Murdoch

UNIVERSITY

MURDOCH RESEARCH REPOSITORY

This is the author's final version of the work, as accepted for publication following peer review but without the publisher's layout or pagination.

The definitive version is available at http://dx.doi.org/10.1093/icesjms/fsu004

Hordyk, A., Ono, K., Valencia, S., Loneragan, N. and Prince, J. (2015) A novel length-based empirical estimation method of spawning potential ratio (SPR), and tests of its performance, for small-scale, data-poor fisheries. I CES J ournal of Marine Science, 72 (1). pp. 217-231.
http://researchrepository.murdoch.edu.au/23827/

Copyright: © International Council for the Exploration of the Sea 2014.
It is posted here for your personal use. No further distribution is permitted.

A novel length-based empirical estimation method of spawning potential ratio (SPR), and tests of its performance, for small-scale, data-poor fisheries

4 Adrian Hordyk ${ }^{* 1}$, Kotaro Ono 2, Sarah Valencia ${ }^{3}$, Neil Loneragan ${ }^{1}$ and Jeremy Prince ${ }^{1,4}$
${ }^{1}$ Centre for Fish, Fisheries and Aquatic Ecosystems Research, Murdoch University, 90 South Street, Murdoch, Western Australia, 6150
${ }^{2}$ School of Aquatic and Fisheries Science, University of Washington, USA
${ }^{3}$ Bren School of Environmental Science \& Management, University of California, Santa Barbara, USA
${ }^{4}$ Biospherics, P/L South Fremantle, Western Australia

Abstract

The spawning potential ratio (SPR) is a well-established biological reference point, and estimates of SPR for data-poor fisheries could be used to inform management decisions. Hordyk et al. (this issue)demonstrated the link between the SPR and the life history ratios, the ratio of natural mortality to the von Bertalanffy growth parameter $\left(\frac{M}{k}\right)$ and the ratio of length at maturity to asymptotic length $\left(\frac{L_{m}}{L_{\infty}}\right)$, and highlighted the potential of this approach as a cost-effective stock assessment tool for small-scale and data-poor fisheries. We carried out simulation studies to investigate the use of the length based model (LB-SPR) developed in Hordyk et al. (this issue) to estimate the SPR of exploited fisheries directly from the size composition of the catch. The key parameters for the model are: $\frac{M}{k}, L_{\infty}$, and variation in length-at-age $\left(\mathrm{CV}_{L_{\infty}}\right)$. The sensitivity of the

[^0]estimated SPR to variation in these parameters, sample size of the length composition data, and recruitment error, were investigated using Monte-Carlo simulations. The method uses maximum likelihood methods to find the best values of relative fishing mortality $\left(\frac{F}{M}\right)$ and selectivity-at-length that minimises the difference between the observed and the expected length composition of the catch, and calculates the resulting SPR. When parameterised with the correct input parameters, the LB-SPR model returned accurate estimates of $\frac{F}{M}$ and SPR. Although the model performed reasonably well with small sample sizes of length data $(\mathrm{n}=100)$, variability in the estimates of SPR were much reduced when sample sizes were based on $>1,000$ individuals. With high variability in annual recruitment the estimates of SPR became increasingly unreliable. However, as the median error was centred on zero, this variability in the estimated SPR can likely be overcome by repeating the estimation procedure on an annual basis, and adjusting harvest strategies based on the trends in estimated SPR. The results of this study suggest that the length-based SPR estimation methodology is robust to equilibrium assumptions and uncertainty in the life history ratios, and this method has potential to provide a tool for rapid, cost-effective, and conservative assessment of data-poor fisheries.

Keywords. life history ratios, cost-effective, fish growth, size composition, Beverton-Holt invariants

Introduction

Measurements of the length composition of an exploited stock are relatively cheap and simple to collect, and are one of the most common forms of data available to fisheries researchers (Quinn and Deriso, 1999). For small-scale and data-poor fisheries, where the collection of age data is often restricted by lack of technical expertise and expense, length composition data is often the only form of information available to researchers and managers. This is especially so for many tropical species, where the lack of clearly defined annual growth rings in otoliths or other hard parts make the task of aging individuals very difficult. As a result of the ready availability of length data for many stocks, a number of lengthbased methods have been developed and applied to estimate biological parameters and to understand the dynamics of fish populations (e.g., Basson et al., 1988; Beverton and Holt, 1957; Gulland and Rosenberg, 1992; Pauly and Morgan, 1987). Many of these size-based techniques were developed to estimate the growth and mortality rates of fish without the need for expensive and difficult to obtain age data (e.g., see many papers in Pauly and Morgan, 1987). Other length-based techniques aim to
use the length structure of the population to estimate the stock status and provide useful management advice (e.g., Ault et al., 2005; Gedamke and Hoenig, 2006; O'Farrell and Botsford, 2005, 2006).

Recent work has demonstrated that, assuming von Bertalanffy growth, constant natural mortality for all age classes, no variability in length-at-age, and knife-edge selectivity, the standardised length composition of two stocks with same ratio of natural mortality over the growth rate $\left(\frac{M}{k}\right)$ and the same ratio of fishing mortality to natural mortality $\left(\frac{F}{M}\right)$ will be have the same length composition (Hordyk et al., this issue). The extension of this model to incorporate variability in length-at-age and logistic selectivity, confirmed that the expected length composition of the catch of an exploited stock is primarily determined by the ratios of $\frac{M}{k}$ and $\frac{F}{M}$. The analytical models developed in Hordyk et al. (this issue) suggest that with knowledge of the von Bertalanffy asymptotic length L_{∞} and the coefficient of variation in $L_{\infty}\left(\mathrm{CV}_{L_{\infty}}\right)$, the ratio of total mortality over the von Bertalanffy growth coefficient $\left(\frac{Z}{k}\right)$ for a particular stock can be estimated from a representative sample of the length structure of the catch. If $\frac{M}{k}$ is also known (from meta-analysis, life history theory, expert judgment, or biological studies of a stock), then the results of Hordyk et al. (this issue) suggest that it is possible to estimate $\frac{F}{M}$ from the size composition of the catch. Given that M is assumed to be unknown, i.e. only the ratio $\frac{M}{k}$ is known, it is not possible to estimate F using this method. However the ratio of $\frac{F}{M}$ has often been used as a biological reference point, with $\mathrm{F}_{\mathrm{MSY}}=0.87 M$ considered as a reasonable approximation for teleosts (Zhou et al., 2012). However, the ratio of $\frac{F}{M}$ can be misleading if not interpreted with care, as the selectivity of the fishery is also important. For example, it is possible that a highly selective fishery could target only a few of the oldest year classes in a stock, which, even if $\frac{F}{M}$ is exceptionally high, is unlikely to affect the sustainability of the fishery, although the yield is likely to be very low. Conversely, even a relatively low $\frac{F}{M}$ can reduce the spawning per recruit drastically if the fishery catches a high proportion of immature individuals.

A persistent challenge for length-based methods has been to provide indicators of stock status that can be compared against pre-defined biological reference points. The spawning potential ratio (SPR) of a stock is defined as the proportion of the unfished reproductive potential left at any given level of fishing pressure (Goodyear, 1993; Walters and Martell, 2004). By definition, the SPR equals 100\% in an unexploited stock, and zero in a stock with no spawning (e.g., all mature fish have been removed, or all female fish have been caught). The SPR is commonly used to set target and limit reference points for fisheries. For example, $F_{40 \%}$, the fishing mortality rate that results in $\mathrm{SPR}=40 \%$, is considered risk
adverse for many species (Clark, 2002), and suitable reference points can be derived from assumptions about the steepness of the stock-recruit relationship (Brooks et al., 2010). Hordyk et al. (this issue) demonstrates that the SPR is determined by the ratios of $\frac{M}{k}, \frac{F}{M}, \frac{L_{m}}{L_{\infty}}$, and $\frac{L_{c}}{L_{\infty}}$, under the assumptions of knife-edge selectivity-at-length at L_{c}, and knife-edge maturity at L_{m}.

The aims of this study were to evaluate the utility of the models developed in Hordyk et al. (this issue) as a cost-effective methodology to assessing data-poor and small-scale stocks. The length-based estimation model requires the following parameters: an estimate of the ratio $\frac{M}{k}$ (i.e. the individual values of the M and k parameters are unknown), L_{∞} or $L_{m}, \mathrm{CV}_{L_{\infty}}$, and knowledge of maturity-atsize, and uses data on the length composition of the catch to estimate the SPR. A simulation model was used to test the performance of the length-based SPR (LB-SPR) method for four species with a diverse range of life histories. These life histories where chosen on the basis of the $\frac{M}{k}$ ratios, varying from 0.3 for a species with a length composition dominated by large individuals, to 2.3 , representing a species with a length distribution dominated by smaller fish. In particular, the study investigated the sensitivity of the LB-SPR model to error or misspecification of the input parameters, and to violations of the equilibrium assumption of constant recruitment.

Methods

The LB-SPR method requires as input length composition data of the catch, as well as the three parameters: $\frac{M}{k}, L_{\infty}\left(\right.$ or $\left.\frac{L_{m}}{L_{\infty}}\right), \mathrm{CV}_{L_{\infty}}$. The model estimates the selectivity-at-length and the ratio $\frac{F}{M}$, which in turn are used to calculate SPR. To test the utility and sensitivity of the estimation model to a range of issues likely to be encountered in the real world an age-structured operating model was developed to generate length composition data for a range of life-history types. All simulation modelling was done using the open-source statistical software R (R Development Core Team, 2012).

Operating model

The population dynamics were modelled with a female-only, non-spatial, age-structured operating model (OM), with the assumption that the population was closed with respect to immigration and emigration. In general, the OM was modelled with annual time-steps. However, the OM was modelled with monthly time-steps for short-lived species (i.e. species with life-span ≤ 10 years). The conversion
from annual to monthly time-steps was necessary to ensure the construction of smooth length compositions for short-lived species, and was achieved by scaling the rate parameters appropriately. For example, an annual M is converted to a monthly rate by dividing by 12 . For the short-lived species, recruitment was assumed to be continuous and occurred on the 1st day of every month.

The abundance, N, at age a at time t is given as:

$$
N_{a, t}= \begin{cases}R_{t} & \text { if } a=0 \tag{1}\\ N_{a-1, t-1} e^{Z_{a-1}} & \text { if } 0 \leq a \leq a_{\max }\end{cases}
$$

where R_{t} is the number of recruits at time t, Z_{a} is instantaneous total mortality at age a, and $a_{\text {max }}$ is the maximum age. Total mortality at age a is given by:

$$
\begin{equation*}
Z_{a}=M+S_{a} F \tag{2}
\end{equation*}
$$

where M is the annual instantaneous rate of natural mortality, S_{a} is selectivity at age a, and F is the annual instantaneous rate of fishing mortality. The catch-at-age $\left(C_{a}\right)$ was calculated using the Baranov equation:

$$
\begin{equation*}
C_{a, t}=\frac{F_{a}}{Z_{a}} N_{a, t}\left(1-e^{-Z_{a}}\right) \tag{3}
\end{equation*}
$$

No plus-group was used, instead $a_{\text {max }}$ was determined as the first age class where the number of surviving individuals was $\leq 1 \%$ of initial recruitment (Quinn and Deriso, 1999), so that:

$$
\begin{equation*}
a_{\max }=\frac{-\ln (0.01)}{M} \tag{4}
\end{equation*}
$$

Natural mortality was assumed to be constant and independent of size or age, and fishing mortality was assumed to be constant for all t. Recruitment was related to the spawning biomass by the BevertonHolt stock-recruit relationship with multiplicative log-normal error:

$$
\begin{equation*}
R_{t}=\frac{S B_{t-1}}{\delta+\rho S B_{t-1}} e^{\epsilon_{t}-\frac{\sigma_{R}^{2}}{2}} \tag{5}
\end{equation*}
$$

where $S B_{t}$ is the spawning stock biomass at time t, δ and ρ are parameters of the stock-recruit function, and ϵ_{t} is the recruitment residual at time t that is normally distributed by $N\left(0, \sigma_{R}^{2}\right)$, where σ_{R} is the
recruitment variability.
The δ and ρ parameters of the stock-recruit relationship were re-parameterised in terms of steepness (h), which is defined as the fraction of virgin recruitment $\left(R_{0}\right)$ obtained when spawning biomass is 0.2 of the unfished spawning biomass (i.e. $0.2 S B_{0}$).

Growth was modelled with the 3 parameter von Bertalanffy function:

$$
\begin{equation*}
L_{a}=L_{\infty}\left(1-e^{-k\left(a-t_{0}\right)}\right) \tag{6}
\end{equation*}
$$

where L_{∞} is asymptotic length, k is the growth coefficient, and t_{0} the theoretical age when length is zero. Variation of length-at-age was assumed to be normally distributed, with variance increasing with increased mean length (Sainsbury, 1980):

$$
\begin{equation*}
\sigma_{L_{a}}^{2}=\sigma_{L_{\infty}}^{2}\left(1-e^{-k a}\right)^{2} \tag{7}
\end{equation*}
$$

$$
\begin{equation*}
\sigma_{L_{\infty}}=\mathrm{CV}_{L_{\infty}} L_{\infty} \tag{8}
\end{equation*}
$$

Maturity was assumed to be size-dependent, and was modelled with the two parameter logistic function:

$$
\operatorname{Mat}_{l}=\frac{1}{1+e^{\frac{-\ln (19)\left(l-L_{50}\right)}{L_{95}-L_{50}}}}
$$

where Mat ${ }_{l}$ is maturity at length l, and L_{50} and L_{95} are lengths at 50% and 95% maturity respectively. Maturity-at-length was converted to maturity-at-age (Mat ${ }_{a}$):

$$
\begin{equation*}
\operatorname{Mat}_{a}=\int_{l=0}^{l=\infty} \operatorname{Mat}_{l} \frac{1}{\sqrt{2 \pi \sigma_{L_{a}}}} e^{\frac{-\left(l-L_{a}\right)^{2}}{2 \sigma_{L_{a}}^{2}}} \tag{9}
\end{equation*}
$$

where $\sigma_{L_{a}}^{2}$ is the variance of length at age a. Spawning stock biomass was calculated at the end of each time-step as:

$$
\begin{equation*}
S B_{t}=\sum_{a} N_{a, t} \operatorname{Mat}_{a} W_{a} \tag{10}
\end{equation*}
$$

where W_{a} is weight at age a, which was calculated as:

$$
\begin{equation*}
W_{a}=\alpha L_{a}^{\beta} \tag{11}
\end{equation*}
$$

where α and β are constants. Egg production at age a was assumed to be proportional to weight:

$$
\begin{equation*}
E_{a} \propto \operatorname{Mat}_{a} W_{a} \tag{12}
\end{equation*}
$$

Selectivity was assumed to be asymptotic and size dependent, and was modelled with a two parameter logistic function:

$$
\begin{equation*}
S_{l}=\frac{1}{1+e^{\frac{-\ln (19)\left(l-L_{S 50}\right)}{S_{L 95}-L_{S 50}}}} \tag{13}
\end{equation*}
$$

where S_{l} is selectivity-at-length l, and $L_{S 50}$ and $L_{S 95}$ are the lengths at 50% and 95% selectivity respectively. Selectivity-at-length was converted to selectivity-at-age $\left(S_{a}\right)$ by:

$$
\begin{equation*}
S_{a}=\int_{l=0}^{l=\infty} S_{l} \frac{1}{\sqrt{2 \pi \sigma_{L_{a}}}} e^{\frac{-\left(l-L_{a}\right)^{2}}{2 \sigma_{L_{a}}^{2}}} \tag{14}
\end{equation*}
$$

SPR was calculated following Goodyear (1993), by calculating the ratio of the average lifetime production of eggs per recruit $(E P)$ at equilibrium for the fished and unfished states, assuming no density-dependant suppression of maturation or fecundity:

$$
\begin{equation*}
S P R=\frac{\mathrm{EP}_{\text {Fished }}}{\mathrm{EP}_{\text {Unfished }}} \tag{15}
\end{equation*}
$$

where

$$
\mathrm{EP}_{\text {Fished }}=\sum_{a} \begin{cases}E_{a} e^{-M a} & \text { for } a=0 \tag{16}\\ E_{a-1} e^{-M+\left(F S_{a-1}\right)} & \text { for } 0<a \leq a_{\max }\end{cases}
$$

and

$$
\mathrm{EP}_{\text {Unfished }}=\sum_{a} E_{a} e^{-M a}
$$

An age-length transition matrix (Hilborn and Walters, 2001) was constructed from the assumptions of mean length-at-age and variation of length-at-age, where the probability of an individual at age a
being in length class i is given by:

$$
P_{i, a}= \begin{cases}\phi\left(\frac{l_{i+1}^{l o}-L_{a}}{\sigma_{L_{a}}}\right) & \text { if } i=1 \tag{17}\\ \phi\left(\frac{l_{i+1}^{l o}-L_{a}}{\sigma_{L_{a}}}\right)-\left(\frac{l_{i}^{l o}-L_{a}}{\sigma_{L_{a}}}\right) & \text { if } 1<i \leq I \\ 1-\left(\frac{l_{i}^{l o}-L_{a}}{\sigma_{L_{a}}}\right) & \text { if } i=I\end{cases}
$$

where ϕ is the standard normal cumulative distribution, $l_{i}^{l o}$ is the upper bound of length class i, and I is the total number of length classes. The age-length probability matrix was modified for the expected age-length distribution of the catch (p) to account for the selectivity-at-length by multiplying the age-length transition matrix by the selectivity at length class $i\left(S_{i}\right)$:

$$
\begin{equation*}
p_{i, a}=P_{i, a} S_{i} \tag{18}
\end{equation*}
$$

The age-length transition matrix for the catch was standardised so that the probability of an individual in the catch at age a being in one of the I length classes was 1 :

$$
\begin{equation*}
p_{i, a}=\frac{p_{i, a}}{\sum_{a} p_{i, a}} \tag{19}
\end{equation*}
$$

The length composition of the catch $\left(N_{i}\right)$ was then constructed by multiplying the vector of catch-atage by the transpose of the matrix p :

$$
\begin{equation*}
N_{i}=C_{a} p^{T} \tag{20}
\end{equation*}
$$

Estimation model

The estimation model was based on the analytical derivations developed in Hordyk et al. (this issue), but for completeness, it is fully described here. To ensure that there was no possibility of cross-contamination of parameter values between the operating model and the estimation model, the estimation model was coded separately in ADMB (Fournier et al., 2012). Hordyk et al. (this issue) demonstrated that, once standardised (to L_{∞}, or some other standardisation, e.g. $L_{\text {max }}$), the expected length composition of the catch is determined by the interaction of selectivity and $\frac{Z}{k}$. If $\frac{M}{k}$ is known, from meta-analysis or some other method, then there is the potential to estimate $\frac{F}{M}$ and selectivity-
at-length from length frequency data of the catch. In turn, these estimated parameters can be used to calculate SPR which can be used for management of the fishery.

To make the problem numerically tractable, the estimation model was constructed from a modified age-structured model, with "age" defined in arbitrary units. Let X be the number of discrete "age" classes in the estimation model, where X is a fixed parameter of the estimation model. The vector x is then defined as a sequence of "ages" in an arbitrary temporal scale from 0 to $X-1$ (i.e maximum "age" $=X-1$), and \tilde{x} is a vector of relative "ages" defined between 0 and 1 :

$$
\begin{equation*}
\tilde{x}=\frac{x}{X} \tag{21}
\end{equation*}
$$

It is important the remember that the units of x are undefined, and that any ages in the estimation model are only meaningful in relative terms. Mean standardised length (\tilde{l}) at age x can then be given in terms of $\frac{M}{k}$ (Hordyk et al., this issue):

$$
\begin{equation*}
\tilde{l}_{x}=1-0.01^{\tilde{x} \frac{1}{M / k}} \tag{22}
\end{equation*}
$$

Assuming that length-at-age is normally distributed with constant CV, the standard deviation of \tilde{l}_{x} is (Hordyk et al., this issue):

$$
\begin{equation*}
\sigma_{\tilde{l}_{x}}=\mathrm{CV}\left(1-0.01^{\tilde{x} \frac{1}{M / k}}\right) \tag{23}
\end{equation*}
$$

If there are I length classes in the observed length composition of the catch, and the length composition is standardised to L_{∞}, then the probability of an individual at age x being in length class i can be given as a $I \times X$ age-length transition matrix:

$$
\tilde{P}_{i, x} \begin{cases}\phi\left(\frac{l_{i+1}^{\mathrm{lo}}-\tilde{l}_{x}}{\sigma_{\tilde{l}_{x}}}\right) & \text { if } i=1 \tag{24}\\ \phi\left(\frac{l_{i+1}^{\mathrm{o}}-\tilde{l}_{x}}{\sigma_{\tilde{l}_{x}}}\right)-\phi\left(\frac{l_{i}^{\mathrm{lo}}-\tilde{l}_{x}}{\sigma_{\tilde{l}_{x}}}\right) & \text { if } 1<i<I \\ 1-\phi\left(\frac{l_{i}^{\mathrm{lo}}-\tilde{l}_{x}}{\sigma_{\tilde{l}_{x}}}\right) & \text { if } i=I\end{cases}
$$

where $l_{i}^{\text {lo }}$ is the lower bound of length class i, and ϕ is the standard normal cumulative density function.

Assuming a logistic selectivity pattern, selectivity at standardised length \tilde{l} can be modelled as:

$$
\begin{equation*}
\tilde{S}_{\tilde{l}}=\frac{1}{1+e^{\frac{-\ln (19)\left(\tilde{(}-l_{S 50}\right)}{l_{S 95}^{-l} S 50}}} \tag{25}
\end{equation*}
$$

where $l_{S 50}$ and $l_{S 95}$ are the standardised lengths at 50% and 95% selectivity respectively. The matrix \tilde{P} can be modified to account for the selectivity-at-length, to give the probability that an individual in the catch at age x is in size class i :

$$
\begin{equation*}
\tilde{C}_{i, x}=\tilde{P}_{i, x} \tilde{S}_{i} \tag{26}
\end{equation*}
$$

where \tilde{S}_{i} is the selectivity for length class i, calculated by substituting \tilde{l} in Equation 25 with \tilde{l}_{i}, which is the mid-point of length class i. The matrix \tilde{C} must be standardised so that there is a probability of 1 that an individual in the catch at age x is in one of the I length classes:

$$
\begin{equation*}
\tilde{C}_{i, x}=\frac{\tilde{C}_{i, x}}{\sum_{x} \tilde{C}_{i, x}} \tag{27}
\end{equation*}
$$

Hordyk et al. (this issue)demonstrates that it is difficult to calculate the number of individuals at age x in terms of $\frac{M}{k}$ and $\frac{F}{M}$ with logistic selectivity and variability in length-at-age. However, the age-structured estimation model allows the calculation of the number of individuals at age x by taking advantage of the assumed relationship between longevity and natural mortality. If X is the number of discrete age classes, then the corresponding M can be calculated from Equation 4: $M=\frac{-\ln (0.01)}{t_{\max }}=\frac{-\ln (0.01)}{X-1}$. The unit of time relating to $t_{\max }$ (and therefore M) is not known, so let this M be referred to as $\stackrel{\text { gen }}{M}$ to identify it as a generic parameter with unknown time scale. A vector of total mortality at age x can then be given as:

$$
\begin{equation*}
\stackrel{\text { gen }}{Z_{x}}=\stackrel{\text { gen }}{M}+\stackrel{\text { gen }}{M} \frac{F}{M} \tilde{S}_{x} \tag{28}
\end{equation*}
$$

where \tilde{S}_{x} is the selectivity at age x (in unknown units of time) determined by multiplying the matrix \tilde{P} by the vector \tilde{S}_{i} :

$$
\begin{equation*}
\tilde{S}_{x}=\tilde{S}_{i} \tilde{P} \tag{29}
\end{equation*}
$$

The relative number of individuals at age x can then be calculated using the traditional fisheries model:

$$
\tilde{N}_{x}= \begin{cases}1 & \text { if } x=0 \tag{30}\\ \tilde{N}_{x-1} e^{-Z_{x-1}^{\mathrm{gen}}} & \text { if } 0<x \leq X\end{cases}
$$

The expected proportion of individuals in the catch in length class i is then:

$$
\begin{equation*}
\tilde{P}_{i}^{\text {Catch }}=\frac{\left(\tilde{N}_{x} \tilde{S}_{x}\right) \tilde{C}^{T}}{\sum_{i}\left(\tilde{N}_{x} \tilde{S}_{x}\right) \tilde{C}^{T}} \tag{31}
\end{equation*}
$$

With the assumptions of constant CV in variance of length-at-age, logistic selectivity, and constant natural mortality, the above algorithm gives the predicted proportion of the catch in length class i in terms of $\frac{M}{k}, \frac{F}{M}$ and selectivity at relative length ($l_{S 50}$ and $l_{S 95}$). When the observed length composition of the catch is standardised to L_{∞} then the two selectivity parameters are equal to $\frac{L_{S 50}}{L_{\infty}}$ and $\frac{L_{S 95}}{L_{\infty}}$ respectively. Given knowledge of $\frac{M}{k}$, the parameters $\frac{F}{M}, \frac{L_{S 50}}{L_{\infty}}$ and $\frac{L_{S 95}}{L_{\infty}}$ can be estimated from the standardised length composition of the catch by minimising the following multinomial negative log-likelihood function (NLL):

$$
\begin{equation*}
N L L=\underset{\frac{F}{M}, \frac{L_{S S 5}}{L_{\infty}}, \frac{L_{S 95}}{L_{\infty}}}{\arg \min } \sum_{i} O_{i} \ln \frac{\tilde{P}_{i}^{\text {Catch }}}{O_{i}^{P}} \tag{32}
\end{equation*}
$$

where O_{i} and O_{i}^{P} are the observed number and proportion of the catch respectively in length class i.
Hordyk et al. (this issue) demonstrated that, with the simplifying assumptions of no variation of length-at-age, and knife-edge selectivity, SPR is invariant with respect to the ratios $\frac{M}{k}$ and $\frac{F}{M}$. Extending the model further to account for more realistic assumptions also showed the relationship between SPR and $\frac{M}{k}$ and $\frac{F}{M}$ holds with logistic selectivity and variable length-at-age. Using the generic age-structure of the estimation model, and given estimates of maturity-at-age and the size-fecundity relationship, SPR can be calculated from the estimated parameters. Assuming that maturity is a logistic function of length, then maturity at relative length \tilde{l} can be given by:

$$
\begin{equation*}
\operatorname{Mat}_{\tilde{l}}=\frac{1}{1+e^{\frac{-\ln (19)\left(\tilde{l}-\tilde{l}_{50}\right)}{\tilde{l}_{95}-\tilde{l}_{50}}}} \tag{33}
\end{equation*}
$$

where \tilde{l}_{50} and \tilde{l}_{95} are the relative lengths at 50% and 95% maturity respectively, and defined as:

$$
\begin{align*}
\tilde{l}_{50} & =\frac{L_{50}}{L_{\infty}} \tag{34}\\
\tilde{l}_{95} & =\frac{L_{95}}{L_{\infty}} \tag{35}
\end{align*}
$$

and for the unfished state:

$$
\tilde{\mathrm{EP}}_{\text {Unfished }}=\sum_{x} \begin{cases}\tilde{E}_{x} e^{-M} & \text { if } x=0 \tag{39}\\ \tilde{E}_{x-1} e^{- \text {gen }^{-M}} & \text { if } 0<x \leq X\end{cases}
$$

where L_{50} and L_{95} are the lengths at 50% and 95% maturity respectively. Similarly to selectivity-atlength, maturity-at-length can be converted to maturity at age x by multiplying the vector $\mathrm{Mat}_{\tilde{l}}$ by the age-length transition matrix \tilde{P} :

$$
\begin{equation*}
\operatorname{Mat}_{x}=\operatorname{Mat}_{i} \tilde{P} \tag{36}
\end{equation*}
$$

224 where Mat_{i} is the probability that an individual in length class i is mature, calculated by substituting \tilde{l} in Equation 33 with \tilde{l}_{i}, which is the mid-point of length class i. Assuming that fecundity is linearly related to weight, which is a cubic function of length, the relative egg production (\tilde{E}) at relative age x is:

$$
\begin{equation*}
\tilde{E}_{x}=\operatorname{Mat}_{x} \tilde{l}_{x}^{3} \tag{37}
\end{equation*}
$$

Total relative egg production $\left(\tilde{\mathrm{EP}}_{\text {Fished }}\right)$ for the fished state is then:

$$
\tilde{\mathrm{EP}}_{\text {Fished }}=\sum_{x} \begin{cases}\tilde{E}_{x} e^{-\frac{\text { gen }}{M}} & \text { if } x=0 \tag{38}\\ \tilde{E}_{x-1} e^{-Z_{x-1}^{\text {gen }}} & \text { if } 0<x \leq X\end{cases}
$$

SPR can then be calculated as:

$$
\begin{equation*}
S P R=\frac{\tilde{E P}_{\text {Fished }}}{\tilde{E P}_{\text {Unfished }}} \tag{40}
\end{equation*}
$$

Table 1: The biological and selectivity parameters for the 4 test species used in the robustness tests of the LB-SPR model

Parameter	Species			Definition	
	I	II	III		
$L_{\infty}(\mathrm{mm})$	376	170	530	342	Asymptotic size
$\mathrm{CV}_{L_{\infty}}$	0.1	0.1	0.1	0.1	Coefficient of variation of L_{∞}
M	0.42	0.44	0.63	1.25	Natural mortality
k	0.79	0.535	0.41	0.41	Growth coefficient
t_{0}	0	0	0	0	Theoretical age at zero length
$\frac{M}{k}$	0.53	0.82	1.54	3.05	$\frac{M}{k}$ ratio
$L_{50}(\mathrm{~mm})$	290	121	259	194	Length at 50% maturity
$L_{95}(\mathrm{~mm})$	320	170	344	204	Length at 95% maturity
$L_{S 50}(\mathrm{~mm})$	240	94	220	130	Length at 50% selectivity
$L_{S 95}(\mathrm{~mm})$	260	108	260	145	Length at 95% selectivity

Table 2: Description of the 10 tests to understand the robustness and sensitivity of the LB-SPR model to a range of parameter misspecification and assumption violations.

Test	Description
1	assumed $\frac{M}{k}$ parameter ranging $\pm 25 \%$ of true value
2	assumed L_{∞} parameter ranging $\pm 25 \%$ from true value
3	assumed $\mathrm{CV}_{L_{\infty}}$ parameter ranging $\pm 25 \%$ from true value
4	X (the length of vector x in the estimation model) ranging from 10-208
5	Sample size reduced to $100,500,1,000,5,000 \& 10,000$ individuals
6	Length-at-birth $\left(L_{0}\right)$ ranging $0-0.25 L_{\infty}$
7	True $\frac{F}{M}$ ranging $0.01-5$
8	Population disequlibria with $\sigma_{R}=0.1,0.3,0.6 \& 0.9$
9	Same as Test 8, with auto-correlated recruitment error
10	Same as Test 8, with episodic recruitment failure

Simulation and evaluation

The utility of the LB-SPR method was evaluated by using the operating model to generate length data, and comparing the estimates of $\frac{F}{M}$, selectivity-at-length, and SPR from the estimation model with the true values of the OM. Biological parameters for the simulated data were based on four species with a range of life-histories: I) sand sole (Psettichthys melanostictus), II) Puget Sound rockfish (Sebastes emphaeus), III) yellowtail flathead (Platycephalus endrachtensis) and IV) Pacific saury (Cololabis saira) (hereafter referred to as Species I, II, III, \& IV) (Hughes, 1974; Watanabe et al., 1988; Beckmann et al., 1998; Pearson and Mcnally, 2005; Coulson et al., 2007). The selectivity-at-length parameters were arbitrarily set lower than maturity-at-length for each species, and $\mathrm{CV}_{L_{\infty}}$ was set at 0.1 , and t_{0} was assumed to be 0 for all species (1). Steepness was set to 0.7 for all cases.

A number of robustness tests were conducted to assess the utility of the LB-SPR model, and to
understand the sensitivity of the model to various assumptions, input parameters and life-histories (2). The assessment model was parametised with the "true" value of the $\frac{M}{k}, L_{\infty}, \mathrm{CV}_{L_{\infty}}$ parameters, except in the cases where sensitivity to those parameters was being tested (i.e. Tests 1-3). Similarly, the sampling of the catch was assumed to be 100% except in the case of Test 5 . Fishing mortality was set equal to natural mortality for all cases except Test 7 . For Test $1-7, \sigma_{R}$ was set to 0 (i.e. no variability in recruitment), and the operating model was projected forward until the stock was at fished equilibrium. The X parameter of the estimation model was set at 100 for all cases except Test 4.

Tests 1-3 examined the sensitivity of the estimation model to misspecification of the $\frac{M}{k}, L_{\infty}$, and $\mathrm{CV}_{L_{\infty}}$ parameters respectively. For each test, the estimation model was run 100 times with the assumed value of the relevant parameter ranging from -25% to $+25 \%$ of the true value. Results for these tests were summarised by determining the bias in the estimated parameters as a function of the error in the assumed parameters.

Test 4 determined the sensitivity of the estimation model to X, the temporal resolution of the estimation model. For this test, the estimation model was repeatedly run 100 times with X in Equation 21 ranging from 10 to 208 . The results of this tests were summarised as bias in the estimated parameters as a function of X.

Although samples of the length composition of the catch are relatively cheap and simple to obtain, it is unreasonable to expect that the entire catch will be sampled. Test 5 examined the impact of sample size on the effectiveness of the LB-SPR method. Five levels of sampling coverage were examined, with sample sizes of $100,500,1,000,5,000$, and 10,000 individuals respectively. For each case and test species, length compositions were generated from 200 Monte Carlo simulations by randomly sampling with replacement from the age composition of the catch, with the probability proportional to that in the true age composition of the catch. The estimation model was run on each generated length composition, and results summarised as boxplots of bias in the estimated parameters for each sample size.

The estimation model assumes that length at birth $\left(L_{0}\right)$ is 0 mm (Equation 22). In many of species of fish this assumption is likely to be a reasonable assumption. However, in some species, for example live-bearing teleosts and many sharks, L_{0} is considerably larger. When modeling fish growth with the von Bertalanffy function, this is accounted for with the inclusion of the t_{0} parameter, which is
the theoretical age at with the length of the animal would be 0 . In most cases the t_{0} is ≤ 0, which indicates that $L_{0} \geq 0$. In cases where $t_{0}>0, L_{0}$ is <0 which is biologically impossible, and the von Bertalanffy growth function may not be the most appropriate model to use in these situations. The effect of alternative growth models has not been examined in this study. However, the sensitivity of the estimation model to $L_{0}>0$ was examined in Test 6 . For this test, the length compositions were generated with L_{0} ranging from 0 to $0.25 L_{\infty}$ for each species. To generate the length compositions, the appropriate t_{0} parameter was calculated in the operating model by manipulating Equation 6 :

$$
\begin{equation*}
t_{0}=\frac{\ln \left(1-\frac{L_{0}}{L_{\infty}}\right)}{k} \tag{41}
\end{equation*}
$$

Test 7 investigated the sensitivity of the assessment model to the true $\frac{F}{M}$. For this test, length compositions were generated from 100 Monte Carlo simulations with the true $\frac{F}{M}$ ranging from 0.01 to 5, and the resulting estimated $\frac{F}{M}$ was compared against the true value.

Like many length-based methods, the LB-SPR technique is an equilibrium-based method, which compares the observed length composition of the catch with the expected length composition in equilibrium conditions. In reality an exploited stock is rarely at equilibrium. Even if exploitation rates are held constant for some time, a stock is still likely to be at disequilibrium due to variability in recruitment. The last 3 tests examined the sensitivity of the estimation model to population disequilibrium by generating length compositions from stocks with variable recruitment. For Test 8, 200 Monte Carlo simulations of the operating model were projected forward under 4 levels of log-normally distributed recruitment variability, with σ_{R} set at $0.1,0.3,0.6$ and 0.9 respectively. For each of the Monte Carlo simulations, a length composition of the catch was generated from the last year. Test 9 repeated a similar test to Test 8, but with the addition of auto-correlated recruitment error, with a lag of 1 year and an auto-correlation coefficient of 0.6 . Test 10 further extended the examination of recruitment variability by investigating the impact of episodic recruitment failure. For this test there was a 15% chance in any given time-step (usually yearly, but monthly for short-lived species) of recruitment failure. 200 Monte Carlo simulations were conducted for each of the 4 species for the same range of recruitment variability as Tests $8 \& 9$.

Results

The sensitivity tests revealed that, for all 4 species, there is a direct relationship between the accuracy of the estimated $\frac{F}{M}$ and the assumed values of the parameters for the LB-SPR method (Figures 1a, b \& c). When the 3 parameters of the LB-SPR model were set equal to the true values, the estimation model returned estimates of $\frac{F}{M}$, the selectivity parameters, and SPR that were very close to the true values (Figures 1a, b \&c). The model had similar behaviour for all 4 species when $\frac{M}{k}$ was misspecified (Test 1), with $\frac{F}{M}$ over-estimated by about 70% when $\frac{M}{k}$ was assumed to be 25% lower than the true value, and under-estimated by about 40% when $\frac{M}{k}$ was assumed to be 25% higher than the true value (Figure 1a). The selectivity parameters $L_{S 50}$ and $L_{S 95}$ were insensitive to the assumed $\frac{M}{k}$. The exact relationship between $\frac{F}{M}$ and SPR depends on the selectivity pattern; however, in general SPR decreases as $\frac{F}{M}$ increases. As expected, the relationship between estimated SPR and the degree of misspecification in the assumed $\frac{M}{k}$ parameter is the reverse to the pattern observed between the estimated $\frac{F}{M}$ and assumed $\frac{M}{k}$, with SPR being increasingly over-estimated as the $\frac{M}{k}$ parameter is assumed to be higher than the true value (Figure 1a).

The estimation model was most sensitive to the assumed L_{∞}, with considerable over-estimation in $\frac{F}{M}$ when the assumed L_{∞} was specified to be higher than the true value (Test 2; Figure 1 b). Sensitivity to the assumed L_{∞} increased with decreasing $\frac{M}{k}$, with Species I the most sensitive to misspecification of $L_{\infty}\left(\frac{F}{M}\right.$ over-estimated by about 400% when L_{∞} assumed to be 25% higher than true value) and Species IV the least ($\frac{F}{M}$ over-estimated by about 100% when L_{∞} assumed to be 25% higher than true value). The model under-estimated $\frac{F}{M}$ when L_{∞} was assumed to be lower than the true value, with $\frac{F}{M}$ estimated to be 0 (i.e. $F=0$) when the assumed L_{∞} was specified to be $10-20 \%$ lower than the true value. As with Test 1, the selectivity-at-length parameters were well estimated and were not sensitive to the misspecification of the assumed L_{∞} parameter. However, SPR showed the same sensitivity as $\frac{F}{M}$, with the estimated SPR rapidly increasing as the assumed L_{∞} was decreased below the true value, and rapidly decreasing when the assumed L_{∞} was increased above the true value (Figure 1 b).

The estimation model was relatively insensitive to the assumed $\mathrm{CV}_{L_{\infty}}$ for all 4 life-history types, although species with low $\frac{M}{k}$ appeared the most sensitive to this parameter (Figure 1). The model was also completely insensitive to the temporal scale of the estimation model when X was above about 50 (Figure 1d). Below this value, the model behaved somewhat chaotically and often did not fit the data
well.
As expected, there was greater variability in the estimates of $\frac{F}{M}$, selectivity-at-length and SPR when sampling coverage was reduced. In particular, a sample size of 100 individuals often resulted in bias estimates of the selectivity-at-length parameters and $\frac{F}{M}$. However, even with the bias in these parameters, SPR was still estimated quite well for small sample sizes. The median bias in $\frac{F}{M}$ was close to 0 for all sample sizes, and SPR was well estimated, particularly for sample sizes of 1000 individuals or greater (Figure 2).

Species with higher $\frac{M}{k}$ appear to be the most sensitive to the assumption that $L_{0}=0$ (i.e. $t_{0}=0$), however the estimation model was relatively insensitive to $L_{0}>0$, with $\frac{F}{M}$ being over-estimated by $5-10 \%$ when $L_{0}=0.25 L_{\infty}$ (Test 6 ; Figure 3a). The estimation model was also not sensitive to the true $\frac{F}{M}$ of the operating model and returned accurate estimates for the entire range of $\frac{F}{M}$ (Test 7; Figure $3 b)$.

There was relatively low bias in the estimated selectivity parameters when the assumption of a stock at equilibrium was violated (Test 8; Figure 4). Not unexpectedly, bias in the selectivity parameters increased with increasing recruitment error, however in most cases the selectivity parameters were estimated within 10% of the true values. A similar pattern was observed in the estimated $\frac{F}{M}$ for all 4 species, with variance increasing with increased recruitment error (Figure 4). However, the median bias in the estimated $\frac{F}{M}$ for all 4 life history types was centred around 0 , indicating that on average the method was successful in correctly estimating the parameters. The variance in the estimates of $\frac{F}{M}$ and the selectivity parameters directly translates through to the estimates of SPR; however SPR appeared to be well estimated for all 4 life-history types and 4 levels of recruitment error (Figure 4).

The inclusion of auto-correlated recruitment error resulted in increased variance in the 3 estimated parameters, particularly when σ_{R} was 0.6 or 0.9 (Test 9 ; Figure 5). The estimates of the selectivity parameters were reasonable, however the bias in $\frac{F}{M}$ was often quite large. While the median bias in $\frac{F}{M}$ was centred around $0, \frac{F}{M}$ was sometimes considerably over-estimated, which resulted in SPR being considerably under-estimated. In addition, $\frac{F}{M}$ was also occasionaly under-estimated by close to 100%, resulting in SPR being greatly over-estimated. There appeared to be little extra impact from the inclusion of episodic recruitment variability, with the estimation model appearing to behave in a similar manner to Test 8 (Test 10; Figure 6). As with the other tests involving stock disequilibria, the bias in the estimated parameters increased with increasing recruitment error, with $\frac{F}{M}$ being occasionally
over-estimated and under-estimated by up to 100% when $\sigma_{R}=0.9$.

Discussion

The length-based technique developed in this study offers an alternative method to estimate $\frac{F}{M}$, selectivity-at-length and the spawning potential ratio (SPR) for an exploited stock based only on length frequency data. Length frequency data are one of the easiest and most affordable metrics to collect, and for many small-scale, data-poor fisheries, may be the only data that are available. Our technique provides a means of estimating the biological reference points, $\frac{F}{M}$ and SPR, which previously required expensive and technically challenging catch-at-age analyses.

In this study, we simulated length data from four species with diverse life histories, spanning the range of $\frac{M}{k}$ in the meta-analysis of Prince et al. (this issue). The results from the simulations showed that the length based SPR (LB-SPR) method appeared to work well, especially for species with $\frac{M}{k}>0.53$. However, it is likely that the model will be increasing biased for species with $\frac{M}{k}<0.53$, as the method relies on detecting the signal of fishing mortality in the right-hand side of the length composition. Species with low $\frac{M}{k}$ are expected to have an unfished length composition very strongly skewed to the left and as a consequence, fishing would not be expected to have a big impact on the size structure of the stock, as the length composition consists of adults of widely varying age, but at a similar size.

As modelled here, the LB-SPR method assumes that length-at-age is normally distributed with a constant coefficient of variation (CV), an assumption that does not always appear to hold (Bowker, 1995; Erzini, 1994). Detailed costly ageing studies are required to test this assumption, research that is not feasible for small-scale, data-poor fisheries. However, meta-analyses of existing length-atage studies are likely to provide a cost-effective way to determine whether the assumption of normally distributed length-at-age is commonly violated, or if there are predictable violations of this assumption amongst some species. The impact of violating the assumption of normally distributed length-at-age has not been investigated in this study but knowledge of the distribution of length-at-age could be incorporated into the LB-SPR method for specific species.

Influence of variation in parameters on estimating SPR

The accuracy of the estimated SPR at from the LB-SPR method depends on the precision of the $\frac{M}{k}$ ratio and the $\mathrm{CV}_{L_{\infty}}$ and L_{∞} parameters that are assumed for the stock. The research required to estimate these three individual parameters directly from the stock is time-consuming, somewhat complex, and expensive; precisely the factors that limit age-based population modelling from being applied to data-poor and small-scale fisheries. Without relatively expensive ageing studies, it is difficult to obtain reliable estimates of the individual parameters M and k. A number of length-based methods exist which aim to estimate k from size-frequency or tagging studies (e.g., Pauly and Morgan, 1987; Siegfried and Sansó, 2006; Smith et al., 1998). Estimating M is often more difficult, especially for stocks with a long history of exploitation. However, the ratio of $\frac{M}{k}$ is known to be often less variable between species than either of the individual parameters in the ratio (Beverton, 1992). Numerous rules-of-thumb have been developed to estimate L_{∞} in data-poor stocks. For example, Taylor (1958) suggested that the life-span of a fish species could be estimated as the age at which fish reach 95% of their asymptotic length; i.e. the mean length of the cohort is $0.95 L_{\infty}$ at $a_{\text {max }}$. Assuming that a cohort is at its mean maximum length $\left(L_{\max }\right)$ at $a_{\max }$, this suggests that L_{∞} could be estimated by: $L_{\infty}=\frac{L_{\max }}{0.95}$ (Pauly, 1984). If a stock is only relatively lightly exploited, it would be reasonable to assume that $L_{\text {max }}$ could be approximated by the maximum observed length. However, as demonstrated by Hordyk et al. (this issue, their Figure 1), the assumption that fish are $0.95 L_{\infty}$ at $a_{\text {max }}$ does not hold for species where $\frac{M}{k}$ diverges away from the Beverton Holt Life History Invariant value of 1.5. For example, a species with a $\frac{M}{k}$ ratio of 0.7 (i.e., species where individuals reach maximum size relatively early in life) would be expected to reach L_{∞} at about $0.7 a_{\max }$ (i.e. $L_{\max }=L_{\infty}$), while a species with a $\frac{M}{k}$ ratio of 2.3 , i.e. a species that has indeterminate growth, would be expected to only reach $0.8 L_{\infty}$ at the end of its life (i.e., $L_{\max }=0.8 L_{\infty}$) (see Figure 1 in Hordyk et al., this issue). If an estimate of the ratio $\frac{M}{k}$ is known, then the equations derived in Hordyk et al. (this issue) could be used to estimate L_{∞} from $L_{\max }$ and $\frac{M}{k}$, which could be used to as an estimate to parametrise L_{∞} for the LB-SPR model developed in the current study.

Beverton (1992) demonstrated that a relationship between $\frac{M}{k}$ and the ratio of size at maturity to asymptotic size $\left(\frac{L_{m}}{L_{\infty}}\right)$ can be derived analytically for teleosts. Hordyk et al. (this issue) and Prince et al. (this issue) confirm this relationship from an empirical analytical approach with a meta-analysis
of these ratios for 123 species in the literature, and suggest that the co-varying ratios can be predicted for species on the basis of taxonomic relationships and a species' life history strategy. Meta-analysis and life-history theory appear to offer a way of estimating these parameters for small-scale and datapoor stocks (Prince et al., this issue). Assuming that other closely related species, or nearby stocks, have a similar life-history and are well studied, the ratio $\frac{L_{m}}{L_{\infty}}$ from these stocks could be used as a starting estimate for the data-poor stock of interest (Prince et al., this issue).

Influence of sample size on estimating SPR

Hilborn and Walters (2001) warn against using length-based methods, and note that length compositions are often not representative of the whole stock. Unrepresentative length samples would cause bias in any stock assessment method, and the resulting evaluation of the condition of the stock. Consequently, ensuring high quality, representative length data are collected for the stock should be an important research priority and emphasises the importance of designing rigorous sampling programs to collect length data. Since the LB-SPR method assumes that any large fish that are missing from the data have been removed by fishing, if the large fish are under-represented in the length sample for any reason, the LB-SPR method will over-estimate $\frac{F}{M}$ and under-estimate the SPR.

The precision of the estimated SPR the data on length composition can be increased by simply increasing the sample size of the length measurements. Gerritsen and McGrath (2006) recommend a rule-of-thumb where the minimum sample size is 10 times the number of length classes in the sample. Other simulation work suggests that sample sizes of 1,000 length measurements are required to sufficiently capture the features of a length composition Erzini (1990). This conclusion is supported by the simulation studies from our study which showed that the variation in the estimated SPR was reduced greatly when $\geq 1,000$ measurements were taken (Figure 2). In addition to measuring an adequate number of fish to increase the precision of the estimated SPR, the sampling design should consider the temporal and spatial distribution of the fished stocks to ensure that the true length composition of the stock is estimated in the sample (Gerritsen and McGrath, 2006).

Dynamic effects on estimating SPR

The model developed in this study assumes that the stock is in equilibrium which means that the current size composition of the stock is assessed against the expected size composition if the stock had
experiences a constant level of fishing pressure and constant recruitment. The assumption of constant fishing effort may hold for a number of years for the small-scale fisheries that are the focus of this methodology. The second assumption of constant recruitment, however, is unlikely to hold for many stocks (e.g., Myers, 2001). The simulation of variation in recruitment examined in this study ranged from low, where the standard deviation of recruitment $=0.1$ (i.e., $\sigma_{R}=0.1$); and the difference between the strongest and weakest year classes is $\approx 1.5: 1$, to reasonably high, where $\sigma_{R}=0.9$ and the difference in magnitude between the strongest and weakest year classes is $\approx 30: 1$. Not unexpectedly, the results of the LB-SPR model are most variable when the annual recruitment error is high. The results from our simulations showed that high recruitment variability is likely to cause considerable bias in the LB-SPR method, especially when σ_{R} is ≥ 0.6. At low levels of recruitment variability ($\sigma_{R}=0.1$) and constant F, the stock is essentially at equilibrium, and $\frac{F}{M}$, the selectivity parameters, and the SPRs are estimated with minimal error (Figures 4, $5 \& 6$). However, as the recruitment variation was increased ($\sigma_{R}=0.6$ and 0.9), the estimated $\frac{F}{M}$ in any given year could be under-estimated by close to $100 \%\left(\frac{F}{M}=0, \mathrm{SPR}=1\right)$, or over-estimated by over 100% (Figures $4,5 \& 6$). The bias in the estimated parameters in the simulations with recruitment error, however, was centred on 0 , and SPR was estimated reasonably well, i.e. within 30% of the real value, in most of the Monte Carlo simulations for all four modelled species. Occasionally, particularly for high recruitment error ($\sigma_{R}=0.9$), the estimates of $\frac{F}{M}$ and the selectivity parameters were very biased, resulting in large overor under-estimates of SPR.

As the LB-SPR model is an equilibrium based method, and assumes constant recruitment, it cannot fit multi-modal length compositions well. Modes in length compositions often occur from a disparity in year class strength, and following the progression of these modes through time is the foundation of many length-based techniques used to estimate growth and mortality (Pauly and Morgan, 1987). If the length frequency of a population is highly multi-modal, the LB-SPR model will not fit the data well, and any estimates of $\frac{F}{M}$, selectivity and SPR are likely to be unrealistic. While a good fit of the LB-SPR model does not necessarily imply that the estimates are accurate (the model can potentially fit the data very well even if $\frac{M}{k}$ or L_{∞} are mis-specified), a poor fit of the model to multi-modal length data indicates that the results are likely to be untrustworthy. If the year-classes are clearly identified as modes in the length data, the LB-SPR method may not be the most suitable technique for estimating the condition of the stock and other more traditional length-based methods may be more applicable.

Alternatively, collecting data at a higher temporal resolution (e.g. monthly for short lived species) and then aggregating the data over a year, may provide a means of constructing a length composition more representative of the equilibrium size composition. .

The management strategy evaluation (MSE) modelling conducted by Wayte and Klaer (2010) and Prince et al. (2011) on harvest control rules based on equilibrium based Catch-at-Age and SPR-based size targets, shows that while individual assessments of size composition may be imprecise due to the transitory dynamics of a population's size structure, smoothed trends estimated over several years provided an accurate basis for harvest control rules. Our observations support their finding, in that some of the transitory size dynamics we simulated gave LB-SPR estimates that were quite biased, but the mean bias across estimates was zero. We have incorporated the LB-SPR into a harvest control rule and our own limited MSE modelling suggests that it will be able to respond to transitory dynamics similarly to those modelled by Wayte and Klaer (2010) and Prince et al. (2011) and provide an accurate basis for harvest control rules. This will be a topic of further research.

Acknowledgments

We are grateful to the Marine Stewardship Council and to Murdoch University for providing the support for this study. Also thanks to David Agnew and Nico Gutierrez from MSC, and Keith Sainsbury who provided useful comments and suggestions on this work.

References

Ault, J., Smith, S., and Bohnsack, J. 2005. Evaluation of average length as an estimator of exploitation status for the Florida coral-reef fish community. ICES Journal of Marine Science, 62: 417-423.

Basson, M., Rosenberg, A. A., and Beddington, J. R. 1988. The accuracy and reliability of two new methods for estimating growth parameters from length-frequency data. ICES Journal of Marine Science, 44: 277-285.

Beckmann, A. T., Gunderson, D. R., Miller, B. S., Buckley, R. M., and Goetz, B. 1998. Reproductive biology, growth, and natural mortality of Puget Sound rockfish Sebastes emphaeus (Starks, 1911). Fishery Bulletin, 96: 352-356.

Beverton, R. J. H. 1992. Patterns of reproductive strategy parameters in some marine teleost fishes. Journal of Fish Biology, 41: 137-160.

Beverton, R. J. H. and Holt, S. J. 1957. On the dynamics of exploited fish populations, vol. 19. Fishery Investigation Series II, London, United Kingdom, 533 pp.

Bowker, D. W. 1995. Modelling the patterns of dispersion of length at age in teleost fishes. Journal of Fish Biology, 46: 469-484.

Brooks, E. E. N., Powers, J. J. E., and Cortés, E. 2010. Analytical reference points for age-structured models: application to data-poor fisheries. ICES Journal of Marine Science, 67: 165-175.

Clark, W. G. W. 2002. F 35\% Revisited Ten Years Later. North American Journal of Fisheries Management, 22: 251-257.

Coulson, P. G., Potter, I. C., Hesp, S. A., and Hall, N. 2007. Biological parameters required for managing western blue groper, blue morwong and yellowtail flathead. Tech. rep., FRDC Project 2004/057, Centre for Fish and Fisheries Research, Murdoch University, Murdoch, Western Australia.

Erzini, K. 1990. Sample size and grouping of data for length-frequency analysis. Fisheries Research, 9: 355-366.

Erzini, K. 1994. An empirical study of variability in length-at-age of marine fishes. Journal of Applied Ichthyology, 10: 17-41.

Fournier, D. A., Skaug, H. J., Ancheta, J., Magnusson, A., Maunder, M. N., Nielsen, A., and Sibert, J. 2012. Optimization Methods and Software AD Model Builder : using automatic differentiation for statistical inference of highly parameterized complex nonlinear models. Optimization methods and software, 27: 233-249.

Froese, R. and Binohlan, C. 2000. Empirical relationships to estimate asymptotic length, length at first maturity and length at maximum yield per recruit in fishes, with a simple method to evaluate length frequency data. Journal of Fish Biology, 56: 758-773.

Gedamke, T. and Hoenig, J. M. 2006. Estimating mortality from mean length data in nonequilibrium situations, with application to the assessment of goosefish. Transactions of the American Fisheries Society, 135: 476-487.

Gerritsen, H. D. and McGrath, D. 2006. Precision estimates and suggested sample sizes for lengthfrequency data. Fishery Bulletin, 106: 116-120.

Goodyear, C. P. 1993. Spawning stock biomass per recruit in fisheries management: foundation and current use. In Risk evaluation and biological reference points for fisheries management, edited by S. J. Smith, J. J. Hunt, and D. Rivard, vol. 120, pp. 67-81. Canadian Special Publications of Fisheries Aquatic Sciences.

Gulland, J. A. and Rosenberg, A. A. 1992. A review of length-based approaches to assessing fish stocks. Tech. rep., Rome.

Hilborn, R. and Walters, C. J. 2001. Quantitative fisheries stock assessment: choice, dynamics and uncertainty. Chapman and Hall, New York, 570 pp.

Hordyk, A. R., Ono, K., Sainsbury, K., Loneragan, N. R., and Prince, J. D. this issue. Some explorations of the life history ratios to describe length composition, spawning-per-recruit, and the spawning potential ratio. ICES Journal of Marine Science.

Hughes, S. E. 1974. Stock composition, growth, mortality and availability of Pacific saury, Cololabis saira, of the northwestern Pacific Ocean. Fishery Bulletin, 72: 121-131.

Myers, R. 2001. Stock and recruitment: generalizations about maximum reproductive rate, density dependence, and variability using meta-analytic approaches. ICES Journal of Marine Science, 58: 937-951.

O'Farrell, M. R. and Botsford, L. W. 2005. Estimation of change in lifetime egg production from length frequency data. Canadian Journal of Fisheries and Aquatic Sciences, 62: 1626-1639.

O'Farrell, M. R. and Botsford, L. W. 2006. Estimating the status of nearshore rockfish (Sebastes spp.) populations with length frequency data. Ecological Applications, 16: 977-86.

Pauly, D. 1984. Fish population dynamics in tropical waters: a manual for use with programmable calculators. ICLARM Studies \& Reviews, 8: 1-325.

Pauly, D. and Morgan, G. P. R. 1987. Length-based methods in fisheries research. ICLARM Conference Proceedings No. 13, Manila.

Pearson, D. E. and Mcnally, S. V. G. 2005. Age, growth, life history, and fisheries of the sand sole, Psettichthys melanostictus. Marine Fisheries Review, 67: 9-18.

Prince, J. D., Dowling, N. A., Davies, C. R., Campbell, R. A., and Kolody, D. S. 2011. A simple costeffective and scale-less empirical approach to harvest strategies. ICES Journal of Marine Science, 68: 947-960.

Prince, J. D., Hordyk, A. R., Valencia, S., Loneragan, N. R., and Sainsbury, K. this issue. Extending the principle of Beverton-Holt Life History Invariants to develop a new framework for borrowing information for data-poor fisheries from the data-rich. ICES Journal of Marine Science.

Quinn, T. J. and Deriso, R. B. 1999. Quantitative Fish Dynamics. Oxford University Press, New York.

R Development Core Team 2012. R: A language and environment for statistical computing.

Sainsbury, K. J. 1980. Effect of Individual Variability on the von Bertalanffy Growth Equation. Canadian Journal of Fisheries and Aquatic Sciences, 37: 241-247.

Siegfried, K. I. and Sansó, B. 2006. Two bayesian methods for estimating parameters of the von Bertalanffy growth equation. Environmental Biology of Fishes, 77: 301-308.

Smith, B. D., Botsford, L. W., and Wing, S. R. 1998. Estimation of growth and mortality parameters from size frequency distributions lacking age patterns: the red sea urchin (Strongylocentrotus franciscanus) as an example. Canadian Journal of Fisheries and Aquatic Sciences, 55: 1236-1247.

Taylor, C. C. 1958. Cod growth and temperature. Journal du Conseil, 23: 366-370.

Walters, C. J. and Martell, S. J. D. 2004. Fisheries ecology and management. Princeton University Press, Princeton, USA.

Watanabe, Y., Butler, J. L., and Mori, T. 1988. Growth of the Pacific saury, Cololabis saira, in the northeastern and northwestern Pacific Ocean. Fishery Bulletin, 86: 489-498.

Wayte, S. E. and Klaer, N. L. 2010. An effective harvest strategy using improved catch-curves. Fisheries Research, 106: 310-320.

Zhou, S., Yin, S., and Thorson, J. 2012. Linking fishing mortality reference points to life history traits: an empirical study. Canadian Journal of Fisheries and Aquatic Sciences, 69: 1292-1301.

Figure Captions

Figure 1: Bias in the estimated $\frac{F}{M}$ and resulting estimate of SPR for the 4 simulated species for a) Test 1: misspecification of $\frac{M}{k}$, b) Test 2: misspecification of L_{∞}, c) Test 3 : misspecification of $\mathrm{CV}_{L_{\infty}}$, and d) value of the X parameter. Asterisks in the SPR panels of a), b) \& c) indicate the "true" SPR for each species.

Figure 2: Bias in the estimated $\frac{F}{M}, L_{S 50}, L_{S 95}$ and resulting estimate of SPR for a range of sample sizes for a) Species I, b) Species II, c) Species III, and d) Species IV.

Figure 3: Results of a) Test 6 , showing the bias is estimated $\frac{F}{M}$ for the 4 species for L_{0} ranging $0-0.25 L_{\infty}$, and b) comparison of true $\frac{F}{M}$ to estimated $\frac{F}{M}$ for the 4 species.

Figure 4: Bias in estimated $\frac{F}{M}, L_{S 50}, L_{S 95}$ and the resulting estimate of SPR with recruitment error for a) Species I, b) Species II, c) Species III, and d) Species IV.

Figure 5: Bias in estimated $\frac{F}{M}, L_{S 50}, L_{S 95}$ and the resulting estimate of SPR with auto-correlated recruitment error for a) Species I, b) Species II, c) Species III, and d) Species IV

Figure 6: Bias in estimated $\frac{F}{M}, L_{S 50}, L_{S 95}$ and the resulting estimate of SPR with recruitment error and episodic recruitment failure for a) Species I, b) Species II, c) Species III, and d) Species IV

[^0]: ${ }^{*}$ Corresponding author; Ph: +61893606685 E: a.hordyk@murdoch.edu.au

