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Abstract

Transient receptor potential (TRP) channels are an ancient family of cation channels, working as metabotropic

triggers, which respond to physical and chemical environmental cues. Perception of chemical signals mediate re-

productive behaviors and is therefore an important target for sustainable management tactics against the codling

moth Cydia pomonella L. (Lepidoptera: Tortricidae). However, olfactory behavior strongly depends on diel period-

icity and correlation of chemical with physical cues, like temperature, and physical cues thus essentially contribute

to the generation of behavioral response. From an antennal transcriptome generated by next generation sequenc-

ing, we characterized five candidate TRPs in the codling moth. The coding DNA sequence of one of these was ex-

tended to full length, and phylogenetic investigation revealed it to be orthologous of the TRPA5 genes, reported

in several insect genomes as members of the insect TRPA group with unknown function but closely related to the

thermal sensor pyrexia. Reverse transcription PCR revealed the existence of five alternate splice forms of

CpTRPA5. Identification of a novel TRPA and its splice forms in codling moth antennae open for investigation of

their possible sensory roles and implications in behavioral responses related to olfaction.
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Transmembrane cation channels from the transient receptor poten-

tial (TRP) family are key for multiple sensory modalities, including

vision, hearing, chemosensation, thermosensation, and mechanosen-

sation (Liedtke 2007; Fowler and Montell 2013), thus allowing the

animals to achieve vital behaviors like avoidance of noxious temper-

atures (Tracey et al. 2003) or detection of heat emitted from hosts

(Wang et al. 2009). TRPs in insects have been divided into seven

subfamilies, of which four (TRPC, TRPV, TRPA and TRPN) play

roles in insect sensory systems (Fowler and Montell 2013). Most in-

sects appear to possess around a dozen TRP genes, approximately

half the number of genes found in most mammals (Matsuura et al.

2009). In part, this may be compensated by a wider response spec-

trum, as there are reported cases where single insect TRP channels

are responsible for detecting multiple sensory stimuli. For example,

the Drosophila TRPV channel Nanchung (Nan) is essential for hear-

ing (Kim et al. 2003; Gong et al. 2004) and hygrosensation (Liu

et al. 2007). In Drosophila, some channels of the TRPC subfamily

also function both in vision (Hardie and Minke 1992; Niemeyer

et al. 1996) and in cold-avoidance (Rosenzweig et al. 2008).

Furthermore, the Drosophila TRPN channel NompC is associated

with touch sensation (Walker et al. 2000) as well as hearing (Eberl

et al. 2000; Göpfert et al. 2006). This versatility, where single recep-

tors detect multiple sensory stimuli, make TRPs interesting targets

for insect control (Nesterov et al. 2015).

In contrast to mammals, in which only one TRPA channel has

been identified (Clapham 2003; Wu et al. 2010), insects appear to

have an expanded TRPA subfamily, with four or five genes per spe-

cies (Matsuura et al. 2009; Peng et al. 2015). Like other TRP
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subfamilies in insects, the TRPAs appear to be versatile. For exam-

ple, several D. melanogaster TRPA channels (dTRPA1, Pyrexia,

Painless) detect different ranges of temperature and are involved in

thermotaxis (Viswanath et al. 2003; Lee et al. 2005; Sokabe and

Tominaga 2009), but Pyrexia and Painless are also involved in nega-

tive geotaxis, by contributing to gravity sensing (Sun et al. 2009). A

fourth TRPA channel, Water witch (Wtrw), is involved in hygrosen-

sation (Liu et al. 2007). Interestingly, insect TRPA channels are also

involved in chemosensation (Kwon et al. 2010; Kang et al. 2010).

Notably, the Drosophila TRPA Painless, initially identified as a no-

ciceptive heat sensor (Tracey et al. 2003), was later found to be in-

volved in the detection of allyl-isothiocyanates found in wasabi

(Al-Anzi et al. 2006), and fructose (Xu et al. 2008). Furthermore,

TRPA1 in the crop pest moth Helicoverpa armigera also detects re-

pellent chemicals (Wei et al. 2015). In a more recent study we dem-

onstrated that compounds emitted by the plant Perilla frutescens

L. (Lamiales: Lamiaceae), which are reported to be active on rat

TRPA1 (Bassoli et al. 2013), are detected by the olfactory system of

the tortricid pest Lobesia botrana (Cattaneo et al. 2014). It could be

speculated that these compounds might interact with antennal

TRPA channels in L. botrana. Plants emitting compounds active on

TRPAs are usually repellent to insects, via the activation of their

olfactory systems (Leung and Foster 1996; Barnard 1999), which in-

dicates that members of the insect TRPA subfamily represent poten-

tial targets for pest control strategies.

The codling moth, Cydia pomonella (L.) (Lepidoptera:

Tortricidae), is a major pest of commercial crops such as apple,

pear and walnuts in Palearctic and Nearctic regions (Witzgall et al.

2008). Whereas olfaction-based pest control methods have been

developed (Ridgway et al. 1990; Witzgall et al. 2008), a better un-

derstanding of the molecular mechanisms of the olfactory process

in this species may lead to the identification of new targets for

olfactory disruption. In that search, we have previously sequenced

the antennal transcriptome of this moth, and notably identified

candidate olfactory and pheromone receptors (Bengtsson et al.

2012; Walker et al. 2016), functionally characterizing two of them

(Bengtsson et al. 2014; Gonzalez et al. 2015). Using these tran-

scriptomic data, we identified five candidate TRPs belonging to

the TRPA and TRPC subfamilies. Among the TRPAs, we have no-

tably characterized a C. pomonella orthologue of TRPA5 genes,

which has been identified in several insect genomes (Peng et al.

2005). By performing RACE-PCR and searching a preliminary ge-

nome obtained by shotgun sequencing, we obtained the full-length

coding sequence of CpTRPA5. We investigated its expression in

male and female adult body parts by reverse transcription (RT)-

PCR. This led to the identification of alternative splice forms with

different expression patterns among genders and body parts, which

were verified by intron/exon prediction using a genomic overview

based on gDNA and RNA-sequencing.

Material and Methods

Dissection, Nucleic Acid Extraction
C. pomonella pupae were obtained from a laboratory rearing

(Andermatt Biocontrol, Grossdietwil, Switzerland), and adults were

allowed to emerge in cages kept at 23 �C, 70 6 5% RH, 16 h: 8 h

light: dark cycle and fed with 10% sugar solution. As previously re-

ported (Bengtsson et al. 2014), dissection of 2–3 day old female and

male insects was performed using sharp forceps: antennae were re-

moved at the base of the pedicel of 100 insects per sample. Legs

were removed at the coxa of 20 insects. For thorax samples, head,

wings, legs and abdomen were removed from five insects. Wings

were removed at their base from five insects, and the abdomen re-

moved at the connection to the thorax of three insects. All body

parts were immediately flash-frozen using liquid nitrogen, and there-

after kept at �80 �C. RNA was extracted using the RNeasy kit

(Qiagen, Hilden, Germany), that included a DNase step to remove

genomic DNA contamination. A gDNA sample was extracted from

one male and one female adult insect using the DNeasy kit (Qiagen)

following the recommended protocol. Body-part RNAs and gDNA

were quantified using Nanodrop (Nanodrop 8000 UV-vis

Spectrophotometer, Thermo Scientific, Wilmington, DE, USA).

Aliquots of 1.0 mg total RNA were used for reverse transcription us-

ing Advantage RT-for-PCR kit (Clontech, Mountain View, CA) ac-

cording with the manufacturer’s protocol.

cDNA Library Construction and Bioinformatics
Male and female contigs previously obtained (Bengtsson et al.

2012) were analyzed through bioinformatics, in search of candi-

date TRPs. Tblastn searches were performed using available amino

acid sequences of Lepidoptera and other insect TRPs. Contigs pre-

senting similarity to TRP genes were further assembled using Cap3

(http://pbil.univ-lyon1.fr/cap3.php). Open reading frames (ORFs)

were searched and translated to amino acid sequences using

ExPASy (http://www.expasy.org/translate/), and Blastx on the

Genbank non-redundant database (http://blast.ncbi.nlm.nih.gov/

Blast.cgi) was used to verify their annotation. For CpTRPA5 and

its splice forms, transmembrane domains were predicted from

translated sequences using TMHMM 2.0 (http://www.cbs.dtu.dk/

services/TMHMM/) and TMPred (http://www.ch.embnet.org/soft

ware/TMPRED_form.html) (Hofmann and Stoffel 1993).

Topology configurations were predicted with TOPO 2.0 (http://

www.sacs.ucsf.edu/cgi-bin/open-topo2.py). For the candidate

CpTRPA5_F1117 splice form, which was predicted to lack trans-

membrane segments, we predicted the tertiary structure of the re-

lated polypeptide using the Proteus structure prediction server 2.0

(http://www.proteus2.ca/proteus2/). To perform 3D-representa-

tion, Rastop 2.2 was used (available for the public domain at

http://www.geneinfinity.org/rastop/).

Phylogenetic Investigation of CpTRPs
TRP sequences of Rattus norvegicus Berkenhout, Caenorhabditis

elegans Maupas and Drosophila melanogaster Meigen were down-

loaded from their proper genome browsers (http://rgd.mcw.edu/;

http://www.wormbase.org/; http://flybase.org/). In addition to C.

pomonella TRP sequences, TRP sequences were searched in two

other lepidopteran species (the silk moth Bombyx mori L. and the

monarch butterfly Danaus plexippus L.), as well as in the insects

Apis mellifera L., Tribolium castaneum Herbst and Acyrthosiphon

pisum Harris using NCBI-blast (http://blast.ncbi.nlm.nih.gov/

Blast.cgi) with the amino acid sequences of D. melanogaster TRPs

as a query. The partial amino acid sequence of a C. pomonella

TRP-subunit, previously identified by BAC-FISH mapping on the

Z-chromosome and reported to be the CpNan TRPV-candidate

(Nguyen et al. 2013) was also included in the dataset. The 131

amino acid sequences were aligned using MAFFT version 7 (http://

mafft.cbrc.jp/alignment/server/) (Katoh and Toh 2010) and a

neighbor-joining tree was built using the BioNJ algorithm as im-

plemented in SeaView v.4 (Gouy et al. 2010). Node support was

assessed using a bootstrap procedure based on 1000 replicates.

The figure was created using the iTOL web server (Letunic and

Bork 2007).
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Rapid Amplification of cDNA Ends (RACE) PCR of CpTRPA5
To extend CpTRPA5 by RACE-PCR in 50 and in 30 direction, 50 and 30

cDNAs were created from 1.0 mg antennal RNA using First Choice

RLM-RACE kit (Ambion, Life technologies, Grand Island, NY USA)

and SMARTer kit (Clontech). Amplifications were conducted according

to the recommended protocols. Primers were designed by hand using

existing contig data as reference. Thermodynamic features were checked

by OligoEvaluator (Sygma Genosys, http://www.oligoevaluator.com),

and putative oligodimerization was checked by OligoAnalyzer 3.1

(Integrated DNA Technologies, http://eu.idtdna.com/calc/analyzer).

Primer melting temperatures were estimated using the salt-adjusted al-

gorithm on the OligoCalc website (ww.basic.northwestern.edu/

biotools/OligoCalc.html). For primers, the goal was a GC% 40-60,

Tm<70 �C, and to create a product with at least 150 bases of overlap

with existing contig data. However, in some cases, it was necessary to

compromise on one or several of these conditions (Table 1).

Starting from RLM-RACE 50-cDNA, 50 CpTRPA5 was extended

using the 50_CpTRPA5_1 gene-specific primer together with the 50

RACE Outer primer, supplied with the kit. Amplification was per-

formed with the supplied thermostable DNA polymerase using a

temperature program of 94 �C for 3 min, followed by 35 cycles of

94 �C for 30 s, Tm of the gene-specific primer for 30 s, 72 �C for

3 min, and a final elongation of 72 �C for 7 min. An aliquot of 1.0 ml

of the reaction mix was used as template to perform the nested am-

plification using the 50_CpTRPA5_2 gene specific primer together

with 50 RACE Inner primer, supplied with the kit.

Starting from SMARTer-RACE 30-cDNA, PCR amplification of 30

CpTRPA5 was performed using the 30_CpTRPA5-1 primer combined

with the Universal primer A mix supplied with the kit. Amplification

was performed with Advantage 2 polymerase (Clontech) using a tem-

perature program of 95 �C for 5 min, followed by 35 cycles of 95 �C

for 45 s, Tm of the gene specific primer for 1 min, 68 �C for 90 s, and a

final elongation of 68 �C for 7 min. To perform the nested amplifica-

tion, the 30_CpTRPA5-2 gene-specific primer was combined with the

Nested Universal Primer A, also supplied with the kit.

PCR products were analyzed by electrophoresis on a 1.5% agarose

gel, stained with ethidium bromide, and visualized using a Gel Doc XR

(Bio-Rad, Hercules, CA, USA). Relevant bands were excised and puri-

fied using the QIAquick Gel extraction kit (Qiagen). Quantification

was conducted using a Nanodrop 3300 Fluorospectrometer (Thermo

Scientific) with the PicoGreenVR dsDNA reagent kit (Molecular Probes,

Life Technologies). Samples were sequenced (Sanger sequencer, 3730xl

Applied Biosystems, Life Technologies) using gene specific primers.

Alignment of amplicon sequences from RACE-PCR amplifications was

performed using Multalin (http://multalin.toulouse.inra.fr/multalin/)

(Corpet 1988). The 50 and 30 sequenced regions were assembled with

existing contig data to generate a partial CDS-template of 1677 bp.

Despite being partial, this sequence was checked using the online tool

ORF Finder (http://www.ncbi.nlm.nih.gov/gorf/orfig.cgi).

Querying Genome and Transcriptome Assemblies
In order to identify the full-length CDS of the CpTRPA5 TRP, we used

Blast (Altschul et al. 1990) on preliminary assemblies of a whole shot-

gun sequenced genome and an Illumina sequenced transcriptome (which

are still under analysis and will be published elsewhere). We blasted the

assemblies using the 1677 bp CpTRPA5 TRP from RACE-PCR as query

in tblastn searches. Scaffolds that passed a threshold of e-30 were

mapped against the query and manually assembled by hand using

BioEdit v7.2.5 (Hall 1999) into a single scaffold that contained the puta-

tive full length CDS. The five genome scaffolds and the four transcripts

that matched our RACE-PCR template are available for download and

inspection at https://www.researchgate.net (DOI: 10.13140/RG.2.1.

3056.8726). Sequencing and preliminary assembly of the CpTRPA5 ge-

nomic locus and comparison with antennal RNA-seq returned an over-

view of intron/exon boundaries within the CpTRPA5 locus. The final

CDS provided by the locus was checked using ORF Finder.

Identification of Candidate CpTRPA5 Splice Forms
The full length CDS of CpTRPA5 was amplified from male and fe-

male antennal cDNA with Fw_CpTRPA5 and Rv_CpTRPA5 pri-

mers (Table 1), and attB regions were attached (attB1 forward

region: 5’-GGGGACAAGTTTGTACAAAAAAGCAGGCTTAACA-

3’; attB2 reverse region: 5’-GGGGACCACTTTGTACAAGAAAGC

TGGGT-3’, Gateway Technology, Invitrogen, Life technologies,

Waltham, MA, USA), suitable for cloning into pDONR221.

Amplification was performed with Phusion (New England Biolabs,

Ipswich, MA, USA) using a temperature program of 94 �C for 2 min,

followed by 35 cycles of 94 �C for 30 s, 58 �C for 15 s, 68 �C for

3 min and 10 s, and a final elongation step of 68 �C for 4 min. A 4.0

ml PCR volume was mixed with 1.0 ml BP-clonase (Gateway

Technology, Invitrogen) and 150 ng pDONR221, to be incubated 4 h

at 25 �C. A 2.0 ml volume of the reaction was used to transform

TOP10 competent cells, 50 ml of which were plated on 50 mg/ml

Kanamycin selective media and incubated overnight.

Table 1. Sequences and estimated Tm for primers

RACE primer (50 or 30) Sequence Tm (�C)

50_CpTRPA5_1 AGCGGAACTGGATCATGAAG 64.3

50_CpTRPA5_2 GAGATGGTGATGGCTGCAGGAAGGAGGG 65.0

30_CpTRPA5-1 CAGGAAAACCAAGATGGAGGCACG 66.9

30_CpTRPA5-2 GAGACGCCATTTTAGACAAAGCTCAAGCTC 63.5

CDS extension (Fw or Rv)

Fw_CpTRPA5 attB1-ATGGCAGCTTTATCAGGCGGCG 65.8

Rv_CpTRPA5 attB2-TTATTTACTTAACTTACTTTCTAATCTTAACAA 61.4

Sequencing primers (Fw or Rv)

M13 Fw GTAAAACGACGGCCAGT 52.4

M13 Rv CAGGAAACAGCTATGACC 53.8

Seq1-Fw ATGATGGAGAGACTCCAATCCATTC 64.1

Seq2-Fw ATGGGCTGGTTCCCTTTACATACAG 65.8

Seq3-Fw TGCTGGCATGGTTAGAGATG 58.4
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Colonies were screened by picking individual colonies from

plates and dissolving it in 50 ml of 50 mg/ml Kanamycin LB selective

media, which was incubated for 2 h at 37 �C and 225 rpm. PCRs

were conducted using 1.0 ml of this culture using the Fw_CpTRPA5

and Rv_CpTRPA5 primers and amplifying with GoTaq Green

Master Mix (Promega, Fitchburg, WI). Amplifications were con-

ducted with a temperature program of 95 �C for 15 min, followed

by 35 cycles of 95 �C for 30 s, 55 �C for 15 s, 72 �C for 3 min 10 s,

and a final elongation step of 72 �C for 4 min. Samples were ana-

lyzed as described above. Cultures giving clear bands were grown at

37 �C and 225 rpm overnight in selective LB media with 50 mg/mL

Kanamycin, after which plasmids were purified using the QIAprep

Spin Miniprep kit (Qiagen). Quantification was conducted using

Nanodrop 3300 Fluorospectrometer with PicoGreenVR dsDNA re-

agent kit. Samples were sequenced using Sanger sequencer and uni-

versal M13-primers, as well as Fw_CpTRPA5, Rv_CpTRPA5 and

other primers designed on the CDS (Table 1).

Alternative splice forms were verified by reverse-transcription

(RT) PCR on cDNA samples from insect body parts, followed by se-

quencing of amplified bands. Positions of intron/exon boundaries

within the CpTRPA5 locus were compared with splicing site posi-

tions of verified splice forms. Graphical intron/exon representation

of splice forms was done using the online tool Exon-Intron Graphic

Maker version 4 (http://wormweb.org/exonintron).

Reverse Transcription (RT)-PCR
To investigate transcripts of CpTRPA5 and its splice forms, RT-

PCR was performed on cDNA samples prepared from antenna, tho-

rax, abdomen, leg and wing total RNAs.

Amplifications were performed using the GoTaq Green Master

Mix (Promega), splice form-specific forward primers designed based

on Sanger sequencing data of pDONR221 clones (Table 2) and the

reverse primer Rv_CpTRPA5, previously used to amplify the final

assembled CDS (Table 1).

Except for CpTRPA5_M17 and CpTRPA5_M418 cases, all for-

ward primers were designed to overlap splicing sites, the position of

which were identified by sequencing pDONR221-clones and com-

paring these to the sequence of the final assembled CDS. For the fi-

nal assembled CDS form, parallel amplifications were conducted

using the Fw_CpTRPA5 and Rv_CpTRPA5 primers (Table 1).

Positive control of cDNA synthesis consisted of amplification of the

housekeeping gene rpl8 using degenerated primers (rpl8_Fw: 50-

GAGTCATCCGAGCTCARMGNAARGG-3’; rpl8_Rv: CCAGCA

GTTTCGCTTNACYTTRTA; Tm¼54 �C). A temperature program

with an initial 5-min step at 95 �C, and then 45 cycles of 95 �C for

1 min, primer melting temperature for 1 min, 72 �C for 3 min 10 s,

and a final 7-min step at 72 �C was used. Each PCR reaction was re-

peated at least three times and controls consisted of no template

PCRs. All PCRs were performed in parallel on a genomic DNA

(gDNA) template. No amplification or amplifications of larger size

products were observed in most cases, indicating that no significant

gDNA contamination occurred in our cDNA preparations.

Amplifications were analyzed as described above and product iden-

tity was confirmed by direct sequencing (Sanger) following gel ex-

traction and quantification. RT-PCR from male and female body

parts cDNAs was compared to verify the presence of candidate

splice forms.

For the other TRP candidate RT-PCRs, primers were designed

based on partial 454-contigs (Table 3). In addition to rpl8, the cod-

ling moth olfactory co-receptor (CpOrco, Bengtsson et al. 2012)

was used as an antenna positive control. RT-PCRs were conducted

as described above, except for minor adjustments of the temperature

settings, using a 72 �C extension for 1 min 45 s. To verify the identity

of the amplicons, bands were gel-purified and Sanger-sequenced us-

ing gene specific primers.

Results

Antennal TRP Repertoire in C. pomonella
Using BLAST search on the C. pomonella antennal transcriptome

(for details, see Bengtsson et al. 2012), we identified the partial se-

quences of five candidate TRPs that were judged to be incomplete

at both 50 and 30 parts because of the lack of start and stop codons

in the open reading frame. In order to assign each of these candi-

date TRPs to one of the seven TRP sub-families (Fowler and

Montell 2013), we built a neighbor-joining phylogeny including

TRP repertoires of two other lepidopteran species, four species

from other insect orders and two model species from outside in-

sects (C. elegans and R. norvegicus). This analysis revealed that

two of these candidates—named CpTRP and CpTRPC—belong to

the TRPC subfamily (Fig. 1): CpTRP is orthologous to the con-

served TRP gene identified in multiple insects, which is involved in

phototransduction in Drosophila (Hardie and Minke 1992;

Niemeyer et al. 1996), while CpTRPC is orthologous to TRPC

genes identified in genomes of T. castaneum and A. pisum. The

three other candidate TRPs found in the C. pomonella antennal

transcriptome belong to the TRPA sub-family, which has under-

gone expansion in insects (Fig. 1). CpPyx and CpWtrw are orthol-

ogous to the D. melanogaster TRPAs pyrexia (pyx) and water

witch (wtrw), involved in thermosensation (Lee et al. 2005) and

hygrosensation (Liu et al. 2007), respectively. CpTRPA5 appears

to be an orthologue of TRPA5 genes found in several insect ge-

nomes (Peng et al. 2015), with the notable exception of D. mela-

nogaster. The previously described CpNan (Nguyen et al. 2013) is

part of the TRPV subfamily, and is an orthologue of the D. mela-

nogaster Nanchung gene.

RT-PCR on Adult Body Parts of C. pomonella TRPs
Performing RT-PCR amplifications of C. pomonella TRPs (TRPA5,

pyrexia, water witch, TRP and TRPC), we found body-wide expres-

sion for TRPAs (TRPA5, pyrexia, water witch) and absent expres-

sions in some body parts of both sexes for TRPCs (TRP and TRPC)

(Fig. 2). TRPA5 is expressed in all body parts for both males and

Table 2. List of forward primers designed to verify the existence of

candidate CpTRPA5 splice forms

Splice form Forward primer Tm (�C)

CpTRPA5_M4* TAGACTTGCAAAACAATTTG 50.2

CpTRPA5_M17* AAGTTTGGCTCCATCGGCC 59.5

CpTRPA5_M41 ACTGACGGCCCTAAGAAATTC 59.5

CpTRPA5_M43* CTCGTATTGATTCAGGAAAAC 54.4

CpTRPA5_M415 TGGAAGAAGTTTTAGACTTGC 55.4

CpTRPA5_M417 TTTATCTACGTTTGTGGCGTT 55.4

CpTRPA5_M418* TAGTTTTAGGTACCTATAAGC 53.0

CpTRPA5_F1111 TTAGTTGAGAGTTTCCTAACT 53.4

CpTRPA5_F1115 TTGTTGCTAAAAGATGGCGCC 59.5

CpTRPA5_F1117* TTTTACACTATTATAGCCATT 49.0

CpTRPA5_F1124 TGAATACTTGGAAGAAGTTTA 51.7

*Splice forms verified by RT-PCR.
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females. Similarly, RT-PCR revealed pyrexia and water witch expres-

sion in all body parts, except male wings and female antennae for py-

rexia, and female legs for water witch. TRP is expressed in antennae

of either sex, in female thorax and in male abdomen, and apparently

no expression was found elsewhere. TRPC appeared to be expressed

in male antennae, male abdomen, male legs and female wings.

Table 3. List of forward and reverse primers designed to validate the expression of candidate Cp-TRPs

Gene Forward primer Reverse primer Tm (�C)

CpTRPA5 ATGGGCTGGTTCCCTTTACATACAG TTATTTACTTAACTTACTTTCTAATCTTAACAA 61.4

CpPyx TACCCAGCGTTCCAACTACC CATGAGAGCAGCGAACTGAA 63.2

CpWtrw TAGCCGGTTACTCCACCATC AAAACAGGGGAGGGTCATTC 63.2

CpTRP ATTCCCTCAGGCACTCACAA CATGAAAGCTGGAAGGCTGT 64.3

CpTRPC GGGAGACCAAGTCAACGGTATGC GATGCGTTCAGTGTACGTGTGC 65.4

CpOrco CCGGAGCCCACTGATATAGA CCTCAGAACCGTCGTACCAT 64.3

Fig. 1. Neighbor-joining tree of metazoan candidate TRPs. C. pomonella candidate TRPs identified by transcriptome analysis in bold. Cp: Cydia pomonella L.; Rn:

Rattus norvegicus Berkenhout; Ce: Caenorhabditis elegans Maupas; Dm: Drosophila melanogaster Meigen; Bm: Bombyx mori L.; Dp: Danaus plexippus L.; Am:

Apis mellifera L.; Tc: Tribolium castaneum Herbst; Ap: Acyrthosiphon pisum Harris. Circles: bootstrap values>80. Accession numbers are given in

Supplementary Table S1.
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Assembly of the Open Reading Frame of the Codling

Moth TRPA5
Since the reported mRNA length of its orthologues (e.g. B. mori

XM_004926128.2; 3764 bp) was more than three times longer than

our CpTRPA5 TRP contig (1012 bp), which also lacked of start and

stop codons in frame, we judged the latter to be incomplete at both

50 and 30 ends. In an attempt to extend the sequence to full length,

we performed 50 and 30- RACE-PCR. A partial coding sequence

(CDS) of 1677 bp was generated by merging a 703 bp 50-RACE-PCR

product and a 432 bp 30-RACE-PCR product with the 1012 bp con-

tig, with an expected stop codon but without any candidate start co-

don. This was used as a template to query non-annotated C.

pomonella sequences from genome and transcriptome data (unpub-

lished), which led to the identification of a final CDS of 3126 bp in-

cluding a start codon. To confirm the stop codon, we extended the

sequence 4166 bp from the 30 end by RACE-PCR, but no additional

stop codon in frame with the partial CDS appeared. The full se-

quence of CpTRPA5 has been submitted to Genbank (accession

number KU130118).

Comparison of the preliminary CpTRPA5 genomic locus with

antennal RNA-seq data produced an overview of intron/exon

boundaries within the CpTRPA5 locus (Fig. 3). The locus is consti-

tuted of four exons separated by three medium-sized introns.

Interestingly, RNA-seq but not preliminary genomic assembly re-

vealed 15 additional nucleotides (50-CTCCATCGGCCTGGC-30)

within the third exon, indicating that they could originate from

mRNA editing. For the 1041 length translated amino acid sequence

of CpTRPA5, the TMHMM model predicted six transmembrane

domains (between amino acids 619 and 641; 654 and 676; 691 and

713; 720 and 738; 753 and 775; 826 and 848), an N-terminal cyto-

plasmic region (from 1 to 618) and a C-terminal cytoplasmic region

(from 849 to 1041), all of which would be expected for TRPs.

RT-PCR on Adult Body Parts and Confirmation of

CpTRPA5 Splice Forms
PCR of E.coli colonies transformed with pDONR221 containing

the expected full-length CDS of CpTRPA5 revealed several positive

clones containing what appeared to be different size transcripts of

CpTRPA5 (data not shown). Sequencing of plasmids purified from

positive clones revealed eleven rearrangements of the CDS, suggest-

ing possible generation of splice forms from the original CpTRPA5.

RT-PCR on adult male and female body parts confirmed the exis-

tence of five out of the eleven potential splice forms (CpTRPA5_M4,

CpTRPA5_M17, CpTRPA5_M43, CpTRPA5_M418 and CpTRP

A5_F1117) in at least two cDNA samples reverse-transcribed

from independent body part RNAs. Sequences of these five splice

forms have been submitted to Genbank (accession numbers

KU130119, KU130120, KU130121, KU130122, and KU130123

respectively). Lack of amplification for six out of the eleven

potential splice forms in all cDNA samples (CpTRPA5_M41,

CpTRPA5_M415, CpTRPA5_M417, CpTRPA5_F1111, CpTRP

A5_F1115, CpTRPA5_F1124) means that at this point, we cannot

confirm their existence (Fig. 4).

Genome and transcriptome data was used to verify positions of

splicing sites expected for the generation of splice forms previously

confirmed by RT-PCR (CpTRPA5_M4, CpTRPA5_M17,

CpTRPA5_M43, CpTRPA5_M418 and CpTRPA5_F1117, Fig. 5A

and B). The CpTRPA5_M4 splice form is generated by the excision

of a short 112 bp fragment within the fourth exon, between posi-

tions 3872 and 3984 counted from ATG. This splicing is responsible

for the termination at a premature UAA stop codon, shortening the

C-terminal domain of the transmembrane protein. The downstream

splicing site generating CpTRPA5_M17 form is expected to be in co-

incidence with the 30 end of the third intron, at position 3,551.

Interestingly, the premature excision of 88 bp upstream of the third

intron at position 3,138 affects the open reading frame to generate a

premature UGA-stop codon by combination of nucleotides U3136,

G3137 and A3552 located on splicing sites boundaries. This prema-

turely terminates translation and it is potentially responsible for the

generation of a truncated polypeptide having only three transmem-

brane domains, compared to six translated from the full CDS. The

CpTRPA5_M43 splice form is generated by excision of a 1,454 bp

fragment between position 2,546 at the end of the second exon, in

coincidence with the second intron, and position 4,000 in the fourth

exon. The excision shortens the CDS and modifies the open reading

frame to an anticipated termination at a candidate UAA stop codon,

at position 4,022. Sequencing of the pDONR221 clone of

rpl8

CpOrco

CpTRPC

CpTRP

CpWtrw

CpPyx

CpTRPA5

Antennae

ntc

WingsLegsAbdomenThorax

FMFMFMFMFM

Fig. 2. RT-PCR of C. pomonella TRPs. Reverse transcription PCR of candidate

Cp-TRP channels (CpTRPA5, CpPyr, CpWtrw, CpTRP, CpTRPC) in male and fe-

male C. pomonella body parts (Antennae, Thorax, Abdomen, Legs, Wings);

ntc: no-template control; M: male; F: female; rpl8: positive control; CpOrco:

antennal control. PCR volume loaded: 10 ll.
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Fig. 3. Graphical overview of the TRPA5 genomic locus. Left: Introns and exons representation. White rectangles: UTRs; black rectangles: exons; lines: introns;

magenta rectangle: additional nucleotides from mRNA-editing (50-CTCCATCGGCCTGGC-30); green arrowhead and letters: start codon; magenta arrowhead and

letters: stop codon; numbers: bp-lengths of UTRs, exons, introns; scale bar: 100 bp. Right: Topology representation of the translated polypeptide. Magenta amino

acids: additional amino acids translated from edited mRNA (Nt-GSIGLA-Ct).
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CpTRPA5_M418 splice form revealed an extra CDS region, which

genomic overview revealed to correspond with the third un-spliced

intron. The presence of the third intron in CpTRPA5_M418 likely

makes it an incomplete splice form, the CDS of which is character-

ized by a premature termination due to an alternative candidate

UGA stop codon located in the sequence of the un-spliced intron.

Possible splicing sites in the second and fourth exons at positions

2,398 and 4,177 respectively, determines excision for a 1,779 bp

fragment, which could generate the CpTRPA5_F1117 splice form.

This candidate splice form lacks most of the coding sequence be-

tween exon II and exon IV, which codes for transmembrane do-

mains, and it makes the potential translated protein soluble.

For most splice forms, a topological transmembrane representa-

tion was predicted (Fig. 5C). Concerning the CpTRPA5_F1117

splice form, for which the transmembrane prediction returned a lack

of transmembrane domains, 3D prediction of the tertiary structure

rpl8

CpTRPA5_M4

CpTRPA5_M17

CpTRPA5_M43

CpTRPA5_M418

CpTRPA5_F1117

CpTRPA5

Ant Tho Abd Leg Win
ntcM M M M MF F F F F

Fig. 4. Validation of CpTRPA5-splice forms in male and female body parts by

RT-PCR. For comparison, the full-length CpTRPA5 gene was also included.

The housekeeping gene rpl8 was used as a positive control in all body parts.

Ant: antennae; Tho: thorax; Abd: abdomen; Leg: legs; Win: wings; ntc: no-

template control; M: male; F: female. PCR volume loaded: 10 ll.
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Fig. 5. Graphic representation of introns, exons and topology of the translated polypeptides, of the fulllength CpTRPA5 variant and verified splice forms.

(A) Introns and exons for the full-length CpTRPA5 variant. White rectangles: 5’-UTR, M418 additional region, 3’-UTR; black rectangles: exons; lines: introns; ma-

genta rectangle: additional nucleotides from mRNA-editing; green arrowhead and letters: start codon; magenta arrowhead and letters: stop codon; yellow arrow-

heads and bars: splicing sites of RT-PCR verified splice forms (abbreviations indicated above arrowheads); numbers: splicing sites positions, counted from the

start codon; scale bar: 100 bp. (B) Introns and exons for CpTRPA5 splice forms (CpTRPA5_M4, CpTRPA5_M17, CpTRPA5_M43, CpTRPA5_M418 and

CpTRPA5_F1117). (C) Topology of the translated polypeptides of the full length CDS CpTRPA5 and of splice forms CpTRPA5_M4, CpTRPA5_M17, CpTRPA5_M43

and CpTRPA5_M418. Magenta: amino acids translated from edited-mRNA; 3D-prediction (Rastop): CpTRPA5_F1117.
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was necessary. Among proposed 3D-models (Protein Database,

http://www.rcsb.org/pdb/home/home.do) the model 1N11.pdb re-

lated with the D34-region of a human ankyrin was chosen. This

model was reported by the server to be the best candidate to repre-

sent the 3D structure of the CpTRPA5_F1117 protein (e-value¼2.

0E�31).

Discussion

Insect TRPA genes constitute a subfamily of several sensors respond-

ing to different types of stimuli (Tracey et al. 2003; Lee et al. 2005;

Liu et al. 2007; Wang et al. 2009, Sun et al. 2009; Kang et al. 2010;

Wang et al. 2011; Wei et al. 2015). In contrast, only one TRPA gene

is expressed in mammals (Story et al. 2003; Bandell et al. 2004;

Jordt et al. 2004; Macpherson et al. 2007; Nilius and Flockerzi

2014). As there is currently a dearth of functional data available, the

sensory implications of these additional insect TRPA members are

still unclear. With the wide range of functional specificity of insect

TRPs, the deorphanization of these currently orphan TRPAs could

give fresh insight to our understanding of insect sensing, and initial

studies implicate roles for some TRPAs in nociception and thermal

sensing (Braun 2012).

By searching the antennal transcriptome of the tortricid pest C.

pomonella, we identified 5 candidate TRPs belonging to several

orthology groups, i.e. Pyrexia, TRPA5, Water witch (within the

TRPA subfamily), TRP and TRPC (within the TRPC subfamily)

(Fig. 1). We also demonstrated the existence of different splice forms

for CpTRPA5, which appears to have sex- and body part-specific

expression patterns.

Evolutionary studies suggest that TRPAs underwent expansion in

the common ancestor of crustaceans and insects, leading to four

paralogous lineages (Peng et al. 2015). A fifth lineage, corresponding

to the water witch genes, may have appeared in insects through a ret-

rotransposition event from pyrexia (Matsuura et al. 2009). Compared

to painless and TRPA1 that have been more conserved, pyrexia, water

witch and TRPA5 genes experienced several gene gain and loss events

in insects (Matsuura et al. 2009; Peng et al. 2015). As hypothesized

for HsTRPA of Hymenoptera (Matsuura et al. 2009), several genes

arising from TRPA duplications may be involved in gaining thermo-

sensitive properties which can be speculated as a possible role for the

TRPA5 orthologue we have identified in C. pomonella.

While we did not find in C. pomonella antennae some of the

TRPs canonically involved in thermal sensing (TRPA1, Painless), we

did find TRPs previously reported to be involved in sensing of heat

(Pyrexia), cold (TRP), as well as hygroscopic sensing (Water witch).

This suggests the existence of thermal and hygroscopic modalities in

codling moth antennae, as recently demonstrated in Drosophila

(Gallio et al. 2011; Liu et al. 2007), hymenoptera (Ruchty et al.

2010) and previously reported for other insects (Altner and Loftus

1985). Notably, TRPA activation in antennae could contribute, to-

gether with the olfactory system, to host finding, as demonstrated

by recent studies on insect thermotaxis (Wang et al. 2009; Corfas

and Voshall 2015). Furthermore, in orchards treated with phero-

mones for mating disruption of codling moth, the onset of male diel

flight was strongly correlated with temperature: male were active at

temperatures between 19 �C and 14 �C (Witzgall et al. 1999). Lack

of correlation between flight onset and light intensity further sug-

gested the contribution of temperature sensing to odor-guided be-

havioral responses in the codling moth.

In Drosophila, Pyrexia-expressing neurons appear to be widely

distributed throughout the fly body, and are most likely involved in

the detection of high temperatures (Lee et al. 2005). We observed a

similar pattern of body-wide expression for the C. pomonella

TRPA5, where RT-PCR indicated that it was expressed in all body

parts. Similarly, C. pomonella pyrexia and water witch were ex-

pressed in all body parts, except male wings and female antennae

for pyrexia and female legs for water witch, while a slight band for

the latter in male thorax and female wings may suggest, although

limited, a possible expression of water witch in these body parts

(Fig. 2). Functional studies of Pyrexia in D. melanogaster also dem-

onstrated different temperature sensitivities for different Pyrexia iso-

forms and for their combinations (Lee et al. 2005). When co-

expressed, immunostaining showed both isoforms to be co-

localized, suggesting a possible hetero-tetramerization of the quater-

nary structure of the channel, with a possible functional role in sens-

ing specific temperature ranges. While speculative, a possible

explanation for the existence of multiple TRPA5 splice forms in C.

pomonella could be a combinatorial-based system for thermal sens-

ing, similar to that observed for the Drosophila Pyrexia.

In addition, topology predictions indicated that certain

CpTRPA5 splice forms lack most of the voltage-sensing domain

(TM1–TM4), possibly leading to a shift in function (Fig. 5C). For

CpTRPA5_M43, most of the voltage-sensing domain was lacking

(TM2–TM6). For CpTRPA5_M418, TM5 and TM6 were missing,

which form the central cation-conducting pore. Expression patterns

of the full length CpTRPA5 and variants CpTRPA5_M43 and

CpTRPA5_M418 were mostly similar, with the exception of a high

expression in the wings for CpTRPA5_M418 (Fig. 4). Genomic

overview further confirmed the existence of these splice forms.

Indeed, the position of the upstream splicing site for

CpTRPA5_M43 corresponds with the intron/exon boundary be-

tween exon II and intron II and CpTRPA5_M418 is the un-spliced

variant generated by lack of intron III excision (Fig. 5B). Similar ex-

pression patterns observed with the full-length variant motivates fur-

ther investigations to validate any possible functionality of these

splice forms.

CpTRPA5_M17 and CpTRPA5_F1117 splice forms were ob-

served in most body parts. The CpTRPA5_F1117 splice form lacks

most of the CDS between exons II and IV coding for a soluble

ankyrin-repeat module. While our knowledge is limited regarding

the role of ankyrin domains of transmembrane proteins of eukaryote

organisms, e.g. TRPs, they are known to be associated with the cyto-

skeleton (Zhang et al. 2015) by protein/protein interactions involv-

ing spectrin/actine complexes in the cytosolic side of the plasma

membrane (Baines 2010). Although expression and purification of

soluble ankyrins has been reported (Binz et al. 2003), the expression

of free ankyrins derived from rearrangement of the CDS of trans-

membrane proteins is currently unknown.

In insects, it has been demonstrated that epigenetic regulation oc-

curring by DNA methylation may regulate expression of specific

genes by causing widespread and diverse changes in alternative splic-

ing (Foret et al. 2012; Li-Byarlay et al. 2013). In this context, the

identification of splice forms in all body parts without a specific pat-

tern may have possible implications with silencing translation of the

original CDS, by generating non-functional forms like

CpTRPA5_F1117 and CpTRPA5_M17. Further investigations

might focus on functional characterization of these splice forms such

as their possible implications with silencing mechanisms.

Other splice forms may translate proteins functioning as TRPA

sensors in the codling moth. For instance, among splice forms,

CpTRPA5_M4 appears to be expressed only in male antennae and

in the female abdomen. The existence of this splice form is con-

firmed by the identification of its downstream splicing site proximal
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with the one identified for CpTRPA5_M43, as validated by genomic

overview (see above). Transmembrane predictions indicate that this

splice form retains six transmembrane domains. Only a shorter re-

arranged C-terminal distinguished it from the original full-length

TRPA5. Although the N- and C-terminal regions are reported to be

important to mediate control of channel gating (Hoffman et al.

2002) and activations of thermal-TRP-channels (Brauchi et al.

2006), this CpTRPA5_M4 form may be the best candidate func-

tional channel, together with the full-length variant. CpTRPA5_M4

preserves a complete ankyrin-repeats N-terminal, required for

TRPA-activation (Macpherson et al. 2007), and a six-TM structure,

including TM5, TM6 and their connecting loop forming the central

cation-conducting pore. As recently demonstrated, the existence of

different isoforms seems to be the key of TRPA sensory discrimina-

tion of insects, depending on neuronal cell segregation (Kang et al.

2012). Whereas the full length CpTRPA5 is possibly involved in a

general transduction pathway because of its wide expression in all

insect body parts, the CpTRPA5_M4 isoform may be involved in

thermal sensing in male antennae and the female abdomen, possibly

the ovipositor.

Our data also suggest the occurrence of mRNA editing within

the coding region of the third transmembrane domain of CpTRPA5

(Fig. 3). Current findings report mRNA editing occurring for

Kþchannels in multiple organisms, including insects (Holmgren and

Rosenthal 2015). For instance, in Drosophila, editing generates mul-

tiple isoforms. Their frequency varies between different parts of the

adult’s anatomy (Ingleby et al. 2009), having a variety of functional

effects, including changes to activation, deactivation and inactiva-

tion kinetics, and some small shifts to the channel voltage sensitivity

(Ryan et al. 2008). Pyrexia is known to be a thermal-gated

Kþchannel (Lee et al. 2005) and the relatedness of CpTRPA5 with

pyrexia supports our mRNA-editing findings for CpTRPA5. Post-

transcriptional modifications such as mRNA editing and generation

of multiple splice forms observed in RT-PCR follow a general pat-

tern of regulation of TRP function at multiple post-transcriptional

levels (Voolstra and Huber 2014) and raise the question of potential

functional effects.

Given the possible role of CpTRPA5 in temperature sensing in an-

tennae, the present work opens perspectives for investigating the con-

tribution of different sensory modalities in harmful behaviors of crop

pest moths. Furthermore, better understanding the contribution of al-

ternative splicing and post-transcriptional modifications to the func-

tion of CpTRPA5 would increase our knowledge on mechanisms that

remain largely unexplored in the field of insect neuroethology.
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