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Abstract 26 

Data on the fish fauna of the Leschenault Estuary on the lower west coast of Australia were 27 

collected and used as a model to elucidate the characteristics of permanently-open estuaries with a 28 

reverse salinity gradient that undergo similar seasonal changes to many estuaries with 29 

Mediterranean climates. Focus was placed on determining 1) the relationships of the number of 30 

species, density, life cycle category and species composition of fishes with region (within estuary), 31 

season and year and salinity, 2) whether species are partitioned along the lengths of such systems 32 

and 3) the extent and significance of any inter-decadal changes in species composition. The 33 

analyses and interpretation involved using multi-factorial PERMANOVA and ANOSIM designs, 34 

and three new or recently published visualisation tools, i.e. modified nMDS plots, coherent species 35 

curves and segmented bubble plots. The base, lower, upper and apex regions of the Leschenault 36 

Estuary, along which the salinity increased in each season except winter when most rainfall occurs, 37 

were sampled seasonally for the two years between winter 2008 and autumn 2010. Estuarine 38 

residents contributed twice as many individuals, but less than half the number of species as marine 39 

taxa. While the numbers of marine species and estuarine residents declined between the basal/lower 40 

and apex regions, the individuals of marine species dominated the catches in the basal region and 41 

estuarine residents the other three regions. Ichthyofaunal composition in each region underwent 42 

conspicuous annual cyclical changes, due to time-staggered differences in recruitment among 43 

species, and changed sequentially along the estuary, both paralleling salinity trends. Different 44 

groups of species characterised the fauna in the different regions and seasons, thereby partitioning 45 

resources among species. The ichthyofauna of the apex region, in which salinities reached 54 and 46 

temperatures 36ºC, recorded the highest maximum density and, in terms of abundance was 47 

dominated (90%) by three atherinid species, emphasising the ability of this family to tolerate 48 

extreme conditions. Comparisons between the data for 2008-10 and 1994 demonstrate that the 49 

spotted hardyhead Craterocephalus mugiloides and the common hardyhead Atherinomorus 50 
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vaigiensis had colonised and become very abundant in the Leschenault Estuary in the intervening 51 

period. This represents a southwards extension of the distribution of these essentially tropical 52 

species during a period of increasing coastal water temperatures as a result of climate change. The 53 

abundance of weed-associated species, e.g. the western gobbleguts Ostorhinchus rueppellii and the 54 

soldier Gymnapistes marmoratus, increased, whereas that of the longfinned goby Favonigobius 55 

lateralis decreased, probably reflecting increases in eutrophication and siltation, respectively.  56 

 57 

Key words: Fish composition, hypersalinity, partitioning, environmental factors, climate change, 58 

Atherinidae.  59 
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Introduction 60 

It is becoming increasingly evident that estuaries with low inflow are as common as those 61 

with a persistent and significant influx of fresh water and which produce the classical low-salinity 62 

density driven circulations described for many estuaries (Largier, 2010). When the evaporative loss 63 

of fresh water in low-flow estuaries exceeds fresh water input from precipitation and run off, the 64 

salinity in the basins of such systems becomes greater than in the ocean (Largier et al., 1997; 65 

Largier, 2010). These types of estuaries are therefore typically found in microtidal regions subject 66 

to seasonal or prolonged aridity and where the residence time in the estuary during dry periods is 67 

thus long (Largier et al., 1997; Wolanski, 2007; Largier, 2010). In many parts of the world with a 68 

Mediterranean climate, the basins of permanently-open estuaries are hypersaline during the dry 69 

summer months (net evaporation), but constitute a classical estuary (net dilution) during the wet 70 

winter months, leading Largier et al. (1997) to suggest that they represented a major class of 71 

estuary, which they termed “Mediterranean estuaries”. Furthermore, in many of these estuaries, the 72 

extent of hypersalinity during the warm dry period increases markedly in an upstream direction 73 

from the estuary mouth, thus producing a reverse salinity gradient within these systems. Such 74 

reverse trends are also found in permanently-open estuaries in tropical regions that have been 75 

subjected to prolonged periods of low rainfall, but with the waters throughout most of these systems 76 

remaining hypersaline in all seasons (Simier et al., 2004; Kantoussan et al., 2012).   77 

  The permanently-open Leschenault Estuary in microtidal south-western Australia, the 78 

subject of the current study, contains the short and narrow entrance channel and large basin typical 79 

of many estuaries in southern Australia and southern Africa (Potter et al., 1990). It differs, however, 80 

from most other large estuaries in these regions in that its tributaries discharge into its basal region 81 

and therefore opposite the entrance channel (Semeniuk et al., 2000; Fig. 1). Thus, as the apex of the 82 

basin of this permanently-open estuary receives no riverine input, its salinity exceeds that of 83 

seawater during the warm dry months, thereby producing a reverse salinity gradient, a condition 84 
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that persists “for most seasons” (Semeniuk et al., 2000). While the large Coorong Estuary further 85 

east in South Australia likewise has a reverse salinity gradient and receives its riverine input at the 86 

lower end of its basin and thus near its entrance channel, the salinity regime in this system has 87 

changed over time through abstraction and reductions in rainfall and is modified by the use of 88 

barrages to regulate freshwater input (Webster, 2010; Zampatti et al., 2010; Ferguson et al., 2013). 89 

Permanently-open estuaries are among the most productive of all aquatic ecosystems 90 

(Schelske & Odum, 1961; Whittaker & Likens, 1975; Elliott & Whitfield, 2011) and thus, 91 

irrespective of geographical location or whether the salinity gradient is normal or reverse, provide a 92 

rich source of food for the numerous marine fish species that use these systems, especially as a 93 

nursery area (Blaber & Blaber, 1980; Elliott & Hemmingway, 2002; Able & Fahay, 2010; Potter et 94 

al., 1990; 2013). This productive environment is also exploited by species that complete their life 95 

cycle in these systems and which are particularly abundant in the microtidal estuaries of south-96 

western Australia, a region which has a Mediterranean climate (Potter & Hyndes, 1999; Potter et 97 

al., 2013). These species typically reproduce between the warm and dry spring to early autumn 98 

months, when water movement due to tidal action and fresh water discharge is limited and salinities 99 

and temperatures remain relatively stable, thus providing conditions ideal for spawning and 100 

recruitment success (e.g. Prince & Potter, 1983; Chrystal et al., 1985; Potter & Hyndes, 1999; Sarre 101 

& Potter, 1999). 102 

The collective data for the relatively few studies of the fish faunas of permanently-open 103 

estuaries with a conspicuous reverse salinity gradient indicate that increases in salinity from the 104 

lowermost to uppermost regions of the estuary are accompanied by certain changes in the 105 

ichthyofauna. These include declines in the number of species, overall density and density of 106 

marine species and changes in species composition (e.g. Simier et al., 2004; Ter Morshuizen & 107 

Whitfield, 1994; Brookes et al., 2009; Kantoussan et al., 2012). There is a need, however, to 108 

produce an account that integrates the characteristics of the fish faunas of the above type of estuary, 109 
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using data collected seasonally for more than a year and which applies statistical approaches to 110 

tease out the ways and relative extents to which the number of species, density, species composition 111 

and partitioning change along the salinity gradient and during the year.  112 

While the present study focuses on permanently-open estuaries with a reverse salinity 113 

gradient, the results of extensive studies in the St Lucia Estuary in southern Africa provide 114 

invaluable information on how the characteristics of the fish faunas can be influenced by salinity 115 

(Whitfield et al., 2006). This system falls, however, in a different category to the Leschenault and 116 

similar estuaries in that it sometimes closes for protracted periods and that this feature, in 117 

conjunction with very marked alterations in freshwater input due to extreme periodic differences in 118 

rainfall, results in vast changes in salinity of 1 to 200 (Whitfield et al., 2006; Cyrus, 2013).   119 

The first overall aim of this study was to use the Leschenault Estuary as a model to increase 120 

our knowledge and understanding of the characteristics of the fish faunas of permanently-open 121 

estuaries in which there is a reverse salinity gradient. This involved, inter alia, determining the 122 

ways and relative extents to which number of species, density, species compositions and 123 

contributions of different life cycle categories and guilds sensu Potter et al. (2013) vary spatially, 124 

seasonally and between successive years. Particular attention was also focussed on testing the 125 

hypotheses that any spatial or temporal trends in species composition would be associated with 126 

changes in salinity and that the various species would form groups along the estuary and thus 127 

facilitate partitioning of the resources of the estuary among the members of the estuarine fish 128 

community. For this purpose, fishes throughout the Leschenault Estuary were sampled seasonally 129 

for two years, i.e. between winter 2008 and autumn 2010. The resultant data were subjected to a 130 

range of analyses, including multi-factorial PERMANOVA and ANOSIM designs, and 131 

visualisation tools, i.e. modified nMDS plots, coherent species curves and segmented bubble plots, 132 

which collectively enhanced the ability to interpret the ecological implications of the results for the 133 

Leschenault Estuary and other permanently-open systems with a reverse salinity gradient. 134 
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The second overall aim was to compare the characteristics of the fish fauna at sites in the 135 

lower half of the estuary in 2008-10 with those recorded previously at the same sites in 1994 (Potter 136 

et al., 1997, 2000) to test the following hypotheses that are based on changes known to have 137 

occurred to the environment between the two periods. 1) An increase in macroalgae (Hugues-dit-138 

Ciles et al., 2012) and in local coastal water temperatures due to climate change (Lough et al., 139 

2012) have been accompanied by increases in the abundance of fish species typically associated 140 

with plant material and/or which lie at the southern (warmer) end of their distribution. 2) Increased 141 

sedimentation (Hugues-dit-Ciles et al., 2012) has been accompanied by a decline in the abundance 142 

of the southern longfin goby Favonigobius lateralis Macleay 1881, a species that is very abundant 143 

in south-western Australian estuaries (Potter & Hyndes, 1999) and known to be detrimentally 144 

influenced by increased siltation (Gill & Potter, 1993). 3) The above changes led to a conspicuous 145 

shift in the species compositions between the two periods.  146 

 147 

Materials and methods 148 

Sampling in 2008-10 149 

Fishes at four regularly-spaced sites throughout the lengths of each of the base, lower, upper 150 

and apex regions of the Leschenault Estuary (Fig. 1) were sampled using a 21.5 m seine net in each 151 

season between the Austral winter (July) of 2008 and the Austral autumn (April) of 2010. The seine 152 

net, which comprised two 10 m long wings (6 m of 9 mm mesh and 4 m of 3 mm mesh) and a  153 

1.5 m long bunt (3 mm mesh), swept an area of c. 116 m
2
 and fished to a maximum depth of 1.5 m. 154 

Three of the four sites in both the base and lower regions of the estuary were the same as those 155 

sampled at six weekly intervals (i.e. twice seasonally) between the summer and spring of 1994 156 

using a seine net with the same dimensions (Potter et al., 1997). On each sampling occasion, the 157 

salinity and water temperature at each site were measured in the middle of the water column using a 158 

Yellow Springs International Model 85. Note that the estuary is shallow, generally < 1.5 m in depth, 159 
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and vertically well mixed (Semeniuk et al., 2000) and that, following Brauner et al. (2013), the term 160 

hypersalinity is, for convenience, used to refer to salinities greater than that of seawater, i.e. 35. 161 

Note also that the Leschenault Estuary fulfils the criteria for an estuary as defined by Potter et al. 162 

(2010), e.g. it receives periodic discharge from rivers and can become hypersaline. 163 

The fishes were immediately euthanized in an ice slurry and transported to the laboratory 164 

where they were each identified to species. The total number of individuals of each species in each 165 

sample was recorded and converted to a density (number of fish 100 m
-2

), which was then used to 166 

calculate the mean density of each species in the whole estuary and in each of its four regions. The 167 

total length of each fish was measured to the nearest 1 mm, except when a large number of a species 168 

was caught, when the total lengths of a random sample of 50 individuals of that species were 169 

recorded.  170 

 171 

Numbers of species and densities of fishes 172 

The number of species and density (number 100 m
-2

) of fishes recorded at each of the four 173 

sites sampled in the four regions of the Leschenault Estuary in the eight consecutive seasons 174 

between winter 2008 and autumn 2010 were separately input to univariate Analysis of Variance, but 175 

using the permutation form in which the statistical tests do not make traditional normality 176 

assumptions (Anderson, 2001). This is effected as a special case of multivariate analysis in 177 

PRIMER v6 software (Clarke & Gorley, 2006) by constructing a Euclidean distance matrix among 178 

values of the single variable and entering those into the PERMANOVA routine (Anderson et al., 179 

2008). The resulting tests determined whether the number of species and density of fishes differed 180 

significantly between the two successive years (i.e. winter 2008 to autumn 2009 and winter 2009 to 181 

autumn 2010 and subsequently referred to as 2008/09 and 2009/10, respectively), seasons, regions 182 

and sites, and the extent of any interactions among these factors. All factors were considered fixed 183 

and crossed apart from the sites, which were treated as a random factor nested within regions, 184 
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though crossed with years and seasons, the same four sites being revisited on each sampling 185 

occasion. The three-way interaction term year  season  site was dropped from the model and thus 186 

utilised as the residual spatio-temporal variability for some of the tests, a robust and conservative 187 

procedure. Examination of the values for these variables demonstrated that, prior to 188 

PERMANOVA, the number of species required a square-root transformation and density a 189 

loge(x+1) transformation to meet the test assumption of homogeneous dispersions among a priori 190 

groups (see Anderson, 2001).  191 

 192 

Life cycle categories and guilds 193 

Each species was assigned to a life-cycle guild within a category according to the way in 194 

which it uses estuaries (Potter et al., 2013), based on numerous studies of the biology of fish species 195 

in south-western Australia as reported in the review of Potter & Hyndes (1999). Definition of the 196 

two categories and five guilds relevant to the current study are as follows. Marine category, i.e. 197 

species that spawn at sea. Marine straggler (MS) guild, i.e. species that spawn at sea and typically 198 

enter estuaries sporadically and in low numbers and are most common in the lower reaches, where 199 

salinities typically do not decline far below ~35. Marine estuarine-opportunist (MEO) guild, 200 

i.e. species that spawn at sea and regularly enter estuaries in substantial numbers, particularly as 201 

juveniles, but also use, to varying degrees, coastal marine waters as alternative nursery areas. 202 

Estuarine category, i.e. species with populations in which the individuals complete their life cycles 203 

within the estuary. Solely estuarine (E) guild, i.e. species typically found only in estuaries. 204 

Estuarine and marine (E&M) guild, i.e. species represented by populations whose individuals 205 

complete their life cycle either in estuaries or coastal marine waters. Estuarine and freshwater 206 

(E&F) guild, i.e. species represented by populations whose individuals complete their life cycle 207 

either in estuaries or fresh water. Thus, as no species belonging to the other two categories in Potter 208 

et al. (2013) were caught in the Leschenault Estuary, i.e. diadromous and freshwater, all species 209 
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represented either the marine or estuarine categories, the latter subsequently being referred to as 210 

estuarine residents. The numbers of marine species and estuarine resident species and the 211 

proportional contributions of the individuals of those two categories to the total number of all fish in 212 

each region of the estuary were then calculated for each season and for the whole year collectively.  213 

 214 

Multivariate analyses of species compositions 215 

The numbers of each fish species recorded at each of the four sites in each region in each 216 

season in 2008/09 and 2009/10 were subject to a pre-treatment shown to be effective for fish data of 217 

this type (Clarke et al., 2014). This involved  a) dispersion weighting to down-weight the effects of 218 

those species whose numbers exhibited erratic differences among replicate samples due to 219 

schooling (Clarke et al., 2006), followed by b) square-root transformation to down-weight the 220 

contributions of species with consistently high values (across replicates within a group) in relation 221 

to those with consistently low values. The resultant data were then used to construct a Bray-Curtis 222 

similarity matrix, which was subjected to the same four-way PERMANOVA design as described 223 

above, though now with genuinely multivariate data, with the focus being on determining whether 224 

there were significant interactions between year, season and region.  225 

Separate two-way crossed Analysis of Similarity tests (ANOSIM, Clarke & Green, 1988; 226 

Clarke, 1993) were used to assess the relative magnitudes of overall year, season and region factors 227 

(subsuming both main and interaction effects), via the universally-scaled ANOSIM R  statistic. This 228 

was computed, in turn, for each factor (region, year or season) vs the other two factors combined, 229 

thereby removing the combined effects of those other factors (Lek et al., 2011; French et al., 2012). 230 

The ANOSIM R  values typically range from c. 0, when the average similarities among and within 231 

groups of the target factor do not differ (in all strata of the excised combined factor), up to 1, when 232 

the compositions of all samples within each group are more similar to each other than to those of 233 

any sample from other groups, again in all strata of the second factor (Clarke & Warwick, 2001).  234 
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Non-metric Multidimensional Scaling (nMDS) ordination was used to interpret interactions 235 

(or lack of interactions) between factors that resulted from the PERMANOVA tests. These 236 

configurations ordinate Bray-Curtis dissimilarities from the pre-treated data, which have been 237 

averaged over the four sites and one of the three factors (year, season, region) in turn, resulting in 238 

‘interaction plots’ for season  region, year  region and season  year respectively. Such 239 

ordinations of mean values can sometimes involve few points (only eight here for the latter two 240 

combinations) and the standard algorithm for rank-based nMDS can be susceptible to finding 241 

degenerate solutions which have zero stress, but in which the highest-similarity samples collapse 242 

onto single points even though not 100% similar. This typically results from the paucity of 243 

information in a small number of ranks to constrain the ordination technique adequately, and occurs 244 

here for the year  region interaction plot. An effective solution is detailed for this type of problem 245 

in Hallett et al. (submitted). It utilises a modified nMDS algorithm (by R.N. Gorley, within a 246 

development version of PRIMER v7), in which optimisation is of a stress function mixing mainly 247 

nMDS with a minor component of metric MDS (mMDS, here 95% and 5% though the proportions 248 

of the mix are not critical). This retains the flexibility of nMDS to describe complex structures in 249 

low-dimensional space but the small amount of measurement information is sufficient to ‘fix the 250 

collapse’ of a subset of points in the nMDS. 251 

Bubble plots, in which circles whose sizes represent the magnitude of the mean salinity in 252 

appropriate combinations of region, season and year (averaging over the omitted factor, as before) 253 

were then overlaid on the points for samples on the ordination plots, to visualise the extent to which 254 

ichthyofaunal composition was related to salinity (Clarke et al., 2008).  255 

 256 

Seasonal and regional partitioning of the main fish species 257 

When there was a significant difference between the ichthyofaunal compositions of a priori 258 

groups, Similarity Percentages analysis (SIMPER; Clarke & Gorley, 2006) was used to identify the 259 
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species which typified the ichthyofaunal composition of each a priori group and which were 260 

responsible for distinguishing between the fish compositions in each pair of groups. The pattern of 261 

change in the relative counts for individual species across both season and region (averaging over 262 

the two years and the four sites in each region) is further examined by the new technique of 263 

‘coherent species curves’ (Somerfield & Clarke, 2013). This uses a variant of the similarity profiles 264 

(Type 1 SIMPROF) of Clarke et al. (2008), applied to species rather than to samples. It identifies, 265 

via a cluster analysis of species similarities, the groups of species whose patterns of relative 266 

abundance over the samples are indistinguishable within a group but statistically significant 267 

between groups, when tested by the appropriate permutation procedure (Type 3 SIMPROF).  268 

Species similarities are defined by a species-standardised form of Bray-Curtis, namely Whittaker’s 269 

index of association (Whittaker, 1952), calculated on the original abundance scales. The index 270 

‘relativises’ each set of (averaged) species counts to 100 across the samples, so it is wise first to 271 

exclude species found only sporadically and in small numbers, since they will only add random 272 

noise to the species similarities (Clarke & Warwick, 2001). Visualisation of the resulting ‘coherent 273 

species groups’ is by simple line plots of the relative abundances in each sequential season in each 274 

region.  275 

 276 

Comparisons between the fish faunas in 2008-10 and 1994  277 

For comparing the species compositions of fishes in the two years sampled in 2008-10 vs the 278 

single year of 1994, the analyses have focused on determining whether the ichthyofaunas were 279 

more similar in 2008/09 and 2009/10 than either was to that in 1994. 280 

The total number of individuals of the various fish species caught at three sites in the base 281 

and lower regions of the estuary twice in each season between summer and spring in 1994 and those 282 

caught subsequently at the same sites once in each season between winter 2008 and autumn 2010 283 

(two years) were calculated. These data were used to determine and compare, in tabular form, the 284 



13 

 

 

mean densities (numbers 100 m
-2

) of each fish species and their percentage contributions to the total 285 

catch of fishes in 1994 and 2008-10. Note that, as the fish faunas were sampled twice seasonally in 286 

1994, the data for that year were derived from the same number of samples (48) as in 2008-10 when 287 

sampling was conducted once seasonally over two years. 288 

The multivariate data on fish composition from the above sample structure were used to 289 

construct a Bray-Curtis similarity matrix, input to a four-way PERMANOVA design, comprising 290 

three years (1994, 2008/09, 2009/10), four seasons, two regions (base and lower) and three sites in 291 

each region, with replicate seasonal observations only for the samples in 1994. The permutation in 292 

the PERMANOVA+ software (Anderson et al., 2008) can accommodate this imbalance at the 293 

replicate level or, as previously, the residual variability can be conservatively estimated from the 294 

year  season  site interaction (these mean squares turn out to be effectively identical). Note that 295 

type III sums of squares were used in the PERMANOVA test, but the robustness of the results in 296 

the unbalanced case was checked using a number of sequential (type I) sum of squares calculations, 297 

with model terms entered in different sequences. The matrix was also subjected to two-way crossed 298 

ANOSIM tests for one factor vs the other factors combined (see earlier) to determine the relative 299 

influence of each factor. The pairwise R  statistics computed from the two-way crossed test for year 300 

vs season and region combined were used to assess the extent of differences between the three 301 

years, i.e. 2008/09, 2009/10 and 1994. SIMPER was used to identify the species that contributed to 302 

the distinction between years.  303 

nMDS ordination on appropriately averaged data then explored visually the basis for any 304 

interactions between factors, as detected by PERMANOVA. There was no necessity in this case 305 

(now with 12 points on the plot) to constrain the nMDS with a small percentage of a mMDS 306 

solution, but a new display method was adopted here, also utilising an alpha development version of 307 

PRIMER v7 software. Segmented bubble plots, which overlay multiple variables on a single 308 

ordination, were used to visualise the changes in major species identified in corresponding SIMPER 309 



14 

 

 

analyses, e.g. as being important in distinguishing the composition in the more recent years from the 310 

earlier year. Here, segment size represents (pre-treated) abundance, as input to the nMDS, on a 311 

common scale for all species of dispersion weighted, square-rooted, then averaged abundance for 312 

the 12 year  season combinations.  313 

 314 

Results 315 

Salinity and water temperature 316 

 In all seasons except winter, the mean salinities throughout 2008-10 followed a gradient, 317 

being lowest in the base region and highest in the apex (Fig. 2a). The minimum mean salinity in any 318 

season was the c. 23 recorded in the former region in winter 2008/09, while the maximum mean 319 

was the c. 50 recorded in the apex region in the summer of 2009/10. Furthermore, in both years, the 320 

salinities in each region were higher during summer and autumn than in winter and spring.  321 

Mean seasonal water temperatures in each region underwent pronounced changes, typically 322 

rising from their minima in winter to their maxima in summer and then declining in autumn 323 

(Fig. 2b). The highest mean water temperatures in both years were recorded in the apex and upper 324 

regions. The minimum mean seasonal temperature was the c. 15ºC recorded in each region in the 325 

winter of 2008/09 and 2009/10, whereas the maximum was the c. 36ºC recorded in the upper region 326 

in the summer of 2009/10.  327 

 328 

Characteristics of the fish fauna of the Leschenault Estuary in 2008-10 329 

Numbers of species and densities of fishes 330 

Four-way PERMANOVA for the number of species showed that the two-way interactions 331 

for year  season and season  region and the three-way year  season  region interaction were 332 

highly significant (Appendix 1a). This somewhat complex picture was apparent from the means 333 

plots (Fig. 2c), with the three-way interaction seen as a decline in species numbers in the spring and 334 
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summer in the upper and apex regions, only in 2009/10, not matched in the base and lower regions. 335 

Interpretation of the two-way interactions and main effects (Appendix 1a) is therefore compromised 336 

by the presence of this substantial three-way interaction, though the numbers of species were 337 

consistently highest in the base and lower regions (Fig. 2c) and lowest in the apex region. ANOVA 338 

for the mean densities of fishes (Appendix 1b) also resulted in a significant and substantial three-339 

way interaction, reflecting less consistent trends across regions, with the mean values being greatest 340 

in the lower region in five of the eight seasons but in the apex in two others (Fig. 2d). 341 

 342 

Contributions of fish species and life cycle categories 343 

 A total of 27044 fish, representing 43 species, was caught in the Leschenault Estuary 344 

between winter 2008 and autumn 2010 (Table I). The most abundant species were the solely 345 

estuarine species, the elongate hardyhead Atherinosoma elongata Klunzinger 1879 and the spotted 346 

hardyhead Craterocephalus mugiloides (McCulloch 1912), the marine estuarine-opportunists the 347 

sandy sprat Hyperlophus vittatus Castelnau 1865 and the yelloweye mullet Aldrichetta forsteri 348 

Valenciennes 1836 and the estuarine & marine species the silver fish Leptatherina presbyteroides 349 

(Richardson 1843), which collectively contributed c. 75% to the total catch. The total number of 350 

fish caught in the base, upper and apex regions ranged only from c. 5400 to 5800 per region, and 351 

thus each was only just over half of that recorded in the lower estuary, i.e. c. 10400 (Table I). The 352 

total number of species declined markedly from 32 and 35 in the base and lower regions, 353 

respectively, to 22 in the upper region and only 12 in the apex.  354 

The fauna in the base of the estuary was dominated by A. forsteri and H. vittatus, with 355 

densities of c. 40 and 46 fish 100 m
-2

, respectively, and collectively contributed 56% to the total 356 

catch in this region (Table I). Hyperlophus vittatus was also abundant in the lower region, i.e. c. 45 357 

fish 100 m
-2

, where it contributed c. 16%. The atherinids A. elongata, C. mugiloides and 358 

L. presbyteroides constituted the other three most abundant species in the lower region, with 359 
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densities ranging from c. 33 to 68 fish 100 m
-2

 and, together with H. vittatus, comprised 64% of the 360 

total catch. Atherinosoma elongata was so abundant in the upper and apex regions that its densities 361 

in these regions were c. 75 and 107 fish 100 m
-2

, respectively, and its percentage contribution as 362 

high as c. 50 and 67 %, respectively. While the densities of C. mugiloides in the upper and apex 363 

regions were far less than those of A. elongata, they were still substantial and greater than those of 364 

any other species, with their numbers contributing c. 18 and 16 %, respectively, to the total catches 365 

in those regions.  366 

Twenty one of the species caught throughout the estuary were marine estuarine-367 

opportunists, while nine were marine stragglers, seven were estuarine & marine, four were solely 368 

estuarine and two were estuarine & freshwater (Table I). Overall, the number of species that 369 

represented the marine category (i.e. marine estuarine-opportunists and marine stragglers) declined 370 

markedly from 23 in both the base and lower regions to 14 in the upper region and seven in the apex 371 

(Fig. 3a). The number of species in the estuarine category (i.e. solely estuarine, estuarine & marine 372 

and estuarine & freshwater) declined from a maximum of 12 in the lower region to a minimum of 373 

five in the apex. The overall trends exhibited throughout the estuary by the number of species in 374 

both the marine and estuarine categories essentially replicate those in each season, demonstrating 375 

that they remain similar throughout the year (Fig. 3a-e).  376 

In terms of number of individuals, the overall contributions by marine species was far 377 

greater in the base region (70%) than lower region (28%), which, in turn, was greater than the 22% 378 

in the upper region and 15% in the apex (Fig. 3a). The estuarine category thus exhibited the 379 

converse trend. The contribution to the abundances by marine species in the base region was 380 

broadly consistent over seasons, but was far higher in spring and summer than autumn and winter in 381 

the lower region (Fig. 3b-e). The estuarine category dominated the total catch of fish in both the 382 

upper and apex regions in summer and autumn (Fig. 3d).   383 

 384 
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Multivariate analyses of species compositions  385 

On the basis of a four-way PERMANOVA using data on ichthyofaunal composition for 386 

2008-10, each of the two- and three-way interactions were significant (Appendix 2a). However, 387 

several of the interactions have pseudo-F values close to 1, and are only marginally significant on 388 

sometimes very powerful tests, i.e. high numerator and denominator degrees of freedom, e.g. all 389 

those involving site terms. The only conspicuous interactions are season  region and year  season 390 

(borne out by later plots), with all main effects appearing to be substantial and dominating the 391 

interactions. Subsuming main effects and interactions, the R  values for the two-way crossed 392 

ANOSIM analyses for each factor vs the other two factors combined were greater for season (0.51) 393 

and region (0.46) than for year (0.35).  394 

The results of the tests were explored visually by nMDS ordinations on (pre-treated) data 395 

matrices averaged over sites and each factor in turn, to obtain 2-way ‘interaction plots’ for pairs of 396 

factors (Fig. 4), the second of which (Fig. 4c) needed to modify a degenerate nMDS solution by 397 

adding a trace component of mMDS (see Methods). For the season  region ordination, the samples 398 

for spring and summer lie above those for winter and autumn in each region. Furthermore, the 399 

points for each successive season in all four regions change in a clockwise cyclical manner and the 400 

points for each region progress sequentially from left to right along the horizontal axis, in the order 401 

of base, lower, upper and apex (Fig. 4a). The season  region interaction is evident in the slightly 402 

modified seasonal pattern for the lower region. The bubble plot of mean salinity at the times of 403 

sampling, superimposed on this ordination, shows that, in each region, the seasonal changes in 404 

ichthyofaunal composition from spring to summer coincided with substantial increases in salinity, 405 

whereas changes from autumn to winter coincided with declines in salinity (Fig. 4b).  406 

On the year  region plot, averaged over seasons (Fig. 4c), the samples in both years follow 407 

very similar trajectories over the sequence of base to apex regions, indicating little interaction. In 408 

fact, the borderline year  region interaction detected by PERMANOVA (Appendix 2a) is only 409 
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evident in marginal differences in the size of compositional changes between adjacent regions 410 

(i.e. smaller changes from base to lower regions in 2008/9 than 2009/10 and larger changes from 411 

upper to apex regions). The trend in ichthyofaunal composition from the base to apex regions is 412 

associated with a sequential increase in mean salinities in both years (Fig. 4d). On the final 413 

ordination plot, of season  year means, the samples for both years changed in an essentially 414 

cyclical manner over successive seasons (Fig. 4e), though anticlockwise for 2008/9 and clockwise 415 

for 2009/10. The important distinction here, explaining the significant season  year interaction, is 416 

the difference in composition between the two winter samples, a disparity not shared by pairs of 417 

samples for the other seasons.  418 

 As region and season were more influential than year, the interaction between the first two 419 

factors was explored by pooling the data for the two years and undertaking a series of one-way 420 

ANOSIM tests for region using separate resemblance matrices constructed from the fish 421 

abundances in each season (Table II). Significant differences among regions were detected in each 422 

season, being greatest in spring (R = 0.56) and lowest in winter (R = 0.12). In all seasons except 423 

winter, the regional difference in composition was greatest for the apex and upper regions vs the 424 

base and lower regions (R = 0.34-0.94). In each season, F. lateralis was always among the species 425 

characterising the ichthyofaunas in the base and lower regions, while A. elongata was always 426 

among the species typifying those in the upper and apex regions (Appendix 3). 427 

 428 

Seasonal and regional partitioning of the main fish species 429 

The ‘coherent curves’ technique, identifying cohorts of species with common patterns of 430 

mean abundance across the 16 conditions (4 seasons by 4 regions), results in simple line plots of 431 

relative abundance, grouped according to the results from sequences of Type 3 SIMPROF tests, in 432 

which most species are notable for the relative concentration of their numbers only in certain 433 

regions of the estuary and/or certain times of the year (Fig. 5). Thus, for example, in terms of region 434 
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and most abundant species overall, the species in groups I and II, e.g. F. lateralis, H. vittatus, 435 

A. forsteri and L. presyteroides, were caught mainly in the base and lower regions (Fig. 5a, b), 436 

whereas those in groups III and IV e.g. the western hardyhead Leptatherina wallacei (Prince, 437 

Ivantsoff & Potter 1982) and the western gobbleguts Ostorhinchus  rueppellii (Günther 1859) were 438 

obtained very largely from the lower region (Fig. 5c, d), and those in groups V and VI, e.g. the sea 439 

mullet Mugil cephalus L. 1758, A. elongata and C. mugiloides came predominantly from the upper 440 

and apex regions (Fig. 5e, f). In the context of season, the abundance of certain groups of species 441 

produced particularly sharp peaks at certain times of the year, i.e. groups III and IV in spring and 442 

summer, respectively, in the lower estuary, group V (a single species) in winter in the upper and 443 

apex regions and group VI in autumn in the upper estuary.  444 

 445 

Comparisons between fish faunas in 1994 and 2008-10 446 

Contributions of fish species and life-cycle guilds 447 

 A total of 13483 fishes was recorded in seasonal samples collected between winter 2008 and 448 

autumn 2010 at three sites in each of the base and lower regions of the Leschenault Estuary 449 

(Table III). This total approaches the 14601 fish recorded twice seasonally between summer and 450 

spring in 1994 and thus for the same total number of samples. It was particularly striking that two 451 

tropical atherinids, C. mugiloides and the common hardyhead Atherinomorus vaigiensis (Quoy & 452 

Gaimard 1825), ranked as high as fifth and ninth, respectively, in 2008-10, and yet were not even 453 

caught in 1994. However, eight of the 11 most abundant species caught in 2008-10 did also rank 454 

among the 11 most abundant species in 1994 and the four most abundant species in 2008-10 ranked 455 

among the most numerous species in the earlier period (Table III). Yet, among those species, 456 

A. elongata was far more abundant in 2008/09, whereas the reverse was true for A. forsteri and 457 

H. vittatus. While F. lateralis ranked only sixth and contributed 8.1% to the catch in 2008-10 it 458 

ranked first and contributed 36.5% to the catches in 1994. 459 
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 The percentage contributions made by each life-cycle guild to the number of species were 460 

relatively similar in 1994 and 2008-10, i.e. solely estuarine, 12 vs 14 %; estuarine & marine, 18 vs 461 

19 % and marine estuarine-opportunist, 48 vs 56, respectively (Table III). Furthermore, each of 462 

these life cycle guilds made similar contributions to the total number of individuals in each period, 463 

with the exception of estuarine residents, which were relatively more numerous in 2008-10 (32%) 464 

than in 1994 (8%), due, in particular, to far larger numbers of A. elongata and to C. mugiloides 465 

being caught only in the more recent period. 466 

  467 

Comparisons of ichthyofaunal compositions in 1994 vs 2008-10   468 

 In terms of ichthyofaunal compositions, the year × season, season × region and year × 469 

season × region terms were significant, but clearly at a minor level, with the three-way interaction 470 

being particularly borderline and effectively negligible (Appendix 2b). The R  values for the two-471 

way crossed ANOSIM tests for each factor vs the other two factors combined were greater for year 472 

(0.30) and season (0.28) than for region (0.12). In the case of year vs season and region combined, 473 

pairwise comparisons demonstrated that, while the compositions in 2008/09 and 2009/10 were not 474 

significantly different (R = 0.10, P > 0.05), they both differed from that in 1994 (P = 0.001), with R 475 

statistic values of 0.29 and 0.42, respectively.  476 

The year  season interaction can be visualised, in a nMDS ordination derived from mean 477 

abundance of each species in each region (Fig. 6a). On this plot, the seasonal samples in each of the 478 

three years change in a common anti-clockwise cyclical direction, with those for 1994 lying clearly 479 

to the left of those for the 2008/09 and 2009/10 years, in which the samples for the two springs and 480 

the two summers are virtually coincident. The trajectory of the seasonal samples in 1994 differs 481 

however, from that in both 2008/09 and 2009/10, thus defining the year  season interaction. A 482 

two-way crossed SIMPER analysis, contrasting 1994 with the combined 2008/09 and 2009/10 483 

samples, removing the effect of season by comparing years only within seasons, demonstrated that 484 
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the species which most heavily and consistently discriminated the fish compositions in the earlier 485 

and later years were F. lateralis, C. mugiloides, A. forsteri, A. vaigiensis, A. elongata, and the 486 

Weeping Toado Torquigener pleurogramma Regan 1903, with all but the first species being 487 

consistently more abundant in 2008-10.  488 

The abundances of the above six species (on a common scale of pre-treated then averaged 489 

values, as input to the multivariate analysis) are shown on the segmented bubble plot for each 490 

season and year in Fig. 6b. They thus provide a concise description for the derivation of much of the 491 

difference observed between the ichthyofaunal communities in the early and later years in the 492 

nMDS. Although F. lateralis was always present in substantial numbers in all seasons and years, it 493 

is clear that the abundances of this gobiid were much higher in 1994 than in 2008-10. In contrast, 494 

the abundances of A. elongata, A. forsteri and T. pleurogramma C. mugiloides, A. vaigiensis were 495 

found in larger numbers in the later years, particularly in the summer periods for A. forsteri and 496 

A. elongata, and in all but the autumn periods for T. pleurogramma. It was noted previously that 497 

C. mugiloides and A. vaigiensis were absent altogether in 1994 and this differentiation is seen to 498 

provide a clear contribution to the community assessment. Also notable from the plot are the closely 499 

matching values of all displayed species for the two spring and summer samples in the later years, 500 

which gives some diagnostic reassurance that the (approximate) 2-d nMDS configuration genuinely 501 

reflects the higher-dimensional information.  502 

The converse component of the 2-way SIMPER analysis, comparing seasons having 503 

removed the year effects, will identify some contributions from species already displayed in Fig. 6b 504 

but, by definition, they are less likely to be the most consistent discriminators of the seasonal cycle 505 

across all years, because of their differentiation of the years. Instead, a second set of species are 506 

displayed in Fig. 6c, which highlight the seasonal differences. Most of these are seen to be species 507 

with higher numbers in the spring or summer periods, being absent or less abundant in the autumn 508 

or winter: H. vittatus is a major contributor of this type. Other species have somewhat different 509 
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phasing: the King George whiting, Sillaginodes punctatus (Cuvier 1829) has substantial 510 

(transformed) abundances throughout the spring, summer and autumn (peaking in summer) but is 511 

largely absent in winter; the soldier Gymnapistes marmoratus Cuvier 1829 is more restricted to 512 

spring and summer, O. rueppellii is characteristically only a summer species and the spotted 513 

pipefish Stigmatopora argus Richardson 1840, only a spring species. In contrast, numbers of the 514 

bluespot goby, Pseudogobius olorum Sauvage 1880, tend to peak in the winter and spring and 515 

decline or are absent altogether in the summer and autumn. One notable absence from both Figs 6b 516 

and 6c is L. presbyteroides. In spite of its large numbers, being ranked third and fourth in terms of 517 

total abundance for the early and later years respectively (Table III), it is largely present across all 518 

years and seasons and plays little role in distinguishing between years, although, as earlier 519 

observed, it is one of the species characterising the differences between the base/lower and 520 

upper/apex regions of the estuary in 2008-10. The remainder of the ‘top ten’ ranked species listed in 521 

Table III for both periods, with the exception of L. wallacei, are represented in Fig. 6 and their 522 

temporal patterns, in so far as these influence the community assessment from a multivariate 523 

analysis, are readily discernible from this novel segmented bubble plot.  524 

 525 

Discussion 526 

Salinities and water temperatures 527 

The seasonal trends exhibited by salinity throughout the Leschenault Estuary in 2008-10 528 

demonstrate that, during the warm dry summer months of two successive years, there was a 529 

pronounced reverse salinity gradient, with salinities increasing from the base region to the apex, 530 

where they were far greater than sea water, i.e. 35, and reached 56 at one sampling site. Although 531 

that gradient was also present in spring and autumn, it was less pronounced and disappeared in 532 

winter, when salinities in all regions declined to less than 35. The exceptionally high salinities in the 533 

apex region in summer were due to a combination of very high evaporative loss from the shallow 534 
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waters of this region (typically <1.5 m), the absence of tributary rivers in the upper three-quarters of 535 

the estuary and limited rainfall during this dry period. The particularly pronounced decline in 536 

salinity between autumn and winter in the shallow apex and upper regions is produced mainly by 537 

freshwater, which, during that period of heavy precipitation, enters the apex region directly and via 538 

surface run off and from a large drain. The concomitant decline in salinity in the deeper base and 539 

lower regions was due largely to freshwater discharge into the bottom end of the estuary from the 540 

two tributaries that supply this system (Fig. 1).  541 

High levels of solar radiation, limited precipitation and the shallowness of the water also 542 

account for the very high water temperatures in the upper and apex regions of the Leschenault 543 

Estuary during summer. As with salinity, the maximum recorded water temperature of 36ºC is 544 

almost certainly an under-estimate of the true maximum as temperatures were measured only at the 545 

time of sampling. The extreme salinities and temperatures in the upper and apex regions in summer 546 

would pose a strong physiological challenge to many of the fish species typically found in estuaries 547 

on the lower west coast of Australia.  548 

 549 

Main characteristics of the fish fauna in the Leschenault Estuary  550 

Analyses of the data, derived from the approximately 27000 fishes, representing 43 species 551 

caught during seasonal sampling of the four regions of the Leschenault Estuary over two years, 552 

provided an integrated picture of the characteristics of the ichthyofauna of this permanently-open 553 

estuary with a reverse salinity gradient. The overall number of species was shown to decline from 554 

the base and lower regions to the upper and then apex regions during spring and summer, when the 555 

reverse salinity gradient was most pronounced. This presumably reflects, in part, a progressive 556 

decline along that gradient, in the number of species capable of osmoregulating effectively in 557 

hypersalinities. This decline is more pronounced with marine species than with estuarine residents, 558 

which was expected as the latter contain some euryhaline species that are particularly well adapted 559 
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to living in the highly variable environments found in estuaries (see later). The trend towards a 560 

reduced number of species along the reverse salinity gradient parallels that recorded for other 561 

estuaries with such a gradient, such as the permanently-open and microtidal Sine Saloum and 562 

Casamance estuaries in west Africa (Simier et al., 2004; Kantoussan et al., 2012) and the 563 

periodically-closed Lake St Lucia in Africa (Cyrus et al., 2011).  564 

It was striking that, while densities in the base and/or lower regions were greater than in the 565 

upper and apex regions in most seasons, very high densities were recorded in the apex region in the 566 

autumn and winter of 2008/09 and in the upper region in the autumn of both 2008/09 and 2009/10.  567 

This was due to the recruitment of large numbers of 0+ individuals of three atherinid species, 568 

A. elongata, C. mugiloides and A. vaigiensis, following their spring to summer spawning periods 569 

(Prince & Potter, 1983). The presence, in most seasons, of greater densities of fishes in the lower 570 

region than other regions (see also Table I) probably reflects the greater heterogeneity of habitat in 571 

this region, through containing substantial areas of seagrass and macroalage as well as unvegetated 572 

substrata (Wurm & Semeniuk, 2000), and does not undergo the extreme changes in salinity 573 

experienced by the upper and apex regions. 574 

Our data also demonstrate that the ichthyofauna of the Leschenault Estuary consisted 575 

entirely of marine species or estuarine residents. However, while the overall number of marine 576 

species was well over twice that of estuarine residents, the reverse was true for overall relative 577 

abundance. This reflected the fact that, whereas marine species were far more numerous than 578 

estuarine residents in the base region, the exact opposite was the case in each of the other three 579 

regions and especially so in the upper and apex regions in summer and autumn. These trends imply, 580 

firstly, that the essentially marine environment created in the base region by the direct intrusion of 581 

marine waters through the entrance channel, which joins this region with the Indian Ocean, provides 582 

an ideal environment for the marine species that enter the Leschenault Estuary. The trends also 583 

imply, however, that further up the estuary, and particularly in the upper and apex regions in 584 
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summer and autumn, possess features that make those regions far more conducive to occupation by 585 

estuarine residents than marine species. It is thus relevant that tidal water movements are relatively 586 

weak in this estuary and do not extend into the upper and apex regions (Charteris & Deeley, 2000; 587 

Gillibrand et al., 2012) and that the waters in those regions in summer and autumn become 588 

hypersaline and particularly warm (see next section for significance and particularly for certain 589 

atherinids).  590 

The above regional trends helps account for the finding that the percentage contributions 591 

made by estuarine residents to the abundance of fishes in samples from the Leschenault Estuary 592 

were greater than those in the two large permanently-open estuaries to the north, i.e. Swan-Canning 593 

and Peel-Harvey estuaries, recognising, however, that those contributions were still substantial 594 

(Loneragan et al., 1989; Young & Potter, 2003). The large abundances of a number of estuarine 595 

residents in the microtidal estuaries of Western Australian has been attributed to these species 596 

typically spawning in these systems during the warm and dry months when environmental 597 

conditions are relatively benign and thus conducive to spawning success and recruitment (Potter & 598 

Hyndes, 1999).  599 

  600 

The importance of atherinids 601 

The small number of species that are apparently well adapted to living in the high salinities 602 

and water temperatures that characterise the upper and apex regions of the Leschenault Estuary in 603 

summer and autumn would benefit from an inevitable reduction in interspecific competition for 604 

spatial and food resources. This parallels the situation in other estuaries with reverse salinity 605 

gradients, or at least high salinities in their upper reaches, such as the Casamance Estuary in western 606 

Africa and Kariega Estuary in southern Africa, where the ichthyofauna of the upper reaches were 607 

dominated by estuarine residents (Ter Morshuizen & Whitfield, 1994; Kantoussen et al., 2012).  608 
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The domination of the fish faunas of the upper and apex regions of the Leschenault Estuary 609 

by estuarine residents was largely due to the overwhelming prevalence of atherinids in these two 610 

regions (68 and 83 %) and, in particular, of Atherinosoma elongata and 611 

Craterocephalus mugiloides. These species are known to be able to tolerate a wide range of 612 

salinities (Thompson & Withers, 1992; Young & Potter, 2002). Atherinosoma elongata was so 613 

abundant in the upper and apex regions that it contributed as much as one half and two thirds to the 614 

total catch in these regions, respectively. These data emphasize that certain species of the 615 

Atherinidae are particularly well adapted to living in high salinities and thus able to exploit the 616 

opportunities provided by a reduction in the competition from other species that are less tolerant of 617 

such conditions. In this context, it is relevant that A. elongata was the only fish species to survive in 618 

the Wellstead Estuary on the lower west coast of Australia, when salinities in this normally-closed 619 

estuary had risen to 122 (Young & Potter, 2002) and that a closely-related species, the smallmouth 620 

hardyhead Atherinosoma microstoma Günther 1861, was the only species caught in the very high 621 

salinities at the uppermost site in the Coorong Estuary, which has a reverse salinity gradient 622 

(Brookes et al., 2009; Zampatti et al., 2010). Experimental studies have shown that the latter 623 

species can osmoregulate in salinities up to at least 80 (Wedderburn et al., 2008). Furthermore, two 624 

atherinid species in the Mondego Estuary in Portugal were more abundant in drought than in non-625 

drought years when salinities were less (Baptista et al., 2010). It is also noteworthy that the only 626 

other abundant species in the upper and apex regions was another atherinid, 627 

Atherinomorus vaigiensis, and that this species has also been found in the hypersaline regions of a 628 

large embayment (Bayly, 1972), recognising, however, that this species spawns in marine waters 629 

and recruits into estuaries as juveniles (Prince & Potter, 1983). As this atherinid, and also 630 

C. mugiloides, are tropical species, they would be well adapted to tolerating the high temperatures 631 

present in the shallow waters of the upper estuary during summer.  632 
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In contrast, in particular to A. elongata, the atherinid Leptatherina presbyteroides, which is 633 

represented by both marine and estuarine populations (Prince & Potter, 1983), is more abundant in 634 

the base and lower than upper and apex regions of the estuary and thus exhibits a ‘preference’ for 635 

that part of the estuary which is subject to appreciable tidal influence and thus never becomes 636 

conspicuously hypersaline. The numbers of this species and all other atherinids collectively account 637 

for as much as 60% of the total catch taken throughout the Leschenault Estuary, thus emphasizing 638 

the importance of this versatile family in this system. In terms of overall abundance, however, two 639 

marine species Hyperlophus vittatus and Aldrichetta forsteri ranked third and fourth and the 640 

estuarine residents Favonigobius lateralis and Ostorhinchus rueppellii ranked sixth and eighth, 641 

respectively.  642 

The low numerical rankings of the atherinid Leptatherina wallacei (12) and the gobiid 643 

P. olorum (32) in the Leschenault Estuary contrast markedly with those in the permanently-open 644 

Swan-Canning (3 and 13) and Blackwood River (1 and 8) estuaries to the north and south of the 645 

Leschenault, respectively (Loneragan et al., 1989; Valesini et al., 1997). In the latter estuaries, these 646 

two species were most abundant by far in the upper regions, where, due to riverine discharge and 647 

freshwater run-off, and thus, in contrast to the Leschenault Estuary, salinities rarely approach that of 648 

seawater. Similarly, in the Sine Saloum system in west Africa where hypersalinities are observed all 649 

year round, several species that are common in brackish waters of other estuaries in this region are 650 

absent or present in low numbers (Simier et al., 2004).   651 

 652 

Seasonal and regional trends in species composition 653 

The trends shown on the nMDs ordination plots in Figs 4a and b emphasise that the 654 

composition of the ichthyofauna changed in a cyclical manner in each region of the estuary and that 655 

these sequential changes were associated with the trends exhibited by salinity. The seasonal changes 656 

in the lower and middle areas of the estuary were strongly related to the seasonal patterns of 657 
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immigration and emigration of marine species, such as H. vittatus, Gymnapistes marmoratus, 658 

S. punctatus, A. forsteri and Stigmatopora argus, which were represented by greater numbers in 659 

spring and/or summer. In contrast, the seasonal changes in the apex region reflected, inter alia, the 660 

presence of only three species (mainly the estuarine resident atherinids A. elongata and 661 

C. mugiloides) in summer, when salinities became markedly elevated (see earlier), and a wider 662 

range of species during other times of the year when salinities declined. Cyclical changes in 663 

composition have been shown to occur in other microtidal estuaries (e.g. Young & Potter, 2003; 664 

Hoeksema & Potter, 2006) and also macrotidal estuaries, where they reflected predominantly time-665 

staggered immigrations and emigrations of the juveniles of marine species and migrating 666 

diadromous species (e.g. Potter et al., 1986; Thiel & Potter, 2001; Maes et al., 2005). 667 

The use in Figs 4c and d of bubble plots to denote salinity differences, show that 668 

ichthyofaunal composition changed progressively along the estuary and in conjunction with 669 

increasing salinity. These changes reflect the shift from domination by marine species of 670 

ichthyofauna in the base region to the extreme dominance in the apex region of A. elongata, 671 

C. mugiloides and A. vaigiensis, which each belong to a family known to be able to tolerate high 672 

salinities (see earlier). The ichthyofaunas of two estuaries in west Africa with a reverse salinity 673 

gradient have also been shown to change in composition and undergo a reduction in number of 674 

species along that gradient (Simier et al., 2004; Kantoussan et al., 2012). R  values demonstrated 675 

that inter-annual variations in ichthyofaunal composition in the Leschenault Estuary were less than 676 

those due to seasonal and regional changes, reflecting the consistency of the pronounced seasonal 677 

and regional trends exhibited by salinity and temperature in the two years. 678 

The use of SIMPROF, in conjunction with coherent species curve analyses, demonstrated 679 

that the spatial and temporal resources in the Leschenault Estuary are largely partitioned among 680 

separate groups of fish species. The species in groups I and II, i.e. those mainly confined to the base 681 

and lower regions of the estuary, all belonged to the marine estuarine-opportunist guild, except for 682 
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F. lateralis and L. presbyteroides, which belong to the estuarine & marine guild and are thus also 683 

represented by discrete populations in marine waters. These species are also typically found in the 684 

lower regions of other south-western Australian estuaries (Gill & Potter, 1993; Prince et al., 1982). 685 

In contrast, three of the six species (the yellowtail grunter Amniataba caudavittata Richardson 686 

1845, A. elongata and C. mugiloides) in group VI, i.e. which occurred mainly in the upper and apex 687 

regions, are, confined to estuaries in south-western Australia (Prince & Potter, 1983; Wise et al., 688 

1994; Potter & Hyndes, 1999). Two of the other species are marine estuarine opportunists (the 689 

yellowfin whiting Sillago schomburgkii Peters 1864 and A. vaigiensis) are known to be able to 690 

tolerate high salinities (Bayly, 1972; Lenanton, 1977).  691 

The species which were largely restricted to the lower region of the estuary were mainly 692 

caught in either spring (group III) or summer (group IV). Thus, c. 50-70 % of the individuals of 693 

G. marmoratus, L. wallacei, S. argus and the hairy pipefish Urocampus carinirostris Castelnau 694 

1872 were caught in this region during spring and c. 50-100 % of individuals of O. rueppellii, the 695 

blue weed whiting Haletta semifasciata Valenciennes 1840, the western striped grunter Pelates 696 

octolineatus Jenyns 1840 and the tarwhine Rhabdosargus sarba Forsskål 1775 were obtained from 697 

this region in summer. It is thus relevant that the above species are associated with aquatic 698 

vegetation (Travers & Potter, 2002; Young & Potter, 2003; Hesp et al., 2004; Valesini et al., 2004) 699 

and that macroalgal growths are prolific in these seasons (Hugues-dit-Ciles et al., 2012).  700 

 The partitioning of spatial and seasonal resources among groups of species in the 701 

Leschenault Estuary would reduce the potential for competition among the most abundant marine 702 

species and estuarine residents in this system.  703 

  704 

Comparisons of the fish faunas in 1994 and 2008-10 705 

It is particularly pertinent that the species compositions in 2008/9 and 2009/10 were not 706 

significantly different, but that the composition in each of these years was significantly different 707 
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from that in 1994, a feature emphasised by a comparison of the distributions of the samples for the 708 

three years in the ordination plots shown in Fig. 6. This trend is consistent with the hypothesis that 709 

changes in the environment between those two periods were accompanied by a change in 710 

ichthyofaunal composition. The most important contributors to these ichthyofaunal differences were 711 

unexpected, however, involving a contrast between the presence in 2008-10 of substantial numbers 712 

of A. vaigiensis, and more particularly C. mugiloides, and the absence of these species in 1994 713 

(Table III; Potter et al., 1997, 2000). As only A. vaigiensis, of these two species, has been recorded 714 

in an estuary further south and then only in very low numbers (Valesini et al., 1997), there has been 715 

a southwards extension in the range of in which these designated tropical species (Hoese et al., 716 

2006) are abundant. This presumably reflects the influence of the conspicuous increases in water 717 

temperature, which, as a result of climate change, have occurred along the south-western coast of 718 

Australia during particularly the last 20 years (Pearce & Feng, 2007; Pearce et al., 2011; Lough, et 719 

al., 2012). Such a conclusion is consistent with the fact that, during the last 30 years, the abundance 720 

of C. mugiloides has increased in both the Swan-Canning (cf. Loneragan et al., 1989; Valesini et al., 721 

2009, 2011, 2013) and Peel-Harvey estuaries (cf. Potter et al., 1983; Loneragan et al., 1986; Veale, 722 

2013), which are located c. 140 and 85 km to the north of the Leschenault Estuary, respectively.  723 

The differences in composition between 2008-10 and 1994 also reflect increases in the 724 

densities and contributions to the total catch by O. rueppellii and G. marmoratus. It is thus relevant 725 

that these species are strongly associated with aquatic vegetation (Travers & Potter, 2002; Young & 726 

Potter, 2003; Valesini et al., 2004), and that the estuary became more eutrophic between the two 727 

periods, which is reflected in an increase in macroalgae (Hugues-dit-Ciles et al., 2012). As the 728 

distribution of O. rueppellii includes the northernmost and thus tropical regions of Australia (Allen 729 

et al., 2006), the increased abundance of this apogonid may also reflect the beneficial effects of 730 

higher water temperatures for such species. In contrast to the above two species, the overall density, 731 

contribution to the total catch and ranking by abundance of F. lateralis was far less in 2008-10 than 732 
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in 1994. Since this gobiid suffered a greater mortality when housed in aquaria containing silt rather 733 

than sand (Gill & Potter, 1993), the reduced abundance of this species is probably related to the 734 

effects of an increase in siltation in this estuary (McKenna, 2007; Kilminster, 2010; Hugues-dit-735 

Ciles et al., 2012).   736 

In summary, the results of this integrated study, in combination with those on a range of 737 

largely comparable estuaries, have elucidated the features that characterise permanently-open 738 

estuaries with a reverse salinity gradient. The results demonstrate that the number of species, 739 

including those of both the marine and estuarine category, decline along the salinity gradient. 740 

However, very high densities were recorded in the apex and upper regions in autumn, due 741 

predominantly to large numbers of three species of atherinid, a family that contains certain species 742 

capable of tolerating extreme salinities. Coherent species curves demonstrated that species tend to 743 

form groups along the estuary and according to season, thereby resulting in partitioning of resources 744 

among the members of the ichthyofauna and thus reducing the potential for interspecific 745 

competition. Ichthyofaunal composition was shown to undergo pronounced and progressive 746 

changes along the estuary and with season in association with changes in salinity. Inter-decadal 747 

comparisons emphasised that the ichthyofaunal composition of estuaries can undergo conspicuous 748 

changes due to the introduction of new species as coastal water temperature increase as a result of 749 

climate change and through changes in the relative abundance of some species in association with 750 

other changes in the environment, such as increased siltation and eutrophication. 751 
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Table I. Life-cycle guilds (LC), rankings by abundance (R), mean densities (D; numbers of fish 

100 m
-2

) and percentage contributions to the total catch (%) of the fish species caught between the 

Austral winter (July) of 2008 and the Austral autumn (April) of 2010 in all four regions of the 

Leschenault Estuary collectively, and of each region individually. Numbers of fish species and 

overall mean density (number of fish 100 m
-2

) are also given. In this and subsequent tables, life-cycle 

guilds are abbreviated as follows: E, solely estuarine; E&M, estuarine & marine; E&F, estuarine and 

freshwater; MEO, marine estuarine-opportunist and MS, marine straggler. The ten most abundant 

species in the whole estuary and in each of the four regions individually are highlighted in bold. 

  Whole estuary Base Lower Upper Apex 

Species Name LC  R D % R D % R D % R D % R D % 

Atherinosoma elongata E 1 64.0 34.0 6 6.1 4.0 1 67.8 23.4 1 74.8 49.9 1 107.2 67.0 

Craterocephalus mugiloides E 2 24.0 12.7 8 3.1 2.0 3 39.9 13.8 2 27.1 18.1 2 25.8 16.1 

Hyperlophus vittatus MEO 3 21.4 11.4 2 40.4 26.4 2 45.2 15.6       

Aldrichetta forsteri MEO 4 15.7 8.4 1 45.6 29.8 7 7.5 2.6 7 4.3 2.9 4 5.5 3.5 

Leptatherina presbyteroides E&M 5 15.0 8.0 3 20.2 13.2 4 33.4 11.5 6 4.7 3.1 7 1.6 1.0 

Favonigobius lateralis E&M 6 12.8 6.8 4 14.2 9.3 6 27.9 9.6 4 8.2 5.5 8 0.9 0.5 

Atherinomorus vaigiensis MEO 7 9.1 4.8 5 6.5 4.3 12 3.3 1.1 3 15.0 10.0 3 11.5 7.2 

Ostorhinchus rueppellii E&M 8 7.9 4.2 18 0.1 0.1 5 30.9 10.7 12 0.7 0.4    

Sillaginodes punctatus MEO 9 3.3 1.7 9 3.0 2.0 8 7.2 2.5 8 2.8 1.8 11 0.1 0.1 

Mugil cephalus MEO 10 3.0 1.6 15 0.6 0.4 15 1.0 0.3 5 7.5 5.0 6 2.8 1.8 

Torquigener pleurogramma MEO 11 2.7 1.4 7 4.2 2.8 11 5.3 1.8 10 1.0 0.6 10 0.2 0.1 

Leptatherina wallacei E&F  12 2.3 1.2 12 1.2 0.8 10 6.0 2.1 9 1.6 1.1 9 0.4 0.3 

Gymnapistes marmoratus MEO 13 2.1 1.1 11 1.5 1.0 9 6.2 2.1 11 0.7 0.5    

Sillago schomburgkii MEO 14 1.1 0.6 17 0.3 0.2 26 0.1 <0.1 14 0.3 0.2 5 3.7 2.3 

Haletta semifasciata MEO 15 0.6 0.3    13 2.6 0.9       

Arripis truttaceus MEO 16 0.6 0.3 10 2.5 1.7          

Pseudogobius olorum E&F 17 0.6 0.3 14 0.9 0.6 14 1.3 0.4 16 0.2 0.1    

Ammotretis elongatus MS 18 0.4 0.2 13 1.1 0.7 18.5 0.4 0.1       

Stigmatopora argus MS 19 0.3 0.1 20.5 <0.1 0.1 16 0.9 0.3 21 <0.1 <0.1    

Sillago burrus MEO 20.5 0.2 0.1 30.5 <0.1 <0.1 20.5 0.2 0.1 13 0.5 0.3 12 <0.1 0.1 

Gerres subfasciatus MEO 20.5 0.2 0.1 25.5 <0.1 <0.1 17 0.7 0.2 18 <0.1 0.1    

Scobinichthys granulatus MS 22 0.2 0.1 16 0.5 0.3 22 0.2 0.1       

Rhabdosargus sarba MEO 23 0.1 0.1 25.5 <0.1 <0.1 18.5 0.4 0.1       

Contusus brevicaudus MEO 24 0.1 0.1 25.5 <0.1 <0.1 24 0.2 0.1 17 0.2 0.1    

Pomatomus saltatrix MEO 25 <0.1 <0.1 25.5 <0.1 <0.1 20.5 0.2 0.1       

Amniataba caudavittata E 27 <0.1 <0.1       15 0.2 0.1    

Pelates octolineatus MEO 27 <0.1 <0.1    24 0.2 0.1 19 <0.1 <0.1    

Urocampus carinirostris E&M 27 <0.1 <0.1 25.5 <0.1 <0.1 24 0.2 0.1       

Pseudorhombus jenynsii MEO 29 <0.1 <0.1 20.5 <0.1 0.1 28.5 <0.1 <0.1 21 <0.1 <0.1    

Siphamia cephalotes E&M 30 <0.1 <0.1    27 0.1 <0.1       

Afurcagobius suppositus E 32 <0.1 <0.1    28.5 <0.1 <0.1       

Cristiceps australis MS 32 <0.1 <0.1 20.5 <0.1 0.1          

Lesueurina platycephala MEO 32 <0.1 <0.1 20.5 <0.1 0.1          

Meuschenia freycineti MEO 35 <0.1 <0.1    30 <0.1 <0.1       

Arenigobius bifrenatus E&M 35 <0.1 <0.1 30.5 <0.1 <0.1 33 <0.1 <0.1       

Microcanthus strigatus MS 35 <0.1 <0.1 25.5 <0.1 <0.1          

Arripis georgianus MEO 40 <0.1 <0.1       21 <0.1 <0.1    

Callogobius depressus E&M 40 <0.1 <0.1    33 <0.1 <0.1       

Ophisurus serpens MEO 40 <0.1 <0.1    33 <0.1 <0.1       

Parablennius postoculomaculatus MS 40 <0.1 <0.1    33 <0.1 <0.1       

Platycephalus laevigatus MS 40 <0.1 <0.1    33 <0.1 <0.1       

Enoplosus armatus MS 40 <0.1 <0.1 30.5 <0.1 <0.1          

Spratelloides robustus MS 40 <0.1 <0.1 30.5 <0.1 <0.1           

Number of samples   124   31   31   31   31  

Number of species   43   32   35   22   12  

Number of fish   27044 

 

 5500  10407  5388  5749  

Mean number of fish 100 m-2  188   153   289   150   160  
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Table II. Global and pairwise R-statistic values and significance levels (P) for one-way ANOSIM 

tests for region, employing separate Bray-Curtis similarity matrices constructed from the fish 

abundances in each season. Significant pairwise comparisons are highlighted in grey.  

 

(a) Winter R = 0.122, P = 0.033  (b) Spring, R = 0.560, P = 0.001 

 Apex Upper Lower   Apex Upper Lower 

Upper 0.143    Upper 0.245   

Lower 0.230 0.139   Lower 0.941 0.609  

Base 0.089 -0.070 0.282  Base 0.778 0.504 0.278 

         

(c) Summer, R = 0.455, P = 0.001  (d) Autumn, R = 0.369, P = 0.001 

 Apex Upper Middle   Apex Upper Lower 

Upper -0.012    Upper 0.090   

Lower 0.633 0.446   Lower 0.420 0.340  

Base 0.888 0.697 0.137  Base 0.648 0.674 0.199 
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Table III. Life-cycle guilds (LC), rankings by abundance (R), mean densities (D; number of fish 

100 m
-2

) and percentage contributions to the total catch (%) of the fish species caught in the base 

and lower regions of the Leschenault Estuary in each season in 1994 and over two consecutive 

‘years’ between winter 2008 and autumn 2010. Numbers of fish species and overall mean density 

(number of fish 100 m
-2

) in each period are also given. The eleven most abundant species in each 

period are highlighted in bold. 

  1994  2008-10 

Species name LC R D %  R D % 

Atherinosoma elongata E 4 10.8 4.1  1 46.2 19.1 

Hyperlophus vittatus MEO 2 85.1 32.4  2 38.9 16.0 

Aldrichetta forsteri MEO 5 4.4 1.7  3 30.8 12.7 

Leptatherina presbyteroides E&M 3 41.4 15.8  4 30.7 12.7 

Craterocephalus mugiloides E     5 25.4 10.5 

Favonigobius lateralis E&M 1 95.8 36.5  6 19.7 8.1 

Ostorhinchus rueppellii E&M 9 2.8 1.1  7 17.6 7.3 

Sillaginodes punctatus MEO 7 4.0 1.5  8 5.4 2.2 

Atherinomorus vaigiensis MEO     9 5.4 2.2 

Torquigener pleurogramma MEO 12 1.4 0.5  10 4.8 2.0 

Leptatherina wallacei E&F 8 2.9 1.1  11 4.6 1.9 

Gymnapistes marmoratus MEO 14.5 0.8 0.3  12 4.3 1.8 
Arripis truttaceus MEO     13 1.6 0.7 

Haletta semifasciata MEO 19 0.2 0.1  14 1.5 0.6 

Pseudogobius olorum E&F 10 2.6 1.0  15 1.3 0.5 
Mugil cephalus MEO 11 2.2 0.9  16 1.0 0.4 

Ammotretis elongates MS 28 <0.1 <0.1  17 0.8 0.3 

Stigmatopora argus MS 13 0.8 0.3  18 0.4 0.2 
Sillago schomburgkii MEO 24 <0.1 <0.1  19 0.3 0.1 

Sillago burrus MEO 16 0.4 0.2  20.5 0.3 0.1 

Scobinichthys granulatus MS 26 <0.1 <0.1  20.5 0.3 0.1 
Rhabdosargus sarba MEO 21 0.1 <0.1  22 0.2 0.1 

Urocampus carinirostris E&M 17 0.4 0.1  23 0.1 <0.1 

Pelates octolineatus MEO 22 0.1 <0.1  24 <0.1 <0.1 
Pseudorhombus jenynsii MEO 24 <0.1 <0.1  25 <0.1 <0.1 

Afurcagobius suppositus E 6 4.1 1.6  27 <0.1 <0.1 

Contusus brevicaudus MEO 14.5 0.8 0.3  27 <0.1 <0.1 
Siphamia cephalotes E&M 18 0.3 0.1  27 <0.1 <0.1 

Pomatomus saltatrix MEO 31.5 <0.1 <0.1  30 <0.1 <0.1 

Gerres subfasciatus MEO     30 <0.1 <0.1 
Meuschenia freycineti MEO     30 <0.1 <0.1 

Spratelloides robustus MS 24 <0.1 <0.1  34 <0.1 <0.1 

Arenigobius bifrenatus E&M 31.5 <0.1 <0.1  34 <0.1 <0.1 

Platycephalus laevigatus MS     34 <0.1 <0.1 

Callogobius depressus E&M     34 <0.1 <0.1 

Ophisurus serpens MEO     34 <0.1 <0.1 
Enoplosus armatus MS 20 0.2 0.1     

Sillago bassensis MS 28 <0.1 <0.1     

Callogobius mucosus MEO 28 <0.1 <0.1     
Notolabrus parilus MS 31.5 <0.1 <0.1     

Cristiceps australis MS 31.5 <0.1 <0.1     

Number of samples  48   48  

Number of species  33   36  

Number of fish  14601   13483  

Mean number of fish 100 m-2  262   242  
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Figure 1. Map showing the base, lower, upper and apex regions of the Leschenault Estuary that 

were sampled using a 21.5 m seine net in each consecutive season between the Austral winter of 

2008 and Austral autumn of 2010. Arrow in inset shows location of the Leschenault Estuary in 

south-western Australia.  

 

Figure 2. Mean seasonal values for (a) salinity, (b) water temperature, (c) numbers of species and 

(d) densities of fishes in the base (), lower (), upper () and apex () regions of the 

Leschenault Estuary between the Austral winter of 2008 and Austral autumn of 2010. Overall mean 

± 95 % confidence intervals are presented for each variable (back-transformed for the numbers and 

densities of fish). The horizontal line in (a) denotes full strength sea water, i.e. 35. 

 

Figure 3.  Numbers of species representing the marine (▲) and estuarine () categories and the 

percentage contributions of the number of individuals of the marine () and estuarine () 

categories (shown as stacked bar graphs) in each region of the Leschenault Estuary; (a) throughout 

the year and (b-e) in each season. B, base region; L, lower region; U, upper region; A, apex region. 

 

Figure 4. nMDS ordination plots, constructed from separate Bray-Curtis similarity matrices derived 

from pre-treated (see text) and then meaned abundances recorded for each fish species in: (a) each 

season (averaged over years and sites) in the base (), lower (), upper () and apex () regions 

of the Leschenault Estuary; (c) each region (averaged over seasons and sites) in 2008/09 () and 

2009/10 (); and (e) each season (averaged over regions and sites) in 2008/09 () and 2009/10 

(). The nMDS stress function in (c) is mixed with a trace amount (5%) of metric MDS (mMDS) 

stress to avoid a degenerate solution for this small number of points. W, winter; Sp, spring; S, 

Figure Captions



 

 

 

summer; A, autumn. Arrows show seasonal cycling or trend up the estuary. (b) and (d) Bubble plots 

of mean salinities for the relevant samples are superimposed on the nMDS ordinations in (a) and (c) 

respectively. 

 

Figure 5. Line plots for coherent groups of species (I-VI) identified by Type 3 SIMPROF tests, 

showing, for each species, the percentage contributions to its total abundance (untransformed) 

across the 16 combinations of four seasons (W, Sp, S, A) over four regions (base, lower, upper and 

apex) of the Leschenault Estuary. The species retained for the SIMPROF tests all accounted for 

more than 0.1% of the total abundance in at least one of the 16 (averaged) samples. This resulted in 

13 coherent groups; the omitted plots are typically of singleton groups and all involve few 

occurrences and low total abundance (all species with >100 individuals are present in one of the 

displayed groups).  

 

Figure 6. (a) nMDS ordination plot constructed from the Bray-Curtis similarity matrix derived from 

the (pre-treated) mean abundances of each fish species in each season (averaged for regions) in the 

Leschenault Estuary in 1994 (), 2008/09 () and 2009/10 (). Arrows show direction of 

seasonal cycling. (b) Segmented bubble plot, superimposed on the ordination in (a), with segment 

sizes, on a common scale, proportional to the means of the (pre-treated) abundances for each of 6 

species, identified by a two-way SIMPER analysis (removing seasonal effects) as primarily 

contributing to the difference between the 1994 and 2008-2010 periods. Favonigobius lateralis (), 

Craterocephalus mugiloides (), Aldrichetta forsteri (), Atherinomorus vaigiensis (), 

Atherinosoma elongata () and Torquigener pleurogramma (). (c) Bubble plot as in (b), with 

segment sizes on the same common scale, but for 6 species identified by two-way SIMPER 

(removing period effects) as primarily contributing to the observed seasonal changes. Hyperlophus 

vittatus (),Gymnapistes marmoratus (),Sillaginodes punctatus (), Pseudogobius olorum 

(),Ostorhinchus rueppellii () and Stigmatopora argus ().  
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Figure 4.
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Figure 5.
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Appendix 1. Mean squares (MS), F values (F) and significance levels (P) for three-way 

PERMANOVA tests employing the Euclidean distance matrices constructed from (a) number of 

species and (b) mean densities of fishes (numbers 100 m
-2

) in the base, lower, upper and apex 

regions of the Leschenault Estuary in each season over the two consecutive years between the 

Austral winter of 2008 and Austral autumn of 2010. df = degrees of freedom. Significant 

differences (<0.05) are highlighted in bold. 
 

  (a) Number of species  (b) Density 

Main Effects df MS F    P  MS F   P 

Year 1 1.58 9.1 0.013  1.56 0.9 0.357 

Season 3 0.23 1.1 0.358  6.72 6.4 0.002 

Region 3 8.22 20.1 <0.001  8.70 6.2 0.008 

Site (Region) 12 0.41 2.8 0.009  1.41 1.9 0.071 

Interactions         

Year × Season 3 1.33 9.0 <0.001  10.28 13.9 <0.001 

Year × Region 3 0.55 3.2 0.065  3.96 2.3 0.121 

Season × Region 9 1.17 5.5 <0.001  8.03 7.7 <0.001 

Year × Site (Region) 12 0.17 1.2 0.337  1.71 2.3 0.026 

Season × Site (Region) 36 0.21 1.5 0.148  1.06 1.4 0.155 

Year × Season × Region 9 0.60 4.0 0.001  5.64 7.6 <0.001 

Residuals 32 0.15    0.74   
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Appendix 2. Mean squares (MS), Pseudo-F (pF) values, and significance levels (P) for four-way 

PERMANOVA tests on the Bray-Curtis similarity matrices constructed from the (pre-treated) fish 

abundances recorded in (a) the base, lower, upper and apex regions of the Leschenault Estuary in 

each season over two consecutive years between the Austral winter of 2008 and Austral autumn of 

2010 and (b) those in the base and lower regions in each season in 1994, 2008/09 and 2009/10. df = 

degrees of freedom. Significant results (<0.05) are highlighted in bold. Asterisks indicate some 

missing cells in the unbalanced design. 

 

(a) Fish compositions in 2008/09 and 2009/10 

Main Effects df MS pF  P 

Year 1 4904 3.8 0.003 
Season 3 8738 8.1 <0.001 
Region 3 12721 6.2 <0.001 
Site (Region) 12 2091 2.4 <0.001 

Interactions     
Year × Season 3 4000 4.7 <0.001 
Year × Region 3 2211 1.7 0.034 
Season × Region 9 3186 3.0 <0.001 
Year × Site (Region) 12 1283 1.5 0.003 
Season × Site (Region) 36 1082 1.3 0.012 
Year × Season × Region 9 1833 2.1 <0.001 

Residuals 32 858   

(b) Fish compositions in 1994, 2008/09 and 2009/10 
Main effects df MS pF P 
Year 2 7843 3.5 0.001 
Season 3 6165 4.0 <0.001 
Region 1 6892 2.5 0.036 
Site (Region) 6 2784 1.5 0.049 

Interactions     
Year × Season 6 3026 2.4 <0.001 
Year × Region 2 2411 1.1 0.362 
Season × Region 3 3051 2.0 0.006 
Year × Site (Region)* 10 2201 1.2 0.198 
Season × Site (Region) 18 1531 0.8 0.881 
Year × Season × Region 6 1752 1.4 0.034 
Year × Season × Site (Region)* 28 1864 0.7 0.997 

Residuals 24 2662   
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Appendix 3. Species which, on the basis of one-way SIMPER, typified (shaded) the fish assemblages in each region of the Leschenault Estuary in (a) 

winter, (b) spring, (c) summer and (d) autumn of 2008-10 and distinguished between each pair of assemblages (un-shaded). The region in which each 

species was most consistently found and abundant is given in superscript for each pairwise comparison. Asterisks denote the relative consistency of 

each species in either typifying or distinguishing the faunal compositions in each region, as measured by the similarity to standard deviation ratio and 

dissimilarity to standard deviation ratio, respectively; 1.0-1.5
*
, 1.5-2.0

**
, 2.0-2.5

***
, >2.5

**** 
.   

 
(a) W Apex Upper Lower Base  (b) Sp Apex Upper Lower Base 

Apex 

A. forsteri 

L. presbyteroides* 

A. elongata 
C. mugiloides 

   

 

Apex A. elongata    

Upper  

F. lateralis*** 

L. presbyteroides* 

T.  pleurogramma 
A. elongata 

  

 

Upper 

F. lateralisU* 

S. punctatusU* 

A. elongataU  
A. forsteriU* 

F. lateralis** 
A. elongata*  

S. punctatus 

  

Lower 

F. lateralisL* 

A. forsteriA* 

T.  pleurogrammaL  

 

F. lateralis** 

C. mugiloides 

O. rueppellii 

 

 

Lower 

F. lateralisL** 

G. marmoratusL* 
S. argusL* 

T.  pleurogramma L* 

F. lateralisM 

C. mugiloidesM 

A. elongataM* 

F. lateralis*** 

G. marmoratus**** 
S. argus 

H. vittatus* 

 

Base   
F. lateralisB* 
C. mugiloidesB 

A. elongataB 

F. lateralis* 

T.  pleurogramma 

 

Base 

S. argusB* 

F. lateralis B* 
G. marmoratusB* 

T.  pleurogrammaB* 

H. vittatusB* 

H. vittatusL* 

F. lateralisL* 
S. punctatusU 

A. elongataU*  

S. granulatusB 

S. argusL* 

F. lateralisL* 

G. marmoratusL* 
L. wallaceiL* 

F. lateralis**** 
H. vittatus 

T.  pleurogramma 

           

 (c) S Apex Upper Lower Base  (d) A  Apex Upper Lower Base 

 Apex A. elongata*    

 

 Apex 

A. elongata*** 

C. mugiloides* 
A. vaigiensis 

   

 Upper  
A. elongata* 
C. mugiloides 

  

 

 Upper 

 A. elongata*** 

C. mugiloides**** 
A. vaigiensis**** 

F. lateralis* 

  

 Lower 

F. lateralisL 

S. punctatusL 

O. rueppelliiL 
H. vittatusL 

F. lateralisL 

S. punctatusL* 
O. rueppelliiL* 

T.  pleurogrammaL 

H. vittatusL 

F. lateralis* 
O. rueppellii 

A. elongata 

 

 

 Lower 

F. lateralisL** 

A. elongataA**  

A. vaigiensisA* 
C. mugiloidesL* 

 

A. elongataU**** 
F. lateralisM* 

C. mugiloidesM* 

 

F. lateralis* 
C. mugiloides 

T. pleurogramma 

 

 Base 

F. lateralisB** 
A. forsteriB 

H. vittatusB 

L. presbyteroidesB* 

A. forsteriB 

F. lateralisB* 

H. vittatusB* 

L. presbyteroidesB* 

 

 

F. lateralis** 
H. vittatus* 

A. forsteri 

S. punctatus 

 

 Base 

A. elongataA** 
C. mugiloidesA* 

T.  pleurogrammaB* 

S. punctatusB 

A. elongataU*** 

C. mugiloidesU*** 

A. vaigiensisU** 

T.  pleurogrammaB* 

C. mugiloidesL 
A. vaigiensisB* 

L. presbyteroidesL 

F. lateralisL*  

F. lateralis 

T.  pleurogramma 
A. vaigiensis 
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