

MURDOCH RESEARCH REPOSITORY

This is the author’s final version of the work, as accepted for publication
following peer review but without the publisher’s layout or pagination.

The definitive version is available at

http://dx.doi.org/10.1109/ISCIT.2012.6381020

Elbeshti, M., Dixon, M. and Koziniec, T. (2012) Cost effective RISC core
supporting the large sending offload. In: International Symposium on

Communications and Information Technologies (ISCIT) 2012,
2 - 5 October 2012, Gold Coast, QLD

http://researchrepository.murdoch.edu.au/23767/

Copyright: © 2012 IEEE.
It is posted here for your personal use. No further distribution is permitted.

http://dx.doi.org/10.1109/ISCIT.2012.6381020
http://researchrepository.murdoch.edu.au/23767/

 Cost effective RISC core supporting the Large

Sending Offload
For high communication rate up to 100 Gbps

Mohamed Elbeshti
1

School of IT, Murdoch Uni

Perth, Australia

M.elbeshti@murdoch.edu.au

Terry Koziniec

School of IT, Murdoch Uni

Perth, Australia

T.koziniec@murdoch.edu.au

Abstract— The Ethernet speed has increased sending and

receiving frames from 40 to 100 Gbps after the IEEE P802.3ba

released. The industry and academia have focused scaling up the

TCP/IP protocol processing for 40-100 Gbps. LSO is a de facto

standard, which is offloaded to network interface for sending

packets up to 10 Gbps. It not clears whether a network interface

can support such function for new 40-100 Gbps. The widely use

of the hardware-based NIC such as the use of a fully customized

logic based network interface can be due to the following reasons;

Still it is not clear whether the General Purpose Processor (GPP)

can provide the processing required for high-speed line beyond

the 10 Gbps. Also, the limit of the GPP’s clock in supporting the

processing of network interfaces. However, using a RISC core

engine for offloading the LSO function can deliver some

important features to network interfaces design, such as

simplicity, scalability, shorter developing cycle time. In this

paper, we have investigated using a specialized RISC core to

process the LSO functions for TCP/IP and UDP/IP for high-

speed communications rate up to 100 Gbps. To achieve this, we

have enhanced the LSO algorithm to scale it to 100 Gbps. A fast

DMA is used to support transferring data in the network

interface. The LSO processing methodology on the network has

presented. In addition, the RISC’s performance and data

movements for high communication rate up to 100 Gbps have

been measured. A 148 MHz RISC core can support the sending-

side processing for up to 100 Gbps transmission speed for the

TCP/IP and UDP/IP protocol when the MTU is applied (1500

bytes). A DMA with 3759 MHz is required to eliminate the idle

cycles while transferring data over the 64-bit local bus.

Keywords-component; Large Sending Offload (LSO); RISC

core; TCP/IP; VHDL simulator; Cycle-accurate performance

evaluations.

I. INTRODUCTION

 The early stage of development of high-speed network
cards used off-the-shelf components and integrated these
components on a Printed Circuit Board for the implementation
of the network card. It is possible to integrate all the discrete
components needed for NI in a single chip [3, 11] in ASIC.
Moreover, specialized engine from the sequential machines
and desecrates logic to address the need for a protocol reduces
the cost of design and improve reliability and performance
[11]. Using ASIC to design NI could provide a greater energy
efficiency and better integration than programmable-based.

However, ASIC also limits flexibility, limits upgradability,
and makes NI design tailoring difficult in changing the
algorithm of the protocol or supporting a new version of
protocols. The wide use of the hardware-based NIC, such as
the use of a fully customized logic-based network interface,
can be expected for the following reasons: There is no clear
indication whether the GPP speed provides adequate
processing to deal with protocol functions such as the LSO
and the data transfer rate, such as 40Gbps, or 100Gbps. The
new trend of designing the network interface is to have all the
network interface functions implemented in a single chip.
Also, use of commercially available GPP as a core engine in
an NI is expensive and difficult to integrate within the
network interface chip. Furthermore, the size of these
embedded cores is large enough to be accommodated in the NI
chip, since it has not been designed for the NI's functions.

 The recent advances in the area of CAD tools and
Hardware Description Languages (HDL) have made
the design of embedded processors for the performance of
certain functions is possible. Furthermore, with HDL, it is
possible to adapt these processors in order to comply with the
functions that they are designed for. System-on-chip
technology has enhanced the possibility of integrating
the hardware blocks required in the NI and the GPP to
be carried on one chip [12].

 Many cost effective embedded cores have become
available and can be ported to an ENI chip. However, these
processors are not optimized for LSO. Since these
processors are designed supporting general functions, such as
the control unit has to support general functions, complex
instructions and long and variable execution time. These GPP
also has a large number of registers to accommodate all the
possible use. These features of the GPP might not need in NI.
These advances in the GPP have directed this research in
investigating the use of specialized RISC embedded cores in
the high-speed scalable NI design.

Mike Dixon

School of IT, Murdoch Uni

Perth, Australia

Mike.dixon@murdoch.edu.au

The rest of this paper is organized as follows: Section 2 discusses

the sending side processing. In section 3, the sending side

structure in the ENI model. The processing anaylsis presents in

section 4. The core design has been highlighted in section 5. The

VHDL-based simulation results are discussed in the next section.

Conclusion is in the last section.

2012 International Symposium on Communications and Information Technologies (ISCIT)

978-1-4673-1157-1/12/$31.00 © 2012 IEEE 844

II. NI CONSIDERATION

In designing the NI, we have avoided using multiprocessing
cores as processing cores at the NIC to serve a single function,
such as the ones developed at Rice University and Purdue
University which have proposed strengthening the network
card with six processors to enable it to perform the 10 Gbps
[2, 6]. The idea behind the multiprocessor is to divide the
processing required for each incoming or outgoing packet. A
166 MHz controller with six processors can achieve 99
percent of theoretical throughput of 10Gbps. The designers
Hyong, Vijay and Scott developed the Tigo programmable NI
which was released in 1997 [5]. This depends on two 88 MHz
MIPS R4000-based processors for the completion of data
processing. Both processors perform either inbound or
outbound functions. Despite these approaches achieving the
goal of these networks, there are several concerns. The
complexity of these proposed models is in the sharing of the
main resources in the NI between the embedded processors.
This is causes some of these processors to become idle after a
given period. In addition, there are increases in the idle time
between these processors since all of these processors intend
to operate the network protocol processing over a single bus.
Furthermore, accessing local memories, such as the instruction
memory, also allows only one processor at a time. Another
concern is that these processors occupy a large space in the
NIC and can increase the development time and cost. Besides
all that, Amdahl’s law states that the speedup achievable on a
parallel computer can be materially limited by the existence of
a small fraction of inherently sequential code which cannot be
parallelized. In this case of parallelization, Amdahl's law [7, 9]
explains the in-depth processing inside a design. The
implementation program is usually divided into two portions:
the first, part "P", is the amount of the protocol processing
program that can be made parallel, and the “1- P” is the other
portion of the processing that cannot be parallelized; it
remains serial. The maximum achievement on the NIC by
using the N processors is :

 Assuming the P is 90%, Then 1- P = 10 %. With this high
assumption of parallelized code (90%), the problem is sped up
by a maximum of a factor of 10, no matter how large value
of N used. Accordingly, using a number of processors to
support the LSO can be accomplished only if this design has
extraordinarily high values of P: This is known as the
embarrassingly parallel problem. The complicity could
increase when LSO Software migrations will most likely start
from serial code bases. Therefore, the target software design
needs to identify the solution to meet the migration
requirements. Furthermore, the programming model should be
Symmetric Multiprocessing (SMP) or Asymmetric
Multiprocessing (AMP). However, CPU intensive code for
parallel processing using SMP is difficult to redesign.

 This study aims to investigate the possibility of improving
the structure of the NI by placing a specialized RISC as a core
unit for the 100 Gbps for LSO to support the TCP/IP and
UDP/IP.

 We designed a single-issue RISC cores supported with
three pipeline stages and forward engine to process the LSO
functions. Since the receiving-side and the sending-side
operation are completely independent, the NI is designed to
handle both operations in parallel. In this paper, we have
focused on the sending side only. The RISC cores
performance is measured while processing the LSO function.
The wide use of TCP and UDP applications over the Ethernet
amounts to roughly 82% of the protocol usage [8], which has
directed this research to evaluate these protocols. Other
protocol types also can be studied and evaluated within this
model. The scalable NI, therefore, can be used as an open
guide for protocol processing and future use.
 The analysis of the packet processing of TCP/IP and UDP
in the NI will be addressed. The processing time in the NI is
also measured to adjust the DMA and RISC's clock rates for
100 Gbps.

 The rest of this paper is organized as follows: Section 2
discusses the sending side processing. In section 3, the sending
side structure in the ENI model. The processing anaylsis
presents in section 4. The core design has been highlighted in
section 5. The VHDL-based simulation results are discussed
in the next section. Conclusion is in the last section.

III. LARGE SENDING OFFLOAD (LSO)

 It is evident that the LSO feature is helpful only on the

transmit side by freeing an OS from the task of segmenting the

application’s
Transmit data into MTU-size. Using LSO, the core engine in
the NI divides the data into Maximum Segment Size (MSS)
(1460 bytes for TCP segment or 1472 bytes for UDP
fragment). The Sending Embedded Processor (SEP) also
generates the packet header attaching it to the payload part and
eventually sending it to the MAC layer to be sent to a network
line.
 Transmissions are according to the protocol type. For
instance, TCP/IP protocol uses the two identifiers in each
packet; the Sequence Number (SN) and the Acknowledgment
Number (AKN). The beginning segment carries the start
sequence number of data. Segments also carry an AKN, which
is a SN of the next expected data portion of the transmission.
[4]. We also tried to use the UDP to be fragmented.
Fragmenting the UDP is based on information on the IP
header, such as the MF field and the offset.
 LSO has designed by shifting the higher layer transmits
processing to a NIC. For example, the processing for
production packets controls data for each outgoing packet. The
core engine in the NI is responsible to handle these tasks
related to transport layer. In the smart NIC [13, 15]
implementation, the datagram was sent to a NIC’s buffer. The
datagram can be sized up to 64 K byte (the receiver’s TCP
window size is set to 64 KB). At the NI, the core engine after
reading all the information related to the moved datagram,
such the position of the message inside the NIC’ buffer and
the packet size, then SEP first examines the size of datagram.
The core engine starts by generating the network header for
each chunk of data. The smart NIC holds a TCP/IP header

845

template that has the IP total length, the initial SN. A copy of
the template header whenever there is a segment data needs to
be sent to a network. It updates the essential fields inside the
TCP and the IP header of the copied headers, such as the SN
and in the datagram total length before sending a packet.
Attached this copy to the selected segment to create a
complete packet then send it to the MAC layer. However,
these processing scenarios in these implantations are
successful in offloading the LSO to the NIC, but still cannot
be scale it to express network since the header copy itself
required at least 5 cycles over the 64-bit bus (40 bytes header).
In addition, there was no explanation for the data movements
methods inside the NIC.
 The main embodiment of this work is to provide an
alternative method for sending data faster to the physical and
MAC layer. This approach has focused on the header process
and data movements. For header processing, we have provided
a new algorithm for enhancement of the flow of the packets
processing. After a host CPU specifies data to be sent to a
network (larger than the MTU) and send to NI's Buffer, a
Beginning of Message (BOM) processing is the first step
required by NIC's core. The IP identification values are set
based on the initial value. Conceptually, each packet required
to apportion its SN and AKN number inside the TCP header.
Within the processing of the BOM, the IP total length is 1500
bytes (the default MTU) unless the two networks ends
specifies different size during the connection setting up. At the
stage of Continuation of Massage (COM), only needs to
update some fields inside network packet. For instance, the
core engine requires updating the SN and the AKN inside the
TCP. In the COM processing, the total length of the data gram
will remain the same. In addition, the previous AKN is a SN
of the current packet. End of Message (EOM) is the last part
of the message, which contains the remaining data of the sent
datagram. When the message is small (less than MTU), a
Single Segment Message (SSM), can be sent as is to the MAC
layer. Instead of copy a template header as in the another
scenario, the core processor at the NIC decides which method
of processing need for each segment either the BOM,
COM,EOM or SSM.
 To reduce the processing the core processor required for
generating the headers, we have added extra features to the
LSO processing, which is overlapping in manner.
Processor can benefit from the transfer of data period by
implementing other processing required for the followed
packets. We have adjusted the LSO assembly code to keep the
RISC busy while transferring data. For example, the core
calculates the remaining datagram size inside the NIC's buffer
to figure out which subroutine code should follow either COM
or EOM.

IV. NI MODEL FOR SENDING SIDE

We have structured the proposed NI into three parts:
communication Line Interface (LI), kernel processing, and
Host Interface (HI) “Figure 1”. The HI and LI are
implemented in hardware. The processing unit in the NI,
which commonly processed functions that are related to
header processing, is an embedded specialized RISC. Since
the receiving-side and the sending-side operations are

completely independent, the NI is designed to handle both
operations in parallel. Two RISC-cores are considered for
being in the NIC: one for Sending-side and the other for
receiving-side.

 A. Communication with the host

 The NI communicates with the host through five FIFO
buffers. Two FIFOs were implemented as memory-based, and
the pointer of each FIFO is stored in the RISC's register. The
RISC reaches any FIFO after reading its address.

Sending Buffer

Interface (SBI)

RISC core

Receive

Embedded

Processor (REP)

DMA
Memory

manage

FIFO2 Status and

control messages

FIFO1 sending status

Sending Buffer (SB)

Line Interface

(LI)
Host Interface (HI) Processing Area

To/

From

Host

Local bus

 Figure 1: Sending block diagram

 However, the interrupt mechanism that happens during the
exchange of information may affect the overall performance
of NI or the host CPU. Interrupting the host CPU or RISC
cores (SEP) during their processing time will cost a certain
amount of time in processing the interrupting task. These
interrupts reduce the performance of the processing power of
the Host CPU.
 After the host CPU moves the message to the SB, the host

required to notify the sender RISC by sending the location of

the message inside the Sending Buffer (SB) and other

necessary information needed for segmented the message,

such as the MSS through FIFO 2. The SEP also sends the

notification of the sending data through FIFO1

B. Buffers

 The Sending Buffer Interface (SBI) VHDL based contains
two buffers each of which hold one packet (1500 bytes). The
sequential machine controls the SBI and allows only one
buffer to be active and to receive data at a given time. The
buffer will remain enabled until the complete packet has been
stored.
 The sequential machine will then allow the stored data to
be sent out while it fills the other buffer.

 SB is designed to be dual port memories. The SEP and the

host can access the local memories simultaneously. 64-bit

local bus is used to send data from the SB to SBI.

C. UDP processing

Since the receiving-side is entirely independent of the
sending-side, the SEP, DMA and other devices are sharing a
single bus to operate the LSO.

846

 Fragmentation is required if a message over the MTU. The
SEP is responsible to send this message over a multi of small
packets to a network, where each fragments transfer as a
separate packet, header and payload. The IP header has three
fields that used for fragmentation processing [14];
Identification ID (16 bits). A datagram ID set by the source.
Fragmentation offsets (13 bits), required to distinguish the
location of the datagram. It also specified in multiple of 8
bytes. The flags filed (D-bit and M-bit) inside the IP header
is used is need during the fragmentation procedure. The D-bit
(do not fragment bit) prevents fragmentation. The M-bit
specifies if this fragment is the last one in the original message
or not.
 Each packet carries a relevant data in mentioned fields.
For example, if the SEP wants to send 6840 bytes of data to a
network (Figure 2). The original packets’ header has the
identification ID = “10”, M bit = “0” (since no packets
following) and the offset = 0 (the packet is a single packet).
The MTU is 1428 bytes. This means packet can carry 1400
bytes in the payload part. The SEP divides the original packet
to several fragments. The BOM has the first fragment data
(1400 bytes). The header information is as following; the
packet ID = “10” , the M bit = “1” indicates more packets
follows has the same ID. The offset is “0”. The COM is the
followed packet, which has ID = “10” and the offset is 175
(1400/8) because it is located at a relative location of 175
bytes. The M bit is “1”. The EOM is the last packet of the
message, which hold the rest of the data, has the M bit = “0”.
The offset is 700 (5600/8).

MF

0

Offset

0

Data 6840 bytes

MF

1

Offset

0
Data 1400 bytes

MF

1

Offset

175
Data 1400 bytes

MF

1

Offset

350
Data 1400 bytes

MF

1

Offset

575
Data 1400 bytes

MF

0

Offset

700
Data 1240 bytes

BOM

COM

COM

COM

EOM

Fragment 1:

data bytes 0-

1399 and

ID = 10

Fragment 1: data

bytes 1400 – 2799

ID = 10

Fragment 1: data

bytes 2800 – 4199

ID = 10

Fragment 1: data

bytes 4200 –

5599 ID = 10

Fragment 1: data

bytes 5600- 6839

ID = 10

Figure 2: procedure of sending of 6840 bytes

D. TCP segmentation

 Segmentation is the term used to describe the process of
cutting streams of data into smaller packets, Maximum
Segment Size MSS. The SEP has to divide the original
message (larger than the MTU) into a number of segment data.
Each packet has IP and TCP header. Each of these segment
has its own TCP and IP header. TCP header has a SN the
packet has to have and the AKN which the receiver expect to
get. The segmentation processing starts with the REP reader
the packet lent from the IP header, the SN and AKN from the
TCP message that a host delivered to SB. SEP also reads the
information related to this message such the MSS. Start
processing the SN, AKN and total length of a datagram.
Instead of copying the packet’s header into SEP’s registers,
updating these fields inside the SB. Next, the SEP initiates the

DMA to transfer the header and the appropriate segment data
to the SBI.

E. Data movements

 Using the Programmed I/O (PI/O) method for data
movement makes the RISC core controlling the bus while data
is moved. Where, the RISC processor associated with the
transfer of data from one location to another, especially when
moving a large amount of data (1640 bytes). The DMA is used
for transferring data between the SB and the SBI. The RISC
core initiates and controls the DMA. Since the local bus is
shared between the DMA and the RISC core, the RISC core
requires releasing the local bus to let the DMA performing the
data transfer. Each transfer of 64-bits consumes two cycles.
First cycle, the DMA reads the source buffer to get 64-bits to
the DMA’s register. During the second DMA cycle, the words
move from the DMA’s register to the destination buffer. The
DMA state machine will then provide the read and write
signals to the source and destination buffers. The state machine
in the DMA is also responsible for incrementing of the address
counter. The use of the DMA reduces the RISC processor
instructions cycles.
 We have simulated the Segmentation and fragmentation
function for TCP and UDP respectively. The DMA controller
is responsible for moving the packet header as well as the
payload part from SB to SBI for both TCP and UDP protocol,
where it needs 375 cycles. With pervious standard LSO, the
core engine responsible to send the header from its register to
SBI. In fact, this situation required additional instructions
from the RISC core to transfer 40 bytes (TCP/IP headers) over
the 64-bus. Further, the core has to wait for the DMA
controller to release the local bus in order to deliver the
headers from its registers to SBI. The core also requires, at
least, 5 cycles to store the network header. In this simulator,
the RISC core initiates the DMA to transfer data from SB to
SBI. The core is responsible to update the packet headers for
each segment inside the SB. The processor uses several
pointers in order to continue updating data in the SB; the Start
Header Address Pointer (SHAP), End-Header Address Pointer
(EHAP), Start Payload Pointer (SPP) and End-payload Pointer
(EPP).

IP header

TCP header

First Segment

Data

Network

headers

SHAP

EPP

SPP
EHAP

Figure 3: New approach of sending packets over the local bus.

The RISC core uses the SHAP pointer for reach the network
headers in side the SB. The SPP pointer helps the RISC to
locate the start. The EPP is used to point at the end of the first
segment. The RISC updates this pointer during the data
movements of the first packet (the BOM).

SHAP à start address,
EHAP à SHAP + 40 bytes
 (or 8 bytes for UDP)
SPP à EHAP + 8 bytes
 (46-bit)
EPPà SPP + MSS

847

 IV CYCLE PROCESSING

The TCP payloads vary from 6 to 1640 bytes [1]. The DMA
required moving data (i.e MSS is 1460 bytes) from the SB to
SBI is 366 cycles (183 cycles to read payload data over the
64-bit bus to the DMA's data register and 183 cycles to store it
to RB). Clearly, the RISC core will be in idle mode until the
DMA completes moving the data Figure 4. The RISC can
execute 7 instructions during the data moments and becomes
idle with MSS at about 359 instructions. The idle cycle's
time affects the performance of the network card and its
capabilities to deal with high speed networks.

 Small size packets, such as 64 until 256 bytes, may require
less DMA cycles than other packets that have more payload
bytes. However, using these small size packets could improve
the NI's performance, yet it affects the end node's throughput
[10]. We have focused on the 512 bytes packet to MTU
packets (1500 bytes). The use of small packets can be
studied on this Model, but they bear little payload data and
may not be able to achieve 100Gbps.

 We have studied the ways that can be used to reduce or to
eliminate the idle cycles of the RISC. One of these solutions is
the use of a multi-bus based on the sending side. The RISC
can access the multiport memories while the DMA controller
moves data. The other approach is to use a DMA that runs at a
higher clock rate than the RISC. We have adapted the way of
using it that we presented in “Figure 1”, since it is a
straightforward data path scenario and easily implemented
without any changes in the NI's architecture. We have started
adjusting the DMA's clock to reduce the idle cycles. In order
to study and analyse the cycle –accurate NI simulator, we sent
different large packets to the sending side. Each time we
increased the DMA's clock to reduce the idle cycles, we have
noticed that the RISC core and DMA controller were
working quickly to complete each message and transfer it to
RB.
 When DMA’s clock has five times the embedded processor
core, the NI performance is increased significantly, where
most, if not all, the idle cycles are reduced Table 1. Table 1
presents the total RISC cycles required for TCP/IP and
UDP/IP packets when the DMA has five clock rates as RISC
core. The DMA clock rate was measured while performing
different packet sizes Figure 5. Figure 5 also shows the RISC
clock rate in MHz for each packet before the idle cycles start.
 When the packet size is 512 bytes, the idle cycles are
reduced significantly. We have fixed the DMA clock rate to

2115 MHz and used this rate with other packet sizes (larger
than 512 bytes). This rate of the DMA’s clock helps to reduce
the idle cycles in the other packets those are larger than the
512 bytes, such as 1500 bytes “Table II”. This is
natural because the number of messages that the NI send is
less than in the case of 512, which is only 81274382 packets
per second when the packet size is MTU [1].
 In the relation to the cycle accurate simulations and the
RISC core cycles for LSO function, we have found that using
a DMA controller five faster than the RISC core will improve
the performance.

Figure 5: The RISC and DMA clock rate in MHz for TCP
Segmentation and UDP fragmentation (when the DMA has five
RISC's clock rate)

 Because the RISC core can accomplish part of the
processing while the DMA controller is moving the packets
from the SB to SBI, the RISC core is forced to be idle for a
few cycles until the DMA completes the payload transfer.
Therefore, using a faster DMA will help to eliminate most of
the idle cycles of the RISC core.

V. RISC CORE

 The simulation results demonstrated that a RISC-based NI
is scalable for a transmission line with a speed up to 100 Gbps.
To reduce the design complexity, we presented a simple data
path of the NI.
 This simplicity helps the RISC cores to manage and
process the LSO at a low clock rate. Further, it has made it
possible to reduce the cost of development of RISC-based NIs.
Such NIs can be flexible enough to support protocol changes
or can even adapt new protocols, whereas, the customized
logic-based NIs supports certain functions.
 Design a RISC core for specialized application, namely NI
control and data path, is simpler than using the off-the-shelf
GPP processors. These general-purpose embedded processors
are not optimized for a LSO function. Hence, some portions of
GPP instructions that support general-purpose applications
may not be required for the ENI design. For example, the
Floating-Point Unit is not necessary for network interfaces.
Also, we found that, using a data cache to store data is not
required since it will not enhance the NI's performance or
reduce the RISC' clock for this application. The elimination of
these units in the design the core simplifies the process of
development of NI and reduces the size and cost.

0

500

1000

1500

2000

2500

RISC DMA RISC DMA RISC DMA

1500 1024 512
40 Gbps 59.2 296 87 431 170 846

100 Gbps 148 740 216 1078 423 2115

M
H

z

DMA transfer cycle

Check the

current

packet‘s

protocol

TCP== 6

Update the

pointers

PSP = PEP

PEP = PEP

+ 1460 B

Then(

COM)

Calculate

the new

Seq &

Ack

Check the

remaining

length

TL = TL –

1500 B

(Yes)

Initiated the

DMA to

move the

packet to

selected place

in the SB

Send first

Packet

Update the

IP and TCP

headers

TL = 1500

and Seq =0

Ack =1461

Get the first

size of data

top be sent

with the first

Segment

EPP = SHAP

+ MTU

Check the

length of

the this

message

TL>1500

bytes if

(yes)

Calculate

the PEHA

 PSHA +

28 B

3 Inst. 3 Inst. 1 Inst. 4 Inst. 1 Inst. 1 Inst. 2 Inst. 2 Inst. 1 Inst.

Instructions executed before data

transfer (12 inst.)

Instructions executed during data

transfer (12 inst.) RISC idle cycles

 Figure 4: REP processing the BOM required 18 instructions

848

 We have noticed also that the RISC performs a few of the
instructions to complete processing the LSO. These
instructions are load, store, arithmetic and logic operation and
conditional branches. The minimum type the instructions set
used in the LSO function would make the control unit design
simple and fast. In addition, the limited number of instructions
that are required to support the Ethernet interface processing
can reduce the size and complexity of the control unit leading
to an increased speed.

VI. SIMULATION RESULTS

 In the LSO function processing, it is clear that the RISC
processing time becomes less when the DMA has a clock rate
faster than the RISC core is (Five times faster the RISC's
clock) where all the idle cycle associated with the RISC core
processing has eliminated. We monitored the highest clock
rate of the RISC core during processing the different packets.
We have found the VHDL behavior model for the sending unit
of the network interface has a 148 MHz RISC processor which
can support 100 Gbps lines, when the DMA speed is 2115
MHz, and the packet size is 1500 bytes “Figure 6”. A RISC
core with 423 MHz can be used to process the LSO at 100
Gbps when the packet size is 512bytes.

Figure 6: LSO for TCP/IP using DMA for data transfer (when the DMA

2115MHz)

VII. CONCLUSION

 We have presented computer simulations results to measure
the amount of processing required for LSO functions for
TCP/IP. The simulation results have shown that a cost
effective embedded RISC core can provide the required
efficiency of the network interface to support a wide range of
transmission line speed, up to 100 Gbps. A 423 MHz RISC
core can support the sending side processing for up to 100

Gbps transmission speed for TCP/IP. A fast DMA (2115

MHz) is required to eliminate the RISC idle cycles. The

DMA clock could be considered high, and this is because of

small size of the local bus (64-bit). The DMA clock rate

decreases significantly if the local bus becomes wider (i.e 128

–bit). Using cost effective RISC supporting higher speed

network up to 100 Gbps for TCP/IP and UDP/IP is possible.

The scalable NI based programmable could provide the

flexibility needed for adding a new, or modify, protocol

functions, while ASICs based solutions could provide better

performance but are not flexible enough to add new or modify

features.

REFERENCES

[1]. G. Held “Ethernet Networks (4th ed),” Design, Implantation, Operation

and Management. John Wiley publisher LTD, 2003.
[2]. P. Willmann, H. Kim, S. Rixner and V. Pai,” An Efficient

Programmable 10 Gigabit Ethernet Network Interface Card,”

Proceedings of the 11th Int’l Symposium on High-Performance
Computer Architecture November 2005.

[3]. O. Elkeelany, On chip novel video streaming system for bi-network

multicasting protocols, Integration, the VLSI Journal, v.42 n.3, p.356-
366, June, 2009.

[4]. J. B. Postel, “Transmission Control Protocol,” NIC- RFC 793,

Information Sciences Institute, Sept. 1981.
[5]. H. Kim, V. S. Pai and S.Rixner, “ Exploiting task-level concurrency in

a programmable network interface,” Proceedings of the ninth ACM
SIGPLAN symposium on Principles and practice of parallel

programming, pp 61-72, 2003.

[6]. D. Schuff and S. Pai,” Design Alternatives for a High-Performance
Self-Securing Ethernet Network Interface,” Parallel and Distributed

Processing Symposium, IEEE International, pp 1 – 10, 2007.

[7]. Amdahl, G.M., "Validity of the single-processor approach to
achieving large scale.computing capabilities," Proceedings of AFIPS

Conference, 1967, pp. 483-485.

[8]. M. Allman and A. Falk," on the effective evaluation of TCP," ACM
SIGCOMM Comput. Rev., vol 29, no 5, pp 59-70, Oct 1999.

[9]. M. Hill and M. Marty, “Amdahl’s law in the multicore era,” IEEE

Comput., vol. 41, no. 7, pp. 33–38, Jul. 2008.
[10]. S. Makineni and R. Iyer,” Measurement-based analysis of TCP/IP

processing requirements,” In 10th International Conference on High

Performance Computing (HiPC 2003), Hyderabad, India, December
2003.

[11]. Y. Hoskote et al. A TCP Offload Accelerator for 10 Gb/s Ethernet in

90-nm CMOS. IEEE Journal of Solid-State Circuits, 38(11):1866–
1875, Nov. 2003.

[12]. C. Cranor et al .Architecture considerations for CPU and network

interface integration IEEE Micro, January–February (2000), pp. 18–26.
[13]. G.Wiilium and W. Paul.“ ofload of TCP Segmentation to a Smart

Adapter.” U. S. Patent 5937169. 1999.

[14]. J. Postel RFC 791 Internet Protocol, protocol specification 1981

[15]. O. Cardona and J. B. Cunnlngham.“ System Load Based Dynamic

Segmentation for Network Interface Card.” U. S. Patent 0295098 A1.

2008

0

100

200

300

400

500

1500 B 1024 B 512 B
40 Gbps 60 87 169

100 Gbps 148 216 423

R
IS

C

M

H
z

Packet Size

TABLE I: TOTAL RISC INSTRUCTIONS FOR SEGMENTATION AND

FRAGMENTATION WHEN THE DMA HAS FIVE CLOCK CYCLE OF THE RISC

TABLE II: TOTAL RSIC INSTRUCTIONS TO COMPLETE PROCESSING THE LRO

WHEN THE DMA BECOMES 2115 MHZ

 Packet Type

Packet Size

1500 bytes 1024 bytes 512 bytes

Total

RISC

Inst.

Idle

Inst

.

Total

RISC

Inst.

Idle

Inst

.

Total

RISC

Inst.

Idle

Inst.

T

C

P

Single Segment Message 45 37 33 25 20 12
Beginning Of Message 49 31 37 19 24 5
Continuation Of Message 41 31 29 19 16 6
End Of Message 41 37 30 25 17 11

U

D

P

Single Segment Message 45 37 33 25 22 13
Beginning Of Message 49 31 37 19 25 7
Continuation Of Message 40 32 28 20 16 8
End Of Message 40 37 28 25 16 12

 Packet Type

Packet Size

1500 bytes 1024 bytes 512 bytes

Total

RISC

Inst.

Idle

Inst.

Total

RISC

Inst.

Idle

Inst

.

Total

RISC

Inst.

Idle

Inst

.

T

C

P

Single Segment Message 18 9 15 6 20 11

Beginning Of Message 23 4 20 1 24 5

Continuation Of Message 14 4 11 1 16 6

End Of Message
15 9 11 5 17 11

U

D

P

Single Segment Message 8 0 8 0 22 13

Beginning Of Message 23 5 20 2 25 7

Continuation Of Message 13 5 11 3 16 8

End Of Message 13 9 11 7 16 12

849

