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Abstract12

The spawning potential ratio (SPR) is a well-established biological reference point, and esti-13

mates of SPR for data-poor fisheries could be used to inform management decisions. Hordyk et al.14

(this issue)demonstrated the link between the SPR and the life history ratios, the ratio of natural15

mortality to the von Bertalanffy growth parameter
(
M
k

)
and the ratio of length at maturity to16

asymptotic length
(

Lm
L∞

)
, and highlighted the potential of this approach as a cost-effective stock17

assessment tool for small-scale and data-poor fisheries. We carried out simulation studies to in-18

vestigate the use of the length based model (LB-SPR) developed in Hordyk et al. (this issue) to19

estimate the SPR of exploited fisheries directly from the size composition of the catch. The key pa-20

rameters for the model are: M
k

, L∞, and variation in length-at-age (CVL∞). The sensitivity of the21

∗Corresponding author; Ph: +61893606685 E: a.hordyk@murdoch.edu.au

1



estimated SPR to variation in these parameters, sample size of the length composition data, and22

recruitment error, were investigated using Monte-Carlo simulations. The method uses maximum23

likelihood methods to find the best values of relative fishing mortality
(

F
M

)
and selectivity-at-length24

that minimises the difference between the observed and the expected length composition of the25

catch, and calculates the resulting SPR. When parameterised with the correct input parameters,26

the LB-SPR model returned accurate estimates of F
M

and SPR. Although the model performed27

reasonably well with small sample sizes of length data (n =100), variability in the estimates of SPR28

were much reduced when sample sizes were based on > 1, 000 individuals. With high variability in29

annual recruitment the estimates of SPR became increasingly unreliable. However, as the median30

error was centred on zero, this variability in the estimated SPR can likely be overcome by repeat-31

ing the estimation procedure on an annual basis, and adjusting harvest strategies based on the32

trends in estimated SPR. The results of this study suggest that the length-based SPR estimation33

methodology is robust to equilibrium assumptions and uncertainty in the life history ratios, and34

this method has potential to provide a tool for rapid, cost-effective, and conservative assessment35

of data-poor fisheries.36

Keywords. life history ratios, cost-effective, fish growth, size composition, Beverton-Holt invariants37

Introduction38

Measurements of the length composition of an exploited stock are relatively cheap and simple to collect,39

and are one of the most common forms of data available to fisheries researchers (Quinn and Deriso,40

1999). For small-scale and data-poor fisheries, where the collection of age data is often restricted by41

lack of technical expertise and expense, length composition data is often the only form of information42

available to researchers and managers. This is especially so for many tropical species, where the lack of43

clearly defined annual growth rings in otoliths or other hard parts make the task of aging individuals44

very difficult. As a result of the ready availability of length data for many stocks, a number of length-45

based methods have been developed and applied to estimate biological parameters and to understand46

the dynamics of fish populations (e.g., Basson et al., 1988; Beverton and Holt, 1957; Gulland and47

Rosenberg, 1992; Pauly and Morgan, 1987). Many of these size-based techniques were developed to48

estimate the growth and mortality rates of fish without the need for expensive and difficult to obtain49

age data (e.g., see many papers in Pauly and Morgan, 1987). Other length-based techniques aim to50
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use the length structure of the population to estimate the stock status and provide useful management51

advice (e.g., Ault et al., 2005; Gedamke and Hoenig, 2006; O’Farrell and Botsford, 2005, 2006).52

Recent work has demonstrated that, assuming von Bertalanffy growth, constant natural mortality53

for all age classes, no variability in length-at-age, and knife-edge selectivity, the standardised length54

composition of two stocks with same ratio of natural mortality over the growth rate
(
M
k

)
and the55

same ratio of fishing mortality to natural mortality
(
F
M

)
will be have the same length composition56

(Hordyk et al., this issue). The extension of this model to incorporate variability in length-at-age57

and logistic selectivity, confirmed that the expected length composition of the catch of an exploited58

stock is primarily determined by the ratios of M
k and F

M . The analytical models developed in Hordyk59

et al. (this issue) suggest that with knowledge of the von Bertalanffy asymptotic length L∞ and the60

coefficient of variation in L∞(CVL∞), the ratio of total mortality over the von Bertalanffy growth61

coefficient
(
Z
k

)
for a particular stock can be estimated from a representative sample of the length62

structure of the catch. If M
k is also known (from meta-analysis, life history theory, expert judgment,63

or biological studies of a stock), then the results of Hordyk et al. (this issue) suggest that it is possible64

to estimate F
M from the size composition of the catch. Given that M is assumed to be unknown, i.e.65

only the ratio M
k is known, it is not possible to estimate F using this method. However the ratio of66

F
M has often been used as a biological reference point, with FMSY = 0.87M considered as a reasonable67

approximation for teleosts (Zhou et al., 2012). However, the ratio of F
M can be misleading if not68

interpreted with care, as the selectivity of the fishery is also important. For example, it is possible that69

a highly selective fishery could target only a few of the oldest year classes in a stock, which, even if F
M70

is exceptionally high, is unlikely to affect the sustainability of the fishery, although the yield is likely71

to be very low. Conversely, even a relatively low F
M can reduce the spawning per recruit drastically if72

the fishery catches a high proportion of immature individuals.73

A persistent challenge for length-based methods has been to provide indicators of stock status that74

can be compared against pre-defined biological reference points. The spawning potential ratio (SPR)75

of a stock is defined as the proportion of the unfished reproductive potential left at any given level of76

fishing pressure (Goodyear, 1993; Walters and Martell, 2004). By definition, the SPR equals 100% in77

an unexploited stock, and zero in a stock with no spawning (e.g., all mature fish have been removed, or78

all female fish have been caught). The SPR is commonly used to set target and limit reference points79

for fisheries. For example, F40%, the fishing mortality rate that results in SPR = 40%, is considered risk80

3



adverse for many species (Clark, 2002), and suitable reference points can be derived from assumptions81

about the steepness of the stock-recruit relationship (Brooks et al., 2010). Hordyk et al. (this issue)82

demonstrates that the SPR is determined by the ratios of Mk , F
M , LmL∞ , and Lc

L∞
, under the assumptions83

of knife-edge selectivity-at-length at Lc, and knife-edge maturity at Lm.84

The aims of this study were to evaluate the utility of the models developed in Hordyk et al. (this85

issue) as a cost-effective methodology to assessing data-poor and small-scale stocks. The length-based86

estimation model requires the following parameters: an estimate of the ratio M
k (i.e. the individual87

values of the M and k parameters are unknown), L∞ or Lm, CVL∞ , and knowledge of maturity-at-88

size, and uses data on the length composition of the catch to estimate the SPR. A simulation model89

was used to test the performance of the length-based SPR (LB-SPR) method for four species with a90

diverse range of life histories. These life histories where chosen on the basis of the M
k ratios, varying91

from 0.3 for a species with a length composition dominated by large individuals, to 2.3, representing a92

species with a length distribution dominated by smaller fish. In particular, the study investigated the93

sensitivity of the LB-SPR model to error or misspecification of the input parameters, and to violations94

of the equilibrium assumption of constant recruitment.95

Methods96

The LB-SPR method requires as input length composition data of the catch, as well as the three97

parameters: M
k , L∞

(
or Lm

L∞

)
, CVL∞ . The model estimates the selectivity-at-length and the ratio F

M ,98

which in turn are used to calculate SPR. To test the utility and sensitivity of the estimation model99

to a range of issues likely to be encountered in the real world an age-structured operating model100

was developed to generate length composition data for a range of life-history types. All simulation101

modelling was done using the open-source statistical software R (R Development Core Team, 2012).102

Operating model103

The population dynamics were modelled with a female-only, non-spatial, age-structured operating104

model (OM), with the assumption that the population was closed with respect to immigration and105

emigration. In general, the OM was modelled with annual time-steps. However, the OM was modelled106

with monthly time-steps for short-lived species (i.e. species with life-span ≤ 10 years). The conversion107
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from annual to monthly time-steps was necessary to ensure the construction of smooth length com-108

positions for short-lived species, and was achieved by scaling the rate parameters appropriately. For109

example, an annual M is converted to a monthly rate by dividing by 12. For the short-lived species,110

recruitment was assumed to be continuous and occurred on the 1st day of every month.111

The abundance, N, at age a at time t is given as:112

Na,t =


Rt if a = 0

Na−1,t−1e
Za−1 if 0 ≤ a ≤ amax

(1)

where Rt is the number of recruits at time t, Za is instantaneous total mortality at age a, and amax is113

the maximum age. Total mortality at age a is given by:114

Za = M + SaF (2)

where M is the annual instantaneous rate of natural mortality, Sa is selectivity at age a, and F is115

the annual instantaneous rate of fishing mortality. The catch-at-age (Ca) was calculated using the116

Baranov equation:117

Ca,t =
Fa
Za
Na,t

(
1− e−Za

)
(3)

No plus-group was used, instead amax was determined as the first age class where the number of118

surviving individuals was ≤ 1% of initial recruitment (Quinn and Deriso, 1999), so that:119

amax =
− ln(0.01)

M
(4)

Natural mortality was assumed to be constant and independent of size or age, and fishing mortality was120

assumed to be constant for all t. Recruitment was related to the spawning biomass by the Beverton-121

Holt stock-recruit relationship with multiplicative log-normal error:122

Rt =
SB t−1

δ + ρSB t−1
eεt−

σ2R
2 (5)

where SB t is the spawning stock biomass at time t, δ and ρ are parameters of the stock-recruit function,123

and εt is the recruitment residual at time t that is normally distributed by N
(
0, σ2

R

)
, where σR is the124
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recruitment variability.125

The δ and ρ parameters of the stock-recruit relationship were re-parameterised in terms of steepness126

(h), which is defined as the fraction of virgin recruitment (R0) obtained when spawning biomass is 0.2127

of the unfished spawning biomass (i.e. 0.2SB0).128

Growth was modelled with the 3 parameter von Bertalanffy function:129

La = L∞

(
1− e−k(a−t0)

)
(6)

where L∞ is asymptotic length, k is the growth coefficient, and t0 the theoretical age when length130

is zero. Variation of length-at-age was assumed to be normally distributed, with variance increasing131

with increased mean length (Sainsbury, 1980):132

σ2
La = σ2

L∞

(
1− e−ka

)2
(7)

133

σL∞ = CVL∞L∞ (8)

Maturity was assumed to be size-dependent, and was modelled with the two parameter logistic134

function:135

Matl =
1

1 + e
− ln(19)(l−L50)

L95−L50

where Matl is maturity at length l, and L50 and L95 are lengths at 50% and 95% maturity respectively.136

Maturity-at-length was converted to maturity-at-age (Mata):137

Mata =

∫ l=∞

l=0

Matl
1√

2πσLa
e
−(l−La)2

2σ2
La (9)

where σ2
La

is the variance of length at age a. Spawning stock biomass was calculated at the end of138

each time-step as:139

SBt =
∑
a

Na,tMataWa (10)

where Wa is weight at age a, which was calculated as:140

Wa = αLβa (11)
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where α and β are constants. Egg production at age a was assumed to be proportional to weight:141

Ea ∝ MataWa (12)

Selectivity was assumed to be asymptotic and size dependent, and was modelled with a two parameter142

logistic function:143

Sl =
1

1 + e
− ln(19)(l−LS50)
SL95−LS50

(13)

where Sl is selectivity-at-length l, and LS50 and LS95 are the lengths at 50% and 95% selectivity144

respectively. Selectivity-at-length was converted to selectivity-at-age (Sa) by:145

Sa =

∫ l=∞

l=0

Sl
1√

2πσLa
e
−(l−La)2

2σ2
La (14)

SPR was calculated following Goodyear (1993), by calculating the ratio of the average lifetime146

production of eggs per recruit (EP ) at equilibrium for the fished and unfished states, assuming no147

density-dependant suppression of maturation or fecundity:148

SPR =
EPFished

EPUnfished
(15)

where149

EPFished =
∑
a


Eae

−Ma for a = 0

Ea−1e
−M+(FSa−1) for 0 < a ≤ amax

(16)

and150

EPUnfished =
∑
a

Eae
−Ma

An age-length transition matrix (Hilborn and Walters, 2001) was constructed from the assumptions151

of mean length-at-age and variation of length-at-age, where the probability of an individual at age a152
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being in length class i is given by:153

Pi,a =


φ
(
lloi+1−La
σLa

)
if i = 1

φ
(
lloi+1−La
σLa

)
−
(
lloi −La
σLa

)
if 1 < i ≤ I

1−
(
lloi −La
σLa

)
if i = I

(17)

where φ is the standard normal cumulative distribution, lloi is the upper bound of length class i, and I154

is the total number of length classes. The age-length probability matrix was modified for the expected155

age-length distribution of the catch (p) to account for the selectivity-at-length by multiplying the156

age-length transition matrix by the selectivity at length class i (Si):157

pi,a = Pi,aSi (18)

The age-length transition matrix for the catch was standardised so that the probability of an individual158

in the catch at age a being in one of the I length classes was 1:159

pi,a =
pi,a∑
a pi,a

(19)

The length composition of the catch (Ni) was then constructed by multiplying the vector of catch-at-160

age by the transpose of the matrix p:161

Ni = Cap
T (20)

Estimation model162

The estimation model was based on the analytical derivations developed in Hordyk et al. (this is-163

sue), but for completeness, it is fully described here. To ensure that there was no possibility of164

cross-contamination of parameter values between the operating model and the estimation model, the165

estimation model was coded separately in ADMB (Fournier et al., 2012). Hordyk et al. (this issue)166

demonstrated that, once standardised (to L∞, or some other standardisation, e.g. Lmax), the expected167

length composition of the catch is determined by the interaction of selectivity and Z
k . If M

k is known,168

from meta-analysis or some other method, then there is the potential to estimate F
M and selectivity-169
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at-length from length frequency data of the catch. In turn, these estimated parameters can be used to170

calculate SPR which can be used for management of the fishery.171

To make the problem numerically tractable, the estimation model was constructed from a modified172

age-structured model, with “age” defined in arbitrary units. Let X be the number of discrete “age”173

classes in the estimation model, where X is a fixed parameter of the estimation model. The vector x174

is then defined as a sequence of “ages” in an arbitrary temporal scale from 0 to X -1 (i.e maximum175

“age”= X − 1), and x̃ is a vector of relative “ages” defined between 0 and 1:176

x̃ =
x

X
(21)

It is important the remember that the units of x are undefined, and that any ages in the estimation177

model are only meaningful in relative terms. Mean standardised length
(
l̃
)

at age x can then be given178

in terms of M
k (Hordyk et al., this issue):179

l̃x = 1− 0.01x̃
1

M/k (22)

Assuming that length-at-age is normally distributed with constant CV, the standard deviation of l̃x is180

(Hordyk et al., this issue):181

σl̃x = CV
(

1− 0.01x̃
1

M/k

)
(23)

If there are I length classes in the observed length composition of the catch, and the length composition182

is standardised to L∞, then the probability of an individual at age x being in length class i can be183

given as a I ×X age-length transition matrix:184

P̃i,x


φ
(
lloi+1−l̃x
σl̃x

)
if i = 1

φ
(
lloi+1−l̃x
σl̃x

)
− φ

(
lloi −l̃x
σl̃x

)
if 1 < i < I

1− φ
(
lloi −l̃x
σl̃x

)
if i = I

(24)

where lloi is the lower bound of length class i, and φ is the standard normal cumulative density function.185
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Assuming a logistic selectivity pattern, selectivity at standardised length l̃ can be modelled as:186

S̃l̃ =
1

1 + e
− ln(19)(l̃−lS50)

lS95−lS50

(25)

where lS50 and lS95 are the standardised lengths at 50% and 95% selectivity respectively. The matrix187

P̃ can be modified to account for the selectivity-at-length, to give the probability that an individual188

in the catch at age x is in size class i :189

C̃i,x = P̃i,xS̃i (26)

where S̃i is the selectivity for length class i, calculated by substituting l̃ in Equation 25 with l̃i, which190

is the mid-point of length class i. The matrix C̃ must be standardised so that there is a probability of191

1 that an individual in the catch at age x is in one of the I length classes:192

C̃i,x =
C̃i,x∑
x C̃i,x

(27)

Hordyk et al. (this issue)demonstrates that it is difficult to calculate the number of individuals193

at age x in terms of M
k and F

M with logistic selectivity and variability in length-at-age. However,194

the age-structured estimation model allows the calculation of the number of individuals at age x195

by taking advantage of the assumed relationship between longevity and natural mortality. If X is196

the number of discrete age classes, then the corresponding M can be calculated from Equation 4:197

M = − ln(0.01)
tmax

= − ln(0.01)
X−1 . The unit of time relating to tmax (and therefore M) is not known, so let198

this M be referred to as
gen

M to identify it as a generic parameter with unknown time scale. A vector199

of total mortality at age x can then be given as:200

gen

Zx =
gen

M +
gen

M
F

M
S̃x (28)

where S̃x is the selectivity at age x (in unknown units of time) determined by multiplying the matrix201

P̃ by the vector S̃i:202

S̃x = S̃iP̃ (29)
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The relative number of individuals at age x can then be calculated using the traditional fisheries model:203

Ñx =


1 if x = 0

Ñx−1e
−

gen

Zx−1 if 0 < x ≤ X
(30)

The expected proportion of individuals in the catch in length class i is then:204

P̃Catch
i =

(
ÑxS̃x

)
C̃T∑

i

(
ÑxS̃x

)
C̃T

(31)

With the assumptions of constant CV in variance of length-at-age, logistic selectivity, and constant205

natural mortality, the above algorithm gives the predicted proportion of the catch in length class206

i in terms of M
k , F

M and selectivity at relative length (lS50 and lS95). When the observed length207

composition of the catch is standardised to L∞ then the two selectivity parameters are equal to LS50

L∞
208

and LS95

L∞
respectively. Given knowledge of Mk , the parameters F

M , LS50

L∞
and LS95

L∞
can be estimated from209

the standardised length composition of the catch by minimising the following multinomial negative210

log-likelihood function (NLL):211

NLL = arg min
F
M ,

LS50
L∞ ,

LS95
L∞

∑
i

Oi ln
P̃Catch
i

OPi
(32)

where Oi and OPi are the observed number and proportion of the catch respectively in length class i.212

Hordyk et al. (this issue) demonstrated that, with the simplifying assumptions of no variation213

of length-at-age, and knife-edge selectivity, SPR is invariant with respect to the ratios M
k and F

M .214

Extending the model further to account for more realistic assumptions also showed the relationship215

between SPR and M
k and F

M holds with logistic selectivity and variable length-at-age. Using the generic216

age-structure of the estimation model, and given estimates of maturity-at-age and the size-fecundity217

relationship, SPR can be calculated from the estimated parameters. Assuming that maturity is a218

logistic function of length, then maturity at relative length l̃ can be given by:219

Matl̃ =
1

1 + e
− ln(19)(l̃−l̃50)

l̃95−l̃50

(33)
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where l̃50 and l̃95 are the relative lengths at 50% and 95% maturity respectively, and defined as:220

l̃50 =
L50

L∞
(34)

l̃95 =
L95

L∞
(35)

where L50and L95 are the lengths at 50% and 95% maturity respectively. Similarly to selectivity-at-221

length, maturity-at-length can be converted to maturity at age x by multiplying the vector Matl̃ by222

the age-length transition matrix P̃ :223

Matx = MatiP̃ (36)

where Mati is the probability that an individual in length class i is mature, calculated by substituting224

l̃ in Equation 33 with l̃i, which is the mid-point of length class i. Assuming that fecundity is linearly225

related to weight, which is a cubic function of length, the relative egg production (Ẽ) at relative age226

x is:227

Ẽx = Matx l̃
3
x (37)

Total relative egg production
(

ẼPFished

)
for the fished state is then:228

ẼPFished =
∑
x


Ẽxe

−
gen

M if x = 0

Ẽx−1e
−

gen

Zx−1 if 0 < x ≤ X
(38)

and for the unfished state:229

ẼPUnfished =
∑
x


Ẽxe

−
gen

M if x = 0

Ẽx−1e
−

gen

M if 0 < x ≤ X
(39)

SPR can then be calculated as:230

SPR =
ẼPFished

ẼPUnfished

(40)
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Table 1: The biological and selectivity parameters for the 4 test species used in the robustness tests
of the LB-SPR model

Parameter
Species

Definition
I II III IV

L∞(mm) 376 170 530 342 Asymptotic size
CVL∞ 0.1 0.1 0.1 0.1 Coefficient of variation of L∞
M 0.42 0.44 0.63 1.25 Natural mortality
k 0.79 0.535 0.41 0.41 Growth coefficient
t0 0 0 0 0 Theoretical age at zero length
M
k 0.53 0.82 1.54 3.05 M

k ratio
L50 (mm) 290 121 259 194 Length at 50% maturity
L95 (mm) 320 170 344 204 Length at 95% maturity
LS50(mm) 240 94 220 130 Length at 50% selectivity
LS95(mm) 260 108 260 145 Length at 95% selectivity

Table 2: Description of the 10 tests to understand the robustness and sensitivity of the LB-SPR model
to a range of parameter misspecification and assumption violations.
Test Description

1 assumed M
k parameter ranging ±25% of true value

2 assumed L∞ parameter ranging ±25% from true value
3 assumed CVL∞ parameter ranging ±25% from true value
4 X (the length of vector x in the estimation model) ranging from 10–208
5 Sample size reduced to 100, 500, 1,000, 5,000 & 10,000 individuals
6 Length-at-birth (L0) ranging 0–0.25L∞
7 True F

M ranging 0.01–5
8 Population disequlibria with σR = 0.1, 0.3, 0.6 & 0.9
9 Same as Test 8, with auto-correlated recruitment error
10 Same as Test 8, with episodic recruitment failure

Simulation and evaluation231

The utility of the LB-SPR method was evaluated by using the operating model to generate length data,232

and comparing the estimates of F
M , selectivity-at-length, and SPR from the estimation model with the233

true values of the OM. Biological parameters for the simulated data were based on four species with234

a range of life-histories: I) sand sole (Psettichthys melanostictus), II) Puget Sound rockfish (Sebastes235

emphaeus), III) yellowtail flathead (Platycephalus endrachtensis) and IV) Pacific saury (Cololabis236

saira) (hereafter referred to as Species I, II, III, & IV) (Hughes, 1974; Watanabe et al., 1988; Beckmann237

et al., 1998; Pearson and Mcnally, 2005; Coulson et al., 2007). The selectivity-at-length parameters238

were arbitrarily set lower than maturity-at-length for each species, and CVL∞ was set at 0.1, and t0239

was assumed to be 0 for all species (1). Steepness was set to 0.7 for all cases.240

A number of robustness tests were conducted to assess the utility of the LB-SPR model, and to241
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understand the sensitivity of the model to various assumptions, input parameters and life-histories242

(2). The assessment model was parametised with the “true” value of the M
k , L∞, CVL∞ parameters,243

except in the cases where sensitivity to those parameters was being tested (i.e. Tests 1-3). Similarly,244

the sampling of the catch was assumed to be 100% except in the case of Test 5. Fishing mortality245

was set equal to natural mortality for all cases except Test 7. For Test 1-7, σR was set to 0 (i.e.246

no variability in recruitment), and the operating model was projected forward until the stock was at247

fished equilibrium. The X parameter of the estimation model was set at 100 for all cases except Test248

4.249

Tests 1-3 examined the sensitivity of the estimation model to misspecification of the M
k , L∞,250

and CVL∞ parameters respectively. For each test, the estimation model was run 100 times with the251

assumed value of the relevant parameter ranging from −25% to +25% of the true value. Results for252

these tests were summarised by determining the bias in the estimated parameters as a function of the253

error in the assumed parameters.254

Test 4 determined the sensitivity of the estimation model to X, the temporal resolution of the255

estimation model. For this test, the estimation model was repeatedly run 100 times with X in Equation256

21 ranging from 10 to 208. The results of this tests were summarised as bias in the estimated parameters257

as a function of X.258

Although samples of the length composition of the catch are relatively cheap and simple to obtain,259

it is unreasonable to expect that the entire catch will be sampled. Test 5 examined the impact of sample260

size on the effectiveness of the LB-SPR method. Five levels of sampling coverage were examined, with261

sample sizes of 100, 500, 1,000, 5,000, and 10,000 individuals respectively. For each case and test262

species, length compositions were generated from 200 Monte Carlo simulations by randomly sampling263

with replacement from the age composition of the catch, with the probability proportional to that264

in the true age composition of the catch. The estimation model was run on each generated length265

composition, and results summarised as boxplots of bias in the estimated parameters for each sample266

size.267

The estimation model assumes that length at birth (L0) is 0 mm (Equation 22). In many of species268

of fish this assumption is likely to be a reasonable assumption. However, in some species, for example269

live-bearing teleosts and many sharks, L0 is considerably larger. When modelling fish growth with270

the von Bertalanffy function, this is accounted for with the inclusion of the t0 parameter, which is271
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the theoretical age at with the length of the animal would be 0. In most cases the t0 is ≤ 0, which272

indicates that L0 ≥ 0. In cases where t0 > 0, L0 is < 0 which is biologically impossible, and the von273

Bertalanffy growth function may not be the most appropriate model to use in these situations. The274

effect of alternative growth models has not been examined in this study. However, the sensitivity of275

the estimation model to L0 > 0 was examined in Test 6. For this test, the length compositions were276

generated with L0 ranging from 0 to 0.25L∞ for each species. To generate the length compositions,277

the appropriate t0 parameter was calculated in the operating model by manipulating Equation 6:278

t0 =
ln
(

1− L0

L∞

)
k

(41)

Test 7 investigated the sensitivity of the assessment model to the true F
M . For this test, length279

compositions were generated from 100 Monte Carlo simulations with the true F
M ranging from 0.01 to280

5, and the resulting estimated F
M was compared against the true value.281

Like many length-based methods, the LB-SPR technique is an equilibrium-based method, which282

compares the observed length composition of the catch with the expected length composition in equi-283

librium conditions. In reality an exploited stock is rarely at equilibrium. Even if exploitation rates284

are held constant for some time, a stock is still likely to be at disequilibrium due to variability in285

recruitment. The last 3 tests examined the sensitivity of the estimation model to population dise-286

quilibrium by generating length compositions from stocks with variable recruitment. For Test 8, 200287

Monte Carlo simulations of the operating model were projected forward under 4 levels of log-normally288

distributed recruitment variability, with σR set at 0.1, 0.3, 0.6 and 0.9 respectively. For each of the289

Monte Carlo simulations, a length composition of the catch was generated from the last year. Test290

9 repeated a similar test to Test 8, but with the addition of auto-correlated recruitment error, with291

a lag of 1 year and an auto-correlation coefficient of 0.6. Test 10 further extended the examination292

of recruitment variability by investigating the impact of episodic recruitment failure. For this test293

there was a 15% chance in any given time-step (usually yearly, but monthly for short-lived species)294

of recruitment failure. 200 Monte Carlo simulations were conducted for each of the 4 species for the295

same range of recruitment variability as Tests 8 & 9.296

15



Results297

The sensitivity tests revealed that, for all 4 species, there is a direct relationship between the accuracy298

of the estimated F
M and the assumed values of the parameters for the LB-SPR method (Figures 1a, b299

& c). When the 3 parameters of the LB-SPR model were set equal to the true values, the estimation300

model returned estimates of F
M , the selectivity parameters, and SPR that were very close to the true301

values (Figures 1a, b &c). The model had similar behaviour for all 4 species when M
k was misspecified302

(Test 1), with F
M over-estimated by about 70% when M

k was assumed to be 25% lower than the true303

value, and under-estimated by about 40% when M
k was assumed to be 25% higher than the true304

value (Figure 1a). The selectivity parameters LS50 and LS95 were insensitive to the assumed M
k .305

The exact relationship between F
M and SPR depends on the selectivity pattern; however, in general306

SPR decreases as F
M increases. As expected, the relationship between estimated SPR and the degree307

of misspecification in the assumed M
k parameter is the reverse to the pattern observed between the308

estimated F
M and assumed M

k , with SPR being increasingly over-estimated as the M
k parameter is309

assumed to be higher than the true value (Figure 1a).310

The estimation model was most sensitive to the assumed L∞, with considerable over-estimation in311

F
M when the assumed L∞ was specified to be higher than the true value (Test 2; Figure 1b). Sensitivity312

to the assumed L∞ increased with decreasing M
k , with Species I the most sensitive to misspecification313

of L∞ ( FM over-estimated by about 400% when L∞ assumed to be 25% higher than true value) and314

Species IV the least ( FM over-estimated by about 100% when L∞ assumed to be 25% higher than true315

value). The model under-estimated F
M when L∞ was assumed to be lower than the true value, with316

F
M estimated to be 0 (i.e. F=0) when the assumed L∞ was specified to be 10-20% lower than the true317

value. As with Test 1, the selectivity-at-length parameters were well estimated and were not sensitive318

to the misspecification of the assumed L∞ parameter. However, SPR showed the same sensitivity as319

F
M , with the estimated SPR rapidly increasing as the assumed L∞ was decreased below the true value,320

and rapidly decreasing when the assumed L∞ was increased above the true value (Figure 1b).321

The estimation model was relatively insensitive to the assumed CVL∞ for all 4 life-history types,322

although species with low M
k appeared the most sensitive to this parameter (Figure 1). The model was323

also completely insensitive to the temporal scale of the estimation model when X was above about 50324

(Figure 1d). Below this value, the model behaved somewhat chaotically and often did not fit the data325
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well.326

As expected, there was greater variability in the estimates of F
M , selectivity-at-length and SPR327

when sampling coverage was reduced. In particular, a sample size of 100 individuals often resulted in328

bias estimates of the selectivity-at-length parameters and F
M . However, even with the bias in these329

parameters, SPR was still estimated quite well for small sample sizes. The median bias in F
M was close330

to 0 for all sample sizes, and SPR was well estimated, particularly for sample sizes of 1000 individuals331

or greater (Figure 2).332

Species with higher M
k appear to be the most sensitive to the assumption that L0 = 0 (i.e. t0 = 0),333

however the estimation model was relatively insensitive to L0 > 0, with F
M being over-estimated by334

5-10% when L0 = 0.25L∞ (Test 6; Figure 3a). The estimation model was also not sensitive to the true335

F
M of the operating model and returned accurate estimates for the entire range of F

M (Test 7; Figure336

3b).337

There was relatively low bias in the estimated selectivity parameters when the assumption of a stock338

at equilibrium was violated (Test 8; Figure 4). Not unexpectedly, bias in the selectivity parameters339

increased with increasing recruitment error, however in most cases the selectivity parameters were340

estimated within 10% of the true values. A similar pattern was observed in the estimated F
M for all341

4 species, with variance increasing with increased recruitment error (Figure 4). However, the median342

bias in the estimated F
M for all 4 life history types was centred around 0, indicating that on average343

the method was successful in correctly estimating the parameters. The variance in the estimates of344

F
M and the selectivity parameters directly translates through to the estimates of SPR; however SPR345

appeared to be well estimated for all 4 life-history types and 4 levels of recruitment error (Figure 4).346

The inclusion of auto-correlated recruitment error resulted in increased variance in the 3 estimated347

parameters, particularly when σR was 0.6 or 0.9 (Test 9; Figure 5). The estimates of the selectivity348

parameters were reasonable, however the bias in F
M was often quite large. While the median bias349

in F
M was centred around 0, F

M was sometimes considerably over-estimated, which resulted in SPR350

being considerably under-estimated. In addition, F
M was also occasionaly under-estimated by close to351

100%, resulting in SPR being greatly over-estimated. There appeared to be little extra impact from the352

inclusion of episodic recruitment variability, with the estimation model appearing to behave in a similar353

manner to Test 8 (Test 10; Figure 6). As with the other tests involving stock disequilibria, the bias354

in the estimated parameters increased with increasing recruitment error, with F
M being occasionally355
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over-estimated and under-estimated by up to 100% when σR = 0.9.356

Discussion357

The length-based technique developed in this study offers an alternative method to estimate F
M ,358

selectivity-at-length and the spawning potential ratio (SPR) for an exploited stock based only on359

length frequency data. Length frequency data are one of the easiest and most affordable metrics to360

collect, and for many small-scale, data-poor fisheries, may be the only data that are available. Our361

technique provides a means of estimating the biological reference points, F
M and SPR, which previously362

required expensive and technically challenging catch-at-age analyses.363

In this study, we simulated length data from four species with diverse life histories, spanning364

the range of M
k in the meta-analysis of Prince et al. (this issue). The results from the simulations365

showed that the length based SPR (LB-SPR) method appeared to work well, especially for species366

with M
k > 0.53. However, it is likely that the model will be increasing biased for species with M

k < 0.53,367

as the method relies on detecting the signal of fishing mortality in the right-hand side of the length368

composition. Species with low M
k are expected to have an unfished length composition very strongly369

skewed to the left and as a consequence, fishing would not be expected to have a big impact on the370

size structure of the stock, as the length composition consists of adults of widely varying age, but at371

a similar size.372

As modelled here, the LB-SPR method assumes that length-at-age is normally distributed with a373

constant coefficient of variation (CV), an assumption that does not always appear to hold (Bowker,374

1995; Erzini, 1994). Detailed costly ageing studies are required to test this assumption, research375

that is not feasible for small-scale, data-poor fisheries. However, meta-analyses of existing length-at-376

age studies are likely to provide a cost-effective way to determine whether the assumption of normally377

distributed length-at-age is commonly violated, or if there are predictable violations of this assumption378

amongst some species. The impact of violating the assumption of normally distributed length-at-age379

has not been investigated in this study but knowledge of the distribution of length-at-age could be380

incorporated into the LB-SPR method for specific species.381
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Influence of variation in parameters on estimating SPR382

The accuracy of the estimated SPR at from the LB-SPR method depends on the precision of the383

M
k ratio and the CVL∞ and L∞ parameters that are assumed for the stock. The research required384

to estimate these three individual parameters directly from the stock is time-consuming, somewhat385

complex, and expensive; precisely the factors that limit age-based population modelling from being386

applied to data-poor and small-scale fisheries. Without relatively expensive ageing studies, it is difficult387

to obtain reliable estimates of the individual parameters M and k. A number of length-based methods388

exist which aim to estimate k from size-frequency or tagging studies (e.g., Pauly and Morgan, 1987;389

Siegfried and Sansó, 2006; Smith et al., 1998). Estimating M is often more difficult, especially for390

stocks with a long history of exploitation. However, the ratio of M
k is known to be often less variable391

between species than either of the individual parameters in the ratio (Beverton, 1992). Numerous392

rules-of-thumb have been developed to estimate L∞ in data-poor stocks. For example, Taylor (1958)393

suggested that the life-span of a fish species could be estimated as the age at which fish reach 95%394

of their asymptotic length; i.e. the mean length of the cohort is 0.95L∞at amax. Assuming that a395

cohort is at its mean maximum length (Lmax) at amax, this suggests that L∞ could be estimated by:396

L∞ = Lmax

0.95 (Pauly, 1984). If a stock is only relatively lightly exploited, it would be reasonable to397

assume that Lmax could be approximated by the maximum observed length. However, as demonstrated398

by Hordyk et al. (this issue, their Figure 1), the assumption that fish are 0.95L∞ at amax does not399

hold for species where M
k diverges away from the Beverton Holt Life History Invariant value of 1.5. For400

example, a species with a M
k ratio of 0.7 (i.e., species where individuals reach maximum size relatively401

early in life) would be expected to reach L∞at about 0.7 amax (i.e. Lmax = L∞), while a species with a402

M
k ratio of 2.3, i.e. a species that has indeterminate growth, would be expected to only reach 0.8L∞at403

the end of its life (i.e., Lmax = 0.8L∞) (see Figure 1 in Hordyk et al., this issue). If an estimate of the404

ratio M
k is known, then the equations derived in Hordyk et al. (this issue) could be used to estimate405

L∞ from Lmax and M
k , which could be used to as an estimate to parametrise L∞ for the LB-SPR406

model developed in the current study.407

Beverton (1992) demonstrated that a relationship between M
k and the ratio of size at maturity to408

asymptotic size
(
Lm
L∞

)
can be derived analytically for teleosts. Hordyk et al. (this issue) and Prince409

et al. (this issue) confirm this relationship from an empirical analytical approach with a meta-analysis410
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of these ratios for 123 species in the literature, and suggest that the co-varying ratios can be predicted411

for species on the basis of taxonomic relationships and a species’ life history strategy. Meta-analysis412

and life-history theory appear to offer a way of estimating these parameters for small-scale and data-413

poor stocks (Prince et al., this issue). Assuming that other closely related species, or nearby stocks,414

have a similar life-history and are well studied, the ratio Lm
L∞

from these stocks could be used as a415

starting estimate for the data-poor stock of interest (Prince et al., this issue).416

Influence of sample size on estimating SPR417

Hilborn and Walters (2001) warn against using length-based methods, and note that length compo-418

sitions are often not representative of the whole stock. Unrepresentative length samples would cause419

bias in any stock assessment method, and the resulting evaluation of the condition of the stock. Con-420

sequently, ensuring high quality, representative length data are collected for the stock should be an421

important research priority and emphasises the importance of designing rigorous sampling programs422

to collect length data. Since the LB-SPR method assumes that any large fish that are missing from423

the data have been removed by fishing, if the large fish are under-represented in the length sample for424

any reason, the LB-SPR method will over-estimate F
M and under-estimate the SPR.425

The precision of the estimated SPR the data on length composition can be increased by simply426

increasing the sample size of the length measurements. Gerritsen and McGrath (2006) recommend427

a rule-of-thumb where the minimum sample size is 10 times the number of length classes in the428

sample. Other simulation work suggests that sample sizes of 1,000 length measurements are required429

to sufficiently capture the features of a length composition Erzini (1990). This conclusion is supported430

by the simulation studies from our study which showed that the variation in the estimated SPR was431

reduced greatly when ≥ 1, 000 measurements were taken (Figure 2). In addition to measuring an432

adequate number of fish to increase the precision of the estimated SPR, the sampling design should433

consider the temporal and spatial distribution of the fished stocks to ensure that the true length434

composition of the stock is estimated in the sample (Gerritsen and McGrath, 2006).435

Dynamic effects on estimating SPR436

The model developed in this study assumes that the stock is in equilibrium which means that the437

current size composition of the stock is assessed against the expected size composition if the stock had438
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experiences a constant level of fishing pressure and constant recruitment. The assumption of constant439

fishing effort may hold for a number of years for the small-scale fisheries that are the focus of this440

methodology. The second assumption of constant recruitment, however, is unlikely to hold for many441

stocks (e.g., Myers, 2001). The simulation of variation in recruitment examined in this study ranged442

from low, where the standard deviation of recruitment = 0.1 (i.e.,σR = 0.1); and the difference between443

the strongest and weakest year classes is ≈ 1.5:1, to reasonably high, where σR = 0.9 and the difference444

in magnitude between the strongest and weakest year classes is ≈ 30:1. Not unexpectedly, the results445

of the LB-SPR model are most variable when the annual recruitment error is high. The results from446

our simulations showed that high recruitment variability is likely to cause considerable bias in the447

LB-SPR method, especially when σR is ≥ 0.6. At low levels of recruitment variability (σR = 0.1)448

and constant F, the stock is essentially at equilibrium, and F
M , the selectivity parameters, and the449

SPRs are estimated with minimal error (Figures 4, 5 & 6). However, as the recruitment variation450

was increased (σR = 0.6 and 0.9), the estimated F
M in any given year could be under-estimated by451

close to 100%
(
F
M = 0,SPR = 1

)
, or over-estimated by over 100% (Figures 4, 5 & 6). The bias452

in the estimated parameters in the simulations with recruitment error, however, was centred on 0,453

and SPR was estimated reasonably well, i.e. within 30% of the real value, in most of the Monte454

Carlo simulations for all four modelled species. Occasionally, particularly for high recruitment error455

(σR = 0.9), the estimates of F
M and the selectivity parameters were very biased, resulting in large over-456

or under-estimates of SPR.457

As the LB-SPR model is an equilibrium based method, and assumes constant recruitment, it cannot458

fit multi-modal length compositions well. Modes in length compositions often occur from a disparity459

in year class strength, and following the progression of these modes through time is the foundation of460

many length-based techniques used to estimate growth and mortality (Pauly and Morgan, 1987). If461

the length frequency of a population is highly multi-modal, the LB-SPR model will not fit the data462

well, and any estimates of F
M , selectivity and SPR are likely to be unrealistic. While a good fit of the463

LB-SPR model does not necessarily imply that the estimates are accurate (the model can potentially464

fit the data very well even if Mk or L∞are mis-specified), a poor fit of the model to multi-modal length465

data indicates that the results are likely to be untrustworthy. If the year-classes are clearly identified as466

modes in the length data, the LB-SPR method may not be the most suitable technique for estimating467

the condition of the stock and other more traditional length-based methods may be more applicable.468
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Alternatively, collecting data at a higher temporal resolution (e.g. monthly for short lived species)469

and then aggregating the data over a year, may provide a means of constructing a length composition470

more representative of the equilibrium size composition. .471

The management strategy evaluation (MSE) modelling conducted by Wayte and Klaer (2010) and472

Prince et al. (2011) on harvest control rules based on equilibrium based Catch-at-Age and SPR-based473

size targets, shows that while individual assessments of size composition may be imprecise due to the474

transitory dynamics of a population’s size structure, smoothed trends estimated over several years475

provided an accurate basis for harvest control rules. Our observations support their finding, in that476

some of the transitory size dynamics we simulated gave LB-SPR estimates that were quite biased, but477

the mean bias across estimates was zero. We have incorporated the LB-SPR into a harvest control rule478

and our own limited MSE modelling suggests that it will be able to respond to transitory dynamics479

similarly to those modelled by Wayte and Klaer (2010) and Prince et al. (2011) and provide an accurate480

basis for harvest control rules. This will be a topic of further research.481
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Figure Captions574

Figure 1: Bias in the estimated F
M and resulting estimate of SPR for the 4 simulated species for a)

Test 1: misspecification of M
k , b) Test 2: misspecification of L∞, c) Test 3: misspecification of CVL∞ ,

and d) value of the X parameter. Asterisks in the SPR panels of a), b) & c) indicate the “true” SPR
for each species.
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Figure 2: Bias in the estimated F
M , LS50, LS95 and resulting estimate of SPR for a range of sample

sizes for a) Species I, b) Species II, c) Species III, and d) Species IV.
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Figure 3: Results of a) Test 6, showing the bias is estimated F
M for the 4 species for L0 ranging

0–0.25L∞, and b) comparison of true F
M to estimated F

M for the 4 species.
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Figure 4: Bias in estimated F
M , LS50, LS95 and the resulting estimate of SPR with recruitment error

for a) Species I, b) Species II, c) Species III, and d) Species IV.
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Figure 5: Bias in estimated F
M , LS50, LS95 and the resulting estimate of SPR with auto-correlated

recruitment error for a) Species I, b) Species II, c) Species III, and d) Species IV
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Figure 6: Bias in estimated F
M , LS50, LS95 and the resulting estimate of SPR with recruitment error

and episodic recruitment failure for a) Species I, b) Species II, c) Species III, and d) Species IV
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