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There is a very short and beautiful proof that the number of distinct non-empty 
palindromes in a word of length n is at most n. In this paper we show, with a very 
complicated proof, that the number of distinct non-empty palindromes with length at 
most n in a circular word of length n is less than 5n/3. For n divisible by 3 we present 
circular words of length n containing 5n/3 −2 distinct palindromes, so the bound is almost 
sharp. The paper finishes with some open problems.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

We use the usual notation for combinatorics on words. A word of n letters is x = x[1 .. n], with x[i] being the ith letter 
and x[i .. j] the factor of elements from position i to position j. If i = 1 then the factor is a prefix and if j = n it is a suffix. 
A factor which is neither a suffix nor a prefix is proper. If i1 ≤ i2 ≤ j1 ≤ j2 then the union of x[i1 .. j1] and x[i2 .. j2] is 
x[i1 .. j2]. The letters in x come from some alphabet A. The length of x, written |x|, is the number of letters that x contains. 
If w = uv then vu is a conjugate of w . The empty word ε is a word with length 0. A word x or factor x is periodic with 
period p if x[i] = x[i + p] for all i such that x[i] and x[i + p] are in x. We will use the following well-known propositions.

Lemma 1. (See [6, Periodicity Lemma].) Let w be a word having two periods p and q. If |w| ≥ p + q − gcd(p, q) then w also has 
period gcd(p, q).

Lemma 2. Let w be a word having two periods p and q with q < p. Then the suffix and prefix of length |w| −q both have period p −q.

This is [9, Lemma 8.1.1], [8, Lemma 2.1] and is extended in [7, Lemma 2].

Lemma 3. (See [9, Lemma 8.1.3].) Let w be a word with period q which has a factor u with |u| ≥ q that has period r, where r divides q. 
Then w has period r.

Lemma 4. (See [9, Lemma 8.1.2].) If u, v and w are words such that uv and v w both have period p and |v| ≥ p then the word uv w
has period p.
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The reversal of a word w[1 .. n] is the word w = w[n]w[n − 1] .. w[1], and w is a palindrome if w = w . The empty word 
ε is a palindrome, however in this paper we will only be concerned with non-empty palindromes. A palindrome is odd
or even if its length is, respectively, odd or even. If w[i .. j] is a palindrome we say it has centre C = (i + j)/2 and radius
R = ( j − i)/2. Note that C and R are integers if the palindrome is odd and each is an integer plus 1/2 if the palindrome is 
even. In either case 2C , 2R and C + R are integers. We write P (C, R) for the palindrome with centre C and radius R . Thus 
if P (C, R) is a palindrome in a word w then

P (C, R) = w[C − R .. C + R]
and the palindrome has length 2R + 1. We will sometimes use P (C, R) to refer simply to the interval [C − R, C + R]. It will 
be clear from the context when this is so. For i ∈ P (C, R) we have

w[i] = w[2C − i] (1)

and

w
[�C� .. C + R

] = w
[
C − R .. �C	]. (2)

If w[i .. j] is a palindrome with j ≥ i + 2 then so is w[i + 1 .. j − 1]. If w[C − R .. C + R] is a palindrome but none of 
w[C − R − 1 .. C + R + 1], w[C − R .. C + R + 1], or w[C − R − 1 .. C + R] is, then we say w[C − R .. C + R] is a maximal 
palindrome. The second and third cases here mean that we do not, for example, consider aa to be maximal in baaac. If 
w[C − R .. C + R] is maximal then the palindromes w[C − R + i .. C + R − i], i = 1, . . . , �R�, are nested in w[C − R .. C + R]. 
If a palindrome is even, respectively odd, then its nested palindromes are even, respectively odd.

We write 〈w〉 for the circular word formed from w . That is, the letters of w are placed in order anticlockwise around 
the circumference of a circle. The length of 〈w〉 equals the length of w . A factor x[i .. j] of a circular word of length n can 
have j < i, in which case x[i .. j] is the concatenation of x[i .. n] and x[1 .. j]. That is, we are moving anticlockwise around 
the circle from i to j. We will similarly understand an interval modulo n [i, j] to be [i, j] if j ≥ i and [1, j] ∪[i, n] otherwise. 
Again we can picture the interval as the set of integers in the arc beginning at i moving anticlockwise around the circle 
to j. We write

i ≤ j ≤ k

if j is in the arc beginning at i and moving anticlockwise to k. We also define a set-bounded interval as follows: If A and B
are subsets of {1, . . . , n} then

[A, B] = {x : a ≤ x ≤ b for all a ∈ A and b ∈ B}.
A circular word 〈w〉 of length n is periodic with period p if w[i] = w[i + p] (arithmetic modulo n) for all i in {1, . . . , n}. 

Clearly n is always a period of 〈w〉 and if p is the least period of 〈w〉 then p is a divisor of n. Note that w can be periodic 
without 〈w〉 being so, since the periodicity of w only requires w[i] = w[i + p] for 1 ≤ i ≤ n − p. In fact, if 〈w〉 is the 
non-periodic circular word 〈akbakba〉, which has length 2k + 3, we have w[i] = w[i + k + 1] for i = 1, . . . , 2k + 1. It is not 
possible to have a non-periodic circular word of length n with w[i] = w[i + p] for all i in {1, . . . , n − 1}.

The following well-known theorem is due to Droubay, Justin, and Pirillo [5]. We give a proof since the ideas here will be 
used later.

Proposition 5. The number of distinct non-empty palindromes in a word of length n is at most n.

Proof. If two palindromes end at the same place then the shorter is a suffix of the longer. It is therefore also a prefix of the 
longer and so has occurred earlier in the word. Thus at each position there is the end of at most one palindrome making 
its first appearance in the word. The proposition follows. �

We consider the maximum number of distinct palindromes in a circular word of length n. We only count palindromes of 
length at most n. Say the maximum number of distinct palindromes in a circular word of length n is π(n). We note that in 
general π(n) is larger than n. For example with 〈aabb〉 we get 6 palindromes: a, b, aa, bb, abba, baab. Table 1 shows values 
of π(n) for low n.

Lemma 6. For words whose length n is divisible by 3 and at least 9 we have

π(n) ≥ 5n − 6

3
.
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Table 1
The first column is the length of the word, the second the maximum number of palin-
dromes and the third an example word attaining the maximum.

n π(n) Example

1 1 〈a〉
2 2 〈aa〉
3 4 〈aab〉
4 6 〈aabb〉
5 7 〈aaaab〉
6 9 〈aaaabb〉
7 10 〈aaaaaab〉
8 12 〈aaaaaabb〉
9 13 〈aaaaaaaab〉

10 15 〈aaaaaaaabb〉
11 16 〈aaaaaaaaaab〉
12 18 〈aaaaaaaaaabb〉
13 19 〈aaaaaaaaaaaab〉
14 21 〈aaaaaaaaaaaabb〉
15 23 〈aaaaabaaaabaaab〉
16 24 〈aaaaaaaaaaaaaabb〉
17 26 〈aaaaaabaaaaabaaab〉
18 28 〈aaaaaabaaaaabaaaab〉
19 29 〈aaaaaaabaaaaaabaaab〉
20 31 〈aaaaaaabaaaaaabaaaab〉
21 33 〈aaaaaaabaaaaaabaaaaab〉

Proof. For k ≥ 1 the word 〈akbak+1bak+2b〉 contains the palindromes

ai for i = 1, . . . ,k + 2
aibai for i = 0, . . . ,k + 1
aibakbai for i = 0, . . . ,k + 1
aibak+1bai for i = 0, . . . ,k
aibak+2bai for i = 0, . . . ,k

and has length n = 3k + 6. The total number of palindromes is therefore

5k + 8 = (5n − 6)/3

as required. �
We will call the word 〈akbak+1bak+2b〉 the kth Biggles word.1

The main result of this paper is the following:

Theorem 7. For all n

π(n) < 5n/3.

Most of the rest of the paper is devoted to proving this theorem. We label the letters of a circular word 〈w〉 of length 
n as w[1], . . . , w[n] as usual and call w[1] the origin of the word. This choice is arbitrary since we can relabel the letters 
of the word to make any of them the origin. We want to count the number of distinct palindromes in 〈w〉. To do this we 
put them in two classes: palindromes of the first kind have the form w[i . . . j] with i ≤ j, so they lie entirely in w[1 .. n] and 
do not straddle the ends of the word. Palindromes of the second kind have the form w[i . . . j] with i > j, so they contain the 
factor w[n .. 1]. Palindromes of the first kind are just those in the linear word w , so by Proposition 5 there are at most |w|
of them.

We call a maximal palindrome of length at least 2n/3, which is not contained in another palindrome of greater length, a 
long palindrome. Below we show that a counterexample to Theorem 7 contains at least one long palindrome. In Corollary 17
we show there are either four or five. In Section 2 we show that no counterexample exists containing exactly four long 
palindromes and in Section 3 that non exists containing exactly five. This will complete the proof that no counterexample 
exists.

Lemma 8. If a counterexample to Theorem 7 exists then it contains at least one long palindrome.

1 The word is named for the writer’s cat. Biggles is an idle creature and has done nothing to deserve this honour.
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Proof. Suppose that 〈w〉 is a counterexample to Theorem 7. A circular word of length n contains at most n palindromes of 
the first kind. It must therefore contain at least 2n/3 palindromes of the second kind which are distinct from all palindromes 
of the first kind. No two of these palindromes of the second kind can end at the same place, so the longest of these ends at 
w[ j] for some j ≥ 5n/3 and must straddle the origin and so has length greater than 5n/3, and so is a long palindrome. �
Lemma 9. If P (C1, R1) and P (C2, R2) are palindromes which contain each other’s centres and are such that neither is a proper factor 
of the other then their union has period 2|C2 − C1|.

Proof. Say the palindromes are in a word w . Without loss of generality suppose that R1 ≤ R2 and C1 < C2. The proofs of 
other cases follow from symmetry. Since neither palindrome is a proper factor the other we have

C1 − R1 ≤ C2 − R2, C1 + R1 ≤ C2 + R2 (3)

so that P (C1, R1) ∪ P (C2, R2) = w[C1 − R1 .. C2 + R2]. Suppose

i ∈ [
C1 − R1, C2 + R2 − 2(C2 − C1)

] = [C1 − R1,2C1 + R2 − C2].
From (3)

C1 + R2 ≤ C2 + R1

so that w[i] is in P (C1, R1) and by (1) we have

w[i] = w[2C1 − i].
Now

2C1 − i ∈ [
2C1 − (2C1 + R2 − C2),2C1 − (C1 − R1)

] = [C2 − R2, C1 + R1]
so, by (3), w[2C1 − i] is in P (C2, R2). By (1) again we have

w[2C1 − i] = w
[
i + 2(C2 − C1)

]
as required. �
Lemma 10. If 〈w〉 is a counterexample to Theorem 7 then it does not have period less than |w|.

Proof. Say 〈w〉 has length n and minimum period p < n, then p is a proper divisor of n so p ≤ n/2. If 〈w〉 is a counterex-
ample then it contains at least 2n/3 palindromes of the second kind. These begin before w[1] and end at pairwise different 
positions. The longest must contain w[�2n/3�]. Say this is P (C, R). Note that P (C − p, R) is also a palindrome of the second 
kind and has appeared before P (C, R). Thus P (C, R) equals a palindrome that has already been counted and 〈w〉 is not a 
counterexample. �

We say that two long palindromes with centres C1 and C2 are adjacent if there is no long palindrome with its centre 
lying between C1 and C2.

Lemma 11. If P (Ci, Ri) and P (Ci+1, Ri+1) are adjacent long palindromes in a circular word 〈w〉 with Ci < Ci+1 then

Ri + Ri+1 ≥ 2n/3 + Ci+1 − Ci − 1, (4)

and if P (C1, R1) and P (Ct , Rt) are adjacent long palindromes with C1 and Ct on opposite sides of the origin then

R1 + Rt ≥ 2n/3 + C1 + n − Ct − 1. (5)

Proof. Take the conjugate of w for which

Ci+1 − Ri+1 = 1

so that P (Ci+1, Ri+1) is of the first kind. So w[2n/3] is covered by P (Ci, Ri), that is

Ci + Ri ≥ 2n/3

and so

Ri + Ri+1 ≥ 2n/3 + Ci+1 − 1 − Ci .

This establishes (4). Inequality (5) can be proved in the same way. �



70 J. Simpson / Theoretical Computer Science 550 (2014) 66–78
Proposition 12. If P (C1, R1), . . . , P (Ct , Rt) are the long palindromes in a counterexample to Theorem 7 then

2
t∑

i=1

Ri > 2tn/3 + n − t. (6)

Proof. We assume, without loss of generality, that 0 < C1 < . . . < Ct . Then summing (4) over i and adding (5) gives

2
t∑

i=1

Ri > 2tn/3 − t +
t∑

i=1

(Ci+1 − Ci) + n.

We note that

t∑
i=1

(Ci+1 − Ci) = 0,

giving (6). �
Proposition 13. If w is a palindrome of length n then the number of distinct palindromes with length at most n in the circular word 
〈w〉 is at most � 3n−1

2 	, and this bound is best possible.

Proof. Let v = w w . Any palindrome in 〈w〉 will occur in v , and any palindrome with length at most n that occurs in v
will occur in 〈w〉. So the number of distinct palindromes in 〈w〉 equals the number of distinct palindromes in v minus the 
number of distinct palindromes in v with length greater than n.

By Proposition 5 the number of distinct palindromes in v is at most 2n.
The set of palindromes in v with length greater than n contains the set {v[i .. 2n + 1 − i], i = 1, . . . , �(n + 1)/2�} which 

has cardinality �(n + 1)/2�.
Therefore the number of distinct palindromes in 〈w〉 is at most

2n −
⌊

n + 1

2

⌋
=

⌈
3n − 1

2

⌉
.

This bound is attained by the circular words 〈akbak〉 for k ≥ 2. �
Proposition 14. If 〈w〉 is a counterexample to Theorem 7 then no conjugate of w is a palindrome, hence any palindrome in 〈w〉 has 
length at most n − 1.

Proof. Suppose w has a conjugate v which is a long palindrome. Then 〈v〉, which equals 〈w〉, contains less than 5n/3
palindromes by Proposition 13. Therefore 〈w〉 is not a counterexample. �
Corollary 15. If w is a counterexample to Theorem 7 and P (C, R) is a long palindrome in 〈w〉 then

n/3 ≤ R ≤ n/2 − 1.

Proof. The left hand side of the inequality comes from the definition of a long palindrome. For the right hand side note 
that the length of P (C, R) is 2R + 1. By Proposition 14 this is strictly less than n which implies the result. �
Proposition 16. If w is a counterexample to Theorem 7 with long palindromes {P (Ci, Ri) : i = 1, . . . , t} where 1 ≤ C1 < · · · < Ct ≤ n
then for i = 1, . . . , t − 1 we have

n/6 < Ci+1 − Ci ≤ n/3 − 1 (7)

and

n/6 < C1 + n − Ct ≤ n/3 − 1. (8)

Proof. Consider i such that 1 ≤ i < n. By Lemma 11 we have

Ri + Ri+1 ≥ 2n/3 + Ci+1 − Ci − 1

and by Corollary 15 we have
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Fig. 1. The situation considered in the proof of Proposition 16.

n − 2 ≥ Ri + Ri+1.

Together these give

n/3 − 1 ≥ Ci+1 − Ci

which is the right hand side of (7). For (8) we just consider a suitable conjugate of w (see Fig. 1).
For the other side suppose that the minimum value of Ci+1 − Ci is attained with i = k. The gaps between consecutive 

centres of long palindromes cannot all be equal as it is easily shown with two applications of (1) that the whole of 〈w〉
would then be periodic. This is impossible by Lemma 10. We can therefore assume, without loss of generality, that Ck −
(Ck+1 − Ck) is not the centre of a long palindrome. We consider that conjugate of w for which

Ck − Rk = 1 (9)

so that P (Ck, Rk) is not of the second kind. Since 〈w〉 is a counterexample to Theorem 7 it contains a long palindrome of 
the second kind which contains w[�2n/3	]. Suppose this is P (Ck+1, Rk+1). Then

Ck+1 − Rk+1 ≤ 0 < Ck − Rk

which would imply that P (Ck, Rk) is entirely contained in P (Ck+1, Rk+1) which contradicts the definition of a long palin-
drome. We conclude that neither P (Ck, Rk) nor P (Ck+1, Rk+1) is of the second kind. But w[�2n/3	] is covered by some 
palindrome of the second kind. Say this is P (C j, R j). Then we have C j − R j ≤ 0 and C j + R j ≥ �2n/3	. With Corollary 15
we have

C j ≥ �2n/3� − n/2 + 1 > n/6. (10)

Suppose, for the sake of contradiction, that

Ck+1 − Ck ≤ C j. (11)

By Proposition 9 P (Ck, Rk) ∪ P (Ck+1, Rk+1) has period 2(Ck+1 − Ck) and P (C j, R j) ∪ P (Ck, Rk) has period 2(Ck − C j). Their 
intersection, which is P (Ck, Rk), has both periods. P (Ck, Rk) has length 2Rk + 1 which, by (9), equals 2Ck − 1. By (11) this 
is at least

2(Ck+1 − C j) − 1 = 2(Ck+1 − Ck) + 2(Ck − C j) − 1.

By Lemma 1 P (Ck, Rk) therefore has period

Δ = gcd
(
2(Ck+1 − Ck),2(Ck − C j)

)
and by Lemma 3 this period extends to the whole of

P (C j, R j) ∪ P (Ck, Rk) ∪ P (Ck+1, Rk+1) = w[C j − R j, Ck+1 + Rk+1]
which we will call X . We note that 2(Ck+1 − Ck) ≥ Δ. We consider two cases depending on the sign of Rk+1 − R j .
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Case 1: Rk+1 − R j ≥ 0. Let q = �(Ck+1 − C j)/Δ	 − 1 so that

Ck+1 − Δ ≤ C j + qΔ < Ck+1.

It follows that C j + qΔ + R j ≤ Ck+1 + Rk+1 so that

w[C j + qΔ − R j .. C j + qΔ + R j]
is inside X and, since X has period Δ, is a copy of P (C j, R j). Thus P (C j + qΔ, R j) is a long palindrome with its centre, 
C j + qΔ, in the interval [Ck+1 − Δ, Ck+1). Since Δ ≤ 2(Ck+1 − Ck) this is a subinterval of

[
Ck+1 − 2(Ck+1 − Ck), Ck+1

] = [
Ck − (Ck+1 − Ck), Ck+1

]
.

By our earlier assumption that Ck − (Ck+1 − Ck) is not the centre of a long palindrome C j + qΔ is in the interior of 
the interval, so we have a long palindrome whose centre is at a distance from Ck less than Ck+1 − Ck , contradicting the 
minimality of this distance. We conclude that Case 1 is impossible.

Case 2: Rk+1 − R j < 0. We note that, from the definition of Δ,

Δ ≤ (Ck+1 − Ck) + (Ck − C j)

so that

Ck+1 − Rk+1 − Δ = C j + (Ck+1 − Ck) + (Ck − C j) − Rk+1 − Δ ≥ C j − R j.

Thus w[Ck+1 − Rk+1 − Δ .. Ck+1 + Rk+1 − Δ] is in X , and so is a long palindrome by the Δ-periodicity of X . Since Δ ≤
2(Ck+1 − Ck) its centre, which is Ck+1 − Δ, is in the interval [Ck − (Ck+1 − Ck), Ck+1) which is impossible as in Case 1.

We conclude that our original assumption (11) is false, so that, by (10), Ck+1 − Ck > n/6. Since Ck+1 − Ck is the minimum 
gap between consecutive centres we are done. �
Corollary 17. If a counterexample to Theorem 7 exists then it contains either exactly 4 or exactly 5 long palindromes.

Proof. If a counterexample contained 3 or fewer long palindromes then there would be adjacent centres at least n/3 apart 
and if it contained 6 or more there would be centres at most n/6 apart. Either case would contradict Proposition 16. �
2. Four long palindromes

In this section we show that 〈w〉 cannot be a counterexample to Theorem 7 if it contains exactly four long palindromes. 
In the following propositions we use set-bounded intervals. These were defined in the introduction.

Proposition 18. Suppose that 〈w〉 is a counterexample of length n with exactly four long palindromes P (C1, R1), P (C2, R2), P (C3, R3)

and P (C4, R4) where 1 ≤ C1 < C2 < C3 < C4 ≤ n. Then 〈w〉 has period 2(C2 − C1 + C4 − C3).

Proof. We write p for 2(C2 − C1 + C4 − C3) and I1 for the set-bounded interval

[{
C1 − R1, C3 − 2(C2 − C1) − R3

}
,
{

2C1 − C2 + R2,2(C3 − C2 + C1) − C4 + R4
}]

We will show that for x ∈ I1 we have

w[x] = w
[
2(C2 − C1 + C4 − C3) + x

]
.

We fix x ∈ I1. Then x ≥ C1 − R1 and using Corollary 15 and Proposition 16

x ≤ C1 − (C2 − C1) + R2

< C1 − n/6 + n/2

< C1 + R1 (12)

so x ∈ P (C1, R1). Therefore w[x] = w[2C1 − x]. We now have 2C1 − x in the interval

[{
C2 − R2, C4 − 2(C3 − C2) − R4

}
, {C1 + R1,2C2 − C3 + R3}

]
which, by reasoning similar to (12), is inside P (C2, R2). We therefore have

w[2C1 − x] = w
[
2(C2 − C1) + x

]
.
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We now have 2(C2 − C1) + x in the interval

[{2C2 − C1 − R1, C3 − R3}, {C2 + R2, R4 − C4 + 2C3}
]

which, by reasoning similar to (12), is inside P (C3, R3). We therefore have w[2(C2 − C1) + x] = w[2(C3 − C2 + C1) − x]. We 
now have 2(C3 − C2 + C1) − x in the interval

[{2C3 − C2 − R2, C4 − R4}, {C1 + 2C3 − 2C2 + R1, C3 + R3}
]
.

By Proposition 16 C4 > C3 + n/6 and by Corollary 15 R3 − R4 < n/6 − 1. Hence

C3 + R3 < C4 − n/6 + R4 + n/6 − 1 < C4 + R4,

and the interval above is inside P (C4, R4). We therefore have w[2(C3 − C2 + C1) − x] = w[2(C4 − C3 + C2 − C1) + x], so that 
for any x in I1 we have

w[x] = w
[
x + 2(C4 − C3 + C2 − C1)

] = w[x + p]
as required.

Similarly we can show that if x is in the interval

[{
C2 − R2, C4 − 2(C3 − C2) − R4

}
,
{

2C2 − C3 + R3,2(C4 − C3 + C2) − C1 + R1
}]

then

w[x] = w
[
2(C3 − C2 + C1 − C4 + n) + x

] = w[x − p].
Then x − p lies in the interval

[{
2C1 − C4 − R4,2(C1 − C4 + C3) − C2 − R2

}
,
{

C1 + R1, C3 − 2(C4 − C1) + R3
}]

which we call I4. It follows that if x is in I4 then

w[x] = w
[
x − 2(C1 − C4 + C3 − C2)

] = w
[
x + 2(C2 − C1 + C4 − C3)

] = w[x + p].
Similarly we have w[x] = w[x + p] for x in the intervals

[{
2C3 − C2 − R2,2(C1 − C2 + C3) − C4 − R4

}
,
{

C3 + R3, C1 + 2(C3 − C2) + R1
}]

and

[{
C3 − R3, C1 − 2(C4 − C3) − R1

}
,
{

2C3 − C4 + R4,2(C1 − C4 + C3) − C2 + R2
}]

which we call, respectively, I2 and I3. The I3 case is similar to I1 and the I2 case is similar to I4. We must now show that

I1 ∪ I2 ∪ I3 ∪ I4 = 〈w〉.
We do this by first finding points P1, P2, P3 and P4, with

P1 > P2 > P3 > P4 > P1 − n, (13)

which lie in the intervals I1, I2, I3 and I4 respectively; then show that, for 1 ≤ i ≤ 4 the lower bound of Ii+1 is less than 
the upper bound of Ii with arithmetic on the indices modulo 4.

We set P1 = 2C1 − C2 and show that it lies in I1 which is the set-bounded interval

[{
C1 − R1, C3 − 2(C2 − C1) − R3

}
,
{

2C1 − C2 + R2,2(C3 − C2 + C1) − C4 + R4
}]

.

We have

P1 − (C1 − R1) = R1 − (C2 − C1)

P1 − (
C3 − 2(C2 − C1) − R3

) = R3 − (C3 − C2).

Using Proposition 16 and Proposition 15 we see that each of these lies in the interval (0, n/3). For the upper bound

2C1 − C2 + R2 − P1 = R2

2(C3 − C2 + C1) − C4 + R4 − P1 = R4 + (C3 − C2) − (C4 − C3).
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Using Proposition 16 and Corollary 15 we see that each of these lies in the interval (n/6, 2n/3). Hence P1 is inside I1. 
Similarly we can show that 2C2 − C3 is inside the interval I ′2:[{

C2 − R2, C4 − 2(C3 − C2) − R4
}
,
{

2C2 − C3 + R3,2(C4 − C3 + C2) − C1 + R1
}]

.

Recalling the construction of I4 we see that

(2C2 − C3) − p = 2C1 − 2C4 + C3

is inside I4. We call this point P4. P3 and P2 are found in the same ways as P1 and P4 respectively, giving:

P1 = 2C1 − C2

P2 = C1 − 2C2 + 2C3

P3 = 2C3 − C4

P4 = C3 − 2C4 + 2C1.

We now establish (13). We have

P1 − P2 ≡ (C1 + n − C4) + (C4 − C3) − (C3 − C2) (mod n)

P2 − P3 ≡ (C4 − C3) + (C3 − C2) − (C2 − C1) (mod n)

P3 − P4 ≡ (C3 − C2) + (C2 − C1) − (C1 + n − C4) (mod n)

P4 − P1 ≡ (C2 − C1) + (C1 + n − C4) − (C4 − C3) (mod n).

Using Proposition 16 we find that the right hand side of each congruence is in the interval (0, n/2) which implies (13).
We now show that interval I1 has non-empty intersection with interval I2. We will assume that

Ri = �n/3	 for i = 1, . . . ,4 (14)

This involves no loss of generality since increasing Ri can only lengthen the intervals. The assumption will avoid some 
complications. We write L1 for the lower bound of I1 and U2 for the upper bound of I2. Thus

L1 = C1 − R1 or C3 − 2(C2 − C1) − R3

U2 = C3 + R3 or C1 + 2(C3 − C2) + R1. (15)

If I1 and I2 do not intersect then

P1 > L1 > U2 > P2. (16)

As noted above P1 − P2 < n/2, so a necessary condition for (16) is that L1 − U2 < n/2, which is equivalent to

U2 − L1 ≥ n/2. (17)

There are three possible values for U2 − L1 depending on which alternatives occur in (15) (two of the four combinations 
result in the same value). These are

C3 − C1 + R1 + R3 = (C3 − C2) + (C2 − C1) + 2�n/3	
2(C3 − C2) + 2R1 = 2(C3 − C2) + 2�n/3	
2(C2 − C1) + 2R3 = 2(C2 − C1) + 2�n/3	.

By Proposition 16 and (14) each of these is in the interval (n, 4n/3) ≡ (0, n/3) (mod n), contradicting (17). This shows that 
I1 and I2 do indeed intersect. Similar arguments show that each of I2 ∩ I3, I3 ∩ I4 and I4 ∩ I1 is non-empty. This shows that

I1 ∪ I2 ∪ I3 ∪ I4 = 〈w〉,
as required. The Proposition follows. �
Lemma 19. Let P (C1, R1), P (C2, R2) and P (C3, R3) be palindromes in a word w with C2 − C1 = x + y, C3 − C2 = x, where x and y
are positive, Ri > x ≥ y for i = 1, . . . , 3,

R3 ≥ R2 − x (18)

and

R1 ≥ R2 − x + y. (19)

Then each of the palindromes P (C3, R2 − x) and P (C1, R2 − x + y) has period 2y.
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Proof. Note that C2 = C1 + x + y and C3 = C1 + 2x + y. We write p for w[2C3 − C2 − R2 .. C2 + R2] which is the palindrome 
P (C3, R2 − x) = w[C1 + 3x + y − R2 .. C1 + x + y + R2]. Note that |p| = 2R2 − 2x + 1. The reversal of p in P (C2, R2) is

w
[
2C2 − (C3 + R2 − x) .. 2C2 − (C3 − R2 + x)

]
= w

[
2(C1 + x + y) − (C1 + x + y + R2) .. 2(C1 + x + y) − (C1 + 3x + y − R2)

]
= w[C1 + x + y − R2 .. C1 − x + y + R2].

This equals p since p is a palindrome and so is P (C1 + y, R2 − x). By (19) it lies inside P (C1, R1). Its reversal in P (C1, R1)

is

w
[
2C1 − (C1 − x + y + R2) .. 2C1 − (C1 + x + y − R2)

] = w[C1 + x − y − R2 .. C1 − x − y + R2]
which again equals p. Thus p is a border of the word w[C1 + x − y − R2 .. C1 − x + y + R2], which is the palindrome 
P (C1, R2 − x + y). By Lemma 2 this palindrome therefore has period∣∣w[C1 + x − y − R2 .. C1 − x + y + R2]

∣∣ − |p| = (2R2 − 2x + 2y + 1) − (2R2 − 2x + 1) = 2y,

as required. Since p is a factor of this word it also has period 2y; that is, P (C3, R2 − x) has period 2y. �
Corollary 20. There is no counter-example to Theorem 7 with exactly four long palindromes.

Proof. Suppose that 〈w〉 is a counterexample to Theorem 7 and that it contains exactly four long palindromes. Then by 
Proposition 18, and using the notation of that proposition, 〈w〉 has period 2(C2 − C1 + C4 − C3). It also has period n. If 
gcd(n, 2(C2 − C1 + C4 − C3)) < n then 〈w〉 is periodic, and so, by Lemma 10, cannot be a counter-example. We conclude 
that the greatest common divisor is n. Clearly C2 − C1 + C4 − C3 < n so we must have

C2 − C1 + C4 − C3 = n/2. (20)

Since

(C4 − C3) + (C3 − C2) + (C2 − C1) + (C1 + n − C4) = n

we have

(C3 − C2) + (C1 + n − C4) = n/2.

Suppose, without loss of generality, that C3 − C2 is the smallest inter-centre gap and let C3 − C2 = x. Then we have

C2 − C1 = x + y

C3 − C2 = x

C4 − C3 = x + z

C1 + n − C4 = x + y + z, (21)

for some non-negative numbers y and z so that

n = 4x + 2y + 2z. (22)

The structure of the word is shown on the left of Fig. 2. Note that R2 − x < n/2 − n/6 ≤ R3 by Proposition 16 and 
Corollary 15 so (18) holds. Let R ′

1 = min{R1, R2 − x + y}. Then P (C1, R ′
1) is a palindrome which can play the role of 

P (C1, R1) in Lemma 19. We see that (19) is satisfied. Thus P (C3, R2 − x) and P (C1, R2 − x + y) each have period 2y. Call 
these palindromes Y and Y ′ respectively. We also apply this lemma to the reverse of 〈w〉 with C2 playing the role of C1
and C4 the role of C3. Then P (C2, R3 − x) and P (C4, R3 − x + z) each have period 2z. Call these palindromes Z and Z ′
respectively. The elaborated structure of the word is shown on the right of Fig. 2. The intersection of Y and Z is named θ . 
This has length

C3 + R2 − x − (C4 − R3 + x − z) + 1 = R2 + R3 − 2x + z − (C4 − C3) + 1 = R2 + R3 − 3x + 1.

Similar calculations show that each of Z ∩ Y ′ , Y ′ ∩ Z ′ and Z ′ ∩ Y has the same length. By palindromicity each intersection 
is the reverse of the two adjacent intersections so they equal θ , θ and θ respectively. By Lemma 11 |θ | is at least 2n/3 − 2x
and by Proposition 16 and (21)

n/3 − 1 ≥ C1 + n − C4 = x + y + z.

Therefore |θ | ≥ 2y + 2z + 2. Since θ is the intersection of Y and Z it has periods 2y and 2z. By Lemma 1 it therefore has 
period gcd(2y, 2z) and by Lemma 3 this periodicity extends to the whole of 〈w〉, contradicting Lemma 10. We conclude 
that 〈w〉 is not a counterexample to Theorem 7 and so no counterexample with exactly four long palindromes exists. �
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Fig. 2. Four long palindromes. The diagram on the left shows the arrangement of the centres of the four long palindromes, with the location of the centres 
satisfying (20). The diagram on the right shows the palindromes Y , Y ′ , Z and Z ′ used in the second part of the proof. Their pair-wise intersections are 
labelled θ or θ , θ being the reverse of θ .

3. Five long palindromes

The remaining case to consider is 〈w〉 containing exactly five long palindromes.

Lemma 21. There is no counter-example to Theorem 7 with exactly five long palindromes.

Proof. We show that if 〈w〉 contains exactly five long palindromes then it is periodic so, by Lemma 10, not a counterexam-
ple. Suppose 〈w〉 contains P (C1, R1), . . . , P (C5, R5). Using Proposition 12 we have

4∑
i=2

{
2Ri + 1 − 2(Ci+1 − Ci−1)

} + {
2R5 + 1 − 2(C1 − C4 + n)

} + {
2R1 + 1 − 2(C2 − C5 + n)

}

= 2
5∑

i=1

Ri − 4n + 5

> n/3.

Hence at least one of the terms in parentheses is positive. Without loss of generality suppose 2R2 + 1 − 2(C3 − C1) > 0, that 
is:

2R2 + 1 − 2(C3 − C2) − 2(C2 − C1) > 0. (23)

By Proposition 9, P (C1, R1) ∪ P (C2, R2) has period 2(C2 − C1) and P (C2, R2) ∪ P (C3, R3) has period 2(C3 − C2). Their 
intersection, which is P (C2, R2), has both periods. P (C2, R2) has length 2R2 + 1 which, by (23), is at least the sum of the 
periods less one. By Lemma 1 P (C2, R2) therefore has period p = gcd(2(C2 − C1), 2(C3 − C2)). By Lemma 3 this periodicity 
extends to the whole of P (C1, R1) ∪ P (C2, R2) ∪ P (C3, R3) = w[C1 − R1 .. C3 + R3] which has length R1 + C3 − C1 + R3. This 
is greater than n but, as noted in the introduction, this is not sufficient to imply that 〈w〉 is periodic.

First suppose that C2 − C1 = C3 − C2 so that, by Proposition 16,

n/3 < p = 2(C2 − C1) < 2n/3. (24)

We show that the whole of 〈w〉 is the palindrome P (C2, p +�n/3	). To do this we must show that w[i] = w[2C2 − i] for all 
i in [C2 − (p +�n/3	), C2 + (p +�n/3	)]. This is immediate if i is in [C2 − R2, C2 + R2] since this is P (C2, R2). Suppose then 
that i is in [C2 + R2, C2 + p +�n/3	]. By the p-periodicity w[i] = w[i − p] which is in [C2 + R2 − p, C2 +�n/3	]. By (24) this 
is inside P (C2, R2) so we have w[i] = w[2C2 − i + p]. By the p-periodicity again we have w[i] = w[2C2 − i] as required. 
Thus P (C2, p + �n/3	) is a palindrome and its length is 2p + 2(�n/3	) which is greater than n, so 〈w〉 is a palindrome, and 
by Proposition 14 cannot be a counterexample. We conclude that C2 − C1 �= C3 − C2.

Now suppose, without loss of generality, that C3 − C2 > C2 − C1. Then

p = gcd
(
2(C2 − C1),2(C3 − C2)

)
< (C3 − C2) + (C2 − C1) = C3 − C1.

It may be that p = C2 − C1 or p = C3 − C2 but these cannot both be true.
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Suppose that C3 − C2 �= p. Then by the p-periodicity 〈w〉 contains the palindrome P (C3 − p, R ′) where

R ′ = min
{

R3, C3 − p − (C1 − R1)
}
.

Clearly its centre lies between C1 and C3. If it were C2 we’d have C3 −C2 = p, contrary to our assumption. So it is not nested 
in any of our five long palindromes. However R ′ ≥ min{R1, R3} so the palindrome is long, contradicting the hypothesis that 
〈w〉 contains exactly 5 long palindromes.

On the other hand, if C2 − C1 �= p we can consider the palindrome P (C1 + p, R ′′) where

R ′′ = min
{

R1, C3 + R3 − (C1 + p)
}

and obtain a contradiction as in the previous case.
Since neither case is possible, the proof is complete. �

Proof of Theorem 7. This is immediate from Corollary 17, Corollary 20 and Proposition 21. �
Open Questions. (1) A non-circular word w of length n is called rich if it contains n non-empty palindromes. The Biggles 
words are rich. What is the maximum number of palindromes in a circular word 〈w〉 if w is not rich? Much of the paper 
was concerned with long palindromes. We could also ask for the maximum number of long palindromes in a word of 
length n, or just for the maximum number of palindromes with length at least αn.

(2) The proof in this paper is extraordinarily long. Surely there is a simpler way to prove Theorem 7. Also, it is likely that 
the Biggles word is optimal for n congruent to 0 modulo 3, and that if n is congruent to 1 or 2 modulo 3 then the words 
akbk+1bak+3 and akbk+2bak+3 respectively are optimal. Can this be proved? The class of such optimal words could be called 
circularly rich words.

(3) In this paper we have relied on the connection between palindromes and periodicity, initially in Proposition 9. Other 
results concerning the connections between these concepts appear in [2,4,5,8,1]. A run in a word is a periodic factor whose 
length is at least twice the period and which cannot be extended to the left or right without altering the period. It’s 
conjectured that the number of runs in a word of length n is at most n, see [3]. Proposition 9 can be sharpened to say that 
if the palindromes are maximal and their union has length at least 4|C2 − C1| then it is a run. The proposition also has the 
following “semi-converse”.

Theorem 22. If a word w contains a factor f = w[a .. b] which has period p, and this factor contains the palindrome P (C, R1), where

R1 ≥ p/2, (25)

then f also contains the palindrome P (C + p/2, R2) where

R2 = min
{

C + p/2 − a,b − (C + p/2)
}
.

Proof. Choose i from the interval
[�C + p/2�, C + p/2 + R2

]
,

and set

k = ⌊
(i − C)/p + 1/2

⌋
so that

(i − C)/p − 1/2 < k ≤ (i − C)/p + 1/2.

Therefore, using (25),

C + R1 > i − kp ≥ C − R1

so that w[i − kp] is in P (C, R1) and therefore in f . By periodicity w[i] = w[i − kp] and by palindromicity w[i − kp] =
w[2C + kp − i]. Now

2C + p − i ≥ 2C + p − (C + p/2 + R2) = C + p/2 − R2 ≥ C + p/2 − (C + p/2 − a) = a

so both 2C + kp − i and 2C + p − i are in f . Therefore w[2C + p − i] = w[2C + kp − i]. Collecting the equations we have 
w[i] = w[2C + p − i] for all i in [�C + p/2�, C + p/2 + R2], from which it follows that P (C + p/2, R2) is a palindrome. �

Periodicity is fundamental to the combinatorics of words and the connections between periodicity and palindromicity 
merit further investigation.
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