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Abstract— The Ethernet speed has increased sending and 

receiving frames from 40 to 100 Gbps after the IEEE P802.3ba 

released. The industry and academia have focused scaling up the 

TCP/IP protocol processing for 40-100 Gbps. LSO is a de facto 

standard, which is offloaded to network interface for sending 

packets up to 10 Gbps. It not clears whether a network interface 

can support such function for new 40-100 Gbps.  The widely use 

of the hardware-based NIC such as the use of a fully customized 

logic based network interface can be due to the following reasons; 

Still it is not clear whether the General Purpose Processor (GPP)  

can provide the processing required for high-speed line beyond  

the 10 Gbps. Also, the limit of the GPP’s clock in supporting the 

processing of network interfaces. However, using a RISC core 

engine for offloading the LSO function can deliver some 

important features to network interfaces design, such as 

simplicity, scalability, shorter developing cycle time. In this 

paper, we have investigated using a specialized RISC core to 

process the LSO functions for TCP/IP and UDP/IP for high-

speed communications rate up to 100 Gbps. To achieve this, we 

have enhanced the LSO algorithm to scale it to 100 Gbps. A fast 

DMA is used to support transferring data in the network 

interface. The LSO processing methodology on the network has 

presented. In addition, the RISC’s performance and data 

movements for high communication rate up to 100 Gbps have 

been measured. A 148 MHz RISC core can support the sending-

side processing for up to 100 Gbps transmission speed for the 

TCP/IP and UDP/IP protocol when the MTU is applied (1500 

bytes). A DMA with 3759 MHz is required to eliminate the idle 

cycles while transferring data over the 64-bit local bus.  

Keywords-component; Large Sending Offload (LSO); RISC 

core; TCP/IP; VHDL simulator; Cycle-accurate performance 

evaluations. 

I.  INTRODUCTION  

     The early stage of development of high-speed network 
cards used off-the-shelf components and integrated these 
components on a Printed Circuit Board for the implementation 
of the network card. It is possible to integrate all the discrete 
components needed for NI in a single chip [3, 11] in ASIC. 
Moreover, specialized engine from the sequential machines 
and desecrates logic to address the need for a protocol reduces 
the cost of design and improve reliability and performance 
[11]. Using ASIC to design NI could provide a greater energy 
efficiency and better integration than programmable-based.  

However, ASIC also limits flexibility, limits upgradability, 
and makes NI design tailoring difficult in changing the 
algorithm of the protocol or supporting a new version of 
protocols. The wide use of the hardware-based NIC, such as 
the use of a fully customized logic-based network interface, 
can be expected for the following reasons: There is no clear 
indication whether the GPP speed provides adequate 
processing to deal with protocol functions such as the LSO 
and the data transfer rate, such as 40Gbps, or 100Gbps. The 
new trend of designing the network interface is to have all the 
network interface functions implemented in a single chip. 
Also, use of commercially available GPP as a core engine in 
an NI is expensive and difficult to integrate within the 
network interface chip. Furthermore, the size of these 
embedded cores is large enough to be accommodated in the NI 
chip, since it has not been designed for the NI's functions. 

     The recent advances in the area of CAD tools and 
Hardware Description Languages (HDL) have made 
the design of embedded processors for the performance of 
certain functions is possible. Furthermore, with HDL, it is 
possible to adapt these processors in order to comply with the 
functions that they are designed for. System-on-chip 
technology has enhanced the possibility of integrating 
the hardware blocks required in the NI and the GPP to 
be carried on one chip [12]. 

     Many cost effective embedded cores have become 
available and can be ported to an ENI chip. However, these 
processors are not optimized for LSO. Since these 
processors are designed supporting general functions, such as 
the control unit has to support general functions, complex 
instructions and long and variable execution time. These GPP 
also has a large number of registers to accommodate all the 
possible use. These features of the GPP might not need in NI. 
These advances in the GPP have directed this research in 
investigating the use of specialized RISC embedded cores in 
the high-speed scalable NI design. 
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The rest of this paper is organized as follows: Section 2 discusses 

the sending side processing. In section 3, the sending side 

structure in the ENI model. The processing anaylsis presents in 

section 4. The core design has been highlighted in section 5.  The 

VHDL-based simulation results are discussed in the next section. 

Conclusion is in the last section.     

2012 International Symposium on Communications and Information Technologies (ISCIT)

978-1-4673-1157-1/12/$31.00 © 2012 IEEE 844



 

 

 

II. NI CONSIDERATION  

In designing the NI, we have avoided using multiprocessing 
cores as processing cores at the NIC to serve a single function, 
such as the ones developed at Rice University and Purdue 
University which have proposed strengthening the network 
card with six processors to enable it to perform the 10 Gbps 
[2, 6].  The idea behind the multiprocessor is to divide the 
processing required for each incoming or outgoing packet. A 
166 MHz controller with six processors can achieve 99 
percent of theoretical throughput of 10Gbps. The designers 
Hyong, Vijay and Scott developed the Tigo programmable NI 
which was released in 1997 [5]. This depends on two 88 MHz 
MIPS R4000-based processors for the completion of data 
processing. Both processors perform either inbound or 
outbound functions. Despite these approaches achieving the 
goal of these networks, there are several concerns.  The 
complexity of these proposed models is in the sharing of the 
main resources in the NI between the embedded processors. 
This is causes some of these processors to become idle after a 
given period. In addition, there are increases in the idle time 
between these processors since all of these processors intend 
to operate the network protocol processing over a single bus. 
Furthermore, accessing local memories, such as the instruction 
memory, also allows only one processor at a time. Another 
concern is that these processors occupy a large space in the 
NIC and can increase the development time and cost. Besides 
all that, Amdahl’s law states that the speedup achievable on a 
parallel computer can be materially limited by the existence of 
a small fraction of inherently sequential code which cannot be 
parallelized. In this case of parallelization, Amdahl's law [7, 9] 
explains the in-depth processing inside a design. The 
implementation program is usually divided into two portions: 
the first, part "P", is the amount of the protocol processing 
program that can be made parallel, and the “1- P” is the other 
portion of the processing that cannot be parallelized; it 
remains serial. The maximum achievement on the NIC by 
using the N processors is :  

                     

     Assuming the P is 90%, Then 1- P = 10 %. With this high 
assumption of parallelized code (90%), the problem is sped up 
by a maximum of a factor of 10, no matter how large value 
of N used. Accordingly, using a number of processors to 
support the LSO can be accomplished only if this design has 
extraordinarily high values of P: This is known as the 
embarrassingly parallel problem. The complicity could 
increase when LSO Software migrations will most likely start 
from serial code bases. Therefore, the target software design 
needs to identify the solution to meet the migration 
requirements. Furthermore, the programming model should be 
Symmetric Multiprocessing (SMP) or Asymmetric 
Multiprocessing (AMP). However, CPU intensive code for 
parallel processing using SMP is difficult to redesign.   

     This study aims to investigate the possibility of improving 
the structure of the NI by placing a specialized RISC as a core 
unit for the 100 Gbps for LSO to support the TCP/IP and 
UDP/IP.  

       We designed a single-issue RISC cores supported with 
three pipeline stages and forward engine to process the LSO 
functions. Since the receiving-side and the sending-side 
operation are completely independent, the NI is designed to 
handle both operations in parallel. In this paper, we have 
focused on the sending side only. The RISC cores 
performance is measured while processing the LSO function.    
The wide use of TCP and UDP applications over the Ethernet 
amounts to roughly 82% of the protocol usage [8], which has 
directed this research to evaluate these protocols. Other 
protocol types also can be studied and evaluated within this 
model.  The scalable NI, therefore, can be used as an open 
guide for protocol processing and future use. 
     The analysis of the packet processing of TCP/IP and UDP 
in the NI will be addressed. The processing time in the NI is 
also measured to adjust the DMA and RISC's clock rates for 
100 Gbps.  
 
     The rest of this paper is organized as follows: Section 2 
discusses the sending side processing. In section 3, the sending 
side structure in the ENI model. The processing anaylsis 
presents in section 4. The core design has been highlighted in 
section 5.  The VHDL-based simulation results are discussed 
in the next section. Conclusion is in the last section.     

 

III. LARGE SENDING  OFFLOAD (LSO ) 

  
     It is evident that the LSO feature is helpful only on the 

transmit side by freeing an OS from the task of segmenting the 

application’s 
Transmit data into MTU-size. Using LSO, the core engine in 
the NI divides the data into Maximum Segment Size (MSS) 
(1460 bytes for TCP segment or 1472 bytes for UDP 
fragment). The Sending Embedded Processor (SEP) also 
generates the packet header attaching it to the payload part and 
eventually sending it to the MAC layer to be sent to a network 
line.  
     Transmissions are according to the protocol type. For 
instance, TCP/IP protocol uses the two identifiers in each 
packet; the Sequence Number (SN) and the Acknowledgment 
Number (AKN). The beginning segment carries the start 
sequence number of data. Segments also carry an AKN, which 
is a SN of the next expected data portion of the transmission. 
[4]. We also tried to use the UDP to be fragmented. 
Fragmenting the UDP is based on information on the IP 
header, such as the MF field and the offset.    
      LSO has designed by shifting the higher layer transmits 
processing to a NIC. For example, the processing for 
production packets controls data for each outgoing packet. The 
core engine in the NI is responsible to handle these tasks 
related to transport layer. In the smart NIC [13, 15] 
implementation, the datagram was sent to a NIC’s buffer. The 
datagram can be sized up to 64 K byte (the receiver’s TCP 
window size is set to 64 KB). At the NI, the core engine after 
reading all the information related to the moved datagram, 
such the position of the message inside the NIC’ buffer and 
the packet size, then SEP first examines the size of datagram. 
The core engine starts by generating the network header for 
each chunk of data. The smart NIC holds a TCP/IP header 
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template that has the IP total length, the initial SN. A copy of 
the template header whenever there is a segment data needs to 
be sent to a network.  It updates the essential fields inside the 
TCP and the IP header of the copied headers, such as the SN 
and in the datagram total length before sending a packet. 
Attached this copy to the selected segment to create a 
complete packet then send it to the MAC layer. However, 
these processing scenarios in these implantations are 
successful in offloading the LSO to the NIC, but still cannot 
be scale it to express network since the header copy itself 
required at least 5 cycles over the 64-bit bus (40 bytes header). 
In addition, there was no explanation for the data movements 
methods inside the NIC.  
     The main embodiment of this work is to provide an 
alternative method for sending data faster to the physical and 
MAC layer. This approach has focused on the header process 
and data movements. For header processing, we have provided 
a new algorithm for enhancement of the flow of the packets 
processing. After a host CPU specifies data to be sent to a 
network (larger than the MTU) and send to NI's Buffer, a 
Beginning of Message (BOM) processing is the first step 
required by NIC's core. The IP identification values are set 
based on the initial value. Conceptually, each packet required 
to apportion its SN and AKN number inside the TCP header. 
Within the processing of the BOM, the IP total length is 1500 
bytes (the default MTU) unless the two networks ends 
specifies different size during the connection setting up. At the 
stage of Continuation of Massage (COM), only needs to 
update some fields inside network packet. For instance,  the 
core engine requires updating the SN and the AKN inside the 
TCP. In the COM processing, the total length of the data gram 
will remain the same. In addition, the previous AKN is a SN 
of the current packet. End of Message (EOM) is the last part 
of the message, which contains the remaining data of the sent 
datagram. When the message is small (less than MTU), a 
Single Segment Message (SSM), can be sent as is to the MAC 
layer. Instead of copy a template header as in the another 
scenario, the core processor at the NIC decides which method 
of processing need for each segment either the BOM, 
COM,EOM or SSM.  
     To reduce the processing the core processor required for 
generating the headers, we have added extra features to the 
LSO processing, which is overlapping in manner. 
Processor can benefit from the transfer of data period by 
implementing other processing required for the followed 
packets. We have adjusted the LSO assembly code to keep the 
RISC busy while transferring data. For example, the core 
calculates the remaining datagram size inside the NIC's buffer 
to figure out which subroutine code should follow either COM 
or EOM. 
 

IV. NI MODEL FOR SENDING SIDE 

We have structured the proposed NI into three parts: 
communication Line Interface (LI), kernel processing, and 
Host Interface (HI) “Figure 1”.  The HI and LI are 
implemented in hardware. The processing unit in the NI, 
which commonly processed functions that are related to 
header processing, is an embedded specialized RISC. Since 
the receiving-side and the sending-side operations are 

completely independent, the NI is designed to handle both 
operations in parallel.  Two RISC-cores are considered for 
being in the NIC:  one for Sending-side and the other for 
receiving-side. 
   
 
 A. Communication with the host  
 
     The NI communicates with the host through five FIFO 
buffers. Two FIFOs were implemented as memory-based, and 
the pointer of each FIFO is stored in the RISC's register.  The 
RISC reaches any FIFO after reading its address.      
 

Sending Buffer 

Interface (SBI)

RISC core

Receive 

Embedded 

Processor  ( REP)

DMA
Memory 

manage

FIFO2  Status and 

control messages 

FIFO1   sending status

Sending Buffer  (SB)

Line Interface 

(LI)
Host Interface (HI) Processing Area

To/

From 

Host

Local bus

 
  
                            Figure 1: Sending block diagram  
 
      However, the interrupt mechanism that happens during the 
exchange of information may affect the overall performance 
of NI or the host CPU. Interrupting the host CPU or RISC 
cores (SEP) during their processing time will cost a certain 
amount of time in processing the interrupting task. These 
interrupts reduce the performance of the processing power of 
the Host CPU.  
     After the host CPU moves the message to the SB, the host 

required to notify the sender RISC by sending the location of 

the message inside the Sending Buffer (SB) and other 

necessary information needed for segmented the message, 

such as the MSS through FIFO 2. The SEP also sends the 

notification of the sending data through FIFO1 
 
 
B. Buffers  
 
      The Sending Buffer Interface (SBI) VHDL based contains 
two buffers each of which hold one packet (1500 bytes).  The 
sequential machine controls the SBI and allows only one 
buffer to be active and to receive data at a given time. The 
buffer will remain enabled until the complete packet has been 
stored.  
     The sequential machine will then allow the stored data to 
be sent out while it fills the other buffer. 

     SB is designed to be dual port memories. The SEP and the 

host can access the local memories simultaneously.  64-bit 

local bus is used to send data from the SB to SBI.  

C. UDP processing  

Since the receiving-side is entirely independent of the 
sending-side, the SEP, DMA and other devices are sharing a 
single bus to operate the LSO.  
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     Fragmentation is required if a message over the MTU. The 
SEP is responsible to send this message over a multi of small 
packets to a network, where each fragments transfer as a 
separate packet, header and payload. The IP header has three 
fields that used for fragmentation processing [14]; 
Identification ID (16 bits). A datagram ID set by the source. 
Fragmentation offsets (13 bits), required to distinguish the 
location of the datagram. It also specified in multiple of 8 
bytes. The flags filed  (D-bit and M-bit)  inside the IP header 
is used is need during the fragmentation procedure. The D-bit 
(do not fragment bit) prevents fragmentation. The M-bit 
specifies if this fragment is the last one in the original message 
or not. 
      Each packet carries a relevant data in mentioned fields. 
For example, if the SEP wants to send 6840 bytes of data to a 
network (Figure 2). The original packets’ header has the 
identification ID = “10”, M bit = “0” (since no packets 
following) and the offset = 0 (the packet is a single packet). 
The MTU is 1428 bytes. This means packet can carry 1400 
bytes in the payload part. The SEP divides the original packet 
to several fragments. The BOM has the first fragment data 
(1400 bytes). The header information is as following; the 
packet ID = “10” , the M bit = “1” indicates more packets 
follows has the same ID. The offset is “0”. The COM is the 
followed packet, which has ID = “10” and the offset is 175 
(1400/8) because it is located at a relative location of 175 
bytes.  The M bit is “1”. The EOM is the last packet of the 
message, which hold the rest of the data, has the M bit = “0”. 
The offset is 700 (5600/8).  
 

MF

0

Offset

0

Data 6840 bytes

MF

1

Offset

0
Data 1400 bytes

MF

1

Offset

175
Data 1400 bytes

MF

1

Offset

350
Data 1400 bytes

MF

1

Offset

575
Data 1400 bytes

MF

0

Offset

700
Data 1240 bytes

BOM

COM

COM

COM

EOM

Fragment 1: 

data bytes  0- 

1399  and                    

ID = 10 

Fragment 1: data              

bytes  1400 – 2799             

ID = 10 

Fragment 1: data 

bytes  2800 – 4199                 

ID = 10 

Fragment 1: data 

bytes  4200 – 

5599        ID = 10 

Fragment 1: data 

bytes  5600- 6839            

ID = 10 

 
Figure 2: procedure of sending of 6840 bytes    
 
D. TCP segmentation 
  
    Segmentation is the term used to describe the process of 
cutting streams of data into smaller packets, Maximum 
Segment Size MSS.  The SEP has to divide the original 
message (larger than the MTU) into a number of segment data. 
Each packet has IP and TCP header. Each of these segment 
has its own TCP and IP header. TCP header has a SN the 
packet has to have and the AKN which the receiver expect to 
get. The segmentation processing starts with the REP reader 
the packet lent from the IP header, the SN and AKN from the 
TCP message that a host delivered to SB. SEP also reads the 
information related to this message such the MSS. Start 
processing the SN, AKN and total length of a datagram.  
Instead of copying the packet’s header into SEP’s registers, 
updating these fields inside the SB. Next, the SEP initiates the 

DMA to transfer the header and the appropriate segment data 
to the SBI.      

 
E. Data movements   
      
     Using the Programmed I/O (PI/O) method for data 
movement makes the RISC core controlling the bus while data 
is moved. Where, the RISC processor associated with the 
transfer of data from one location to another, especially when 
moving a large amount of data (1640 bytes). The DMA is used 
for transferring data between the SB and the SBI.  The RISC 
core initiates and controls the DMA. Since the local bus is 
shared between the DMA and the RISC core, the RISC core 
requires releasing the local bus to let the DMA performing the 
data transfer. Each transfer of 64-bits consumes two cycles. 
First cycle, the DMA reads the source buffer to get 64-bits to 
the DMA’s register. During the second DMA cycle, the words 
move from the DMA’s register to the destination buffer. The 
DMA state machine will then provide the read and write 
signals to the source and destination buffers. The state machine 
in the DMA is also responsible for incrementing of the address 
counter. The use of the DMA reduces the RISC processor 
instructions cycles. 
     We have simulated the Segmentation and fragmentation 
function for TCP and UDP respectively. The DMA controller 
is responsible for moving the packet header as well as the 
payload part from SB to SBI for both TCP and UDP protocol, 
where it needs 375 cycles. With pervious standard LSO, the 
core engine responsible to send the header from its register to 
SBI. In fact, this situation required additional instructions 
from the RISC core to transfer 40 bytes (TCP/IP headers) over 
the 64-bus. Further, the core has to wait for the DMA 
controller to release the local bus in order to deliver the 
headers from its registers to SBI. The core also requires, at 
least,  5 cycles to store the network header.   In this simulator, 
the RISC core initiates the DMA to transfer data from SB to 
SBI. The core is responsible to update the packet headers for 
each segment inside the SB. The processor uses several 
pointers in order  to continue updating data in the SB; the Start 
Header Address Pointer (SHAP), End-Header Address Pointer 
(EHAP), Start Payload Pointer (SPP) and End-payload Pointer 
(EPP).  

IP header

TCP header

First Segment 

Data

Network 

headers

SHAP

EPP

SPP
EHAP

 
Figure 3: New approach of sending packets over the local bus.   
 
The RISC core uses the SHAP pointer for reach the network 
headers in side the SB. The SPP pointer helps the RISC to 
locate the start. The EPP is used to point at the end of the first 
segment. The RISC updates this pointer during the data 
movements of the first packet (the BOM). 

SHAP à  start address,  
EHAP à SHAP + 40 bytes   
          (or 8 bytes for UDP) 
SPP à  EHAP + 8 bytes    
                          (46-bit) 
EPPà SPP + MSS   
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                 IV CYCLE PROCESSING  
 
The TCP payloads vary from 6 to 1640 bytes [1]. The DMA 
required moving data (i.e MSS is 1460 bytes) from the SB to 
SBI is 366 cycles (183 cycles to read payload data over the 
64-bit bus to the DMA's data register and 183 cycles to store it 
to RB). Clearly, the RISC core will be in idle mode until the 
DMA completes moving the data Figure 4. The RISC can 
execute 7 instructions during the data moments and becomes 
idle with MSS at about 359 instructions. The idle cycle's 
time affects the performance of the network card and its 
capabilities to deal with high speed networks.    
 
 
 
 
 
 
 
 
 
          
 
     
    Small size packets, such as 64 until 256 bytes, may require 
less DMA cycles than other packets that have more payload 
bytes. However, using these small size packets could improve 
the NI's performance, yet it affects the end node's throughput 
[10]. We have focused on the 512 bytes packet to MTU 
packets (1500 bytes). The use of small packets can be 
studied on this Model, but they bear little payload data and 
may not be able to achieve 100Gbps. 
 
   We have studied the ways that can be used to reduce or to 
eliminate the idle cycles of the RISC. One of these solutions is 
the use of a multi-bus based on the sending side. The RISC 
can access the multiport memories while the DMA controller 
moves data. The other approach is to use a DMA that runs at a 
higher clock rate than the RISC. We have adapted the way of 
using it that we presented in “Figure 1”, since it is a 
straightforward data path scenario and easily implemented 
without any changes in the NI's architecture. We have started 
adjusting the DMA's clock to reduce the idle cycles. In order 
to study and analyse the cycle –accurate NI simulator, we sent 
different large packets to the sending side. Each time we 
increased the DMA's clock to reduce the idle cycles, we have 
noticed that the RISC core and DMA controller were 
working quickly to complete each message and transfer it to 
RB.   
     When DMA’s clock has five times the embedded processor 
core, the NI performance is increased significantly, where 
most, if not all, the idle cycles are reduced Table 1. Table 1 
presents the total RISC cycles required for TCP/IP and 
UDP/IP packets when the DMA has five clock rates as RISC 
core. The DMA clock rate was measured while performing 
different packet sizes Figure 5. Figure 5 also shows the RISC 
clock rate in MHz for each packet before the idle cycles start. 
     When the packet size is 512 bytes, the idle cycles are 
reduced significantly. We have fixed the DMA clock rate to 

2115 MHz and used this rate with other packet sizes (larger 
than 512 bytes). This rate of the DMA’s clock helps to reduce 
the idle cycles in the other packets those are larger than the 
512 bytes, such as 1500 bytes “Table II”. This is 
natural because the number of messages that the NI send is 
less than in the case of 512, which is only 81274382 packets 
per second when the packet size is MTU [1]. 
      In the relation to the cycle accurate simulations and the 
RISC core cycles for LSO function, we have found that using 
a DMA controller five faster than the RISC core will improve 
the performance. 

 
Figure 5: The RISC and DMA clock rate in MHz for TCP 
Segmentation and  UDP fragmentation (when the DMA has  five 
RISC's clock rate) 

 
     Because the RISC core can accomplish part of the 
processing while the DMA controller is moving the packets 
from the SB to SBI, the RISC core is forced to be idle for a 
few cycles until the DMA completes the payload transfer. 
Therefore, using a faster DMA will help to eliminate most of 
the idle cycles of the RISC core.  
 

V. RISC CORE  

     The simulation results demonstrated that a RISC-based NI 
is scalable for a transmission line with a speed up to 100 Gbps. 
To reduce the design complexity, we presented a simple data 
path of the NI.  
     This simplicity helps the RISC cores to manage and 
process the LSO at a low clock rate. Further, it has made it 
possible to reduce the cost of development of RISC-based NIs. 
Such NIs can be flexible enough to support protocol changes 
or can even adapt new protocols, whereas, the customized 
logic-based NIs supports certain functions.  
     Design a RISC core for specialized application, namely NI 
control and data path, is simpler than using the off-the-shelf 
GPP processors.  These general-purpose embedded processors 
are not optimized for a LSO function. Hence, some portions of 
GPP instructions that support general-purpose applications 
may not be required for the ENI design. For example, the 
Floating-Point Unit is not necessary for network interfaces. 
Also, we found that, using a data cache to store data is not 
required since it will not enhance the NI's performance or 
reduce the RISC' clock for this application. The elimination of 
these units in the design the core simplifies the process of 
development of NI and reduces the size and cost.   
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       We have noticed also that the RISC performs a few of the 
instructions to complete processing the LSO. These 
instructions are load, store, arithmetic and logic operation and 
conditional branches. The minimum type the instructions set 
used in the LSO function would make the control unit design 
simple and fast. In addition, the limited number of instructions 
that are required to support the Ethernet interface processing 
can reduce the size and complexity of the control unit leading 
to an increased speed. 

VI. SIMULATION RESULTS    

     In the LSO function processing, it is clear that the RISC 
processing time becomes less when the DMA has a clock rate 
faster than the RISC core is (Five times faster the RISC's 
clock) where all the idle cycle associated with the RISC core 
processing has eliminated.  We monitored the highest clock 
rate of the RISC core during processing the different packets. 
We have found the VHDL behavior model for the sending unit 
of the network interface has a 148 MHz RISC processor which 
can support 100 Gbps lines, when   the DMA speed is 2115 
MHz, and the packet size is 1500 bytes “Figure 6”. A RISC 
core with 423 MHz can be used to process the LSO at 100 
Gbps when the packet size is 512bytes.  

 

 
Figure 6:  LSO for TCP/IP using DMA for data transfer (when the DMA 

2115MHz) 

VII. CONCLUSION    

    We have presented computer simulations results to measure 
the amount of processing required for LSO functions for 
TCP/IP. The simulation results have shown that a cost 
effective embedded RISC core can provide the required 
efficiency of the network interface to support a wide range of 
transmission line speed, up to 100 Gbps. A 423 MHz RISC  
core can support the sending side processing for up to 100 

Gbps transmission speed for TCP/IP. A fast DMA (2115 

MHz) is required to eliminate the RISC idle cycles.  The 

DMA clock could be considered high, and this is because of 

small size of the local bus (64-bit). The DMA clock rate 

decreases significantly if the local bus becomes wider (i.e 128 

–bit). Using cost effective RISC supporting higher speed 

network up to 100 Gbps for TCP/IP and UDP/IP is possible. 

The scalable NI based programmable could provide the 

flexibility needed for adding a new, or modify, protocol 

functions, while ASICs based solutions could provide better 

performance but are not flexible enough to add new  or modify 

features. 
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    Packet  Type 

Packet Size 

1500 bytes 1024 bytes 512 bytes 

Total 

RISC 

Inst. 

Idle 

Inst

. 

Total 

RISC 

Inst. 

Idle 

Inst

.  

Total 

RISC 

Inst. 

Idle 

Inst. 

 

 

T

C

P 

Single Segment Message  45 37 33 25 20 12 
Beginning Of Message  49 31 37 19 24 5 
Continuation Of Message  41 31 29 19 16 6 
End Of Message  41 37 30 25 17 11 

 

  

U

D

P 

Single Segment Message  45 37 33 25 22 13 
Beginning Of Message  49 31 37 19 25 7 
Continuation Of Message  40 32 28 20 16 8 
End Of Message  40 37 28 25 16 12 

 

 
    Packet  Type 

Packet Size 

1500 bytes 1024 bytes 512 bytes 

Total 

RISC 

Inst. 

Idle 

Inst. 

Total 

RISC 

Inst. 

Idle 

Inst

.  

Total 

RISC 

Inst. 

Idle 

Inst

. 

 

 

T

C

P 

Single Segment Message  18 9 15 6 20 11 

Beginning Of Message  23 4 20 1 24 5 

Continuation Of Message  14 4 11 1 16 6 

End Of Message  
15 9 11 5 17 11 

 

  

U

D

P 

Single Segment Message  8 0 8 0 22 13 

Beginning Of Message  23 5 20 2 25 7 

Continuation Of Message  13 5 11 3 16 8 

End Of Message  13 9 11 7 16 12 
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