) in which adults grow relatively slowly and persist long enough to accumulate around an asymptotic size so that a modal adult size becomes observable, and increasingly prominent as M / k declines (Figure 2).

To assist in our description of the variation we observed around the BH-LHI relationship between normalized size, age and $S P R$, we categorised the species in our meta-analysis with respect to $M / k=1.0$, and whether their growth is determinate or indeterminate. Species with indeterminate growth continue growing throughout adult life, although slowing to some extent with increasing size, while species with determinate growth do not grow as adults. These two criteria defined three broad groups or 'Types' of species in our meta-analysis; Type I $-M / k>1.0$ and indeterminate growth, Type II $-M / k<1.0$ and indeterminate growth, Type III $-M / k<1.0$ and determinate growth (Figure 1). No species with $M / k>1.0$ and determinate growth were observed in our meta-analysis (see also Hordyk et al. this issue a).

A total of 49 Type I species (green lines) were identified, including 34 teleosts, 10 chondrichthyes, 3 crustaceans and 2 molluscs. Their trajectories occupy the upper left
hand side of Figs 1a-c and the lower right of Figure 1d. Type I species conform to the general shape of the BH-LHI trajectories, and have a slightly higher average $M / k(1.95$, cf. 1.5; Table 1) but slightly lower average $L_{m} / L_{\infty}(0.55$, cf. 0.65 ; Table 1$)$ than those for the BH-LHI. They begin reproduction at relatively small sizes (Figures $1 \mathrm{a} \& \mathrm{~b}$) but at a relatively later stage of their life cycle (Figure 1c) than Types II \& III. Unfished Type I populations are numerically dominated by juvenile length classes and do not exhibit an adult modal size (Fig. 2; top panels). Most ($60-80 \%$) of the reproductive potential in these populations comes from smaller individuals that are $<80 \%$ of their asymptotic size (Figure 1a, b).

A diverse range of species comprise the Type I category, including coastal bivalves Gari solida, Semele solida, a crab Callinectes sapidus, two spiny lobsters Panulirus argus, P. ornatus, several carcharhinid Carcharhinus obscurus, C. plumbeus and triakid sharks, Mustelus antarcticus, Prionace glauca, and teleosts ranging from low tropic level species such as Scomber japonicus, Cololabis saira and the clupeid Brevoortia patronus to higher trophic level species, such as the rockfish Sebastes chlorostictus, S. melanonstomus and two apex piscivores, the scombrid tunas Thunnus alalunga, and T. tonggol.

Type II species (blue curves on Figure 1) are shifted to the right of Type I species in Figures $1 \mathrm{a} \& \mathrm{~b}$, and to the left in Figure 1c. They share the indeterminate growth pattern of Type I species. Type III species (red) grow to a determinant asymptotic adult size, and reproduce without further growth. Their trajectories are shifted to the extreme right in Figures $1 \mathrm{a} \& \mathrm{~b}$, and the extreme left in Figure 1c. The 74 Type II and III species share
lower M / k ratios than Type I species (mean $=0.62$, cf. 1.95; Table 1). In contrast to Type I species, Type II \& III species do not reproduce until growth is almost complete; Type II species produce approximately 70% of their $S P R$ at sizes $>80 \%$ of the asymptotic size, while Type III species produce 90% of $S P R$ at sizes $>80 \%$ of asymptotic size (Figure 1). Unfished populations of Type II and III species are dominated by adult size classes, and exhibit distinct adult modes that become more pronounced with lower M / k ratios (Figure 2; mid \& lower panels).

The Type II species (blue) form a middle group of 59 species (45 teleosts, 1 elasmobranch, 5 crustaceans, and 8 molluscs) with average L_{m} / L_{∞} similar to the BH-LHI ratio (0.69 , cf. 0.66 ; Table 2), but a lower average M / k than the $\mathrm{BH}-\mathrm{LHI}$ ratio (0.62 , cf. 1.5; Table 2). Type II species include crustaceans, Nephrops norvegicus, and all of the prawns (=shrimp) in our analysis Penaeus indicus, P. latisulcatus, P. merguiensis, all three haliotid gastropods Haliotis rubra, H. laevigata, H. iris, a carcharhinid shark Rhizoprionodon taylori, and a range of teleosts including flat-forms Pleuronectes platessa, Psettichthys melanostictus, tropical snappers Lutjanus malabaricus, L. carponotatus L. argentimaculatus and the long-lived orange roughy Hoplostethus atlanticus.

The 15 Type III species (red) exhibit trajectories that balloon into the bottom right of Figures $1 \mathrm{a} \& \mathrm{~b}$. These species reach maturity (Figure 1c) and a determinant asymptotic size (Figs $1 \mathrm{a} \& \mathrm{~b}$) relatively early in life. Type III species have the largest average L_{m} / L_{∞} ratio (0.88 ; Table 2) and lowest average M / k ratio (0.57 ; Table 2). Besides the five marine mammals in our database, Type III species include two triakid sharks

Galeorhinus galeus, Furgaleus macki, eight teleosts, including the long-lived Scorpis aequipinnis, and two short-lived Lethrinidae species.

In Figure 3a the L_{m} / L_{∞} of each species in our analysis is plotted as a function of M / k. The solid black line $\left(L_{m} / L_{\infty}=3 /(3+M / k)\right)$ is derived from Beverton (1992) and Hordyk et al. (this issue a), but is originally from Holt (1958) who used this equation to demonstrate that size at maximum biomass $\left(L_{\text {opt }}\right.$.) can be estimated from the ratio of M / k. Numerous empirical studies observe that length at maturity $\left(L_{m}\right)$ coincides with $L_{\text {opt }}$ and various theoretical studies postulate that this is because the evolutionary fitness of a species is maximized by this coincidence (Fryer and Iles, 1972; Roff, 1984; Beverton, 1992). The factor of ' 3 ' used in this equation comes from the assumption that weight is proportional to L^{3}. The dashed and dotted lines plotted in Figure 3 indicate alternative relationships obtained by substituting factors of 2.5 or 3.5 into this equation, which would be equivalent to assuming weight and fecundity are proportional to $\mathrm{L}^{2.5}$ and $\mathrm{L}^{3.5}$ respectively. These alternative relationships are plotted to provide some scaling of variance around the relationship.

Very few of the species in our meta-analysis fall above the Beverton (1992) curve for the relationship between M / k and L_{m} / L_{∞}; most of the outliers are below (Figure 3a). This is primarily because our meta-analysis encompasses all marine species, some of which have fixed rates of reproduction, while Beverton (1992) worked almost entirely with teleosts for which fecundity is normally more closely related to adult body size. In Figure 3b, the relationship between M / k and L_{m} / L_{∞} is plotted for the 9 teleost families with three or more
species in our database and these conform much more closely to the Beverton (1992) relationship (Figure 3b).

In Figure 3b there is the suggestion that species within families tend to group together on the M / k and L_{m} / L_{∞} spectrum, which in Figure 4 is shown with our 3 most numerous families to result in their $S P R$ at size and age trajectories grouping into distinctive family bands. Comparison to the plotted BH-LHI trajectories (Figure 4 - broken black line) shows that to some extent the BH-LHI relationship describes the weight and length trajectories of the Gobiidae in our study, but not their $S P R$ at age relationship. The BHLHI relationship over-estimates the productivity of the Lethrinidae and Acanthuridae, by suggesting higher than observed $S P R$ at lower sizes for those families, while describing a relationship between $S P R$ and relative age that is intermediate between the Lethrinidae and Acanthuridae relationships in our analysis.

We also examined the predictive power of Pauly's (1980) equation for estimating M empirically by comparing the M / k and L_{m} / L_{∞} ratios of species in our meta-analysis with those derived from Pauly's (1980) equation for estimating M empirically (Figure 5). The relationship between M / k and L_{∞} is plotted for the 109 species in our database with $L_{\infty} \leq$ 200 cm , which excludes marine mammals and large sharks (Figure 5a). The solid lines indicate the estimates of M / k that would be derived using the Pauly equation across the range of k values we observed. The Pauly equation requires an assumption about ambient temperature. For simplicity we assume $15^{\circ} \mathrm{C}$ but sensitivity analyses showed that increasing the assumed temperature only raised the plotted lines minimally. The Pauly equation generally produces estimates of $M / k>1$, especially for species with $L_{\infty}<50 \mathrm{~cm}$.

Our database includes a considerable number of teleosts with $L_{\infty}<50 \mathrm{~cm}$ and $M / k<1$, for which the Pauly equation over-estimates M. This pattern is maintained even when the analysis is restricted to the teleost families with three or more species (Figure 5b).

Discussion

In fisheries science, the three Beverton Holt-Life History Invariants (BH-LHI) are most commonly used separately to estimate individual parameters for population modeling; generally they are only linked within studies seeking to relate evolutionary fitness and metabolic parameters to the optimization of life histories (e.g., Jensen, 1997; Charnov et al., 2013). We believe our combination of them to reveal that they imply a unique generalized relationship between normalized size, age and $S P R$ is relatively novel. Our meta-analysis suggests that rather than approximating some unique relationship between size, age and reproductive potential that is broadly applicable across species, the BH-LHI estimate some form of 'median' relationship for the 123 species in our meta-analysis (Figure 1) that is not necessarily found in any species.

The first formulations of BH-LHI (Beverton and Holt 1959; Beverton 1963) were based on North Sea teleosts (clupeids and engraulids) that our analysis has classed as Type I species. Since that time fisheries biology has tended to accept, seemingly by default, that the values derived from those initial studies are relatively constant across much broader suites of species, particularly the ratio of M / k of ~ 1.5. This was, however, not an assumption ever made by Holt (1958) nor Beverton (1992), who both conceptualized

442 for each species.
species as displaying a range of M / k values co-varying with L_{m} / L_{∞} (Figure 3), nor by Pauly (1980), who correlated ambient temperature and adult body size with the M / k ratio

Apparently confirming these earlier studies the descriptive meta-analysis we present here illustrates the natural variability observed across marine species. We defined three broad types of marine species with characteristic relationship between size, age and reproductive potential, and ratios of M / k and L_{m} / L_{∞}. Our intent in doing so is not to imply fundamental differences or strong boundaries between our rather arbitrary groupings, but to provide an initial indicative categorization to aid our discussion of the phenomena we observe. Our aim here is to 1) illustrate that predictable patterns in size, age and $S P R$ appear to exist in nature, and 2) to postulate that these predictable patterns might provide an alternative theoretical framework for deriving knowledge about unstudied species from studies of related species.

When we apply the classification of teleost life strategies developed King and McFarlane's (2003) or the more generalized ' r and K ' theory of Pianka (1970), which characterizes life history strategies as either 1) ' r-strategists' with high population turnover rates, a tendency for boom and bust dynamics, and invasive 'weed-like' characteristics, or 2) ' K-strategists' with relatively stable population dynamics, lower turnover and adults that reproduce over many breeding cycles. We conclude that our Type I species which mature at relatively small sizes, reproduce for a relatively short and late part of their life cycle, continue growing relatively rapidly as they reproduce, have unfished populations that are dominated by juvenile size classes, and do not exhibit a
modal adult size, are Opportunist and Intermediate Strategists (King and McFarlane 2003), and tend towards being ' r-strategists' (Pianka 1970). While Type II and III species which mature at relatively high sizes, reproduce for a relatively extended part of their life cycle, while growing slowly, or not at all, and have unfished populations that exhibit a modal adult size, are typically Periodic and Equilibrium Strategists (King and McFarlane 2003), and K-strategists (Pianka 1970). From this, we surmise that, in the case of an unstudied stock, general knowledge of a species typical life-history strategy might be used to estimate a likely set of life history ratios and the likely relationships between size, age and $S P R$ those ratios proscribe. We propose that the estimations developed in this way for a relatively unstudied stock will be more accurate than existing standard methods for applying the concept of BH-LHI to data-poor stock assessment.

Currently the BH-LHI are widely assumed to be 'invariant' and individual parameters are commonly estimated for data-poor assessments on that basis, but as illustrated here (Figure 1) and proved by derivation in Hordyk et al. (this issue a) this implies all species share the same BH-LHI relationships between size, age and reproductive output. Rather, the so-called 'Invariants' vary together, matching patterns of growth and reproduction to different life history strategies, presumably ensuring that for each life-history strategy, length at maturity $\left(L_{m}\right)$ and a cohort's maximum biomass ($L_{\text {opt. }}$) coincide, optimizing each species' evolutionary fitness (Fryer and Iles, 1972; Roff, 1984; Beverton, 1992). From our study, and those that precede us, it appears that the BH-LHI only tend towards relative invariance within groups of species sharing similar life-history strategies, reflecting the stage at which each life-history strategy transfers energy from allometric growth to reproduction (Charnov, 2008; Charnov et al. 2013). In this conceptualization,
tuna can be considered as 'larger, slower' anchovies which rarely reach asymptotic sizes, while some prawns are 'smaller, faster' versions of the fish, lobsters and gastropods that breed multiple times close to asymptotic sizes.

The obvious question at this point is; where do phenotypic plasticity, and density dependent responses to fishing pressure fit into this conceptualization? Do they invalidate this conceptualization of BH-LHI? The short answer is not at all, and although not studied enough at the present time, we believe these two phenomena are likely to provide the broader context, which will in time fully validate and extend this concept's application. Implicitly because of the selection criteria used this meta-analysis is basically a study of unfished, or lightly fished, populations and this limits what can be demonstrated here. In each of the cases we have used we would expect that the individual parameter estimates used will have changed as the stocks for which they were estimated have been fished down, just as we expect the individual parameters to vary between geographically isolated populations of each species. In the case of Cheilodactylus spectabilis we know this to have occurred as the population was fished down (Ziegler et al. 2007). We are not proposing a new alternative form of invariance within families, species or stocks. Rather we are returning to the spirit of the original formulation of this concept by Holt (1958) which was that the physiological constraints of species and families imply that the life history ratios will remain more stable across geographical distributions and density ranges, than the individual life history parameters, and so for the purpose of data-poor stock assessment the life history ratios are expected to be more informative and useful than the more variable individual parameters (S.J. Holt, Personal Communication). There is a growing body of literature to support this supposition, and in
this context the body of work by Choat on coral reef fish deserves to be highlighted and should be referred to (e.g., Choat \& Robertson 2001; Gust et al. 2002). While the precedence set by fisheries science, and our selection criteria place a strong emphasis on the quality of component estimates of natural mortality, and our sampling of the literature has been strongly biased towards using lightly fished populations for this analysis, we suspect that exploited marine species do not distinguish between whether a seal or a human eats them. Thus we expect we would reach similar conclusions if we were to broaden our study to use the ratio of Z / k rather than M / k. On this basis we postulate that for metabolic and evolutionary reasons species respond to changes in total mortality by minimizing changes in their life history ratios, rather than the parameters themselves, and that this conceptualization of BH-LHI maybe useful for predicting how stocks are likely respond to fishing pressure, and thus the likely form and magnitude of density dependence mechanisms for each species.

The data in our meta-analysis are as yet too few to properly extend these aspects of our analysis, but with the addition of further species we expect that the sharing of similar lifehistory ratios and bands of $S P R$ trajectories by closely related species will become more evident amongst both teleost and non-teleost families. We expect that it will be possible to define a typical band of $S P R$ at size and age trajectories for many marine families. From Figure $4 \mathrm{a} \& \mathrm{~b}$ it can be seen already that assuming an average or median family value for an unstudied species of Lethrinid or Acanthuridae would produce a more accurate assessment of size data than the standard BH-LHI assumption of $M / k \sim 1.5$. Precautionary life history ratios and $S P R$ trajectories might also be estimated for an
unstudied species by taking the extreme bottom right hand and least productive of the $S P R$ at size trajectories observed for a family (Figure $4 \mathrm{a} \& \mathrm{~b}$).

Our observation that the commonly assumed values of the BH-LHIs define a unique 'median' form of the SPR-at-size and age relationships observed in nature also has significant implications. Firstly, the results of empirical studies to more accurately derive single estimates of the BH -LHIs and to develop correlative techniques for estimating individual life history parameters (e.g., Pauly, 1980; Gislasson et al., 2010), will be strongly influenced by the sample of species included in those studies We suspect that many of these studies are implicitly (and unintentionally) biased against the inclusion of low M / k species. Noting the inherently lower productivity of low M / k species, these species are expected to be more prone to early depletion in poorly managed systems, and less likely to sustain large, valuable fisheries (and thus research programs) in well managed systems. This could well have resulted in low M / k species being underrepresented in the literature and meta-analyses, especially if those studies have an implicit (and perhaps unavoidable) focus on research from regions with long histories of heavy exploitation, such as the North Sea, Atlantic and South-east Asia (Costello et al., 2012). This might explain the apparent conflict between the Pauly (1980) technique and our meta-analysis (Figure 5). Being mainly based in Australia which has a relatively recent history of fishing and a strong history of research, we had ready access to recent research conducted in lightly exploited regions of Australia, and found numerous studies documenting small bodied low M / k teleost species, which were, apparently, not as well represented in Pauly's (1980) analysis. In this context, the quest to more accurately estimate unique values for the BH-LHI looks somewhat misguided, unless narrowed

553 carefully on taxonomic grounds, as were the original studies of Beverton and Holt 554 (1959), and Beverton (1963). Another significant implication of our observation that the BH-LHI define a unique 'median' form of the relationships between size, age and $S P R$ observed in nature, is that existing stock assessments, using some derivation of the assumption that $M / k \sim 1.5$, are implicitly over-estimating the productivity of stocks with $M / k<1.5$. This could amount to a serious systematic bias for our field as such techniques are commonly used with long-lived species where the depletion of the older age classes through fishing is thought to have rendered the estimation of M with aging studies unreliable. Species with $M / k<$ 1.0 are most prone to having the older adult classes depleted through fishing, and are consequently, more likely to have had a technique based on $M / k \sim 1.5$ applied to them. Even without extending this meta-analysis rigorously down to the level of families, assessments that have used the assumption of $M / k \sim 1.5$ could be improved using the three Types of species we defined here on the basis of life-history strategies and forms of growth.

Conclusions

This meta-analysis suggests that the so-called Beverton-Holt Life History Invariants are actually co-variants, varying together in relation to life history strategies and defining a range of relationships between size, age and reproductive output. From our study, and those that precede us, it appears that the BH-LHI only tend towards relative invariance
within groups of species sharing similar life-history strategies, reflecting the stage at which differing life-history strategy transfers energy from allometric growth to reproduction (Charnov 2008; Charnov et al. 2013). We believe this conceptualization of BH-LHI has potential to provide a theoretical framework for 'borrowing' knowledge from well-studied species for application to related unstudied stocks, and that together with Hordyk et al. (this issue a, b) this may make it possible to assess many otherwise data-poor species from simple size studies.

Acknowledgements

Thanks to the David and Lucille Packard Foundation, The Nature Conservancy and the Marine Stewardship Council for the support of this study. Thanks to the colleagues, fishing and scientific, who provided missing next steps along the way, and especially to Beth Fulton for helpful discussions and comments on the manuscript. This study forms part of AH's doctoral dissertation at Murdoch University.

References

Andrew, N.L.. Bène, C., Hall, S.J., Allison, E.H., Heck, S., \& Ratner, B.D. 2007.
Diagnosis and management of small-scale fisheries in developing countries. Fish and
Fisheries 8: 277-240.

Ault, J.S., Bohnsack, J.A. \& Meester, G.A. 1998. A retrospective (1979-1996) multispecies assessment of coral reef fish stocks in the Florida Keys. Fishery Bulletin, 96: 395-414.

Australian Government 2007. Commonwealth Fisheries Harvest Strategy Policy Guidelines. Australian Government Department of Agriculture, Fisheries and Forestry, Canberra, Australia. 55 pp .

Beddington, J.R., Kirkwood, G.P. 2005. The estimation of potential yield and stock status using life-history parameters. Philosophical Transactions of the Royal Society B., 360: 163-170.

Beverton, R.J.H. 1963. Maturation, growth and mortality of Clupeid and Engraulid stocks in relation to fishing. Rapports et Procés-Verbaux des Réunions du Conseil International pour l'Exploration de la Mer, 154: 44-67.

Beverton, R.J.H. 1992. Patterns of reproductive strategy parameters in some marine teleost fishes. Journal of Fish Biology, 41: 137-160.

Beverton, R.J.H., Holt, S.J. 1959. A review of the lifespans and mortality of fish in nature and the relation to growth and other physiological characteristics. Ciba Foundation Colloquium on Ageing, 5: 142-177.

Brooks, E.N., Powers, J.E. and Cortes, E. 2010. Analytical reference points for agestructured models: application to data-poor fisheries. ICES Journal of marine Science, 67: 000-000.

Charnov, E.L. 1993. Life history invariants: some explorations of symmetry in evolutionary ecology. Oxford University Press, New York. 184 pp.

Charnov, E.L. 2008. Fish growth: Bertalanffy k is proportional to reproductive effort. Environmental Biology of Fishes, 83: 185-187.

Charnov, E.L., Gislason, H. and Pope, J.G. 2013. Evolutionary assembly rules for fish life histories. Fish and Fisheries, 14: 213-224.

Choat, J.H., Robertson, D.R. 2001. Age-based studies on coral reef fishes. In: Coral Reef Fishes: dynamic and diversity in a complex ecosystem. Elsevier, San Diego, CA, USA, pp. 57-80.

Clark, W.G.W. 2002. $\mathrm{F}_{35 \%}$ Revisited ten years later. North American Journal of Fisheries Management, 22: 251-257.

Costello, C., Ovando, D., Hilborn, R., Gaines, S.D., Deschenes, O., Lester, S.E. 2012. Status and solutions for the world's unassessed fisheries. Science, 338: 517-520.

Fryer, G., and Iles, T.D. 1972. The cichlid fishes of the Great Lakes of Africa: their biology and evolution. Oliver \& Boyd, Edinburgh, UK. 641 pp.

Gislason, H., Daan, N., Rice, J.C., Pope, J.G. 2010. Size, growth, temperature and the natural mortality of marine fish. Fish and Fisheries 11: 149-158.

Gust, N., Choat, J.H., Ackerman, J.L. 2002. Demographic plasticity in tropical reef fish. Marine Biology, 140: 1039-1051.

Hewitt, D. and Hoenig, J. 2005. Comparison of two approaches for estimating natural mortality based on longevity. Fishery Bulletin, 103: 433-437.

Hilborn, R., Branch, T.A. 2013. Does catch reflect abundance? Nature, 494: 303-306.
Hilborn, R., Orensanz, J.M., Parma, A.M. 2005. Institutions, incentives and the future of fisheries. Philosophical Transactions of the Royal Society B., 360: 47-57.

Holt, S. J. 1958. The evaluation of fisheries resources by the dynamic analysis of stocks, and notes on the time factors involved. ICNAF Special Publication, I: 77-95.

Hordyk, A., Ono, K., Loneragan, N., Prince, J.D. This Issue a. Some explorations of the life history ratios to describe length composition, spawning-per-recruit, and the spawning potential ratio. ICES Journal of Marine Science

Hordyk, A., Ono, K., Loneragan, N., Prince, J.D. This Issue b. A novel length-based estimation method of spawning potential ratio (SPR), and tests of its performance, for small-scale, data-poor fisheries. ICES Journal of Marine Science

Jensen, A.L. 1996. Beverton and Holt life history invariants result from optimal trade-off of reproduction and survival. Canadian Journal of Fisheries and Aquatic Sciences, 53: 820-822.

Jensen, A.L. 1997. Origin of the relation between K and $L_{\text {inf }}$ and synthesis of relations among life history parameters. Canadian Journal of Fisheries and Aquatic Sciences, 54: 987-989.

King, J.R., McFarlane, G.A. 2003. Marine fish life history strategies: applications to fishery management. Fisheries Management and Ecology, 10: 249-264.

Mace, P. and Sissenwine, M. 1993. How much spawning per recruit is necessary? In Risk Evaluation and Biological Reference Points for Fisheries Management. pp. 101-118. Ed. by S. Smith, J. Hunt, and D. Rivard. Canadian Special Publications of Fisheries and Aquatic Science, No. 120. 222 pp.

Mahon, R. 1997. Does fisheries science serve the needs of managers of small stocks in developing countries? Canadian Journal of Fisheries and Aquatic Sciences, 54: 22072213.

Mullon, C., Freon, P., Cury, P. 2005. The dynamics of collapse in world fisheries. Fish and Fisheries, 6:111-120.

Pauly, D. 1980. On the interrelationship between mortality, growth parameters and mean temperature in 175 fish stocks. Journal du Conseil Permanent International pour Exploration de la Mer, 39: 175-92.

Pauly, D. 2013. Does catch reflect abundance? Nature, 494: 303-305.

Pianka, F.R. 1970. On r - and K - selection. American Naturalist, 104: 593-597.

Prince, J.D., Peeters, H., Gorfine, H., Day R.W. 2008. The novel use of harvest policies and rapid visual assessment to manage spatially complex abalone resources (Genus Haliotis). Fisheries Research 94: 330-338.

688 Walters, C. and S. J. D Martell. 2004. Fisheries Ecology and Management. Princeton
Prince, J. D., Dowling, N.A., Davies, C.R., Campbell,' R.A., Kolody' D.S. 2011. A simple cost-effective and scale-less empirical approach to harvest strategies. ICES Journal of Marine Science, 68: 947-960. doi:10.1093/icesjms/fs May 2011.

Punt, A.E., Smith, D.C., Smith, A.D.M. 2011. Among-stock comparisons for improving stock assessments of data-poor stocks: the "Robin Hood" approach. ICES Journal of Marine Science, 68: 972-981.

Restrepo, V.R., Powers, J.E. 1999. Precautionary control rules in US fisheries management: specification and performance. ICES Journal of Marine Science, 56: 846-852.

Roff, D.A. 1984. The evolution of life-history parameters in teleosts. Canadian Journal of Fisheries and Aquatic Sciences, 39: 1686-1698.

Sainsbury, K. J. 1980. Effect of individual variability on the von Bertalanffy growth equation. Canadian Journal of Fisheries and Aquatic Sciences, 37: 241-247.

Shepherd, J.G. 1982. A versatile new stock-recruitment relationship for fisheries, and the construction of sustainable yield curves. Journal du Conseil Permanent International pour Exploration de la Mer, 40; 67-75.

Von Bertalanffy, L. 1938. A quantitative theory of organic growth. Human Biology, 10: 181-213. University Press, Princeton, New Jersey. 399 pp.

Walters, C., Pearse, P.H. 1996. Stock information requirements for quota management systems in commercial fisheries. Reviews in Fish Biology and Fisheries, 6: 21-42.

Ziegler, P.E., Lyle, J.M., Haddon, M., Ewing, G.P. 2007. Rapid changes in life-history characteristics of a long-lived temperate reef fish. Marine and Freshwater Research, 58: 1096-1107.

Figure \& Table Legends

Table 1. Synopsis of the taxa and species in this meta-analysis summarizing the range of parameters used for each species group. $M=$ natural mortality; $k=$ von Bertalanffy growth parameter; $\mathbf{L}_{\mathbf{m}}=$ length at maturity; $\mathbf{L}_{\infty}=$ asymptotic length; max. $=$ maximum.

Figure 1.
Observed relationships for 123 selected marine species between Spawning Potential Ratio (SPR) and (a) standardised weight (weight ${ }_{\max }=1.0$), (b) standardised length (length $\max ^{\max }=1.0$), (c) standardised age ($\operatorname{age}_{\max }=1.0$), and (d) weight standardized for size of maturity (weight $_{\mathrm{m}}=0$) and maximum weight (weight $_{\text {max }}=1.0$). Green lines denote species with indeterminate growth and $M / k>1.0$; blue lines denote species with indeterminate growth and $M / k<1.0$; red lines denote species with determinate growth \& $M / k<1.0$; black lines show the relationship for species conforming with BH-LHI; $M / k=1.5$, $L_{m} / L_{\infty}=0.66$ and $M \times A g e_{m}=1.65$.

Figure 2
Simulated length frequency histograms illustrating how the size compositions of unfished populations are determined by the M / k ratio for a species'. The range of M / k ratios (0.1 to 4.0) chosen for simulating these histograms was based on the range of ratios observed in the meta-analysis of 123 species. Top row: $M / k=4.0,1.65,1.0$. Middle row: $M / k=0.8$, $0.6,0.4$. Bottom row: $M / k=0.3,0.2,0.1$. Shading indicates the proportion of the mature, adults in the population, assuming $L_{m} / L_{\infty}=3 /(3+M / k)$, as derived from Beverton (1992).

Figure 3
The relationship between relative length of maturity $\left(L_{m} / L_{\infty}\right)$ in (a) the 123 marine species selected for this meta-analysis; and (b) nine teleost families with more than three species plotted against the M / k for each species. In a), green points denote species with indeterminate growth and $M / k>1.0$; blue points indeterminate growth and $M / k<1.0$; red points determinate growth and $M / k<1.0$. The solid black lines plot the Beverton (1992) relationship; $L_{m} / L_{\infty}=3 /(3+M / k)$. The dashed and dotted lines, respectively show the relationships $L_{m} / L_{\infty}=2.5 /(2.5+M / k)$ and $L_{m} / L_{\infty}=3.5 /(3.5+M / k)$.

Figure 4

Observed relationships between Spawning Potential Ratio (SPR) and (a) standardised weight (weight $_{\max }=1.0$), (b) standardised length (length ${ }_{\max }=1.0$), (c) standardised age (age $_{\max }=1.0$) for the three most numerous teleost families in our meta-analysis; Gobiidae,
$733 \mathrm{n}=5$, green; Lethrinidae, $\mathrm{n}=10$, red; Acanthuridae, $\mathrm{n}=7$, blue. The broken black line show 734 the BH-LHI relationships; $M / k=1.5, L_{m} / L_{\infty}=0.66$, and $M \mathrm{x} \mathrm{Age}_{m}=1.65$.

741 analysis $(0.1-1.0)$ and an ambient temperature of $15^{\circ} \mathrm{C}$.

Taxa	\# Families	\# Species	Max. age (yrs)	Max. length (m)	$\begin{gathered} M / k \\ \text { mean (range) } \end{gathered}$	$\begin{gathered} \mathbf{L}_{\mathrm{m}} / \mathbf{L}_{\infty} \\ \text { mean (range) } \end{gathered}$
Type I	34	49	<1-102	0.04-3.19	1.95 (1.00-3.52)	0.55 (0.32-0.79)
Chondrichthyes	8	10	10-49	0.57-3.19	2.07 (1.03-3.16)	0.64 (0.50-0.79)
Crustacean	2	3	$<1-14$	0.15-0.25	1.55 (1.20-1.90)	0.52 (0.46-0.56)
Mollusc	2	2	5	0.06-0.07	2.92 (2.74-3.10)	0.35 (0.32-0.39)
Teleost	22	34	<1-102	0.04-1.49	1.88 (1.00-3.52)	0.55 (0.32-0.71)
Type II	32	59	<1-154	0.03-1.83	0.62 (0.14-0.98)	0.69 (0.30-0.84)
Chondrichthyes	1	1	8	0.73	0.59	0.75
Crustacean	3	5	$<1-15$	0.03-0.08	0.74 (0.62-0.94)	0.55 (0.30-0.74)
Mollusc	5	8	3-154	0.07-0.14	0.53 (0.14-0.84)	0.55 (0.34-0.80)
Teleost	23	45	5-96	0.12-1.83	0.63 (0.21-0.98)	0.72 (0.32-0.84)
Type III	11	15	5-115	0.21-21.49	$\mathbf{0 . 5 7}$ (0.12-0.83)	0.88 (0.85-0.93)
Chondrichthyes	2	2	17-46	1.21-1.62	0.68 (0.63-0.73)	0.92 (0.91-0.93)
Mammal	3	5	58-115	2.67-21.49	0.46 (0.20-0.75)	0.88 (0.87-0.91)
Teleost	6	8	5-77	0.21-0.69	0.61 (0.12-0.83)	0.87 (0.85-0.89)
Total	77	123	<1-154	0.03-21.49	1.17 (0.12-3.52)	0.66 (0.30-0.93)

$169 \times 77 \mathrm{~mm}(120 \times 120 \mathrm{DPI})$

$$
169 \times 84 \mathrm{~mm}(120 \times 120 \mathrm{DPI})
$$

$169 \times 56 \mathrm{~mm}(120 \times 120$ DPI)

Revisiting the concept of Beverton-Holt Life History Invariants with the aim of informing data-poor fisheries assessment.

Jeremy Prince ${ }^{1,2}$, Adrian Hordyk 2, Sarah R. Valencia ${ }^{3}$, Neil Loneragan ${ }^{2}$, Keith Sainsbury ${ }^{4}$
${ }^{1}$ Biospherics P/L, South Fremantle, Western Australia
${ }^{2}$ Centre for Fish, Fisheries and Aquatic Ecosystems Research, School of Veterinary and Life Sciences, Murdoch University, Western Australia, A.Hordyk@murdoch.edu.au , N.Loneragan@murdoch.edu.au
${ }^{3}$ Bren School of Environmental Science and Management, University of California, Santa Barbara, USA, svalencia@bren.ucsb.edu,
${ }^{4}$ University of Tasmania, Tasmania, Australia, ksainsbury@netspace.net.au

Corresponding author: Jeremy Prince, Biospherics P/L, P.O. Box 168 South Fremantle, W.A. 6162, Australia. Phone: +618 9336 3793, Email: biospherics@.ozemail.com.au

Abstract

The complexity and cost of existing fishery assessment techniques prohibits their application to 90% of fisheries globally. Simple, cost-effective, generic approaches are needed for small-scale and data-poor fisheries that support the majority of the world's fishing communities but cannot currently be assessed quantitatively. This meta-analysis of the relationship between spawning potential and the normalized size and age of 123 marine species suggests that the so-called Beverton-Holt Life History Invariants (BH-LHI; $L_{m} / L_{\infty}, M / k, M \times A g e_{m}$) actually vary together in relation to life history strategy, determining the relationship between size, age and reproductive potential for each species. Although little realized, the common assumption of unique values for the $\mathrm{BH}-\mathrm{LHI}$ also implies that all species share the same relationship between size, age and reproductive potential. This implicit assumption of is not supported by this meta-analysis, which instead suggests there is considerable but predictable natural variation in the $\mathrm{BH}-\mathrm{LHI}$ ratios and the relationships between size, age and reproductive potential that they determine. We believe this reconceptualization of the BH-LHI has potential to provide a theoretical framework for 'borrowing' knowledge from well-studied species to apply to related, unstudied species and populations, and when applied together with the assessment technique described by Hordyk et al. (this issue b), could make simple forms of size based assessment possible for many data-poor fish stocks that are currently considered unassessable.

Keywords

Beverton-Holt Life History Invariant, Data-poor assessment, parameter estimation

Introduction

A persistent challenge for sustainable fisheries is the scale, complexity and cost of fishery assessment (Walters and Pearse, 1996; Hilborn et al., 2005; Beddington and Kirkwood, 2005; Mullon et al., 2005). Current assessment techniques require technical expertise, detailed biological knowledge and time-series data on catch, effort and/or surveyed abundance (Walters and Martell, 2004) resulting in an annual cost of \$US50,000 to millions of dollars per stock (Pauly, 2013). This represents a substantial impediment to assessing small-scale, spatially complex and developing-world fisheries (Mahon, 1997). By some estimates, 90% of the world's fisheries, which directly support $14-40$ million fishers and indirectly support approximately 200 million people, are un-assessable using current methods (Andrew et al., 2007).

Considerable uncertainty surrounds the status of unassessed stocks (Costello et al., 2012; Hilborn and Branch, 2012; Pauly, 2013) so that overfishing may go unrecognized until stocks collapse. Even where fishing communities want to change fishing practices, the technical difficulty and expense of current assessment techniques can prevent sciencebased harvest strategies from being developed and implemented for these fisheries. A new methodology is needed for small-scale and data-poor fisheries (Andrew et al., 2007; Pauly, 2013) along with theoretical frameworks for informing the assessment of unstudied species with biological knowledge about related species (Punt et al. 2011).

The correlation between biological parameters across species has been widely used to provide generic parameter estimates necessary for assessment modeling (Charnov, 1993) and were first described in fisheries by Beverton and Holt (1959) for the clupeid and engraulid (herring and anchovy-like bony fishes) stocks of the North Sea (Beverton, 1963). They observed correlations between: 1) the instantaneous natural mortality rate (M) and the von Bertalanffy (1938) growth rate constant $(k), 2)$ length at maturity $\left(L_{m}\right)$ and asymptotic length $\left(L_{\infty}\right)$, and 3) M and the age of maturity $\left(T_{m}\right)$. Beverton and Holt's primary interest was in estimating M, a parameter that is notoriously difficult to measure, from studies of k, L_{m} and T_{m}, which by comparison, are easily estimated. Although neither Beverton, nor Holt used the term, these three life history ratios_ $M / k, L_{m} / L_{\infty}$ and M $\left.\mathrm{x} A g e_{m}\right)$ are now commonly referred to as the Beverton-Holt Life History Invariants ($\mathrm{BH}-$ LHI). Widely considered to be environmentally influenced constants (Pauly, 1980) the BH-LHI have been used extensively to parameterize fisheries models (Charnov, 2003; Beddington and Kirkwood, 2005; Gislason et al., 2010). In this study we use Jensen's (1996) definition of the three BH-LHI; $M / k=1.5, L_{m} / L_{\infty}=0.66$ and $M \times T_{m}=1.65$.

The Spawning Potential Ratio, or Spawning Per Recruit $(S P R)$, is a commonly used index of the relative rate of reproduction (Mace and Sissenwine, 1993; Walters and Martell, 2004) in an exploited stock. Brooks et al. (2010) recommend its utility for applying to stocks in data limited fisheries. The $S P R$ is defined as the proportion of the unfished reproductive potential left by any given fishing pressure. It can be conceptualized as the total reproductive potential of all the cohorts in a population at equilibrium, or the life-
time reproductive potential of an average individual passing through a population at equilibrium. By definition, unfished stocks and individuals in an unfished stock, have an $S P R$ of $100 \%\left(S P R_{100 \%}\right)$ and fishing mortality reduces $S P R_{100 \%}$ from the unfished level to $S P R_{X \%}$. Shepherd (1982) used the $S P R$ concept to integrate the separate approaches to fisheries modeling that had developed on opposite sides of the North Atlantic during the 1970s. Generic $S P R$-based reference points have been developed theoretically and through the meta-analysis of quantitatively assessed fisheries, and have been recognized in international fisheries law (Restrepo and Powers, 1999; Australian Government, 2007), for example $\sim S P R_{40 \%}$ is generally considered a conservative proxy for maximum sustainable yield (Mace and Sissenwine, 1993; Clark, 2002; Walters and Martell, 2004). Until recently, estimating $S P R$ has required unique population models to be parameterised for each stock using estimates of natural mortality, growth, reproduction ${ }_{2}$ and time series of abundance, or age composition data (e.g. Ault et al., 1998; Walters and Martell 2004).

This study and the accompanying studies of Hordyk et al. (this issue $\mathrm{a} \& \mathrm{~b}$) arose from our interest in developing a simple method for using size composition data to evaluate the SPR of exploited populations (Prince et al. 2008; 2011). Prince et al. (2008) observed that the spatial variability of size of maturity in Haliotid populations could be gauged from the shape and appearance of their shells, and that qualitative evaluations of a population's spawning potential can be made on the basis of size composition relative to the visually evaluated size of maturity. This current collection of studies was prompted by a journal editor asking, how the finding of Prince et al. (2008) applied to other species? And our research began by addressing the question do all species exhibit the
same relationship between size of maturity, relative size composition and $S P R$? To this end we began with the empirical and descriptive study described here, of how $S P R$ relates to size of maturity, relative body size and age in 123 species of teleosts, chondrichthyans, invertebrates and marine mammals. The results presented here suggested to us that there are predictable patterns in life history ratios M / k and $L_{\underline{m}} / \underline{L}_{\infty} \underline{\text { which }}$ are related to each species' life history strategy, unfished size compositions, and the distribution of spawning potential by size. Exploring these results more rigorously Hordyk et al. (this issue a) demonstrates that it is the life history ratios of M / k and L_{m} / L_{∞} together with F / M that determine the shape of size compositions and the $S P R$ of populations, rather than the individual parameter values as generally assumed. On this basis Hordyk et al. (this issue b) developed and tested a new approach to size-based assessment, which we believe may have great application to data-poor assessment. Returning to the empirical observations made in this study, we postulate that extending our meta-analysis of well studied species could make it possible to predict characteristic life history ratios of most exploited populations based on general knowledge about each species life history strategy, and so make simple size based assessments possible for many stocks currently considered too data-poor to assess.
relationships. In order to control the quality of the parameter_sets we applied strict selection criteria. Rather than developing our own criteria de novo we based our criteria on the six criteria developed by Gislason et al. (2010), which they define as: "

1. Estimates were rejected if they had been derived from empirical relationships (e.g. Beverton and Holt, 1959; Pauly, 1980) or 'borrowed' from studies of similar species.
2. Estimates by size or age were rejected if they had been derived from multi-species modeling.
3. Parameters were rejected if they were based on an insufficient amount of data, if the authors expressed concern that they could be biased or uncertain, or if the sampling gears and/or procedures for working up the samples were likely to have biased the estimates.
4. Estimates of total mortality based on catch-at-length, or catch-at-age were accepted as estimates of M, only if the data had been collected from an unexploited or lightly exploited stock over a sufficiently long time period to ensure that they reflected mortality and not simply differences in year class strength, and if growth parameters or ageing methods were considered appropriate.
5. Estimates derived from tagging data were included only if the following factors had been considered: mortality associated with the tagging operation, tag loss, differences in mortality experienced by tagged and untagged fish, migration out of the study area and uncertainty regarding tag recovery.
6. Estimates derived from regressions of total mortality and effort were included, only if it was credible that total fishing mortality would be proportional to the measure of fishing effort considered, and if extrapolation did not result in excessively large confidence intervals."

While Gislason et al.'s focus was solely on ensuring the quality of natural mortality estimates, we found that where other aspects of biology had been studied, these criteria also ensured the quality of estimates for the broader list of parameters of interest to this study (i.e. growth, reproduction, and length-weight relationships).

To ensure that each species' parameter set described a single population and a similar population density we also applied a seventh criterion, ${ }_{2}$ which we defined as:
7. All parameter estimates for a species should be from the same geographic population, and from the same time period.

Formatted: Font: Times New Roman
our samples are distributed normally or are representative of any mean condition, parameter value or relationships. As discussed below we do not believe such statistical concepts are applicable to a study such as this. In this study our aim was entirely qualitative; to look for, and to describe patterns of variation that exist in nature. For the quantitative analysis of the patterns we observed, the reader is directed to the accompanying theoretical study of Hordyk et al. (this issue a)

Spawning Potential Ratio (SPR) Model for Meta-analysis

We modeled the $S P R$ achieved at any given age for the 123 species to examine patterns in the relationships between age, length, weight and reproductive output. The $S P R$ is usually calculated by summing the total reproductive output of all age classes and dividing by the number of recruits in order to obtain a general measure of current rate of reproductive output in relation to the maximum potential output, i.e. the unfished, level. However, here we are interested in calculating the cumulative percentage of total lifetime reproductive output achieved when an individual reaches each age/size, and how that varies across the widest possible range of marine species. For this purpose we developed an age-based equilibrium $S P R$ model for each species with an initial cohort size of 1,000 . The number of survivors, average individual length and weight, and percentage of total reproductive output achieved for both individuals and cohorts at each successive time step was calculated. To enable comparisons across species age, length, weight and reproduction were normalized with respect to their maximum value. The maximum age class $\left(t_{\max }\right)$ was determined to be the first age class with an abundance of $\leq 1 \%$ of the initial cohort size
(i.e. ≤ 10 individuals). This is consistent with the results of empirical studies of Hewitt and Hoenig (2005) who note that a range of 1-5\% has generally been used for the purpose of estimating M, and who conclude that 1.5% is most appropriate. In this range we tested a number of values and found it had little effect on our results.

For each parameter set, the cohort declined with constant natural mortality:

$$
\begin{equation*}
N_{t+1}=N_{t} e^{-M} \tag{1}
\end{equation*}
$$

where N_{t} is the number of age t individuals, M is natural mortality, and N_{0} is 1,000 .
Reproductive output (EP) was estimated at each age t as:

$$
\begin{equation*}
E P_{t}=\left(N_{t-1} e^{-M}\right) f_{t} \tag{2}
\end{equation*}
$$

where f_{t} is mean fecundity at age t. The cumulative Spawning Potential Ratio $(S P R)$ was calculated for each age class t :

$$
\begin{equation*}
S P R_{t}=\frac{\sum_{t=0}^{t} E P_{t}}{\sum_{t=0}^{t_{\max }} E P_{t}} \tag{3}
\end{equation*}
$$

where $S P R_{t}$ is the proportion of potential lifetime reproductive output achieved at age t. When no fecundity data were available, the reproductive output of a mature age class was assumed proportional to biomass:

$$
\begin{equation*}
E P_{t}=N_{t} e^{-M} W_{t} m_{t} \tag{4}
\end{equation*}
$$

where W_{t} is mean weight at age t, and m_{t} is the probability of being mature at age t. simplifying assumption. used to describe the growth of 117 species: species:

We used the simplifying assumption that M remains constant over all age and size classes in a population. This is unlikely to be true in nature, as juvenile mortality rates are generally observed to be greater than adult mortality rates, and mortality rates maybe size related throughout a species' life cycle (Gislasson et al. 2010; Charnov et al. 2013). However as noted by Charnov et al. (2013) juvenile mortality rates do not influence the estimation of life-time reproductive output in a species, and adult mortality rates tend to be more constant than juvenile rates, and so more likely to be compatible with this

A broad range of formulations to describe growth, fecundity, mortality and relationships between age, length and weight were found in the literature, and these are described below. We adapted the formulation of the $S P R$ model for each species to the formulations and units used in the source literature. If <15 age classes were present, we converted the unit of time to the next lowest unit (i.e. years to months, or months to weeks) to smooth

Five growth models were used by the collected literature to describe the growth for the 123 selected species. The three-parameter von Bertalanffy growth function (VBGF) was

$$
\begin{equation*}
L_{t}=L_{\infty}\left(1-e^{-k\left(t-t_{0}\right)}\right) \tag{5}
\end{equation*}
$$

where L_{t} is mean length at age t, L_{∞} is asymptotic length, k the growth coefficient, and t_{0} is the theoretical age at zero length. The Schnute growth function was used for three

$$
\begin{equation*}
L_{t}=\left[\left(y_{1}^{B}+\left(y_{2}^{B}-y_{1}^{B}\right)\right)\left(\frac{\left(1-e^{-A\left(t-T_{1}\right)}\right)}{1-e^{-A\left(T_{2}-T_{1}\right)}}\right)\right]^{\frac{1}{B}} \tag{6}
\end{equation*}
$$

where T_{1} and T_{2} are reference ages, y_{1} and y_{2} length at each reference age respectively, and A and B are constants $\neq 0$. The Gompertz growth function was used for one species:

$$
\begin{equation*}
L_{t}=\omega_{0} e^{G\left(1-e^{-g t}\right)} \tag{7}
\end{equation*}
$$

where $G, \omega_{0} \& g$ are constants. Two generic length models were used for two species:

$$
\begin{equation*}
L_{t}=L_{\infty}+\alpha \beta^{t} \tag{8}
\end{equation*}
$$

$$
\begin{equation*}
L_{t}=L_{t-1}+\frac{\alpha}{1+e^{\frac{L_{t-1}-\beta}{\varphi}}} \tag{9}
\end{equation*}
$$

where α, β and φ are constants.

Length-weight relationships were described in the literature for all except two species by:

$$
\begin{equation*}
W_{t}=a L_{t}^{b} \tag{10}
\end{equation*}
$$

where a and b are constants. Polynomial regressions were reported for the length-weight relationships for two species:

$$
\begin{equation*}
W_{t}=a-b L_{t}+c L_{t}^{2} \tag{11}
\end{equation*}
$$

12

When fecundity at length, weight, or age was not available, reproductive output was assumed proportional to the biomass of an individual or cohort, based on the reported maturity ogive for each species (Equation 4). When no maturity ogive was available, whichever available estimate of length at maturity (e.g. $L_{0}, L_{50_{2}} L_{100}$) was used to delineate between juvenile and adult size classes, and maturity was assumed to be knife edge at that size. Size-fecundity relationships were available for 24 species. For the remaining 99 species, reproductive output was assumed proportional to individual weight for teleosts (75 species) and some crustaceans (4 species) and molluscs (7 species), and size-independent for elasmobranches (8 species) and mammals (5 species).

Where sexual dimorphism was recorded only female parameters were used in the $S P R$ model developed for the species. Our database includes several hermaphroditic species, for these species the maturity ogive was defined as female maturation ogive, and if occurring after the female stage (which is generally the case), the male stage was considered to contribute to the reproductive potential of the population, and for the purpose of $S P R$ modeling treated as a continuation of the female phase.

Simulation of Length-Composition

To assist with our understanding of the patterns we observed an age-based model was developed to simulate the length frequency composition of the theoretical unfished populations across the range of M / k observed in our meta-analysis. To achieve the desired ratios of M / k for each simulation we fixed M at 0.2 and solved for the appropriate value of k. Size compositions were simulated using nine values of $M / k(4.0,1.65,1.0,0.8,0.6$,
$0.4,0.3,0.2, \& 0.1$). We assumed von Bertalanffy growth (mean $L_{\infty}=1, C V_{L \infty}=0.1, t_{0}=0$) in arbitrary units, with L_{∞} distributed normally among individuals, and with the variance in mean length a function of mean cohort length (Sainsbury, 1980). Because of the variation associated with length-at-age, some individuals have lengths greater than mean L_{∞} (1.0); thus the length composition was calculated for lengths between 0 and 1.4. We estimated the size of maturity for these simulated size compositions using the Beverton (1992) equation derived for teleosts:

$$
\begin{equation*}
\frac{L_{m}}{L_{\infty}}=\frac{3}{3+\frac{M}{k}} \tag{12}
\end{equation*}
$$

Results

Figure 1a-d shows the modeled $S P R$ for every species in our meta-analysis as functions of (a) normalized weight (weight/weight ${ }_{\max }$), (b) normalized length (length/length ${ }_{\max }$) and (c) normalized age $\left(\right.$ age $^{\prime}$ age $\left._{\max }\right)$. As described in the methods Weight ${ }_{\text {max }}$, length $\underline{m a x}^{\text {and }}$ age $_{\text {max }}$ are defined as the value attained when modeled cohort abundance declines to $\leq 1 \%$ of initial abundance. In Figure 1d we standardise the $S P R$-at-weight trajectories (Figure 1a) with respect to both weight-at-maturity and maximum weight ((W$\left.\underline{W}_{\underline{m}} /\left(W_{\max }-\underline{W}_{\underline{m}}\right)\right)$ making it evident that much of the crossing of trajectories observed in Figures $1 \mathrm{a} \& \mathrm{~b}$ is due to variation in size of maturity. The spectrum of curves observed in Figures 1a-d appears to be determined by the range of M / k ratios observed in our metaanalysis; species with the greatest ratio $(M / k=3.5)$ have trajectories in the upper left of Figures $1 \mathrm{a}, \mathrm{b}$, and, while those with the lowest ratios $(M / k=0.1)$ have trajectories in the
bottom right, and this empirical observation is confirmed theoretically by Hordyk et al. (this issue a).

Also plotted in Figures 1a-d (black lines) are the relationships expected for species with biological parameters conforming to Jensen's (1996) estimates of the three BH-LHI (M/k $=1.5, L_{m} / L_{\infty}=0.66$ and $\left.M \mathrm{x} \mathrm{Age} e_{m}=1.65\right)$, and the assumption that reproductive output is proportional to mature weight, which in turn is a cubic function of length. From this we conclude that the three BH-LHI, proscribe a unique relationship between normalized size, age and $S P R$, however, the BH-LHI relationship is apparently some form of 'median' form of the relationship we observe across all 123 species in our meta-analysis rather than an invariant relationship that is applicable to many species as we expected originally might be the case.

As demonstrated by Hordyk et al. (this issue a) and illustrated by simulation in Figure 2 the M / k ratio determines the relative shape of a population's unfished size composition. Here, we note again our use of the simplifying assumption that M remains constant over the all age and size classes in a population, and the influence that this assumption has on the shape of these simulated size compositions. However, using the rationale of Charnov et al. (2013) that adult mortality rates are more likely to tend towards a level of consistency, and determine life-time reproductive output, we observe that unfished populations with $M / k>1.0$ do not tend to exhibit an adult modal size (Figure 2). This is because adults grow and die too rapidly to accumulate around a species asymptotic size (Hordyk et al. this issue a). This contrasts with unfished populations of species with M / k ≤ 1.0 (Hordyk et al. this issue a) in which adults grow relatively slowly and persist long
enough to accumulate around an asymptotic size so that a modal adult size becomes observable, and increasingly prominent as M / k declines (Figure 2).

To assist in our description of the variation we observed around the BH-LHI relationship between normalized size, age and $S P R$, we categorised the species in our meta-analysis with respect to $M / k=1.0$, and whether their growth is determinate or indeterminate. Species with indeterminate growth continue growing throughout adult life, although slowing to some extent with increasing size, while species with determinate growth do not grow as adults. These two criteria defined three broad groups or 'Types' of species in our meta-analysis; Type I $-M / k>1.0$ and indeterminate growth, Type II $-M / k<1.0$ and indeterminate growth, Type III $-M / k<1.0$ and determinate growth (Figure 1). No species with $M / k>1.0$ and determinate growth were observed in our meta-analysis (see also Hordyk et al. this issue a).

A total of 49 Type I species (green lines) were identified, including 34 teleosts, 10 chondrichthyes, 3 crustaceans and 2 molluscs. Their trajectories occupy the upper left hand side of Figs 1a-c and the lower right of Figure 1d. Type I species conform to the general shape of the BH-LHI trajectories, and have a slightly higher average $M / k(1.95$, cf. 1.5; Table 1) but slightly lower average $L_{m} / L_{\infty}(0.55$, cf. 0.65 ; Table 1$)$ than those for the BH-LHI. They begin reproduction at relatively small sizes (Figures $1 \mathrm{a} \& \mathrm{~b}$) but at a relatively later stage of their life cycle (Figure 1c) than Types II \& III. Unfished Type I populations are numerically dominated by juvenile length classes and do not exhibit an adult modal size (Fig. 2; top panels). Most (60-80\%) of the reproductive potential in these
populations comes from smaller individuals that are $<80 \%$ of their asymptotic size (Figure 1a, b).

A diverse range of species comprise the Type I category, including coastal bivalves Gari solida, Semele solida, a crab Callinectes sapidus, two spiny lobsters Panulirus argus, P. ornatus, several carcharhinid Carcharhinus obscurus, C. plumbeus and triakid sharks, Mustelus antarcticus, Prionace glauca, and teleosts ranging from low tropic level species such as Scomber japonicus, Cololabis saira and the clupeid Brevoortia patronus to higher trophic level species, such as the rockfish Sebastes chlorostictus, S. melanonstomus and two apex piscivores, the scombrid tunas Thunnus alalunga, and T. tonggol.

Type II species (blue curves on Figure 1) are shifted to the right of Type I species in Figures $1 \mathrm{a} \& \mathrm{~b}$, and to the left in Figure 1c. They share the indeterminate growth pattern of Type I species. Type III species (red) grow to a determinant asymptotic adult size, and reproduce without further growth. Their trajectories are shifted to the extreme right in Figures $1 \mathrm{a} \& \mathrm{~b}$, and the extreme left in Figure 1c. The 74 Type II and III species share lower M / k ratios than Type I species (mean $=0.62$, cf. 1.95 ; Table 1). In contrast to Type I species, Type II \& III species do not reproduce until growth is almost complete; Type II species produce approximately 70% of their $S P R$ at sizes $>80 \%$ of the asymptotic size, while Type III species produce 90% of $S P R$ at sizes $>80 \%$ of asymptotic size (Figure 1). Unfished populations of Type II and III species are dominated by adult size classes, and exhibit distinct adult modes that become more pronounced with lower M / k ratios (Figure 2; mid \& lower panels).

The Type II species (blue) form a middle group of 59 species (45 teleosts, 1 elasmobranch, 5 crustaceans, and 8 molluscs) with average L_{m} / L_{∞} similar to the BH-LHI ratio $(0.69$, cf. 0.66 ; Table 2), but a lower average M / k than the BH-LHI ratio (0.62 , cf. 1.5; Table 2). Type II species include crustaceans, Nephrops norvegicus, and all of the prawns (=shrimp) in our analysis Penaeus indicus, P. latisulcatus, P. merguiensis, all three haliotid gastropods Haliotis rubra, H. laevigata, H. iris, a carcharhinid shark Rhizoprionodon taylori, and a range of teleosts including flat-forms Pleuronectes platessa, Psettichthys melanostictus, tropical snappers Lutjanus malabaricus, L. carponotatus L. argentimaculatus and the long-lived orange roughy Hoplostethus atlanticus.

The 15 Type III species (red) exhibit trajectories that balloon into the bottom right of Figures $1 \mathrm{a} \& \mathrm{~b}$. These species reach maturity (Figure 1c) and a determinant asymptotic size (Figs $1 \mathrm{a} \& \mathrm{~b}$) relatively early in life. Type III species have the largest average L_{m} / L_{∞} ratio (0.88 ; Table 2) and lowest average M / k ratio (0.57 ; Table 2). Besides the five marine mammals in our database, Type III species include two triakid sharks Galeorhinus galeus, Furgaleus macki, eight teleosts, including the long-lived Scorpis aequipinnis, and two short-lived Lethrinidae species.

In Figure 3a the L_{m} / L_{∞} of each species in our analysis is plotted as a function of M / k. The solid black line $\left(L_{m} / L_{\infty}=3 /(3+M / k)\right)$ is derived from Beverton (1992) and Hordyk et al. (this issue a), but is originally from Holt (1958) who used this equation to demonstrate that size at maximum biomass $\left(L_{\text {opt }}\right.$.) can be estimated from the ratio of M / k. Numerous empirical studies observe that length at maturity $\left(L_{\underline{m}}\right)$ coincides with $L_{\text {opt }}$ and various
theoretical studies postulate that this is because the evolutionary fitness of a species is maximized by this coincidence (Fryer and Iles, 1972; Roff, 1984; Beverton, 1992). The factor of ' 3 ' used in this equation comes from the assumption that weight is proportional to L^{3}. The dashed and dotted lines plotted in Figure 3 indicate alternative relationships obtained by substituting factors of 2.5 or 3.5 into this equation, which would be equivalent to assuming weight and fecundity are proportional to $\mathrm{L}^{2.5}$ and $\mathrm{L}^{3.5}$ respectively. These alternative relationships are plotted to provide some scaling of variance around the relationship.

Very few of the species in our meta-analysis fall above the Beverton_(1992) curve for the relationship between M / k and L_{m} / L_{∞}; most of the outliers are below (Figure 3a). This is primarily because our meta-analysis encompasses all marine species, some of which have fixed rates of reproduction, while Beverton (1992) worked almost entirely with teleosts for which fecundity is normally more closely related to adult body size. In Figure 3b, the relationship between M / k and L_{m} / L_{∞} is plotted for the 9 teleost families with three or more species in our database and these conform much more closely to the Beverton (1992) relationship (Figure 3b).

In Figure 3b there is the suggestion that species within families tend to group together on the M / k and L_{m} / L_{∞} spectrum, which in Figure 4 is shown with our 3 most numerous families to result in their $S P R$ at_size and age trajectories grouping into distinctive family bands. Comparison to the plotted BH-LHI trajectories (Figure 4 - broken black line) shows that to some extent the BH-LHI relationship describes the weight and length trajectories of the Gobiidae in our study, but not their SPR at age relationship. The BH-

LHI relationship over-estimates the productivity of the Lethrinidae and Acanthuridae, by suggesting higher than observed $S P R$ at lower sizes for those families, while describing a relationship between $S P R$ and relative age that is intermediate between the Lethrinidae and Acanthuridae relationships in our analysis.

We also examined the predictive power of Pauly's (1980) equation for estimating M empirically by comparing the M / k and L_{m} / L_{∞} ratios of species in our meta-analysis with those derived from Pauly's (1980) equation for estimating M empirically (Figure 5). The relationship between M / k and L_{∞} is plotted for the 109 species in our database with $L_{\infty} \leq$ 200 cm , which excludes marine mammals and large sharks (Figure 5a). The solid lines indicate the estimates of M / k that would be derived using the Pauly equation across the range of k values we observed. The Pauly equation requires an assumption about ambient temperature. For simplicity we assume $15^{\circ} \mathrm{C}$ but sensitivity analyses showed that increasing the assumed temperature only raised the plotted lines minimally. The Pauly equation generally produces estimates of $M / k>1$, especially for species with $L_{\infty}<50 \mathrm{~cm}$. Our database includes a considerable number of teleosts with $L_{\infty}<50 \mathrm{~cm}$ and $M / k<1$, for which the Pauly equation over-estimates M. This pattern is maintained even when the analysis is restricted to the teleost families with three or more species (Figure 5 b).

Discussion

In fisheries science, the three Beverton Holt-Life History Invariants (BH-LHI) are most commonly used separately to estimate individual parameters for population modeling;
generally they are only linked within studies seeking to relate evolutionary fitness and metabolic parameters to the optimization of life histories (e.g., Jensen, 1997; Charnov et al., 2013)._We believe our combination of them to reveal that they imply a unique generalized relationship between normalized size, age and $S P R$ is relatively novel. Our meta-analysis suggests that rather than approximating some unique relationship between size, age and reproductive potential that is broadly applicable across species, the BH-LHI estimate some form of 'median' relationship for the 123 species in our meta-analysis (Figure 1) that is not necessarily found in any species.

The first formulations of BH-LHI (Beverton and Holt 1959; Beverton 1963) were based on North Sea teleosts (clupeids and engraulids) that our analysis has classed as Type I species. Since that time fisheries biology has tended to accept, seemingly by default, that the values derived from those initial studies are relatively constant across much broader suites of species, particularly the ratio of M / k of ~ 1.5. This was, however, not an assumption ever made by Holt (Holt 1958) nor Beverton (1992), who both conceptualized species as displaying a range of M / k values co-varying with L_{m} / L_{∞} (Figure 3), nor by Pauly (1980), who correlated ambient temperature and adult body size with the M / k ratio for each species.

Apparently confirming earlier studies the descriptive meta-analysis we present here illustrates the natural variability observed across marine species. We defined three broad types of marine species with characteristic relationship between size, age and reproductive potential, and ratios of M / k and $L_{m} / L_{\infty_{2}}$ Our intent in doing so is not to imply fundamental differences or strong 'significantly different' boundaries between categories,
but to provide an initial indicative categorization to aid our discussion of the phenomena we observe. Our aim here is to 1) illustrate that predictable patterns in size, age and $S P R$ appear to exist in nature, and 2) to postulate that these predictable patterns might provide an alternative theoretical framework for deriving knowledge about unstudied species from studies of related species.

When we apply the classification of teleost life strategies developed King and McFarlane's (2003) or the more generalized ' r and K ' theory of Pianka (1970), which characterizes life history strategies as either 1) ' r-strategists' with high population turnover rates, a tendency for boom and bust dynamics, and invasive 'weed-like' characteristics, or 2) ' K-strategists' with relatively stable population dynamics, lower turnover and adults that reproduce over many breeding cycles. We conclude that our Type I species which mature at relatively small sizes, reproduce for a relatively short and late part of their life cycle, continue growing relatively rapidly as they reproduce, have unfished populations that are dominated by juvenile size classes, and do not exhibit a modal adult size, are Opportunist and Intermediate Strategists (King and McFarlane 2003), and tend towards being ' r-strategists' (Pianka 1970). While Type II and III species which mature at relatively high sizes, reproduce for a relatively extended part of their life cycle, growing slowly, or not at all, as they reproduce, and have unfished populations that exhibit a modal adult size, are typically Periodic and Equilibrium Strategists (King and McFarlane 2003), and K-strategists (Pianka 1970). From this, we surmise that, in the case of an unstudied stock, general knowledge of a species typical life-history strategy might be used to estimate a likely set of life history ratios and the likely relationships between size, age and $S P R$ those ratios proscribe. We propose that the estimations developed in
this way for a relatively unstudied stock will be more accurate than existing standard methods for applying the concept of BH-LHI to data-poor stock assessment.

Currently the BH-LHI are widely assumed to be 'invariant' and individual parameters are commonly estimated for data-poor assessments on that basis, but as illustrated here (Figure 1) and proved by derivation in Hordyk et al. (this issue a) this implies all species share the same BH-LHI relationships between size, age and reproductive output. Rather, the so-called 'Invariants' vary together, matching patterns of growth and reproduction to different life history strategies, presumably ensuring that for each life-history strategy, length at maturity $\left(L_{m}\right)$ and a cohort's maximum biomass ($L_{\text {opt. }}$) coincide, optimizing each species’ evolutionary fitness (Fryer and Iles, 1972; Roff, 1984; Beverton, 1992). From our study, and those that precede us, it appears that the BH-LHI only tend towards relative invariance within groups of species sharing similar life-history strategies, reflecting the stage at which each life-history strategy transfers energy from allometric growth to reproduction (Charnov, 2008; Charnov et al. 2013). In this conceptualization, tuna can be considered as 'larger, slower' anchovies which rarely reach asymptotic sizes, while some prawns are 'smaller, faster' versions of the fish, lobsters and gastropods that breed multiple times close to asymptotic sizes.

The obvious question at this point is; where do phenotypic plasticity, and density dependent responses to fishing pressure fit into this conceptualization? Do they invalidate this conceptualization of BH-LHI? The short answer is not at all, and although not studied enough at the present time, we believe these two phenomena are likely to provide the broader context, which will in time fully validate and extend this concept's
application. Implicitly because of the selection criteria used this meta-analysis is basically a study of unfished, or lightly fished, populations and this limits what can be demonstrated here. In each of the cases we have used we would expect that the individual parameter estimates used will have changed as the stocks for which they were estimated have been fished down, just as we expect the individual parameters to vary between geographically isolated populations of each species. In the case of Cheilodactylus spectabilis we know this to have occurred as the population was fished down (Ziegler et al. 2007). We are not proposing a new alternative form of invariance within families, species or stocks. Rather we are returning to the spirit of the original formulation of this concept by Holt (1958) which was that the physiological constraints of species and families imply that the life history ratios will remain more stable across geographical distributions and density ranges, than the individual life history parameters, and so for the purpose of data-poor stock assessment the life history ratios are expected to be more informative and useful than the more variable individual parameters (S.J. Holt, Personal Communication). There is a growing body of literature to support this supposition, and in this context the body of work by Choat on coral reef fish deserves to be highlighted and should be referred to (e.g., Choat \& Robertson 2001; Gust et al. 2002). While the precedence set by fisheries science, and our selection criteria place a strong emphasis on the quality of component estimates of natural mortality, and our sampling of the literature has been strongly biased towards using lightly fished populations for this analysis, we suspect that exploited marine species do not distinguish between whether a seal or a human eats them. Thus we expect we would reach similar conclusions if we were to broaden our study to use the ratio of Z / k rather than M / k. On this basis we postulate that
for metabolic and evolutionary reasons species respond to changes in total mortality by minimizing changes in their life history ratios, rather than the parameters themselves, and that this conceptualization of BH-LHI maybe useful for predicting how stocks are likely respond to fishing pressure, and thus the likely form and magnitude of density dependence mechanisms for each species.

The data in our meta-analysis are as yet too few to properly extend these aspects of our analysis, but with the addition of further species we expect that the sharing of similar lifehistory ratios and bands of $S P R$ trajectories by closely related species will become more evident amongst both teleost and non-teleost families. We expect that it will be possible to define a typical band of $S P R$ at size and age trajectories for many marine families. From Figure $4 \mathrm{a} \& \mathrm{~b}$ it can be seen already that assuming an average or median family value for an unstudied species of Lethrinid or Acanthuridae would produce a more accurate assessment of size data than the standard BH-LHI assumption of $M / k \sim 1.5$. Precautionary life history ratios and $S P R$ trajectories might also be estimated for an unstudied species by taking the extreme bottom right hand and least productive of the $S P R$ at size trajectories observed for a family (Figure $4 \mathrm{a} \& \mathrm{~b}$).

Our observation that the commonly assumed values of the BH-LHIs define a unique 'median' form of the SPR-at-size and age relationships observed in nature also has significant implications. Firstly, the results of empirical studies to more accurately derive single estimates of the BH-LHIs and to develop correlative techniques for estimating individual life history parameters (e.g., Pauly, 1980; Gislasson et al., 2010), will be strongly influenced by the sample of species included in those studies_We suspect that
many of these studies are implicitly (and unintentionally) biased against the inclusion of low M / k species. Noting the inherently lower productivity of low M / k species, these species are expected to be more prone to early depletion in poorly managed systems, and less likely to sustain large, valuable fisheries (and thus research programs) in well managed systems. This could well have resulted in low M / k species being underrepresented in meta-analyses, especially if those studies have an implicit (and perhaps unavoidable) focus on research from regions with long histories of heavy exploitation, such as the North Sea, Atlantic and South-east Asia (Costello et al., 2012). This might explain the apparent conflict between the Pauly (1980) technique and our meta-analysis (Figure 5). Being mainly based in Australia which has a relatively recent history of fishing and a strong history of research, we had ready access to recent research conducted in lightly exploited regions of Australia, and found numerous studies documenting small bodied low M / k teleost species, which were, apparently, not as well represented in Pauly's (1980) analysis. In this context, the quest to more accurately estimate unique values for the BH-LHI looks somewhat misguided, unless narrowed carefully on taxonomic grounds, as were the original studies of Beverton and Holt (1959), and Beverton (1963). Another significant implication of our observation that the BH-LHI define a unique 'median' form of the relationships between size, age and $S P R$ observed in nature, is that existing stock assessments, using some derivation of the assumption that $M / k \sim 1.5$, are implicitly over-estimating the productivity of stocks with $M / k<1.5$. This could amount to a serious systematic bias for our field as such techniques are commonly used with long-lived species where the depletion of the older age classes through fishing is thought

556 to have rendered the estimation of M with aging studies unreliable. Species with $M / k<$

564 Conclusions

565 This meta-analysis suggests that the so-called Beverton-Holt Life History Invariants are actually co-variants, varying together in relation to life history strategies and defining a range of relationships between size, age and reproductive output. From our study, and those that precede us, it appears that the BH-LHI only tend towards relative invariance within groups of species sharing similar life-history strategies, reflecting the stage at which differing life-history strategy transfers energy from allometric growth to reproduction (Charnov 2008; Charnov et al. 2013). We believe this conceptualization of BH-LHI has potential to provide a theoretical framework for 'borrowing' knowledge from well-studied species for application to related unstudied stocks, and that together with Hordyk et al. (this issue a, b) this may make it possible to assess many otherwise data-poor species from simple size studies.

Acknowledgements

Thanks to the David and Lucille Packard Foundation, The Nature Conservancy and the Marine Stewardship Council for the support of this study. Thanks to the colleagues, fishing and scientific, who provided missing next steps along the way, and especially to Beth Fulton for helpful discussions and comments on the manuscript. This study forms part of AH's doctoral dissertation at Murdoch University.

References

Andrew, N.L.. Bène, C., Hall, S.J., Allison, E.H., Heck, S., \& Ratner, B.D. 2007.
Diagnosis and management of small-scale fisheries in developing countries. Fish and Fisheries 8: 277-240.

Ault, J.S., Bohnsack, J.A. \& Meester, G.A. 1998. A retrospective (1979-1996)
multispecies assessment of coral reef fish stocks in the Florida Keys. Fishery
Bulletin, 96: 395-414.

Australian Government 2007. Commonwealth Fisheries Harvest Strategy Policy Guidelines. Australian Government Department of Agriculture, Fisheries and Forestry, Canberra, Australia. 55 pp .

Beddington, J.R., Kirkwood, G.P. 2005. The estimation of potential yield and stock status using life-history parameters. Philosophical Transactions of the Royal Society B., 360: 163-170.

Beverton, R.J.H. 1963. Maturation, growth and mortality of Clupeid and Engraulid stocks in relation to fishing. Rapports et Procés-Verbaux des Réunions du Conseil International pour l'Exploration de la Mer, 154: 44-67.

Beverton, R.J.H. 1992. Patterns of reproductive strategy parameters in some marine teleost fishes. Journal of Fish Biology, 41: 137-160.

Beverton, R.J.H., Holt, S.J. 1959. A review of the lifespans and mortality of fish in nature and the relation to growth and other physiological characteristics. Ciba Foundation Colloquium on Ageing, 5: 142-177.

Brooks, E.N., Powers, J.E. and Cortes, E. 2010. Analytical reference points for agestructured models: application to data-poor fisheries. ICES Journal of marine Science, 67: 000-000.

Charnov, E.L. 1993. Life history invariants: some explorations of symmetry in evolutionary ecology. Oxford University Press, New York. 184 pp.

Charnov, E.L. 2008. Fish growth: Bertalanffy k is proportional to reproductive effort. Environmental Biology of Fishes, 83: 185-187.

Charnov, E.L., Gislason, H. and Pope, J.G. 2013. Evolutionary assembly rules for fish life histories. Fish and Fisheries, 14: 213-224.

Choat, J.H., Robertson, D.R. 2001. Age-based studies on coral reef fishes. In: Coral Reef Fishes: dynamic and diversity in a complex ecosystem. Elsevier, San Diego, CA, USA, pp. 57-80.

Clark, W.G.W. 2002. $\mathrm{F}_{35 \%}$ Revisited ten years later. North American Journal of Fisheries Management, 22: 251-257.

Costello, C., Ovando, D., Hilborn, R., Gaines, S.D., Deschenes, O., Lester, S.E. 2012. Status and solutions for the world's unassessed fisheries. Science, 338: 517-520.

Fryer, G., and Iles, T.D. 1972. The cichlid fishes of the Great Lakes of Africa: their biology and evolution. Oliver \& Boyd, Edinburgh, UK. 641 pp.

Gislason, H., Daan, N., Rice, J.C., Pope, J.G. 2010. Size, growth, temperature and the natural mortality of marine fish. Fish and Fisheries 11: 149-158.

Gust, N., Choat, J.H., Ackerman, J.L. 2002. Demographic plasticity in tropical reef fish. Marine Biology, 140: 1039-1051.

Hewitt, D. and Hoenig, J. 2005. Comparison of two approaches for estimating natural mortality based on longevity. Fishery Bulletin, 103: 433-437.

Hilborn, R., Branch, T.A. 2013. Does catch reflect abundance? Nature, 494: 303-306. Hilborn, R., Orensanz, J.M., Parma, A.M. 2005. Institutions, incentives and the future of fisheries. Philosophical Transactions of the Royal Society B., 360: 47-57.

Holt, S. J. 1958. The evaluation of fisheries resources by the dynamic analysis of stocks, and notes on the time factors involved. ICNAF Special Publication, I: 77-95.

Hordyk, A., Ono, K., Loneragan, N., Prince, J.D. This Issue a. Some explorations of the life history ratios to describe length composition, spawning-per-recruit, and the spawning potential ratio. ICES Journal of Marine Science

Hordyk, A., Ono, K., Loneragan, N., Prince, J.D. This Issue b. A novel length-based estimation method of spawning potential ratio (SPR), and tests of its performance, for small-scale, data-poor fisheries. ICES Journal of Marine Science

Jensen, A.L. 1996. Beverton and Holt life history invariants result from optimal trade-off of reproduction and survival. Canadian Journal of Fisheries and Aquatic Sciences, 53: 820-822.

Jensen, A.L. 1997. Origin of the relation between K and L_{inf} and synthesis of relations among life history parameters. Canadian Journal of Fisheries and Aquatic Sciences, 54: 987-989.

King, J.R., McFarlane, G.A. 2003. Marine fish life history strategies: applications to fishery management. Fisheries Management and Ecology, 10: 249-264.

Mace, P. and Sissenwine, M. 1993. How much spawning per recruit is necessary? In Risk Evaluation and Biological Reference Points for Fisheries Management. pp. 101-118. Ed. by S. Smith, J. Hunt, and D. Rivard. Canadian Special Publications of Fisheries and Aquatic Science, No. 120. 222 pp.

Mahon, R. 1997. Does fisheries science serve the needs of managers of small stocks in developing countries? Canadian Journal of Fisheries and Aquatic Sciences, 54: 22072213.

Mullon, C., Freon, P., Cury, P. 2005. The dynamics of collapse in world fisheries. Fish and Fisheries, 6:111-120.

Pauly, D. 1980. On the interrelationship between mortality, growth parameters and mean temperature in 175 fish stocks. Journal du Conseil Permanent International pour Exploration de la Mer, 39: 175-92.

Pauly, D. 2013. Does catch reflect abundance? Nature, 494: 303-305.

Pianka, F.R. 1970. On r - and K - selection. American Naturalist, 104: 593-597.

Prince, J.D., Peeters, H., Gorfine, H., Day R.W. 2008. The novel use of harvest policies and rapid visual assessment to manage spatially complex abalone resources (Genus Haliotis). Fisheries Research 94: 330-338.

Prince, J. D., Dowling, N.A., Davies, C.R., Campbell,' R.A., Kolody' D.S. 2011. A simple cost-effective and scale-less empirical approach to harvest strategies. ICES Journal of Marine Science, 68: 947-960. doi:10.1093/icesjms/fs May 2011.

Punt, A.E., Smith, D.C., Smith, A.D.M. 2011. Among-stock comparisons for improving stock assessments of data-poor stocks: the "Robin Hood" approach. ICES Journal of Marine Science, 68: 972-981.

Restrepo, V.R., Powers, J.E. 1999. Precautionary control rules in US fisheries management: specification and performance. ICES Journal of Marine Science, 56: 846-852.

Roff, D.A. 1984. The evolution of life-history parameters in teleosts. Canadian Journal of Fisheries and Aquatic Sciences, 39: 1686-1698.

Sainsbury, K. J. 1980. Effect of individual variability on the von Bertalanffy growth equation. Canadian Journal of Fisheries and Aquatic Sciences, 37: 241-247.

Shepherd, J.G. 1982. A versatile new stock-recruitment relationship for fisheries, and the construction of sustainable yield curves. Journal du Conseil Permanent International pour Exploration de la Mer, 40; 67-75.

Von Bertalanffy, L. 1938. A quantitative theory of organic growth. Human Biology, 10: 181-213.

Walters, C. and S. J. D Martell. 2004. Fisheries Ecology and Management. Princeton University Press, Princeton, New Jersey. 399 pp.

Walters, C., Pearse, P.H. 1996. Stock information requirements for quota management systems in commercial fisheries. Reviews in Fish Biology and Fisheries, 6: 21-42.

Ziegler, P.E., Lyle, J.M., Haddon, M., Ewing, G.P. 2007. Rapid changes in life-history characteristics of a long-lived temperate reef fish. Marine and Freshwater Research, 58: 1096-1107.

Figure \& Table Legends

Table 1. Synopsis of the taxa and species in this meta-analysis summarizing the range of parameters used for each species group. $M=$ natural mortality; $k=$ von Bertalanffy growth parameter; $\mathbf{L}_{\mathbf{m}}=$ length at maturity; $\mathbf{L}_{\infty}=$ asymptotic length; max. $=$ maximum .

Figure 1.
Observed relationships for 123 selected marine species between Spawning Potential Ratio (SPR) and (a) standardised weight (weight ${ }_{\max }=1.0$), (b) standardised length (length $\max ^{\max }=1.0$), (c) standardised age $\left(\operatorname{age}_{\max }=1.0\right)$, and (d) weight standardized for size of maturity $\left(\right.$ weight $\left._{\mathrm{m}}=0\right)$ and maximum weight (weight $\left.{ }_{m a x}=1.0\right)$. Green lines denote species with indeterminate growth and $M / k>1.0$; blue lines denote species with indeterminate growth and $M / k<1.0$; red lines denote species with determinate growth \& $M / k<1.0$; black lines show the relationship for species conforming with BH-LHI; $M / k=1.5$, $L_{m} / L_{\infty}=0.66$ and $M \mathrm{x} \mathrm{Age}{ }_{m}=1.65$.

Figure 2
Simulated length frequency histograms illustrating how the size compositions of unfished populations are determined by the M / k ratio for a species'. The range of M / k ratios (0.1 to 4.0) chosen for simulating these histograms was based on the range of ratios observed in the meta-analysis of 123 species. Top row: $M / k=4.0,1.65,1.0$. Middle row: $M / k=0.8$, $0.6,0.4$. Bottom row: $M / k=0.3,0.2,0.1$. Shading indicates the proportion of the mature, adults in the population, assuming $L_{m} / L_{\infty}=3 /(3+M / k)$, as derived from Beverton (1992).

Figure 3
The relationship between relative length of maturity $\left(L_{m} / L_{\infty}\right)$ in (a) the 123 marine species selected for this meta-analysis; and (b) nine teleost families with more than three species
plotted against the M / k for each species. In a), green points denote species with indeterminate growth and $M / k>1.0$; blue points indeterminate growth and $M / k<1.0$; red points determinate growth and $M / k<1.0$. The solid black lines plot the Beverton (1992) relationship; $L_{m} / L_{\infty}=3 /(3+M / k)$. The dashed and dotted lines, respectively show the relationships $L_{m} / L_{\infty}=2.5 /(2.5+M / k)$ and $L_{m} / L_{\infty}=3.5 /(3.5+M / k)$.

Figure 4

Observed relationships between Spawning Potential Ratio (SPR) and (a) standardised weight (weight $_{\text {max }}=1.0$), (b) standardised length (length ${ }_{\max }=1.0$), (c) standardised age $\left(a^{2} \mathrm{~m}_{\max }=1.0\right)$ for the three most numerous teleost families in our meta-analysis; Gobiidae, $\mathrm{n}=5$, green; Lethrinidae, $\mathrm{n}=10$, red; Acanthuridae, $\mathrm{n}=7$, blue. The broken black line show the BH-LHI relationships; $M / k=1.5, L_{m} / L_{\infty}=0.66$, and $M \mathrm{x} \mathrm{Age}_{m}=1.65$.

Figure 5
The relationship between asymptotic length $\left(L_{\infty}\right)$ and M / k for a) 109 marine species in our database with $L_{\infty} \leq 200 \mathrm{~cm}$ and b) nine teleost families with more than three species, for those species with asymptotic size $\leq 200 \mathrm{~cm}$. Coloured lines show the relationships estimated from Pauly's (1980) equation assuming the range of k observed in this metaanalysis $(0.1-1.0)$ and an ambient temperature of $15^{\circ} \mathrm{C}$.

