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Abstract

Although they support many millions of people, the vast majority of the world’s fisheries
are small-scale and data-poor, and without the resources or data systems needed for com-
prehensive stock assessments. There is strong evidence that unmanaged fisheries are a
recipe for disaster, with over-exploitation of the stock almost inevitable. Additionally, it is
increasingly recognised that the spatial scale of the stocks of many marine species is much
smaller than previously thought, which adds another layer of cost to the stock assessment
process, as the cost of collecting and analysing such fine-scale data is prohibitive. The
overall aim of this thesis was to develop and test novel methods of stock assessment for
data-poor and small-scale fisheries, based on the basic biological characteristics of the ex-
ploited species.

Knowledge of the basic biological parameters of fish stocks, such as the natural mortal-
ity rate (M), the growth parameters (commonly described by the von Bertalanffy equation,
L∞ and k), and the length at maturity (Lm), is important for many stock assessment method-
ologies. However, collecting such information is costly, and usually requires sophisticated
ageing studies. I conducted a meta-analysis of over 120 marine species, from a range of
taxa including teleosts, chondrichthyans, mammals and invertebrates, and examined the
variation and patterns in the life-history ratios, and the relationships between size and
spawning potential (Chapter 2). These patterns were examined by standardising the age
and size of each species so that the relationship between size and spawning-per-recruit for
a large range of diverse species could be compared on the same scale. This meta-analysis
demonstrated that species that are often considered to be quite different, essentially have
the same life-history strategy when viewed on the same relative scale. For example, tuna
can be considered as ‘larger, slower’, anchovies, while prawns are ‘smaller, faster’ versions
of fish. Additionally, and somewhat surprisingly, a number of teleosts with low M

k values
of ≤ 0.5 appear to have life-histories similar to marine mammals, and quite different from
those expected of fish. The results of this study suggest that there is potential to establish
a theoretical framework for ‘borrowing’ knowledge from well-studied species to apply to
unstudied species and populations as an initial starting point for management.

The ratios of these parameters
(

M
k and Lm

L∞

)
are less variable between individual stocks

of the same species than the individual parameters, and certain values of these ratios(
M
k = 1.5 and Lm

L∞
= 0.66

)
, known as the Beverton and Holt Life History Invariants (BH–

LHI) have been used commonly to provide preliminary estimates of unknown parameters.
However, many species have life-history ratios that vary considerably from the BH–LHI,
and in this study I demonstrate the link between variation in the ratios

(
M
k and Lm

L∞

)
and

the life-history strategy of a species. For example, species with low M
k

(
e.g., M

k ≤ 0.5
)
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mature, and reach maximum size, early in life; i.e., have determinate growth and unfished
populations dominated by large, mature, individuals. Conversely, species with higher M

k(
e.g., M

k = 3.0
)

mature at a smaller relative size, and have indeterminate growth. I devel-
oped analytical models to examine the relationship between these ratios and length struc-
ture, growth pattern, spawning-per-recruit, and the spawning potential ratio (SPR) for ex-
ploited stocks (Chapter 3). These analytical models were extended to include more realistic
assumptions about maturity and selectivity-at-length, and a model that uses knowledge of
the life-history ratios, and data on the length structure of the catch, was developed to calcu-
late the SPR, an internationally recognised measure of stock status; the length-based SPR
model (LB–SPR).

The key parameters of the LB–SPR model are: M
k , L∞, and the variation in length-

at-age (CVL∞
), as well as information on the size of maturity (Lm). The utility of the

LB–SPR model, and its sensitivity to violations of the main assumptions, was examined
using Monte Carlo simulations (Chapter 4). Length data were generated for four different
species, reflecting different life-history strategies, and the variation of the estimated SPR
was examined in a number of scenarios, including: misspecification in the input param-
eters, the number of fish measured, presence of dome-shaped selectivity, and recruitment
variability. The results demonstrate that the model returns unbiased estimates of SPR, and
performs well when the biological parameters are well known and the stock is at, or near,
equilibrium. However, the model is sensitive to misspecification in the input parameters,
particularly to L∞, where SPR can be significantly under- or over-estimated if L∞ is not
close to the true value. With high recruitment variability, the variation in estimates of
SPR from the equilibrium-based LB–SPR model becomes greater, particularly when re-
cruitment trends are auto-correlated. The results of the sensitivity tests indicate that the
LB–SPR model has potential to provide a tool for rapid and cost-effective estimation of
SPR for data-poor fisheries, which could be used for guiding management decisions and
prioritising the direction of future research. Nevertheless, the results also showed that care
must be taken to evaluate the validity of the assumptions of the LB–SPR model, and the
precision of the biological parameters for the relevant stock, when interpreting the results
of the model.

Fisheries managers usually make their decisions in response to estimates of the stock
status. For example, if the stock is estimated to be below some target reference point,
managers may choose to reduce catches or fishing effort to allow the stock to rebuild. The
linking of the status of the stocks and the management decisions are often done by means
of a harvest control rule (HCR), which defines a pre-determined agreed response to the
estimated status of the stock. I developed a simulation model to perform a management
strategy evaluation (MSE) to test a HCR that links the estimates of the SPR from the LB–
SPR model to an appropriate management decision (Chapter 5). Three species, represent-
ing different life-history types, were investigated and the performance of the model was
examined under a number of different scenarios, including: increased recruitment variabil-
ity, dome-shaped selectivity, and time-varying natural mortality. The results indicate that
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the LB–SPR HCR is capable of recovering an over-exploited stock within an acceptable
time-frame. The results also demonstrate that care must be taken when setting SPR target
reference points, especially when the biology of the species is not well known, and when
recruitment is highly variable.

The developments of this thesis highlight the potential of applying a simple method-
ology to assessing and managing data-poor stocks, requiring only basic information on
life-history and length composition of the catch. A framework was established for us-
ing knowledge from well-studied species to inform data-poor stocks, which allows ini-
tial estimates of the stock status to be made with only minimal data requirements. The
methodology developed in this thesis thus provides a cost-effective, easily understood, and
transparent method for estimating the SPR for data-poor and small-scale fisheries with
only minimal data requirements, and thus allows managers and other stakeholders to begin
making informed decisions without having to wait for the collection of additional data.
In this respect, the LB–SPR model developed and demonstrated in this study provides a
starting point for the assessment of data-poor and small-scale stocks, and assists in identi-
fying important data gaps, prioritising research and collecting information to validate the
unknown biological parameters, and beginning the process of gathering additional data
to allow alternative assessment methods to be applied in the future (e.g., a time-series of
total catches). Finally, this study has also identified areas for additional research, particu-
larly further empirical testing of the LB–SPR model and the development of an integrated
harvest strategy framework based on SPR reference points (Chapter 6).
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