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Restoring Natural Disturbances in Boreal Forests 

Abstract 

Worldwide declines in biodiversity have accentuated the need for conservation actions. 

Unfortunately, the decline is unlikely to be reversed by traditional conservation alone. 

Instead the practice of ecological restoration has come to play an ever increasing role. It 

is therefore important to develop methods that are beneficial for biodiversity, cost 

efficient and applicable on larger scales. By using a before-after control-impact 

experiment in boreal forest voluntary set-asides, I evaluated the response of forest-

dwelling beetles and flat bugs to two cost neutral ecological restoration methods. The 

two restoration treatments, restoration burning and artificial gap creation were aimed at 

emulating natural disturbance processes, at the same time as they were expected to 

improve conditions for biodiversity. I compared the results from the two treatments 

with that of unmanaged reference stands. 

I found that beetles showed strongest response to restoration burning by increasing 

in abundance and species richness directly, as well as one year after restoration. In 

addition the composition of species communities differed significantly between beetles 

collected in burned stands compared to those collected in gap-cut and reference stands 

immediately after restoration. One year after restoration the composition of species 

communities differed significantly between all three treatment groups. Flat bugs also 

responded strongest to restoration burning by displaying higher abundance and species 

richness in burned stands compared to gap-cut- and reference stands. I also found that 

dead wood substrate type mattered for beetles. Tree species and tree posture, i.e. if the 

trees were standing up or lying down, had the strongest effect on the composition of 

species communities emerging from the dead wood. In addition, tree species was of 

importance for abundance and species richness in gap-cut stands, where spruce trees 

generally had higher counts that birch- and pine trees. 

As the voluntary set-asides already were established and the restoration costs were 

fully covered by revenues from the extracted timber, the restoration methods applied in 

this study may prove particularly useful. Not only because of the positive effects on 

forest biodiversity, but also due to their high level of applicability and cost 

effectiveness.  
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1 Background 

1.1 Disturbance history of boreal Fennoscandia 

1.1.1 Natural disturbances 

During the millennia that have passed since the last glaciation the forests of 

Fennoscandia have been under the influence of natural disturbances, e.g. forest 

fires, wind storms and insect outbreaks, thereby contributing to, and changing 

the structure and composition of what today is known as boreal forests (Clear 

et al., 2015; Clear et al., 2014; Esseen et al., 1997; Östlund et al., 1997). 

During intensive fires most trees in entire forests stands were killed and 

replaced with entirely new generations of trees, often light demanding pioneer 

species such as birch (Betula pubescence and B. pendula) and aspen (Populus 

tremula), but also pine (Pinus sylvestris). Over time the broad leaved trees died 

and were replaced with more long lived species such as pine or spruce (Picea 

abies), depending upon site conditions and surrounding seed sources (Brumelis 

et al., 2011; Kuuluvainen & Aakala, 2011; Shorohova et al., 2009). Other 

times fires were less intensive and would only kill small trees or those species 

that do not withstand fire as well as pine, e.g. spruce. The resulting forest 

would then often comprise multiple cohorts of pines (Kuuluvainen & Aakala, 

2011; Shorohova et al., 2009; Angelstam & Kuuluvainen, 2004). In forests 

where fire occurred less frequently, spruce trees would often dominate the 

stands. Unlike large scale disturbances small scale disturbances such as 

senescence, snow loads, insect attacks and fungal infections resulted in that the 

death of single trees or small groups of trees, drove changes in structure and 

composition of these forest (Kuuluvainen & Aakala, 2011; Shorohova et al., 

2009; Angelstam & Kuuluvainen, 2004). 

1.1.2 Anthropogenic disturbances 

Even though humans have inhabited the northern parts of Fennoscandia for 

many millennia, their influence on the structure and composition of  
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surrounding forests has been of moderate intensity and restricted to local scales 

during most of the this period (Östlund et al., 1997). Apart from slash and burn 

agricultural activities in limited geographical areas during the 17
th
 and 18

th 

centuries (Niklasson & Granström, 2000), it was not until the middle of the 

19
th
 century that forests began to be intensively utilized for human use with 

consequences on structure and composition (Rautio et al., 2016; Esseen et al., 

1997; Östlund et al., 1997). It was the economic value of the largest pine trees, 

tar and char coal that were the initial reasons behind the industrial exploitation 

(Östlund et al., 1997; Tirén, 1937). As the largest pine trees dwindled in 

numbers, dimension criteria were lowered and the harvest continued. With the 

introduction of pulp production, dimension criteria were further reduced and 

spruce also became a species of interest (Tenow, 1974). Even though the 

forests were under some pressure at the beginning of the 20
th
 century, high 

grading was the most common forestry practice, leaving a constant forest cover 

(Axelsson & Östlund, 2001; Esseen et al., 1997). With the introduction of 

rotation forestry, i.e. clear felling with subsequent reforestation of 

monocultures, in the middle of the 20
th
 century a large transformation in 

structure and composition of boreal Sweden was initiated. Deciduous trees, 

such as birch and aspen, were not as economically important, and much effort 

was spent on reducing the proportion of deciduous trees in the forests 

(Axelsson & Östlund, 2001). Infrastructure to supress forest fires was built up, 

and very efficient in reducing the area of forests burning each year (Niklasson 

& Granström, 2000; Esseen et al., 1997). Formerly heterogeneous forest stands 

in matter of vertical structure and tree species composition were transformed 

into even aged monocultures of either pine or spruce (Linder & Östlund, 1998). 

In addition to the effect that two centuries of industrialized forestry has had on 

the age and species distribution of living trees, there has occurred a dramatic 

reduction in the availability and variability of dead wood (Siitonen et al., 

2001). The main reason behind the reduction of dead wood is that trees are 

removed from forests before they die from the natural causes mentioned in the 

previous paragraph. Another reason, although not as influential, is that dead 

wood has been viewed as possible source for forest pests, e.g. bark beetles 

(Wermelinger, 2004), and also used as an energy source for heating houses and 

therefore actively removed (Ehnström, 2001). 

1.2 Biodiversity and dead wood in boreal forests  

A great proportion of the biodiversity present in boreal ecosystems is 

associated with the natural disturbances shaping the forests and the structures 

within. Even though the boreal forests of Fennoscandia are a rather young, at 
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least in an evolutionary perspective, the boreal biome is not. A multitude of 

species have therefore had time to evolve and adapt to make use of the 

resources available within boreal forests. One of the most important structural 

features for many of the forest dwelling species is dead wood (Dahlberg & 

Stockland, 2004; Siitonen, 2001) created either by senescence or natural 

disturbances. Approximately 6000-7000 of all forest dwelling species in 

Sweden depend on dead wood during some part of their life cycle (Dahlberg & 

Stockland, 2004), they are often referred to as saproxylic species (Stokland et 

al., 2012). Many of these species do not only depend on dead wood per se, they 

have also evolved to make use of certain types of dead wood, e.g. tree species, 

tree posture, moisture level, sun exposure, mortality factor, i.e. the way the tree 

died also influences dead wood quality (Andersson et al., 2015; Stokland et al., 

2012; Lindhe et al., 2005; Stokland et al., 2005).  

At present, the amount of dead wood in boreal Fennoscandia is but a 

fraction (2-10 m
3 

/ha) of what it was before the introduction of industrialized 

forestry (40-170 m
3
/ha) (Aakala, 2010; Siitonen, 2001). In addition, the 

variability of dead wood structures is low compared to more natural conditions. 

As a consequence the longevity of more than a thousand saproxylic species is 

in danger and they are therefore included in the Swedish red-list of threatened 

species (Gärdenfors, 2015). It is therefore vital to increase the amount and 

variation of dead wood in boreal Fennoscandia 

1.3 Forest management implications and ecological restoration 

In response to the growing evidence on the negative impacts of modern 

forestry on biodiversity, questions about the sustainability of these forestry 

practises have been raised (Simonsson et al., 2015). As a result, forest 

certification schemes such as the Forest Stewardship Council (FSC) and the 

Programme for the Endorsement of Forest Certification (PEFC) have come to 

play an important role in the conservation of forest biodiversity in boreal 

forests. On the national scale, certifications schemes demand that certified 

partners conduct certain conservation efforts, e.g. setting forest stands aside 

from ordinary forestry, leaving buffer zones of trees alongside wetlands and 

water bodies, leaving snags and logs on clear cuts, and also actively creating 

dead wood in connection to final harvesting (Johansson et al., 2013; 

Gustafsson et al., 2012). Prescribed burning of clear-cuts and to some extent 

standing forests are also included in the FSC-standards for boreal 

Fennoscandia (Johansson et al., 2013; Anonymous, 2010). In addition to 

voluntary certification schemes the Swedish forest legislation (SFS, 1993) 
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clearly states that environmental protection and forestry production should be 

prioritised equally in forest management. 

Even though the conservation measures mentioned above have been 

incorporated and implemented for more than two decades the red-list of 

threatened species associated to forest habitats has not shrank during the same 

period. In contrary there has been an increase in the number of red-listed 

species. In the Swedish red-list of year 2000, 2101 species associated to forests 

were red-listed, and in red-list of 2015, the number was 2246. A part of this 

increase is due to the fact that more species were evaluated in 2015 compared 

to 2000. However, the proportion of all red-listed species has been more or less 

constant during the same period, 21% of all evaluated species were categorized 

as red-listed in the year 2000, and 19.8% in 2015 (Gärdenfors, 2015; 

Gärdenfors, 2000).  

 

1.3.1 Ecological restoration 

It has been pointed out that it may take considerable time before changes in 

forestry practises result in increased population sizes of the species negatively 

affected by former practices. Furthermore, it has been questioned if the current 

measures are sufficient to mitigate the negative effects on forest biodiversity 

(Johansson et al. 2013). As a consequence, there is still a need for further 

actions than those implemented by legislation and certification schemes, to 

restore the forest associated biodiversity in Fennoscandia. Kuuluvainen (2002) 

suggests that an appropriate way of promoting biodiversity is to move away 

from the one solution practice, i.e. rotation forestry, and instead consider local 

site conditions and natural disturbance dynamics when planning forestry 

actions. In addition, there is also a need for more active measures aiming at 

improving conditions for biodiversity. Lindenmayer et al. (2006) proposes that 

ecological restoration should be guided by the natural disturbances originally 

creating the habitat sought for. In boreal Eurasia it would be reasonable to 

conduct restoration burnings of standing forests and also mimicking small 

scale gap dynamics by creating canopy gaps and a variation in dead wood 

substrates within the gaps (Shorohova et al., 2011; Kuuluvainen, 2009; Esseen 

et al., 1997) to improve the conditions for many of the species that have 

suffered from modern forest practises. 
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2 Objectives 

The large scale experiment described in this thesis sets out to evaluate the 

response of saproxylic invertebrate communities to two restoration treatments 

aimed at mimicking natural disturbance processes, restoration burning and 

artificial gap creation. The design of the experiment also allows me to evaluate 

the importance of dead wood diversity for saproxylic beetles.  

Recent research has been conducted on the effects of mimicking natural 

disturbances as a means of promoting biodiversity (Hekkala et al., 2014; 

Toivanen & Kotiaho, 2007; Hyvärinen et al., 2005). However, few studies 

have been as geographically spread out as the experiment evaluated in this 

thesis, created such a variation in mortality factors and maybe most 

importantly for future implementation in forest management, been designed to 

be easily applied, i.e. the stands were already set-aside from ordinary forestry 

production as a means FSC certification fulfilment and that revenues from the 

harvested timber fully covered the costs of restoration. 

Through studying patterns of abundance, species richness and species 

composition of forest dwelling invertebrates, the aim of this thesis is to 

evaluate short-term effects of ecological restoration mimicking natural 

disturbances. 

 

In this thesis I address the following questions: 

 

1. How do forest dwelling beetle communities respond to the two ecological 

restoration methods, restoration burning and artificial gap creation? (Papers 

I & II) 

 

2. Does the creation of a diverse set of dead wood substrate types, i.e. tree 

species and mortality factor, increase saproxylic beetle diversity? (Paper 

III) 
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3. How do flat bugs respond to the two ecological restoration methods 

restoration burning and gap creation? (Paper IV) 

 

4. Is the flat bug response to restoration burning valid for a greater 

geographical region, i.e. boreal Fennoscandia? (Paper IV) 
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3 Materials and methods 

3.1 Study areas 

3.1.1 Sweden (Papers I, II, III & IV) 

The study was conducted in the middle and northern boreal zones (Ahti et al., 

1968) of Sweden (Fig. 1). Initially 30 forest stands that were similar in terms of 

tree age, tree species composition, field layer vegetation and productivity, were 

selected to be included in the experiment (Table 1 in Paper II). Information on 

stand characteristics was provided by the land owner, but the final stand 

selection was done after field visits. The selected stands varied from 3.5 to 21 

ha in size and were dominated by Scots pine (Pinus sylvestris) and/or Norway 

spruce (Picea abies). Downy birch (Betula pubescens), silver birch (B. 

pendula), aspen (Populus tremula) and goat willow (Salix caprea) occurred 

scattered throughout the stands. The dominant forest type in all stands was 

mesic dwarf-shrub (Arnborg, 1990) with Vaccinium myrtillus as the dominant 

species in the field layer (Table 1 in Paper II). All stands were part of the land 

owner’s system of voluntary set-asides established according to FSC 

certification requirements (Anonymous, 2010). 

3.1.2 Finland (Paper IV) 

The study was conducted in two separate nature protection areas of the inland 

region of eastern Finland (Fig. 1). The northern area, Pahamaailma, is situated 

in the northern boreal zone , and the southern area, Elimyssalo, is situated in 

the middle boreal zone (Ahti et al., 1968). Both of the Finish study areas were 

dominated by Scots pine, but also contained scattered occurrences of Norway 

spruce, silver birch, downy birch and aspen (Table 1 in Paper IV). The forest 

floor vegetation was dominated by the ericaceous dwarf shrubs Vaccinium 

vitis-idea, V. myrtillus and mosses, primarily Pleurozium schreberi.
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Figure 1: Overview of the forest areas included in the two study systems of the 

thesis. Left hand picture depicts a zoomed in view of the Swedish study. Circle 

= references, triangles = artificial gap cuttings, and squares = restoration 

burnings. 

 

3.2 Experimental design 

3.2.1 Sweden (Papers I, II, III & IV) 

During the fall of 2009 and early spring of 2010 two restoration treatments 

were assigned to ten forest stands each. The treatments were aimed at 

mimicking natural disturbances.  An additional ten forest stands were chosen 

as untreated references. The two treatments were, restoration burning and 

artificial gap creation including the creation of coarse woody debris (CWD). In 

the ten stands assigned for restoration burning, up to 35% of the tree volume 

was harvested during the early spring of 2011.  The harvest covered the cost of 

restoration, at the same time as it facilitated faster dehydration of the field- and 

humus layer before burning. Six stands were burned during the summer of 

2011, whereas four stands could not be burned due to unfavourable local 

weather conditions. Those four stands were therefore excluded from 

experiment. In the ten stands assigned for artificial gap creation, standard 

harvesters were used to create gaps with a diameter of 20 m covering 

approximately 19% of each stand’s total area. Cut trees were removed from 

every second gap to cover the cost of restoration and to reduce the risk of 

creating more fresh CWD than is prescribed by Swedish forestry legislation i.e. 
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5m
3
ha

-1
. In the remaining gaps CWD substrates were created in four separate 

ways: i) trees were cut at the base and left as logs, ii) trees were cut 

approximately three meters above ground creating high stumps, iii) trees were 

pushed over and left as simulated wind breaks, and iv) trees were girdled at 

approximately three meters above ground and left to die standing. 

3.2.2 Finland (Paper IV) 

Three restoration treatments were applied: prescribed burning with lower fuel 

load (BurnLow), prescribed burning with higher fuel load (BurnHigh) and 

untreated controls (Control). The treatments were replicated three times in each 

forest stand as a randomized complete block design where each experimental 

block ranged between 2 and 10 ha in size. Within each block, three 

experimental stands (75 m x 100 m) were established. The blocks were nested 

within larger areas where restoration treatments were applied (Fig. 1 in Paper 

IV). For the treatments BurnLow and BurnHigh trees were randomly selected 

to be cut at the base and left on the ground as fuel; no trees were removed from 

experimental stands. The total volume of trees cut at each experimental stand 

was based on the initial volume of the growing stock at the block level. In the 

BurnLow treatment, 20 % of the volume of living trees was cut and in 

BurnHigh 40 % of the volume was cut. Trees were cut during the winter of 

2005–2006, and prescribed burnings were carried out in June and early July 

during the summer of 2006. 

3.3 Sampling and data analyses 

3.3.1 Direct effects of ecological restoration (Paper I) 

Due to the fact that one of the six stands that were burned, was burned more 

than one month later than the other five, this stand was not included in the 

study of direct effects. In order to achieve a balanced design five stands each of 

the gap cuttings and references were included in the study. The five gap-

cuttings and references included were the ones that were geographically closest 

to the burned stands. In each of the 15 study stands, three flight intercept traps 

(Fig. 2) were placed at a distance of 30 m from the centre of each forest stand 

with a between-trap angle of 120⁰ (Fig. 1 in Paper IV). The year before 

treatment (2010), beetles were trapped between the 1st of June and the end of 

September. During the treatment year (2011), traps were placed on the burned 

stands and on the corresponding gap-cut and reference stands 1-2 days after the 

fires. Four stands were burned between the 13
th
 and 14

th
 of June and the 

remaining stand was burned on the 15
th

 of July. The traps were emptied at the 

end of September. Beetles were counted and identified to species level by 
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experts. Beetles were classified as saproxylic according to the definition of 

Stokland et al. (2012) and nutritional preference was classified in accordance 

to the database for saproxylic beetles (Anonymous 2007), with the addition of 

species confined to the northern part of Sweden (Hilszczański, J., Pettersson, 

R. and Lundberg, S. pers. comm.). Red-list status was based on the Swedish 

red-list (Gärdenfors 2015). The classification of fire favoured and fire 

dependent species follows Wikars (2006). 

Two statistical analysis methods were used to investigate direct effects of 

ecological restoration on saproxylic beetle communities. Analyses were 

conducted for all saproxylic beetles as well as for six subgroups of beetles. The 

subgroups were based on each beetle species nutritional preferences, known 

relation to forest fire and red-list category. Generalized linear mixed effects 

models (GLMM) were used to analyse differences in abundance and species 

richness of beetles between years within the same treatment, and between 

treatments within the same year. When significant differences were detected 

pairwise comparisons with Tukey tests were applied. Differences in species 

composition were analysed with ManyGLM, which is a model based analysis 

of multivariate abundance data. As it is not possible to include random effects 

in this analysis method, differences in species composition between treatments 

were analysed separately for the two years. When significant differences were 

detected, pairwise analyses were conducted to investigate between which 

treatments the differences lay, and at the same time which species significantly 

contributed to the differences. All analyses were carried out in R (R Core 

Team, 2016) 

3.3.2 Short term effects of ecological restoration (Paper II) 

Similar to the case in Paper I, three flight intercept traps per stand were used to 

collect beetles. Sampling was conducted one year before restoration (2010) and 

one year after restoration (2012). Traps were placed in the same way as in 

paper I. The trapping period was equally long for both sampling periods, 

lasting from the first week of June to the last week of September. Traps were 

emptied at the end of each trapping period. All traps were intact throughout the 

first year of sampling, but during 2012 three traps broke, one each in three of 

the burned stands. Data from these three traps were excluded from the 

analyses. 

The data analysis studying effects on beetle communities one year after 

restoration was conducted in much the same way as in paper one. However, in 

this study non-saproxylic beetles were also included. Therefore analyses of 

effects of restoration were conducted for all beetles collected and eight 

subgroups  of beetles. Just  as  in  Paper I,  GLMM:s  were used  to  investigate 



19 

  

Figure 2: Left hand picture: flight intercept traps used for collecting beetles in Papers I 

& II, and flat bugs in Paper IV (Swedish part). Right hand picture: eclector traps used 

for collecting beetles in Paper III. Photo: R. Hägglund   

 

differences in abundance and species richness, and ManyGLM to investigate 

differences in species composition. All data analysis were carried out in R (R 

Core Team, 2016). 

3.3.3 Substrate specific restoration (Paper III) 

Beetles were sampled using eclector traps attached to dead wood substrates of 

different types (Fig. 2). Sampling was conducted on a total of 12 different 

substrate types (Table 1 in Paper III). In each stand the aim was to sample five 

trees of each tree species and mortality factor, i.e. the way the tree died and 

species. In stands containing less than five trees of a certain substrate type, as 

many substrates of that certain type as possible were sampled. In the burned 

stands traps were attached to standing spruce-, pine-, and birch trees that were 

killed during restoration fire. In gap-cut stands traps were attached to cut logs, 

tipped over logs, high stumps and girdled trees, of spruce and pine. Due to the 

scarcity of birch, traps were only attached to birch trees that were cut at the 

base and left as logs. 

Similar to the cases in Papers I & II, the data analyses of beetle response to 

different dead wood substrates created during restoration were carried out 

using two separate analysis methods. Abundance and species richness were 

analysed by fitting generalized mixed-effect models (GLMM) to investigate if 
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there were any differences between the dead wood substrates created during 

restoration. Tree species, mortality factor and the interaction between these two 

factors were set as fixed effects in the models. Species composition was 

analysed by using permutational multivariate analyses of variance 

(PERMANOVA). Due to the design of the study all analyses on differences 

between substrate types were analysed separately for burned and gap-cut 

stands. Data analyses on abundance and species richness  were carried out in R 

(R Core Team, 2016). Analyses of species composition were carried out in 

PRIMER-E v7 (Clarke & Gorley, 2015) with the add-on package 

PERMANOVA+ (Anderson et al., 2008). 

3.3.4 Flat bug response to ecological restoration (Paper IV) 

Sweden 

In each of the 18 studied forest stands, three flight intercept traps and 10 pitfall 

traps were used to collect flat bugs. The traps used for collecting flat bugs were 

the same as used for collecting beetles in paper II. In addition to the flight 

intercept traps ten pitfall traps were placed at a distance of ten meters from 

each other along three straight lines origin at the centre of each forest stand, 

orientated in such directions that the trapping lines also were separated by an 

angle of 120⁰, with the end of each line ending up in between two intercept 

traps (Fig. 1 in Paper IV). Collection of flat bugs was carried out between the 

1st of June and 30th of September (intercept traps) and 1st of June to 15th of 

July (pitfall traps) one year after restoration (2012). Traps were emptied once 

at the end of the sampling period. Collected flat bugs were counted and 

identified to species level by me. 

Pitfall and flight intercept catches were pooled within each experimental 

forest stand, and the nonparametric Kruskal–Wallis rank sum test was used to 

compare the total number of individuals and the number of flat bug species 

collected in the different treatments. The same test was also used to investigate 

if individual species differed in the number of collected flat bugs between 

treatments. When significant differences were found, the Mann–Whitney U test 

was used to conduct pairwise post hoc comparisons, revealing between which 

treatments the differences lay. In order for the robustness in the statistical 

analysis to be adequate during the analyses of single species, analyses were 

only carried out when there were at least five individuals in total and when the 

individuals were collected from at least four sites (Johansson et al. 2010) All 

analyses were carried out in R (R Core Team, 2016) 
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Finland 

In each experimental stand six flight intercept traps were attached to trunks of 

living pine trees. Flatbugs were collected one year before restoration (2005), 

and the same year as restoration treatments were carried out (2006). Sampling 

was conducted between the 15th of May and 15th of September for both 

sampling years. Collected flat bugs were counted and identified to species level 

by Anne-Maarit Hekkala. 

The flat bugs collected in the six traps placed within each experimental 

stand were pooled. Post-treatment differences in the total number of flat bugs 

collected, number of individuals collected of each species, as well as total 

number of flat bug species collected were conducted by fitting generalized 

linear mixed effects models (GLMM) to the data. The numbers of 

individuals/species collected per experimental stand were set as response 

variables, respectively. Experimental treatment was set as a fixed factor and 

block nested within study area as random factors. Model assumptions were 

reviewed visually with no apparent violations of model assumptions observed. 

All analyses were carried out in R (R Core Team, 2016) 
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4 Results 

4.1 Direct effects of ecological restoration (Paper I) 

In total, 15100 saproxylic beetles, belonging to 328 species were collected 

during the two sampling years. The year before treatment 7534 individuals of 

253 species were collected and directly after restoration 7566 individuals of 

252 species were collected. Before restoration the catches were distributed 

accordingly: 2413 (N=5), 2106 (N=5) & 3015 (N=5) individuals in reference 

stands, stands that were about to be burned and stands that were about to be 

gap-cut, respectively, and after restoration the catches were distributed 

accordingly: 1083 (N=5), 4999 (N=5) & 1484 (N=5) individuals in reference 

stands, burned stands and gap-cut stands, respectively. 

Overall abundance, overall species richness and species composition did not 

differ between any of the treatment groups before restoration (Fig. 3). 

After restoration, burned stands differed in species composition from gap-

cut stands and references. Even though the nMDS visualisation suggests that 

there might be some separation in species composition between gap-cut and 

reference stands (Fig. 3 in Paper I), there was no significant difference between 

the two treatments after restoration (Table 3 in Paper I). Of the total 328 

species collected, 50 species contributed significantly to the differences 

between treatments. Thirty-seven of them were more common in burned stands 

than in gap-cut and/or reference stands, and 15 of the 37 are known to be 

favoured by forest fires (Wikars, 2006). 

After restoration the overall abundance of saproxylic beetles was higher in 

burned stands than both gap-cut stands and references (Fig. 3), functional 

groups contributing most to these differences were: cambium consumers, 

fungivores and predators (Fig 1 in Paper I). There was however no difference 

in abundance between gap-cut stands and references. The patterns for species 

richness were similar to those of abundance; nevertheless, there was no 
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difference in species richness between burned and gap-cut stands. Cambium 

consumers were the nutritional subgroup contributing most to the higher 

species richness in burned stands compared to references. Overall abundance 

and species richness was lower the year after restoration in references and gap-

cut stands. In contrast to this, burned stands showed higher abundance after- 

compared to before restoration. Species richness, on the other hand, did not 

differ between years for the burned stands. (Fig. 1 & 2 in Paper I). 

The subgroup showing the strongest response to restoration were, not 

surprisingly, the subgroup of fire favoured beetles. Fire favoured beetles 

displayed a 30-fold increase in abundance and four fold increase in the number 

of species collected (Fig. 1 in Paper I) 

 

4.2 Short term effects of ecological restoration (Paper II) 

In total, 30207 beetles, belonging to 541 species were collected during the two 

sampling years. The year before treatment 13050 individuals belonging to 366 

species were collected, and the year after treatment 17157 beetles belonging to 

448 species were collected. Before restoration the catches were distributed 

accordingly: 5127 (N=10), 2340 (N=6) & 5583 (N=10) individuals in reference 

stands, stands that were about to be burned and stands that were about to be 

gap-cut, respectively. After restoration the catches were distributed 

accordingly: 5205 (N=10), 5044 (N=6) & 6908 (N=10) individuals in reference 

stands, burned stands and gap-cut stands, respectively. 

 

  

Figure 3: Abundance (left) and species richness (right) of all beetles collected before 

restoration (white) and directly following restoration (grey). Differing letters indicate 

differences between treatments within sampling years, and stars indicate differences 

between years within treatment. 
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Similar to that of the case in Paper I there was no difference in overall 

abundance, overall species richness or species composition between any of the 

treatments groups before restoration (Fig. 4). 

After restoration, all three treatments differed in overall species 

composition (Table 3 in Paper II). In addition, most of the studied subgroups 

also differed in species composition between treatments. However, non-

saproxylic beetles, predatory beetles and wood borers did not differ in species 

composition between gap-cut stands and references, and cambium consumers 

did not differ in species composition between burned and gap-cut stands. Red-

listed species did not display any differences in species composition between 

treatments before or after restoration. Of the 448 species collected after 

restoration, 96 species contributed significantly to the differences in species 

composition of all species collected. Fifty-eight species were more common in 

burned stands than in gap-cut stands and/or references, including 17 species 

that are considered fire favoured and one red-listed species. Thirty-four species 

were more common in gap-cut stands than in references and/or burns. Fourteen 

species were more abundant in references than in gap-cut or burned stands and 

two species were more common in references than in both burned and gap-cut 

stands. 

Overall abundance and overall species richness was higher in burned stands 

compared to reference stands after restoration (Fig. 4). In addition, the overall 

species richness was higher in burned stands compared to gap cut-stands after 

restoration (Fig. 4). The nutritional subgroups explaining the largest part of 

these differences were the cambium consumers and predators. However, the 

overall abundance of beetles did not differ between gap-cut stands and 

references or between gap-cut stands and burned stands. Furthermore, we 

found no differences in overall species richness between gap-cut stands and 

reference stands. Overall abundance and species richness was higher the year 

after restoration in burned stands compared to the year before restoration. This 

was however, not the case for gap-cut stands and references, in these two 

treatments there was no difference in overall abundance and species richness 

between the two sampling years (Fig. 2 & 3 in Paper II). 

Just as in Paper I, fire favoured beetles showed the strongest response to 

restoration burning by almost displaying a 20-fold increase in abundance and a 

tenfold increase in the number of species collected (Fig. 2 & 3 in Paper II). 
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Figure 4: Abundance (left) and species richness (right) of all beetles collected before 

restoration (white) and one year after restoration (grey). Differing letters indicate 

differences between treatments within sampling years, and stars indicate differences 

between years within treatment. 

4.3 Substrate specific restoration (Paper III) 

In total, 12498 beetles, belonging to 193 species were collected. In the burned 

stands 2211 beetles were collected in the 76 traps used and in the gap-cut 

stands 10287 beetles were collected in the 307 traps used. 

In the burned stands there was no difference in abundance or species 

richness between any of the substrate types, regardless of tree species or 

mortality factor. In contrast to this, there were differences in species 

composition between tree species. Birch trees had significantly different 

species compositions of beetles than both spruce- and pine trees. Although not 

significant (p=0.06), the results from the pairwise comparisons between 

spruce- and pine trees (Table 2 in Paper III) together with the nMDS 

visualisation (Fig. 3 in Paper III) and the fact that both species harboured 

unique species suggests that there is a trend indicating differences in species 

composition between these two tree species. 

In the gap cut stands tree species significantly affected both abundance and 

species richness of beetles. Spruce trees had higher abundances of beetles 

compared to the other two tree species. Species richness was also higher in 

spruce trees than in pine- and birch trees. In addition, pine trees harboured 

more species than birch trees. The analyses of species composition revealed 

that there were differences in composition between tree species, mortality 

factor as well as the interaction between the two variables. Pairwise testing 
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revealed significant differences between both tree species and tree posture, i.e. 

whether the trees were standing up or lying down (Fig. 5 & Table 4 in Paper 

III). 

4.4 Flat bug response to ecological restoration (Paper IV) 

In total, 81 flat bugs belonging to 9 species were collected. Sixty-four of the 

flat bugs were collected in the Swedish part of the study and 23 in the Finnish 

part. Of the Swedish flat bugs, 42 were collected in the burned stands and 16 

were collected in gap-cut stands, no flat bugs were found in the reference 

stands. All but one of the flat bugs collected in the Finnish part of the study 

were collected in the burned stands, 14 in the treatment with lower fuel load 

(BurnLow) and 8 in the treatment with higher fuel load (BurnHigh). The 

remaining flat bug was collected in a reference stand. No flat bugs were found 

the year before restoration (Finland only). 

In both study areas, i.e. Sweden and Finland, flat bugs were collected in 

higher abundances in burned stands compared to references. In the Swedish 

part of the study there was no difference in abundance between gap-cut stands 

and any of the two other treatments (Table 2 in Paper IV). In the Finnish part 

of the study there was no difference between the two types of burning 

treatments evaluated, i.e. BurnLow and BurnHigh (Table 3 in Paper IV). The 

response in number of species trapped differed between the two study systems. 

In Sweden the number of species was higher in burned stands compared to 

both the gap-cut stands and the reference stands. An interesting finding from 

Sweden; was that two species, Aradus betulae and A. betulinus, that previously 

have not been regarded as fire favoured had significantly higher abundances in 

burned stands than any of the other two treatment types. In the Finnish part of 

the study there were no differences in the number of species collected in any of 

the different treatments. 
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5 Discussion 

The aim of this thesis was to generate knowledge on how two cost neutral 

methods of ecological restoration affect forest dwelling invertebrates, and if 

ecological restoration mimicking natural disturbances can be used to promote 

invertebrate biodiversity in boreal forests. We found that restoration burning 

increased abundance and species richness for most of the beetles groups 

studied, and that flat bugs also responded with increased abundance in stands 

subjected to restoration burning. The short-term effects of artificial gap 

creation were, however, not as clear as for restoration burning. Nevertheless, as 

the differences between gap-cut stands and the other two treatments were 

slightly more pronounced one year after restoration compared to the same year 

as gap-cuttings were carried out it is likely that this trend will continue and that 

the beetle communities in the three treatments will differentiate more with 

time. I therefore advise forest managers to include both restoration burning and 

artificial gap creation, with the extraction of timber financing restoration 

treatments, as a conservation tool to be commonly used in the management of 

boreal forest set-asides.   

5.1 Papers I & II 

5.1.1 Effects of restoration burning 

In accordance with previous studies (Hekkala et al., 2014; Boucher et al., 

2012; Hjältén et al., 2010; Moretti & Barbalat, 2004) we found strong positive 

effects of restoration burning on the abundance and species richness of 

saproxylic beetles. The positive effects were consistent during both years 

following restoration. Such positive effects are often attributed to a 

combination of the increase in dead wood created during forest fires (Hekkala 

et al., 2016; Eriksson et al., 2013; Siitonen, 2001), and that many species are 

attracted to the smoke and heat produced by the fire itself (Wikars, 1997). This 
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is especially true for fire favoured beetles, which together with cambium 

consumers displayed the strongest response to restoration burning. The same 

year as restoration burnings were carried out fire favoured beetles displayed a 

30-fold increase in abundance and a fourfold increase in species richness 

compared to pre-restoration numbers. Cambium consumers displayed a six fold 

increase in abundance and a twofold increase in species richness. Even though 

the total number of fire favoured beetles and cambium consumers was lower 

one year after restoration (mean±se, N=6: 53.4±11.3 resp. 81.1±16.4) 

compared to the year of restoration (mean±se, N=5: 271.8±42.0 resp. 

417.8±124.1) there was still an increase compared to before restoration 

(mean±se, N=6: 2.7±0.9 resp. 18.9±5.3). This suggests that many of the beetles 

attracted to the burned stands managed to reproduce in the newly created 

habitat. However, for individual dead wood substrates, the effects on 

saproxylic species have been found ephemeral and the positive effects may 

start decreasing after ca five years (Komonen et al., 2014). On the other hand, 

burned areas can probably maintain high population of fire favoured species 

over considerable time as weakened trees will continue to die for many years 

after a fire, thus creating new fresh dead wood substrates that can be colonized 

(Boucher et al., 2012). Recent data from our study stands show support for the 

latter, even five years after burning a significant number of trees are still dying, 

most likely due to the combined effect of fire and bark beetle attacks (Kärvemo 

et al. submitted manuscript). 

The composition of species was altered in the burned stands compared to 

the un-treated references directly following restoration burning (Paper I; Fig. 

3), confirming the work of Hekkala et al. (2014); Johansson et al. (2011); 

Hyvärinen et al. (2009) who found similar patterns. Considering that the 

differences in species composition remained even one year after restoration, 

this further confirms that restoration burnings have a strong effect on the 

saproxylic communities even sometime after the actual fire (Paper II; Table 3). 

Bearing in mind that 14 of the 34 species significantly contributed to the 

differences in species composition directly after restoration burning, and that 

16 of the 55 species one year after restoration burning are considered fire 

favoured it is reasonable to argue that they had a large part in the shift of 

species composition witnessed. However, the remaining species that 

contributed significantly to the differences in species composition are not 

known to be especially favoured by forest fire, but all of them are saproxylic. It 

is therefore likely that the increase in dead wood (Komonen et al., 2014) and 

the higher amounts of volatiles released in burned stands attracted beetles from 

afar. 
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Although the numbers and size of forest fires are far from the pre-fire-

suppression era (Niklasson & Granström, 2000; Zackrisson, 1977) the fact that 

so many fire favoured species and individuals were found in the burned stands 

suggests that the surrounding landscape still caters the needs for some of the 

fire favoured species. Nevertheless the occasional forest fire may be of great 

importance for temporarily increasing the numbers of fire favoured species, 

increasing their chances to sustain viable population sizes in to the future. 

Bearing in mind the wide spread use and distribution of voluntary set-asides in 

boreal Fennoscandia, restoration burning of already established voluntary set-

asides should therefore be incorporated, to a greater extent than is practised 

today, in the forest management of boreal Fennoscandia. 

5.1.2 Effects of artificial gap creation 

A sudden addition of dead wood often has a positive effect on the abundance 

and species richness of saproxylic beetles (Komonen et al., 2014; Hyvärinen et 

al., 2006; Hyvärinen et al., 2005). This was however not confirmed in our 

study. The lack of response during the first sampling period could possibly be 

explained by the fact that we sampled beetles the same year as the restoration 

was conducted and that many saproxylic beetles show a slow to response to 

increases in dead wood. It is also likely that the shorter time period for 

sampling in 2011 compared to 2010 affected the number of beetles collected. 

Especially as the period missing from the sampling conducted in 2011 was the 

beginning of summer when saproxylic beetles often are most active. It has also 

been argued that window traps do not necessarily provide a good proxy for 

beetle production in a stand as this trap type is claimed to collect a high 

proportion of transient beetles from the landscape that are not necessarily 

linked to the specific habitat characteristics in the sites of interest (Boucher et 

al., 2012). However, Sverdrup-Thygeson and Birkemoe (2009) found that 

window traps in fact do not trap beetles indiscriminately, but rather catch 

beetles connected to the habitat in which the traps are placed. Considering that 

gap-cut stands and reference stands were rather similar in structure, except for 

in the actual canopy gaps, the activity of beetles would not be expected to 

differ between the treatments, why the trapping in our case actually can be 

considered a measure of beetles present in the stands. 

In contrast to earlier studies (Komonen et al., 2014; Toivanen & Kotiaho, 

2007), the overall abundance and species richness of saproxylic species did not 

increase the year after restoration. Furthermore, as the sampling period was as 

long as before restoration, which was not the case during the sampling that was 

conducted the same year as restoration, this suggests that the increase of dead 

wood was not sufficient (Müller & Bütler, 2010) to attract enough beetles to 
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influence the overall patterns of abundance and species richness. Yet, a few 

subgroups of saproxylic species did show positive responses to gap-cutting. 

Fire favoured beetles, cambium consumers and wood borers did increase in 

abundance one year after restoration. In addition, fire favoured beetles also 

increased in abundance during the sampling conducted the same year as 

restoration was carried out. It is therefore likely that these  subgroups are better 

at detecting increases of volatiles released from dead wood than other 

saproxylic species and by so having lower threshold volumes of dead wood 

than other functional subgroups. 

In line with the lack of response in abundance and species richness there 

were no significant differences in species composition between gap-cut stands 

and reference stands directly after restoration. It is therefore reasonable to 

assume that the same mechanisms behind the lack of response in abundance 

and richness are adequate for species composition as well. However, the 

species composition analyses including all species collected in 2012, revealed 

that there was a difference in species composition between gap-cut stands and 

references one year after restoration (Table 3 in Paper II) confirming the results 

of Toivanen and Kotiaho (2007) and also supporting our prediction in Paper I, 

i.e. the species composition of saproxylic beetles will diverge given time. It is 

likely that the species present in the surrounding forests have had enough time 

to respond to the increase of dead wood. It is also likely that the variation of 

dead wood substrates, i.e. tree species (Toivanen & Kotiaho, 2010; Paper IV) 

and mortality factor have (Hjältén et al., 2012; Paper IV) have contributed to 

attract a different set of saproxylic species than the reference stands. 

The species groups significantly contributing to differences in species 

composition between gap-cut- and reference stands one year after restoration 

were primarily fungivores, cambium consumers and predators (Table 4 in 

Paper II). Of the 26 species that significantly contributed to differences in 

species composition, 18 species displayed higher abundances in gap-cut- than 

reference stands. A majority of these are known to be fungivores, suggesting 

that initial colonization by wood decaying fungi already had set in one year 

after restoration. Cambium consumers are known to react rapidly to increases 

of dead wood enabling them to utilize the resources present in recently dead 

wood, explaining their affinity to gap-cut stands.  

Considering the fact that there was a difference in species composition 

between gap-cut- and reference stands one year after restoration implies that 

gap-cut stands contribute to a richer biodiversity in boreal landscapes than if all 

voluntary set-asides were left unmanaged. This suggests that the creation of 

artificial gaps in voluntary set-asides is an appropriate and cost efficient way of 
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improving conditions for increased biodiversity and should be implemented at 

a larger scale.    

5.1.3 Restoration burning vs artificial gap creation 

As expected, the abundance and species richness of beetles was higher in 

burned than gap cut-stands and species composition also differed between the 

two treatments immediately (Boucher et al., 2012) as well as one year after 

restoration (Toivanen & Kotiaho, 2007). Increases in abundance and species 

richness are often attributed to increases in the volume of dead wood available 

for colonisation (Müller et al., 2008; Similä et al., 2002; Martikainen et al., 

2000). Even though the difference in dead wood volume was not significant 

between the two treatments, it is still possible that dead wood volumes 

influenced the abundance and species richness. Lassauce et al. (2011) suggest 

that differences in dead wood structure also contribute to increases in 

abundance and species richness. Considering that the dead wood substrates 

created in our study differ considerably between the two overarching 

treatments it is likely that this also affected the abundances and species 

richness of beetles in our study. Another important consideration to be made is 

the attractive forces of forest fires on many saproxylic beetles (Hekkala et al., 

2014; Boucher et al., 2012; Hjältén et al., 2010; Moretti & Barbalat, 2004) 

already mentioned. Bearing in mind that there were no significant differences 

in overall abundance and species richness between gap-cut stands and 

references it is likely that the release of attractive volatiles from the gap-cut 

stands was not at all in parity with that of the burned stand, and that this 

contributes to the difference in response displayed between the two treatments. 

Differences in species composition are often attributed to differences in 

dead wood qualities such as, mortality factor and tree species (Boucher et al., 

2012; Hjältén et al., 2012; Toivanen & Kotiaho, 2010). This has most likely 

contributed to the differences in species composition that we have observed. 

However, given the great difference in overall treatment, i.e. burning vs. gap-

cutting and the attractive forces associated to the two treatments that have been  

discussed in the previous paragraph, it is more likely that the overall treatment 

has had a greater impact on which species were attracted to the studied forest 

stands (Toivanen & Kotiaho, 2007; Wikars, 2002). This is supported by the 

fact that 10 of 23 species significantly contributing to the differences in 

composition between burned and gap-cut stands directly after restoration are 

known to be favoured by forest fire. Further supporting this, the same patterns 

were observed one year after restoration, with 17 of the 43 species known to be 

favoured by forest fire, and in addition, the results from Paper III also show 

that fire favoured species prefer the burned stands (Appendix A in Paper III).  
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5.2 Paper III 

5.2.1 Restoration burning 

In accordance with Stokland et al. (2012) we found that there were differences 

in species composition between tree species. The main differences in species 

composition lay between the two conifer species and birch trees. However, the 

almost significant difference between spruce- and pine trees together with the 

nMDS visualisation suggests that there is a trend towards differences in species 

composition between spruce- and pine trees as well. It is interesting that 

differences in species composition between tree species seem to be present 

even when the trees had been killed during restoration fires. Our results 

therefore suggest that differences in nutrients and structures present before fire 

were not lost, which has been suggested in other studies (Toivanen & Kotiaho, 

2010; Wikars, 2002), instead the differences in available resources were 

sufficiently maintained to support different beetle communities between tree 

species. It is likely that the low intensity of the restoration fires left the trees 

intact enough to differentiate in resources present, and by so attracting different 

saproxylic beetle assemblages (Hjältén et al., 2012; Lassauce et al., 2011). 

The lack of differences in abundance and species richness between tree 

species is interesting in itself. As pine trees were sampled at greater volumes 

than spruce- and birch trees it would be expected that more beetles would have 

been collected from pine trees, primarily because there is more resource 

available in a larger piece of wood (McGeoch et al., 2007). Pine trees were 

also exposed to higher levels of transmitted solar radiation which would be 

expected to increase the metabolic rate of beetles (Allen et al., 2002) allowing 

for more individuals to hatch during a given period of time, such as our 

sampling period, resulting in higher abundances of saproxylic beetles. This has 

been showed in other studies (Vodka & Cizek, 2013; Lindhe et al., 2005), but 

our study and the study by Wu et al. (2015) could not confirm such patterns of 

abundance. 

5.2.2 Artificial gap creation 

Contrary to that of the restoration burnings, we did find differences in 

abundance and species richness between the three tree species studied in the 

gap cut stands. Spruce trees displayed higher abundances and species richness 

of saproxylic beetles than both birch- and pine trees. In addition, pine trees 

showed a higher species richness than birch trees, without differing in 

abundance. Since there was no difference in the amount of potential solar 

radiation reaching each trapping positions, this cannot explain the differences 

observed. As the sampled volume was higher for spruce- compared to birch 



35 

trees, it is likely that this also affected the abundance and species richness of 

beetles collected. Nevertheless, the sampled volume of pine trees was higher 

than that of spruce trees without displaying any increase in abundance or 

species richness for pine trees compared to spruce trees. 

A more likely explanation to the differences in abundance and species 

richness between spruce- and pine trees is that more beetle species are known 

to be associated with spruce trees compared to pine trees (Stokland et al., 2012; 

Jonsson et al., 2005). This is however not true for birch trees compared to the 

other studied tree species. In contrary, more beetle species are known to be 

associated with birch trees compared to both spruce- and pine trees (Stokland 

et al. 2012). It is however possible that the lower number of beetles emerging 

from birch trees is an effect of sampling effort as birch trees were sampled at 

significantly lower volumes than both spruce- and pine trees in the gap cut 

stands (Table 6 in Paper III). It is also possible that the general lack of birch 

trees in the landscape affects local species pools negatively, thereby reducing 

the number of individuals that are within colonisable distances to the 

experimental sites. 

Just as for the burned stands and as expected from other studies (Toivanen 

& Kotiaho, 2010; Dahlberg & Stockland, 2004), there were differences in the 

composition of saproxylic beetles communities between all three tree species 

sampled. In addition, spruce- and pine trees harboured unique species. This 

further suggests that the tree species per se is an important factor when it 

comes to which beetle species are attracted to, and manage to reproduce in the 

different tree species. 

We also found that mortality factor played a significant role in the 

compositions of beetles emerging from different substrates, especially for 

spruce trees. Differences in species composition between dead wood substrates 

standing up and lying down have been reported earlier (Hjältén et al., 2012; 

Ulyshen & Hanula, 2009; McGeoch et al., 2007), and were further confirmed 

in our study. Even though the composition of species did not differ between all 

mortality factors, the general pattern was that dead wood substrates lying down 

on the forest floor had separate beetle communities than those that were 

standing up. A possible explanation to the patterns observed can be that the 

moisture levels in dead wood substrates lying down will differ from those 

standing up, and thereby attract different species (Boulanger & Sirois, 2007). 

However, since we did not measure moisture levels within the dead wood 

substrates we cannot confirm this. It should also be observed that the 

composition of saproxylic communities emerging from spruce trees cut as high 

stumps were different from the communities emerging from girdled spruce 

trees. It is likely that this is an effect of the time it takes for the trees to die and 
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the trees chemical defence mechanisms; girdled trees take some time to die and 

possibly try and defend themselves by producing more resin, whilst trees cut as 

high stumps die immediately. Thus, this could affect which species manage to 

colonize the trees. The patterns concerning pine trees were not as pronounced 

as for spruce trees, none of the differences fell out significant. Nevertheless the 

nMDS-visualisation suggests that there is a trend towards the same patterns as 

for spruce trees. 

5.3 Paper IV 

Previous studies have showed that many flat bug species respond positively to 

forest fires (Heikkala, 2016; Johansson et al., 2010; Hjältén et al., 2006). This 

study, which includes two geographically separated study systems, supports 

these findings. In Sweden the stands subjected to prescribed burning generally 

attracted higher numbers of flat bugs than controls and the numbers of species 

collected were also higher in burned stands compared to both controls and gap-

cut stands. Further confirming these conclusions is that all but one specimen of 

the flat bugs caught in the Finnish part of the study were collected in burned 

areas. 

Other studies, primarily conducted in continental Europe, have showed that 

an increase in dead wood volume without forest fires also have positive effects 

on the numbers of flat bugs attracted to a certain forest stand (Seibold et al., 

2014; Gossner et al., 2007). This could imply that forest fire per se is of 

secondary importance compared to the availability of dead wood. However, the 

volumes of dead wood did not differ significantly between the gap-cut and 

burned stands in the Swedish part of the study, but the difference in species 

richness was highly significant. Our study, as well as the ones by (Johansson et 

al., 2010; Gossner et al., 2007; Hjältén et al., 2006) suggests that burning per 

se, at least in northern boreal settings, most likely makes stands further 

attractive to more flat bug species than previously believed, e.g. Aradus 

betulae and A. betulinus, which were found in significantly higher numbers in 

burned stands than gap-cut stands and references. 

In the Finnish part of the study, we had the opportunity to evaluate the 

effect of increased fuel loads, i.e. volume of dead trees left prior to burning, on 

the number of flat bugs collected. Nevertheless, we found no effect of 

increasing fuels loads on the numbers of flat bugs attracted to the burned 

stands. Two likely explanations are: either sufficient amounts of dead wood 

were created in both treatment types to attract similar amounts of flat bugs 

(some threshold value was reached), or that there was too little variation in the 
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volume of dead wood between the two treatments to attract different amounts 

of flat bugs. 

Thus, although we are unable to separate the effect of fire and dead wood 

availability in the two parts of this study, there are strong indications that forest 

fire per se provides an attractive habitat to flat bugs. Furthermore the 

geographical range of our study shows that restoration burning is an 

appropriate restoration measure to promote the presence of flat bugs in boreal 

landscapes.
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6 Conclusions and implications for forest 
management 

It has been showed that forestry practiced in boreal Fennoscandia during the 

two last centuries has had negative effects on the population sizes of many 

forest-dwelling species (Siitonen, 2001). Attempts to counteract this have been 

conducted within the realms of environmentally certified forestry for almost 

two decades (Johansson et al., 2013; Gustafsson et al., 2012), without reducing 

the number of forest-dwelling species included in the Swedish red-list 

(Gärdenfors, 2015). It is therefore evident that, in order to promote biodiversity 

conservation in the future, restoration of degraded habitat is essential. Within 

this thesis I have been able to show that restoration burning is a fast and 

efficient way of improving conditions for many saproxylic beetles and flat 

bugs. However, one should be aware that many species are disfavoured by 

burning, which suggests that alternative restoration measures also need to be 

considered. Although the direct effects of gap-cutting on beetle communities 

were not significant, I did find support for that, given time, beetle communities 

in gap-cut stands also differed significantly from the un-treated reference 

stands as well as from the burned stands. In addition, I also found that the 

creation of differing substrate types, i.e. tree species and mortality factor had a 

significant effect on beetle communities hatching from the dead wood 

substrates created. I therefore conclude that it is important to create as much 

variety as possible, regarding both forest structure and dead wood substrates, in 

attempts to improve conditions for biodiversity in boreal forests.  

6.1 Implications for management 

Restoration measures often need to be repeated at regular intervals in a 

landscape in order to be efficient (Hekkala et al. 2014). However, restoration of 

legally protected areas, e.g. nature reserves and national parks, is often 
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controversial due to their already high conservation values as well as aesthetic 

reasons (Angelstam et al., 2011). In their place, voluntary set-asides could play 

an important role in the management of boreal forest landscapes. As stipulated 

in the Swedish FSC-standards, voluntary set-asides cover 5% of the certified 

productive forest area in Sweden (Anonymous, 2010). In addition, as the 

revenues from thinning prior to burning and the trees extracted during gap-

cutting covered restoration costs, the restorations conducted in this study where 

cost-neutral (Olov Norgren pers. comm.). We therefore suggest that voluntary 

set-asides thus provide an excellent opportunity for implementing active and 

cost-efficient landscape management for biodiversity conservation. Ecological 

restoration of voluntary set-asides can therefore act as an important 

complement to the often passive conservation measures provided by formally 

protected areas such as nature reserves and national parks. 
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7 Future research 

Even though this thesis offers some insights into how ecological restoration 

mimicking natural disturbances affects some of the forest dwelling species 

present in boreal Fennoscandia, there are still knowledge gaps to be filled. One 

of the main shortcomings of this thesis is the limited time span of the study. It 

would be of great interest and importance to determine long term effects of the 

restoration methods evaluated within the realms of this thesis. Many of the 

beetle species collected during the three years following restoration are early 

successional species that depend on ephemeral components of the dead wood, 

e.g. easily available sugars of the phloem and fungi that rapidly colonize 

recently killed trees. It would therefore be of great interest to revisit the 

experiment in a few years’ time to see if the patterns revealed in this study, e.g. 

the differences in species composition, continue to diverge over time or if the 

patterns instead start to converge as for Hekkala et al. (2014). Even though we 

found red-listed species, they were collected at rather low abundances and their 

response could not be evaluated properly. As many red-listed species are 

known to be late successional species, it is likely that revisiting the experiment 

in a few years’ time would shed more light upon the response of red-listed 

species. 

One rewarding thing about working with invertebrates such as beetles and 

flat bugs is that it involves working with many species. Despite this, within the 

scope of this thesis I have only covered a small proportion of all organism 

groups affected by the applied restoration treatments. It would therefore be of 

great interest to include more species groups in the evaluation. Fortunately this 

work has already been initiated to some extent. One of my fellow PhD-students 

is working on how birds respond to restoration, and I am currently running a 

small project studying nocturnal moths’ response to artificial gap creation. 

Within the project we have also collected data on vascular plants, bryophytes, 

lichens and wood decaying fungi to be able to evaluate their response to 
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restoration. One obvious way to gain more knowledge upon the effects of 

restoration would simply be to dig deeper into this data. Nevertheless, it would 

also be interesting to include species groups that have not yet been included, 

e.g. ungulates, small mammals, ground dwelling fungi, spiders, etc. 

After spending quite some time in the stands included in this study I have 

noticed that the production of blue berries seems to be greater in the burned 

stands compared to the gap-cut stands and references. I would therefore find it 

interesting to dwell deeper into studying ecosystem services provided by boreal 

forests and how they are affected by ecological restoration. 

Despite that the forest stands evaluated in this study are situated far apart 

and by that cover a rather large part of boreal Sweden, it is not possible to 

evaluate landscape effects of restoration. It would therefore be of great 

importance for science and management if entire landscapes could be used an 

experimental areas. However, this is unfortunately beyond the scope of most 

research budgets. A possible way might instead be to involve major forest 

owners in landscape scale management, implementing different 

management/restoration scenarios on entire landscapes. 
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8 Svensk sammanfattning 

Global liksom lokal förlust av biologisk mångfald har betonat behovet av 

bevarandeåtgärder inom många områden, däribland skog. Att den negativa 

trenden kan vändas endast genom passiva bevarandeåtgärder så som generell 

och förstärkt naturhänsyn, inrättandet av naturreservat och bildandet av 

nationalparker är osannolikt. För att stärka den biologiska mångfalden behövs 

istället aktiva åtgärder som är applicerbara i stor skala, kostnadseffektiva och 

gagnar så många arter som möjligt. Ett storskaligt försök initierades med syfte 

att studera hur vedlevande skalbaggar och barkskinnbaggar påverkas av 

naturvårdsbränning och luckhuggning. I de luckhuggna bestånden skapades 

dessutom flera olika substrattyper av död ved. Resultat från dessa behandlingar 

jämfördes med obehandlade referensområden. Restaureringsåtgärderna 

utfördes i frivilliga avsättningar och finansierades till fullo genom ett visst 

uttag av timmer före restaureringsåtgärderna utfördes. 

Vedlevande skalbaggar och barkskinnbaggar svarade starkast på 

naturvårdsbränningar, men även luckhuggningar gynnade skalbaggsamhällena. 

Vedlevande skalbaggar ökade i abundans och artrikedom redan samma år som 

restaureringsåtgärderna utfördes, ökning höll i sig även året efter restaurering. 

Första sommaren efter restaurering samt ett år efter restaurering skiljde sig 

dessutom artsammansättningen i de brända bestånden från både de 

luckhuggna- som referensbestånden. Ett år efter restaurering skiljde sig även 

artsammansättningen av skalbaggar åt mellan luckhuggningarna och 

referenserna. Substrattyp, d.v.s. trädart och på vilket sätt trädet dött, var också 

av betydelse för artsammansättnigen av de vedlevade skalbaggar som kläckte 

ut ur den döda veden. Den största skillnaden i artsammansättning var mellan 

trädart och ifall de döda träden stod upp eller låg ned. 

Med tanke på att frivilliga avsättningarna redan är en väl integrerad del av 

det svenska skogsbruket, behandlingarna var kostnadsneutrala samt att den 

biologiska mångfalden påverkades positivt av restaureringsåtgärderna 
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rekommenderar jag att frivilliga avsättningar aktivt används till att främja 

biologisk mångfald. Mina förslag är att man inom skogsbruket utför fler 

naturvårdbränningar i de frivilliga avsättningarna, samt att man samtidigt 

kompletterar detta med att i andra frivilliga avsättningar öppnar luckor i 

krontäckningen och skapar dödvedssubstrat med så stor variation i trädart och 

dödsorsak som möjligt.  



45 

9 References 

Aakala, T. (2010). Coarse woody debris in late-successional Picea abies forests in northern 

Europe: Variability in quantities and models of decay class dynamics. Forest Ecology and 

Management, 260(5), pp. 770-779. 

Ahti, T., Hämet-Ahti, L. & Jalas, J. (1968). Vegetation zones and their sections in northwestern 

Europe. Annales Botanici Fennici, 5, pp. 169-211. 

Allen, A.P., Brown, J.H. & Gillooly, J.F. (2002). Global biodiversity, biochemical kinetics, and 

the energetic-equivalence rule. Science, 297(5586), pp. 1545-1548. 

Anderson, M.J., Gorley, R.N. & Clarke, K.R. (2008). PERMANOVA+ for PRIMER: guide to 

software and statistical methods: PRIMER.E Ltd. 

Andersson, J., Hjältén, J. & Dynesius, M. (2015). Wood-Inhabiting Beetles in Low Stumps, High 

Stumps and Logs on Boreal Clear-Cuts: Implications for Dead Wood Management. Plos One, 

10(3). 

Angelstam, P., Andersson, K., Axelsson, R., Elbakidze, M., Jonsson, B.G. & Roberge, J.-M. 

(2011). Protecting Forest Areas for Biodiversity in Sweden 1991-2010: the Policy 

Implementation Process and Outcomes on the Ground. Silva Fennica, 45(5), pp. 1111-1133. 

Angelstam, P. & Kuuluvainen, T. (2004). Boreal forest disturbance regimes, successional 

dynamics and lanscape structures - a European perspective. Ecological Bulletins, 51, pp. 117-

136. 

Anonymous (2010). Svensk skogsbruksstandard enligt FSC. Forest Stewardship Council. 

Arnborg, T. (1990). Forest types of northern Sweden: Introduction to and translation of "Det 

nordsvenska skogstypsschemat". Vegetatio, 90(1), pp. 1-13. 

Axelsson, A.L. & Östlund, L. (2001). Retrospective gap analysis in a Swedish boreal forest 

landscape using historical data. Forest Ecology and Management, 147(2-3), pp. 109-122. 

Boucher, J., Azeria, E.T., Ibarzabal, J. & Hebert, C. (2012). Saproxylic beetles in disturbed boreal 

forests: Temporal dynamics, habitat associations, and community structure. Ecoscience, 19(4), 

pp. 328-343. 

Boulanger, Y. & Sirois, L. (2007). Postfire Succession of Saproxylic Arthropods, with Emphasis 

on Coleoptera, in the North Boreal Forest of Quebec. Environmental Entomology, 36(1), pp. 

128-141. 



46 

Brumelis, G., Jonsson, B.G., Kouki, J., Kuuluvainen, T. & Shorohova, E. (2011). Forest 

Naturalness in Northern Europe: Perspectives on Processes, Structures and Species Diversity. 

Silva Fennica, 45(5), pp. 807-821. 

Clarke, K.R. & Gorley, R.N. (2015). PRIMER v7: User Manual/Tutorial.  [Computer Program]. 

Plymouth, UK: PRIMER E. 

Clear, J.L., Molinari, C. & Bradshaw, R.H.W. (2014). Holocene fire in Fennoscandia and 

Denmark. International Journal of Wildland Fire, 23(6), pp. 781-789. 

Clear, J.L., Seppa, H., Kuosmanen, N. & Bradshaw, R.H.W. (2015). Holocene stand-scale 

vegetation dynamics and fire history of an old-growth spruce forest in southern Finland. 

Vegetation History and Archaeobotany, 24(6), pp. 731-741. 

Dahlberg, A. & Stockland, J.N. (2004). Vedlevande arters krav på substrat - sammanställning 

och analys av 3600 arter: Skogsstyrelsen. 

Ehnström, B. (2001). Leaving dead wood for insects in boreal forests - Suggestions for the future. 

Scandinavian Journal of Forest Research, pp. 91-98. 

Eriksson, A.M., Olsson, J., Jonsson, B.G., Toivanen, S. & Edman, M. (2013). Effects of 

restoration fire on dead wood heterogeneity and availability in three Pinus sylvestris forests in 

Sweden. Silva Fennica, 47(2), p. article id 954. 

Esseen, P.-A., Ehnström, B., Ericson, L. & Sjöberg, K. (1997). Boreal forests. Ecological 

Bulletins, 46, pp. 16-47. 

Gossner, M., Heinz, E. & Blaschke, M. (2007). Factors determining the occurrence of Flat Bugs 

(Aradidae) in beech dominated forests. Waldökologie online, 4, pp. 59-89. 

Gustafsson, L., Baker, S.C., Bauhus, J., Beese, W.J., Brodie, A., Kouki, J., Lindenmayer, D.B., 

Lohmus, A., Martinez Pastur, G., Messier, C., Neyland, M., Palik, B., Sverdrup-Thygeson, A., 

Volney, W.J.A., Wayne, A. & Franklin, J.F. (2012). Retention Forestry to Maintain 

Multifunctional Forests: A World Perspective. Bioscience, 62(7), pp. 633-645. 

Gärdenfors, U. (2000). Rödlistade arter i Sverige 2000 - The 2000 Red List of Swedish Species. 

Uppsala: ArtDatabanken SLU. 

Gärdenfors, U. (2015). Rödlistade arter i Sverige 2015- The 2010 Red List if Swedish Species. 

Uppsala: Artdatabanken SLU. 

Heikkala, O. (2016). Emulation of natural disturbances and the maintenance of biodiversity in 

manged boreal forests: the effects of prescribed fire and retention forestry on insect 

assemblages. Diss. Vantaa, Finland: University of Eastern Finland. 

Hekkala, A.-M., Paatalo, M.-L., Tarvainen, O. & Tolvanen, A. (2014). Restoration of Young 

Forests in Eastern Finland: Benefits for Saproxylic Beetles ( Coleoptera). Restoration 

Ecology, 22(2), pp. 151-159. 

Hekkala, A.M., Ahtikoski, A., Paatalo, M.L., Tarvainen, O., Siipilehto, J. & Tolvanen, A. (2016). 

Restoring volume, diversity and continuity of deadwood in boreal forests. Biodiversity and 

Conservation, 25(6), pp. 1107-1132. 

Hjältén, J., Atlegrim, O., Sandström, F., Pettersson, R. & Rexstad, E., A (2006). Occurence of flat 

bugs (Heteroptera: Aradidae) in burned and unburned forests. Entomologica Fennici, 17, pp. 

130-135. 

Hjältén, J., Gibb, H. & Ball, J.P. (2010). How will low-intensity burning after clear-felling affect 

mid-boreal insect assemblages? Basic and Applied Ecology, 11(4), pp. 363-372. 



47 

Hjältén, J., Stenbacka, F., Pettersson, R.B., Gibb, H., Johansson, T., Danell, K., Ball, J.P. & 

Hilszczanski, J. (2012). Micro and Macro-Habitat Associations in Saproxylic Beetles: 

Implications for Biodiversity Management. Plos One, 7(7). 

Hyvärinen, E., Kouki, J. & Martikainen, P. (2009). Prescribed fires and retention trees help to 

conserve beetle diversity in managed boreal forests despite their transient negative effects on 

some beetle groups. Insect Conservation and Diversity, 2(2), pp. 93-105. 

Hyvärinen, E., Kouki, J., Martikainen, P. & Lappalainen, H. (2005). Short-term effects of 

controlled burning and green-tree retention on beetle (Coleoptera) assemblages in managed 

boreal forests. Forest Ecology and Management, 212(1-3), pp. 315-332. 

Hyvärinen, E., Kouki, J. & Martikninen, P. (2006). Fire and green-tree retention in conservation 

of red-listed and rare deadwood-dependent beetles in Finnish boreal forests. Conservation 

Biology, 20(6), pp. 1711-1719. 

Johansson, T., Andersson, J., Hjältén, J., Dynesius, M. & Ecke, F. (2011). Short-term responses 

of beetle assemblages to wildfire in a region with more than 100 years of fire suppression. 

Insect Conservation and Diversity, 4(2), pp. 142-151. 

Johansson, T., Hjältén, J., de Jong, J. & von Stedingk, H. (2013). Environmental considerations 

from legislation and certification in managed forest stands: A review of their importance for 

biodiversity. Forest Ecology and Management, 303, pp. 98-112. 

Johansson, T., Hjältén, J., Stenbacka, F. & Dynesius, M. (2010). Responses of eight boreal flat 

bug (Heteroptera: Aradidae) species to clear-cutting and forest fire. Journal of Insect 

Conservation, 14(1), pp. 3-9. 

Jonsson, B.G., Kruys, N. & Ranius, T. (2005). Ecology of species living on dead wood - Lessons 

for dead wood management. Silva Fennica, 39(2), pp. 289-309. 

Komonen, A., Kuntsi, S., Toivanen, T. & Kotiaho, J.S. (2014). Fast but ephemeral effects of 

ecological restoration on forest beetle community. Biodiversity and Conservation, 23(6), pp. 

1485-1507. 

Kuuluvainen, T. (2002). Natural variability of forests as a reference for restoring and managing 

biological diversity in boreal Fennoscandia. Silva Fennica, 36(1), pp. 97-125. 

Kuuluvainen, T. (2009). Forest Management and Biodiversity Conservation Based on Natural 

Ecosystem Dynamics in Northern Europe: The Complexity Challenge. Ambio, 38(6), pp. 309-

315. 

Kuuluvainen, T. & Aakala, T. (2011). Natural Forest Dynamics in Boreal Fennoscandia: a 

Review and Classification. Silva Fennica, 45(5), pp. 823-841. 

Kärvemo, S., Björkman, K., Johansson, T., Weslien, J. & Hjältén, J. Forest restoration as a 

double-edged sword: conservation and the risk of bark-beetle damages. (submitted 

manuscript). 

Lassauce, A., Paillet, Y., Jactel, H. & Bouget, C. (2011). Deadwood as a surrogate for forest 

biodiversity: Meta-analysis of correlations between deadwood volume and species richness of 

saproxylic organisms. Ecological Indicators, 11(5), pp. 1027-1039. 

Lindenmayer, D.B., Franklin, J.F. & Fischer, J. (2006). General management principles and a 

checklist of strategies to guide forest biodiversity conservation. Biological Conservation, 

131(3), pp. 433-445. 



48 

Linder, P. & Östlund, L. (1998). Structural changes in three mid-boreal Swedish forest 

landscapes, 1885-1996. Biological Conservation, 85(1-2), pp. 9-19. 

Lindhe, A., Lindelöw, A. & Åsenblad, N. (2005). Saproxylic beetles in standing dead wood 

density in relation to substrate sun-exposure and diameter. Biodiversity and Conservation, 

14(12), pp. 3033-3053. 

Martikainen, P., Siitonen, J., Punttila, P., Kaila, L. & Rauh, J. (2000). Species richness of 

Coleoptera in mature managed and old-growth boreal forests in southern Finland. Biological 

Conservation, 94(2), pp. 199-209. 

McGeoch, M.A., Schroeder, M., Ekbom, B. & Larsson, S. (2007). Saproxylic beetle diversity in a 

managed boreal forest: importance of stand characteristics and forestry conservation 

measures. Diversity and Distributions, 13(4), pp. 418-429. 

Moretti, M. & Barbalat, S. (2004). The effects of wildfires on wood-eating beetles in deciduous 

forests on the southern slope of the Swiss Alps. Forest Ecology and Management, 187(1), pp. 

85-103. 

Müller, J., Bussler, H. & Kneib, T. (2008). Saproxylic beetle assemblages related to silvicultural 

management intensity and stand structures in a beech forest in Southern Germany. Journal of 

Insect Conservation, 12(2), pp. 107-124. 

Müller, J. & Bütler, R. (2010). A review of habitat thresholds for dead wood: a baseline for 

management recommendations in European forests. European Journal of Forest Research, 

129(6), pp. 981-992. 

Niklasson, M. & Granström, A. (2000). Numbers and sizes of fires: Long-term spatially explicit 

fire history in a Swedish boreal landscape. Ecology, 81(6), pp. 1484-1499. 

R Core Team (2016). R: A language and environment for statistical computing.  [Computer 

Program]. Vienna, Austria: R Foundation for Statistical Computing. 

Rautio, A.M., Josefsson, T., Axelsson, A.L. & Östlund, L. (2016). People and pines 1555-1910: 

integrating ecology, history and archaeology to assess long-term resource use in northern 

Fennoscandia. Landscape Ecology, 31(2), pp. 337-349. 

Seibold, S., Bässler, C., Baldrian, P., Thorn, S., Müller, J., Gossner, M.M., R. Leather, S. & 

Gange, A. (2014). Wood resource and not fungi attract early-successional saproxylic species 

ofHeteroptera -an experimental approach. Insect Conservation and Diversity, 7(6), pp. 533-

542. 

Svensk författningssamling [SwedishCode of Statutes]. 1993:553 (1993). 

Shorohova, E., Kneeshaw, D., Kuuluvainen, T. & Gauthier, S. (2011). Variability and Dynamics 

of Old-Growth Forests in the Circumboreal Zone: Implications for Conservation, Restoration 

and Management. Silva Fennica, 45(5), pp. 785-806. 

Shorohova, E., Kuuluvainen, T., Kangur, A. & Jogiste, K. (2009). Natural stand structures, 

disturbance regimes and successional dynamics in the Eurasian boreal forests: a review with 

special reference to Russian studies. Annals of Forest Science, 66(2), p. 20. 

Siitonen, J. (2001). Forest management, coarse woody debris and saproxylic organisms: 

Fennoscandian boreal forests as an example. Ecological Bulletins, 49, pp. 11-41. 

Siitonen, J., Penttila, R. & Kotiranta, H. (2001). Coarse woody debris, polyporous fungi and 

saproxylic insects in an old-growth spruce forest in Vodlozero National Park, Russian Karelia. 

Ecological Bulletins, 49, pp. 231-242. 



49 

Similä, M., Kouki, J., Mönkkönen, M. & Sippola, A.L. (2002). Beetle species richness along the 

forest productivity gradient in northern Finland. Ecography, 25(1), pp. 42-52. 

Simonsson, P., Gustafsson, L. & Östlund, L. (2015). Retention forestry in Sweden: driving forces, 

debate and implementation 1968-2003. Scandinavian Journal of Forest Research, 30(2), pp. 

154-173. 

Stokland, J.N., Siitonen, J. & Jonsson, B.G. (2012). Biodiversity in dead wood. Cambridge: 

Cambridge university press. 

Stokland, J.N., Tomter, S.M. & Söderberg, U. (2005). Development of dead wood indicators for 

biodiversity monitoring: Experiences from Scandinavia. In: Marchetti, M. (ed. Monitoring 

and Indicators of Forest Biodiversity in Europe - From Ideas to Operationality. (European 

Forest Institute Proceedings. Joensuu: European Forest Institute, pp. 207-226. 

Sverdrup-Thygeson, A. & Birkemoe, T. (2009). What window traps can tell us: effect of 

placement, forest openness and beetle reproduction in retention trees. Journal of Insect 

Conservation, 13(2), pp. 183-191. 

Tenow, O. (1974). Det nordiska skogslandskapets och skogsbrukets utveckling fram till 1900-

talet - en kort översikt. (Swedish Cinoferous Forest Project, Internal Report 2. 

Tirén, L. (1937). Skogshistoriska studier i trakten av Degerfors i Västerbotten. . Meddelanden 

från statens skogsförsöksanstalt, 30, pp. 67-322. 

Toivanen, T. & Kotiaho, J.S. (2007). Mimicking natural disturbances of boreal forests: the effects 

of controlled burning and creating dead wood on beetle diversity. Biodiversity and 

Conservation, 16(11), pp. 3193-3211. 

Toivanen, T. & Kotiaho, J.S. (2010). The preferences of saproxylic beetle species for different 

dead wood types created in forest restoration treatments. Canadian Journal of Forest 

Research, 40(3), pp. 445-464. 

Ulyshen, M.D. & Hanula, J.L. (2009). Habitat associations of saproxylic beetles in the 

southeastern United States: A comparison of forest types, tree species and wood postures. 

Forest Ecology and Management, 257(2), pp. 653-664. 

Wermelinger, B. (2004). Ecology and management of the spruce bark beetle Ips typographus - a 

review of recent research. Forest Ecology and Management, 202(1-3), pp. 67-82. 

Wikars, L.-O. (1997). Effects of forest fire and the ecology of fire adapted insects. Diss. Uppsala, 

Sweden: University of Uppsala. 

Wikars, L.-O. (2006). Åtgärdsprogram för bevarande av brandinsekter i boreal skog. Rapport nr. 

5610: Swedish Environmental Protection Agency. 

Wikars, L.O. (2002). Dependence on fire in wood-living insects: An experiment with burned and 

unburned spruce and birch logs. Journal of Insect Conservation, 6(1), pp. 1-12. 

Vodka, S. & Cizek, L. (2013). The effects of edge-interior and understorey-canopy gradients on 

the distribution of saproxylic beetles in a temperate lowland forest. Forest Ecology and 

Management, 304, pp. 33-41. 

Wu, J., Pan, H., Zhang, J., Yang, S.Z. & Zhao, M.S. (2015). Effect of sun exposure on saproxylic 

beetle assemblages may change with topoclimate in a subtropical forest of east China. Journal 

of Insect Conservation, 19(5), pp. 877-889. 

Zackrisson, O. (1977). Influence of forest fires on north Swedish boreal forest. Oikos, 29(1), pp. 

22-32. 



50 

Östlund, L., Zackrisson, O. & Axelsson, A.L. (1997). The history and transformation of a 

Scandinavian boreal forest landscape since the 19th century. Canadian Journal of Forest 

Research-Revue Canadienne De Recherche Forestiere, 27(8), pp. 1198-1206. 

 



51 

10 Acknowledgements 

First and foremost I thank my main supervisor, Joakim Hjältén, for your 

guidance, support and encouragement during the four years I spent working on 

this thesis. I also thank you for not holding me back when I’ve had crazy ideas, 

within or outside the scope of this thesis, when planning visits to interesting 

places and meeting interesting people. 

I also thank my hoard of co-supervisors; Jean-Michel Roberge, Therese 

Johansson, Jörgen Olsson and Mats Dynesius for your feedback on field work 

plans, answering my sometimes not all too bright questions and helping me 

improving my writing. Many thanks go to Roger Pettersson for all the 

knowledge shared upon the who’s, why’s, when’s and where’s on all of those 

innumerable beetles. Without your knowledge, much of the work in this thesis 

wouldn’t have been possible. Many thanks also go to my Fabulous Four, i.e. 

Jacek Hilszczański, Radek Plewa, Stig Lundberg and Joel Hallqvist for 

identifying all of those beetles. Without you guys the data in this thesis would 

only have been body counts. I also thank all the people who have been 

involved in the project so far. The staff at Holmen AB who burnt down the 

forests for me, created canopy gaps and killed innumerable trees for “my“ 

beetles to infest. The field staff at the department and hired hands, Sonya 

Juthberg, Alexander Hjältén, Nils Bodin, Adrian Hjältén, Arwid Alm, Isak 

Lindmark, Caroline Letzner, Josefine Letzner, Nina Stenbacka, Nils Ericson, 

Anders Hällström, Peder Winberg and Jon Andersson (I’ll come back to you 

later). Special thanks go to Tim Work and Anne Hekkala. Tim; sharing offices 

with you during my first year as a PhD-student was a blast, you helped me 

getting started into the world of research, but more importantly I found a true 

friend in you. Anne; without you the flat bug paper wouldn’t have been even 

half as interesting as it became, thanks for picking me up that day in Madison. 

Many thanks go to all of my fellow PhD-students during these four years, 

often times you’ve been the ones making it worthwhile. Magnus; thanks for 



52 

introducing me to the world of nocturnal moths, but more so I thank you for 

many fun and interesting conversations on research as well as not so researchy 

topics. David; thank you for the many hours I spent wasting your time, those 

hours were often what kept me going through the day, and I’ll never forget that 

hotel room in Madison. Klara; thanks for putting up with me through it all, I 

couldn’t hope for a better office mate. I wish you all the best. Hussein, Sabrina, 

Liza and Klara (again); thanks for all of those innumerable cups of coffee (and 

maybe a beer or two) we had together. It’s been so much fun and so many 

shared laughs. The four of you kept me going through the finalisation of my 

thesis. If it weren’t for you, I would most likely have wrapped it all up already 

in May ;) 

Jon; Yes, you deserve a paragraph of your own. Without you I would most 

likely never have set out on this journey, who knows I might not even have 

made it through my bachelors and masters if it wasn’t for you. You’ve always 

been there when I needed help with statistics, GIS and what not a, but most 

importantly you’ve always been there as the best of friends. I can’t imagine a 

better friend and colleague. (By the way, now that I’m done too, I think it is 

time we materialize on those plans of yours.) 

Special thanks go to Iona and Ulf. I thank you for always encouraging me 

to go further, for supporting me in my choices, even though a few of them 

haven’t been all that bright, and I thank you especially much for all those hours 

spent outside in nature. I couldn’t wish for better parents. Neil, Cajsa and 

Andy; I wouldn’t have been me if it wasn’t for growing up with you guys, 

thanks for being there for me through all the years. 

Extra special thanks go to you Åsa; so many years shared so many fond 

memories. Thank you for bearing with me and my absent mindedness during 

periods of intense work and for supporting me despite my flaws and 

weaknesses. I will always hold you dear.  

Last but not least I would like to thank my two wonderful children, Trillian 

and Thor. You are my everlasting sources of inspiration and joy. I will love 

you ‘till the end of times, and I hope I will always be able to give the two of 

you all the support and love that you will ever need, and yet some more. 


