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Plant breeding for organic agriculture: 
something new?
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Abstract 

The role of both organic (OF) and conventional (CF) farming remains open to debate particularly when related to 
food security and climate change. Targeting plant breeding for OF can contribute to reduce its yield gaps vis‑à‑vis CF. 
Currently, the cultivars produced for CF are also used in OF, however, it is unreasonable that all lines bred for CF will 
always perform well in OF. Nonetheless, plant breeding goals for OF and CF converge at aiming for high productiv‑
ity, host plant resistance or tolerance to biotic and abiotic factors, and high resource‑use efficiency. Likewise end‑use 
quality and local adaptation may be more important for OF as the resource recycling and quality of the inputs that 
are used vary from region to region, even though OF practices are highly regulated. This article provides an overview 
on organic plant breeding (OPB) with a perspective from conventional plant breeding, highlights the main traits, their 
source of variation, and what methods and tools are available for their breeding. It concludes listing some organic 
crop breeding achievements and providing an outlook on what needs to be done for OPB.
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Background
Food supply is a major concern for human kind and takes 
place in a complex global scenario. On one side there is 
an increasing demand for food, i.e., the human popula-
tion, projected to be by 9 billion in 2050 and its dietary 
shifts, requires more food to be produced, and at the 
same time humankind is undergoing through an increase 
of certain medical conditions (type II diabetes, coronary 
heart disease, etc.) that reduce life expectancy [1]. On 
the other side, there are factors that seriously threat food 
production, i.e., climate change and the constant pressure 
of pests and pathogens, of which the global patterns of 
infestation/infection are also expected to vary due to this 
changing climate.

There is much debate on how exactly food must be pro-
duced. Even though, there is a general agreement in that 
sustainable agriculture is to what agricultural systems 
should aim. However, sustainability has been conceptual-
ized in several ways [2]. From its Latin root (sustinere), 

sustainable means “to maintain,” “to support,” or “to 
endure.” Sustainability, in the ecological context, is the 
conservation of the ecological balance by avoiding the 
depletion of natural resources [3]. The American Public 
Health Association (APHA) defines sustainable food sys-
tems as the ones “that provide healthy food to meet cur-
rent food needs while maintaining healthy ecosystems 
that can also provide food for generations to come with 
minimal negative impacts to the environment” [4]. This 
food system should also promote local production and 
make “nutritious food available, accessible and affordable 
to all” individuals [4].

Organic and conventional farming (CF) systems are the 
center of a heated debate; particularly, when highly rele-
vant topics, such as food security and climate change, are 
discussed. Especially, when supporters of organic farm-
ing (OF) claim that this system is synonymous of agricul-
tural sustainability or imply in their argumentation that 
OF is the only way to achieve sustainable food produc-
tion [5] and that it could also secure global food supply 
[6, 7]. These arguments have been thoroughly analyzed 
by other authors [8–10], and the conceptual differences 
between sustainable agriculture and OF have already 
been pointed out [2].
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It is important to note here that low-input farming 
systems, which are driven by resource-limited farmers, 
are considered within CF. This implies that the so called 
“breeding for CF” also encompasses those low-input/tech 
cropping systems. We consider that this inclusion is rel-
evant since OF enthusiasts usually consider CF only as a 
high-input system, and also because of the plant breeding 
purposes of obtaining widely adapted cultivars.

Organic farming, food supply, and the 
environment
The aim of OF is the creation of holistic farming sys-
tems that are sustainable in all regards. This approach 
should therefore rely on the use of farm-derived renew-
able resources that provide acceptable levels of crop, 
livestock, and human nutrition. OF should also provide 
protection from pests and pathogens due to the harmo-
nious management of resources and understanding of 
ecological and biological processes. The very well-known 
characteristic of OF is that it produces food without the 
use of any synthetic fertilizer or pesticide, and neither 
with the use of genetically modified organisms (GMO). 
For this reason OF enthusiasts consider these systems to 
have positive impacts on the environment by enhancing 
soil fertility, contributing to mitigate climate change, and 
conserving biodiversity.

Research has shown that OF can contribute to reduce 
soil carbon losses, mainly due to the application of 
organic fertilizers such as compost or stacked manure 
which should derive from the integration of crop pro-
duction and livestock. Research comparing the dynam-
ics of soil organic carbon between OF and CF shows that 
the former can significantly increase the concentration, 
stock, and sequestration rates of organic carbon in the 
soil [11]. Still, this feature alone of OF is not able to miti-
gate climate change, because it does not tackle the issue 
of reducing the emission of greenhouse gases (GHG), 
and neither accounts for N2O or other emissions derived 
from agricultural practices [11].

GHG emissions in OF vary depending on the agri-
cultural product. For example, organic beef and some 
organic crops emit less GHG compared with their coun-
terparts in conventional systems, whereas the organic 
production of milk, pork, poultry, and egg emit between 
16 and 46 % more GHG because of their higher methane 
and N2O emissions [12, 13].

High concentrations (7 %) of organic matter in the soil 
are another feature of OF [12]. The evidence shows that 
this is not due to the higher inputs (65 %) of organic fer-
tilizers per se in OF than in CF, but rather due to a cas-
cade effect in which an increased microorganism activity 
decomposes the organic residues [12]. But, tillage and 
crop rotation may play a role in increasing the organic 

matter content in the soils. In CF also it is possible to 
increase the concentration of organic matter in the soils 
by increasing manure inputs [12].

Biodiversity in OF is generally reported to be between 
10.5 and 30 % higher than in CF [14–16]. However, when 
Gabriel et al. [16] studied the biodiversity in winter cere-
als in UK by contrasting both farming systems, they 
concluded that this increase in biodiversity is highly cor-
related with grain yield reductions independently of the 
production system. This finding means that CF can be as 
diverse as OF with lower yields, and thus OF “per se does 
not have an effect (on biodiversity) other than via reduc-
ing yields and therefore increasing biodiversity.” Hence, 
“in high-productivity landscapes, OF is not an efficient 
way of maximizing diversity and yield, but land sparing 
might be” [16].

The positive impacts of OF on the environment are 
reduced when looking at the yield gap between this 
production system and CF. While OF has positive envi-
ronmental effects when its impact is measured per area 
unit, it has negative environmental effects in a product 
unit basis [12]. This is because for OF to reach produc-
tion levels similar to those of CF there would be a need 
to increase the agricultural land by 84 % [12], and in the 
current situation humankind cannot afford to increase 
the land area where food is produced.

Edible yields in OF are generally lower than in CF. 
However, the differences highly depend on the agri-
cultural system [9]. For example, the yield difference in 
fruit and oilseed crops is 3 and 11  % lower than in CF, 
respectively; while organic cereals and vegetables have a 
26 and 33 % of yield reduction in OF [9]. The grain yield 
gap between OF and CF winter wheat systems is 54 % in 
the United Kingdom [16], while in Sweden and Finland 
the edible yield of cereals and potatoes is about 46 and 
60 % lower, respectively [17]. Seufert et al. [9] also made a 
comparison of yield gaps between developing and devel-
oped countries and found that the differences are by 43 
and 20  % lower yields in OF, respectively. Kirchmann 
et al. [17] suggest that the main limitation for OF to have 
high yields is the availability of soil nutrients, weed con-
trol, and limited possibility to increase fertility in low-
nutrient soils. Other research reported that both farming 
systems can have similar yields [18, 19]. However, to 
reach this level of productivity, the nutrient inputs in the 
form of manure need to be as high or higher than in CF 
systems, which in great measure originate from conven-
tional systems [17].

Organic farming supporters frequently raise the issue 
that modern cultivars and particularly transgenic crops 
fail in contributing to sustainable food production sys-
tems due to the strong selection pressure on pests and 
pathogens caused by those modern resistant cultivars, 
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since eventually such host plant resistance is broken 
causing new outbreaks of pests and pathogens [20]. How-
ever, this is a characteristic of any host plant resistance 
that puts strong selection pressure on the pathogens and 
pests [21, 22]. Since in great measure, resistance depends 
on the type of pathogen that the plants deal with, the 
evolutionary potential of the pathogen population, and 
the type of resistance that is being utilized [21, 22]. Yet, 
it has been shown in wheat that it is possible to breed for 
broad and durable resistance [23–25].

Conventional farming could certainly become more 
sustainable by adopting practices that have less negative 
impacts on the environment [9], and in that sense there 
is a great potential to improve CF systems. Furthermore, 
a question that would naturally rise is whether OF is 
really a sustainable food production system according 
to the APHA definition, since productivity and afford-
ability are generally not considered in the definition of 
OF. Thus in agreement with other authors [8–10], we 
consider that OF today is not the way to sustainably feed 
the world, particularly in a scenario where food demand 
is constantly increasing, for which it requires high food 
productivity with extreme care of the natural resources. 
However, addressing demand-side factors through poli-
cies can greatly contribute to feed the world and preserve 
the environment [26]. From the food supply perspec-
tive we think that sustainable cropping systems can be 
achieved, by adopting practices that are less harmful 
to the environment, e.g., deploying resistant or toler-
ant cultivars to biotic and abiotic stresses along with 
the improvement of the resource-use efficiency through 
breeding efforts to reduce the inputs that are harmful to 
the environment, accompanied with better agronomic 
practices and technologies that also enhance productivity 
and resource-use efficiency.

OF may be successful for a niche market in certain 
developed countries in Europe and the USA, while help-
ing to enrich the organic C content in soil. That said, the 
higher productivity of integrated farming (OF and CF) is 
essential for enabling food security in most developing 
countries.

Organic plant breeding
Targeting plant breeding for OF can contribute to reduce 
the yield gaps between both production systems: CF and 
OF. However, the issues of whether these systems should 
necessarily be regarded as competing entities between 
each other and if they should necessarily be comparable 
in terms of productivity require further analysis. Since it 
is not clear whether OF yields should aim to be equal to 
those in CF or simply being higher than they are today.

For both conditions, the breeding goals converge 
at aiming for higher productivity, incorporation of 

resistance or tolerance to biotic and abiotic factors, and 
higher resource-use efficiency (water, nutrients, light, 
etc.). Local adaptation may be more important for OF as 
the resource recycling and quality of the inputs that are 
used can vary from region to region, even though OF 
practices are highly regulated. Likewise, organic plant 
breeding (OPB) aims to fit cultivars into farming systems 
relying on renewable organic resources.

One frequent issue noted by OF enthusiasts is that the 
cultivars bred for CF do not always perform well under 
OF conditions [27, 28]. There is no reason, however, to 
think that all cultivars produced by conventional breed-
ing programs will perform well in all environments, even 
in all CF environments. Consequently, it is unreason-
able to think that all lines produced in an organic breed-
ing program will perform well in all OF conditions. The 
genotype-by-environment interaction (G × E) is a com-
mon situation that plant breeders have to deal with and 
if exploited correctly it is still possible to make impor-
tant progress in crop improvement. Even under CF, 
which for some OF supporters it simply consists of high-
input-standardized practices, G ×  E is a highly impor-
tant aspect to be considered, because in reality there are 
also low-input and diverse CF systems, driven by the 
resource-poor farmers in developing countries. Hence, 
from the pure plant breeding perspective, OF can be con-
sidered as a separate environment with a strong compo-
nent of local adaptation, in which the necessary traits and 
selection methods should be incorporated.

Traits and sources of variation
Despite that the general breeding goals for both, OF and 
CF are similar, there are specific traits that are required 
for OF as the utilization of synthetic agrochemicals are 
banned in this system. Weed competitiveness and the 
ability to establish symbiont relations with micro-organ-
isms in the soil are relevant for OF because they can 
enhance the uptake of resources and its use efficiency 
[27, 29]. Research has shown that there exists genetic 
variation for weed competitiveness in cereals [30–33], 
and that early vigor and allelopathy can be useful traits to 
enhance weed suppression [30, 34].

Genetic variation for nitrogen use efficiency has been 
found in potato [35, 36] or wheat [37], and genomic 
regions associated with this trait have been identified in 
barley [38]. Additionally, studies have shown that nitro-
gen use efficiency can be improved through agronomic 
practices [39]. Genetic variation and genomic regions 
associated with the uptake of micronutrients have also 
been reported in wheat [40, 41]. Nelson et al. [42] found, 
however, that the percent of arbuscular mycorrhizal fungi 
was negatively correlated with iron and zinc concentra-
tions in winter wheat, but positively correlated with 
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manganese, copper, and potassium. Mycorrhizal fungi 
play an important role in soil fertility and nutrient uptake 
in OF systems, whereas in CF their presence is severely 
reduced [43]. Efforts to breed crops for high micronu-
trient uptake are undergoing in public plant breeding 
programs [44, 45], thus OPB can utilize the developed 
germplasm in such plant breeding programs.

Traits such as tolerance to abiotic stresses (heat, 
drought, salinity, water lodging, etc.) and host plant 
resistance to pathogens and pests are not exclusive for 
OF, but they are highly dependent of the geographi-
cal area where the breeding is targeted. Resistance to 
seed-borne pathogens is of great importance, since seed 
treatments are limited in organic seed production. Root 
diseases are considered to be important only during the 
conversion period from CF to OF [46, 47]. In wheat, for 
diseases such as rust and powdery mildew, OPB can take 
advantage of the achievements that have been made in 
breeding for durable and broad resistance to these dis-
eases [23, 25, 48].

Several authors have described in a more detailed way 
the necessary traits and ideotypes of cereals and vegeta-
bles for OF [27, 29, 49, 50]. Here our aim is not to repeat 
those descriptions but to emphasize that in our view 
plant breeding for OF and CF only differs in certain spe-
cific traits that are important for the adaptation in either 
of the environments, but not in the general breeding 
goals. OPB requires the application of breeding methods 
that are therefore in line with the OF principles.

The sources of variation to incorporate relevant traits 
in cultivars for OF conditions are not different from the 
sources of variation for cultivars aimed for CF; that is in 
their natural origin. For instance, wild relatives and lan-
draces are sources of variation for both plant breeding 
systems. The processes of how these sources of genetic 
variation are incorporated in the production of new cul-
tivars are, however, regulated and subject to OF and OPB 
principles [27].

In the particular case of wheat, Lammerts van Bueren 
et  al. [27] foresee the utilization of synthetic hexaploids 
in OPB programs, as they are a rich source of genetic 
variation for the development of new wheat cultivars 
[51]. It is not clear, however, whether they can be used for 
organic wheat breeding, as they are produced with the 
aid of colchicine treatments [52] which operate below the 
cell level, and according to some reports they should be 
forbidden in OF [29, 53, 54].

Methods and tools
Organic plant breeding is restricted to specific conven-
tional breeding practices, in general to crossing methods 
that do not break the reproductive barriers between spe-
cies, and to selection methods based on the evaluation 

and selection of whole plant performance [29, 53, 54]; 
i.e., (1) intraspecific crossing, (2) backcrossing, (3) mass 
and individual selection, (4) selection via DNA markers, 
(5) hybrid cultivars—as long as next generation is fertile 
and the hybrid production does not chemically induce 
sterility, and (6) meristem culture. On the other hand, 
the technologies or methods that engineer plants at the 
DNA level are considered to be incompatible with OPB 
[29, 53–55], e.g., (1) genetically modified organisms and 
(2) the application of synthetic hormones and colchicine 
treatments.

New breeding techniques make it possible to precisely 
incorporate particular characteristics from wild crop rel-
atives or landraces into modern crops. In that line, some 
authors have analyzed the possibility of implementing 
modern technologies in OPB to rewilding modern crop 
cultivars [56] and whether this modern techniques can fit 
within the four principles of OF (health, ecology, fairness, 
and care). However, Lammerts van Veuren et al. [57, 58], 
had already argued that cisgenesis and reverse breeding 
based germplasm are products of processes that corre-
sponds to the development of GMO and thus this tech-
nique should be banned from OF and OPB.

Development of cultivars adapted to OF conditions can 
be successfully achieved if plant breeding programs com-
bine the selection of the progeny in optimal and organic 
or low-input environments. This can be seen as one of 
the elements under which the Green Revolution took 
place [59]: shuttle breeding, which consists in exchanging 
segregating generations between different environments 
to achieve wide adaptation or broad disease resistance. 
Alternation of germplasm between CF and OF at later 
segregating generations is considered an important com-
ponent of commercially sustainable OPB programs by 
some authors [60–62]. A modality of this shuttle breed-
ing scheme, is to only carry out selections of advanced 
generation progenies, developed by conventional breed-
ing procedures, under optimum organic environments to 
determine their value for cultivation and use in further 
testing; this is advantageous, particularly when there is 
limitation of financial, human, and institutional resources 
in OPB.

Some authors consider, however, that it is necessary 
to carry out selection solely under organic environ-
ments as it is the only way for the plants to fully express 
their genetic potential [28, 63]. Thus, participatory plant 
breeding (PPB) and evolutionary breeding (EB), have 
been proposed as suitable breeding methods to target 
OF [64–68]. These methods facilitate the selection for 
local adaptation and for the particular needs of farmers, 
they also empower farmers as they allow closer inter-
action between them and breeders and give farmers 
greater freedom to choose germplasm. Particularly, for 
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the case of PPB that can lead to a faster cultivar adoption 
[20, 69].

Conclusion
Organic crop breeding achievements
Private breeding companies (especially small–medium 
enterprises) and some public institutions, particularly in 
Europe and North America have finely established OPB 
programs. For instance in Austria, Canada, France, Ger-
many, Switzerland, and USA organic winter wheat breed-
ing programs have been initiated [27, 70]. Projects in PPB 
for OF have also been established in tomato [71, 72], cau-
liflowers [73], and Lolium [74], while there are other OPB 
undertakings for cabbage, broccoli [27], and onion [75] in 
The Netherlands or spinach in France [76].

Outlook: what is new and what needs to be done for OPB
OPB has certainly made steps forward toward the devel-
opment of cultivars adapted to OF, particularly after 
finding that conventional plant breeding cannot always 
provide suitable cultivars for OF in various crops such 
as cereals and pulses [77–79]. Below we list some points 
that may contribute to the further development of culti-
vars for OF conditions.

  • Broad multi-location testing to better exploit G × E 
and thus identify key locations within regions to con-
duct cultivar yield trials [80, 81].

  • Examine the implementation of shuttle breeding 
between OF and CF to open the possibility of devel-
oping cultivars adapted to both conditions.

  • Larger screening of plant materials deposited in 
gene-banks to identify useful genetic resources for 
OPB [82].

  • Evaluate the possibility to implement prediction of 
germplasm performance in key locations with the aid 
of high throughput genotyping platforms and pheno-
typic information derived from multi-location test-
ing.

  • Determine if breeding perennial crops will be suit-
able for sustainable OF, however if crop rotation is 
part of the OF system, this may not be possible [83].

  • Assess the incorporation of remote sensing pheno-
typing for traits like weed competitiveness so evalu-
ation and selection intensity can be increased and 
higher genetic gains can be achieved faster.

  • Undertake quantitative and association genetics 
research to understand both the extent of variation 
and genetic architecture of useful traits in OF [84–
87].

  • Appraise the use of cultivar mixtures to deploy host 
plant resistance or increase resilience in agro-ecosys-
tems prone to abiotic stress [88].

  • Judge whether the new breeding technology methods 
can fit into the OF principles [56, 89].

Quality traits should also be given priority for OPB: 
micronutrient content and plant growing and storage as 
they can influence grain quality [90]. Traits for low-input 
farming systems such as increased N-uptake and N-use 
[91–94] and enhanced competing ability against patho-
gens and weeds [95, 96] will be also important for OPB.
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