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A key challenge for wildlife management is to handle competing goals. High ungulate densities may be desirable  
from hunting and recreational perspectives, but may come in conflict with needs to limit or reduce browsing damage.  
Since browsing intensity is negatively related to forage availability it may be possible to mitigate damage on forest by 
increasing forage availability within the landscape. A commonly used method to increase the attractiveness of a localized 
part of the landscape is to establish food plots. In a multiyear setup using enclosures, wildlife observations, field surveys, 
and controlled biomass removal, we studied food plots to document forage production, utilization by ungulates, and 
browsing on adjacent forests in southern Sweden. The fenced parts of the food plots produced on average 2230 to 5810 kg 
ha1 marrow-stem kale, second-year clover mix or early-sown rapeseed. The biomass of target crops was generally higher 
within ungrazed (exclosures) compared to grazed (controls) quadrats on the food plots, which demonstrates that the crops 
were used as forage by ungulates. Browsing on deciduous trees in the adjacent forest was higher within 70–135 m from 
the food plots compared to areas further away. For wildlife management, our study shows that establishment of food plots 
provides substantial amounts of forage both during growing season and at the onset of the dormant season, and that a large 
share of this food is consumed. Finally, our study documents that forage availability for ungulates at the onset of the often-
limiting dormant season can be increased by fencing food plots throughout the growing season.

Multiple and contradicting goals between ungulate  
management and human land use are common features 
worldwide, and often a source of conflict among different 
interest groups (Gill 1992, Putman et al. 2011). Particu-
larly, foraging ungulates may cause extensive economic loss. 
In forestry, intensive browsing may reduce tree growth and 
lower timber quality (Aldous 1952, Miquelle 1983, Gill 
1992). A straightforward measure for mitigating the nega-
tive effects of high browsing pressure on forest is popula-
tion control (Brown et al. 2000, Côté et al. 2004, Miller 
et al. 2009). High ungulate densities may however be desir-
able from hunting and recreational perspectives (Gordon 
et al. 2004, Sharp and Wollscheid 2009), which then come 
in conflict with population control to reduce e.g. brows-
ing impact. Wildlife management often involve groups of 
stakeholders with competing interests (foresters, farmers and 
hunters), but may also involve single landowners aiming for 
high yields of both timber and game (Gordon et al. 2004, 
Mysterud 2006, 2010, Redpath et al. 2013). It is therefore 
urgent to develop effective ungulate and forest management 
methods which can help reducing such conflicts.

Higher yield of ungulates can be achieved by increasing  
forage abundance through a wide spectrum of possible  
measures, such as supplemental feeding (e.g. providing 
silage or hay at feeding stations; Smith 2001, Gundersen 
et al. 2004, Cooper et al. 2006, Sahlsten et al. 2010), ungu-
late-adapted silviculture (Heikkilä and Härkönen 2000,  
Månsson et al. 2010, Edenius et al. 2014), fertilization (Ball 
et al. 2000, Månsson et al. 2009) or establishment of food 
plots, i.e. crops on arable fields providing forage for game 
species (Hehman and Fulbright 1997, Edwards et al. 2004, 
Smith el al. 2007). In addition to increasing the availabil-
ity of high quality forage, these measures may contribute 
to redistributing ungulates and their browsing within the 
landscape. Provision of supplementary forage may lead to 
disproportionally increased use of forest areas in close vicin-
ity of the attracting food source, with associated risks for 
locally amplified forest damage (van Beest et al. 2010). How-
ever, since browsing intensity is negatively related to forage 
availability for a given ungulate density (Månsson 2009), 
it should also be possible to mitigate damage on forest  
by increasing forage availability within the landscape while 
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controlling ungulate populations. By providing attractive 
forage in strategic locations it may be possible to reinforce 
the effect of increased forage by diverting the animals away 
from economically valuable forest stands sensitive to brows-
ing (Gundersen et al. 2004, Sahlsten et al. 2010). This 
implies that the added forage should be available during time 
periods when the risk of damage is high, i.e. when trees play 
a major role in the herbivores’ diet. In most temperate forest 
systems this time period coincides with the dormant season 
when herbs and grasses are unavailable and the field layer 
may be covered by snow (Cederlund et al. 1980, Baskin and  
Danell 2003). However, damage on trees can also be  
substantial during summer; for deciduous trees it can occa-
sionally be more severe during summer than winter (Moore 
et al. 2000, Bergqvist et al. 2013).

In several regions worldwide, food plots (‘game fields’; 
Putman and Staines 2004) are used to improve forage  
availability for ungulates (Keegan et al. 1989, Hehman and 
Fulbright 1997, Smith et al. 2007). However, we do not 
know of any published studies about ungulate forage pro-
duction on food plots in northern Europe. By tradition, 
food plots have been used in wildlife management as one  
form of supplemental feeding to attract and to enhance  
survival and reproduction of ungulates (Leopold 1933, 
Ozoga and Verme 1982, Putman and Staines 2004). Depen-
dent of crop type and management actions (e.g. fencing), 
food plots can provide supplemental forage both during the 
vegetation growth and dormant periods. Therefore, increas-
ing forage availability through food plot management may 
potentially be used to alleviate damage on economically 
valuable crops and forests (Smith et al. 2007). However, as 
the food plots attract ungulates, they may not only decrease  
the overall browsing pressure in the landscape, but also 
increase the risk of damage in adjacent forests (sensu  
Gundersen et al. 2004, Sahlsten et al. 2010). This issue is cru-
cial to spatial planning in forestry and game management.

The aim of this study was threefold: 1) to quantify the 
forage biomass available in food plots during summer and 
at the onset of the dormant season for the three com-
monly sown crops marrow-stem kale Brassica oleracea var. 
medullosa, rapeseed Brassica napus and clover Trifolium 
spp. mix; 2) to compare forage availability between food 
plots grazed by ungulates during the growing season and 
ungrazed parts of the food plots (fenced exclosures); 3) to 
assess the impact of food plots on browsing pressure in 
adjacent forests. We hypothesized that 1) food plots can 
provide ungulates with substantial amounts of supple-
mental forage, 2) fencing of food plots should increase 
forage biomass availability at the end of the growing sea-
son, and 3) the degree of ungulate browsing on adjacent 
forest would be stronger at short distances from the food 
plots compared to areas further away. 

Study area

We performed the study from May to November 2008–
2010 in an area (43 km² in size), located in the hemiboreal 
zone of southeastern Sweden (57°27′N, 16°32′E). The study 
area consists of 81% forest land, 10% rocky outcrops, 4% 
mires, 2% pastures and the 3% other (e.g. arable land and 
water bodies). The mean patch size for terrestrial land cover 

types (e.g. forest stands, pastures, mires) is 2.1 hectare. The 
period of vegetative growth (mean temperature  5°C) 
extends from mid-April to the end of October (Wastenson 
et al. 1990). Forests in this area are intensively managed for 
timber and pulp production through even-aged forestry, 
whereby mature stands are harvested by clear-cutting and 
reforested by planting or natural regeneration. The forests 
consist of a mosaic of coniferous, deciduous and mixed 
(coniferous–deciduous) forest stands. The dominating  
tree species are Scots pine Pinus sylvestris, Norway spruce 
Picea abies, silver birch Betula pendula, downy birch  
B. pubescens and pedunculate oak Quercus robur. Also 
rowan Sorbus aucuparia, aspen Populus tremula, willows 
Salix spp. and alder buckthorn Frangula alnus are relatively 
common.

Five ungulate species occur in the area: moose Alces alces, 
roe deer Capreolus capreolus, red deer Cervus elaphus, fal-
low deer Dama dama and wild boar Sus scrofa. European  
hare Lepus europaeus and mountain hare Lepus timidus  
also occur in the area. Aerial moose surveys (methods as in 
Rönnegård et al. 2008) performed in February 2007 over an 
area including the actual study area showed a mean density 
of 0.9  0.13 (SE) moose km2 (Månsson et al. unpubl.). 
Pellet group counts in April 2008 (uncleaned plots; meth-
ods as in Mayle et al. 1999, Månsson et al. 2011) within 
the study area yielded density estimates of 0.4  0.1 red deer 
km² and 14.1  2.3 roe deer or fallow deer km² (Edenius 
et al. unpubl.). The pellet groups were not separated for the 
two species as they are difficult to distinguish in field. Note  
that density estimates based on pellet group counts only  
provide indices. Hence, the densities provided above should 
not be interpreted as precise figures, but rather as rough  
indications of deer abundance in the study area.

Methods

Food plots and their management

We used 20 individual food plots in the size range 0.2– 
2.2 ha (Table 1) where we studied grazing on marrow-
stem kale (nine fields in 2008), clover mix (eight fields in 
2009) and rapeseed (nine fields in 2010). Marrow-stem kale  
Brassica oleracea var. medullosa and rapeseed Brassica napus 
were sown as one-species crops, whereas the ‘clover mix’ con-
sisted of a mixture of 20% red fescue Festuca rubra, 13% 
white mustard Sinapis alba, 13% meadow fescue Festuca 
pratensis, 12% timothy-grass Phleum pratense, 10% ryegrass 
Lolium spp., 10% phacelia Phacelia tanacetifolia, 8% alfalfa 
Medicago sativa, 5% red clover Trifolium pratense, 5% white 
clover Trifolium repens, and 4% chicory Cichorium intybus. 
We re-used six of the 20 food plots over the years for studies 
involving different crop types (five over two years and one 
over all three years). The food plots were sown in May–June 
and fertilized with 200 kg ha1 N-P-K fertilizer (nutrient 
ratios 21–10–3) soon after sowing. In addition, all food plots 
used in 2008 were also fertilized with manure (3 tons ha1) 
before sowing. Three food plots in 2008 and four food plots 
in 2010 were excluded from the N-P-K fertilization due to 
substantial growth of non-targeted plants and late sowing, 
respectively.
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Table 1. Management and description of the field work conducted on the food plots.

Food plots 
(n)

Plot area 
(range, ha)

Exclosures 
(n)

Sowing 
period

Cutting 
period 1

Cutting 
period 2

Cutting 
period 3

Marrow stem kale (2008) 9 0.20–2.20 30 May Sept. Nov. –
Clover, sown 2008 5 0.22–1.10 20 May June Aug.–Sept. Nov.
Clover, sown 2009 3 0.17–0.68 14 June Nov. – –
Rapeseed, sown early 

(2010)
5 0.29–2.68 23 May Sept. – –

Rapeseed, sown late (2010) 4 0.28–1.14 12 June Sept. – –

Forage biomass estimation

To estimate the forage biomass available on grazed and 
ungrazed parts of the food plots, we used exclosures (1.6   
1.6 m; height 1.4 m) made of metal wire of 25  25 mm 
mesh size that we distributed randomly in the food plots 
(Table 1). The number of exclosures per food plot was pro-
portional to plot size and varied from 1 to 14. In a random 
direction and 5 m away from each exclosure, we delineated  
one unfenced sampling quadrat (control; 1.6  1.6 m).  
At different times of the year from June to November 
(depending on crop type; cf. Table 1), we cut all above-
ground parts of the plants in the exclosures and controls 
(unfenced quadrats) and weighed them to the nearest gram 
(fresh weight). We treated target (sown crop) and non-target 
(common weeds on arable land) plants separately for these 
biomass estimations. To calculate the dry weight, we esti-
mated the dry matter ratio (dry/fresh weight) by drying  
random samples ( 150 g fresh weight, occasionally less 
when not available) to constant weight. Assessment of  
forage availability during the fall provides an estimate of 
the amount of forage available just before the onset of the 
dormant season. For marrow-stem kale, we cut and weighed 
the plants on one-half of the quadrats’ area in September 
and the other half in November. Between September and 
November in 2008 two exclosures were destroyed, resulting 
in a total sample size of 28 exclosures in that year. Clover 
was harvested three times within a year – in June, September 
and November. For rapeseed, we estimated the biomass only 
once, in September (Table 1).

Browsing in adjacent forests

We surveyed browsing pressure on deciduous trees in the 
forest surrounding the food plots in the end of September 
of each of the three study years, i.e. after the summer but  
before leaf abscission. We used circular survey plots of  
20 m² (hereafter ‘browsing survey circles’) distributed along 
lines stretching in each of the four cardinal directions from 
the food plots. We located the first browsing survey circle so 
that its border was tangential to the edge of the food plot. 
We distributed the subsequent survey circles at distances 
of 50, 100, 200, 300, 400 and 500 m from the field (i.e. 
in total four samples per distance for each field) along the 
transect. At each distance, we surveyed two circles: one on 
the transect and another 20 m to the left. We only surveyed 
forested areas, excluding survey circles in wetlands or lakes. 
We also excluded circles located  500 m from other food 
plots. In the event where a survey circle did not encom-
pass any deciduous tree, we moved the circle (maximum  

20 m) to include the closest tree. In each circle, we counted  
the total number of deciduous trees and the number of  
trees with occurrence of fresh (i.e. from current summer) 
bites or stripped leaves. We included silver birch, downy 
birch, rowan, aspen, pedunculate oak and willows with leaves 
available within the browsing height interval 0.5–2.5 m.

Counts of utilizing species by direct observations

We counted ungulates at the food plots during the study 
period to obtain data about species utilizing the fields.  
We watched activity in all food plots from concealed  
places during dawn and dusk. In total we observed the food 
plots during 2 h per plot for marrow-stem kale, 7.5 h per 
plot for clover and 6.5 h per plot for rapeseed. The aim 
of these observations was not to formally compare utiliza-
tion rates by different ungulate species, but rather to obtain  
preliminary knowledge about which species foraged in the 
food plots.

Statistical analyses

To compare forage availability inside and outside the exclo-
sures, we fitted linear mixed models with dry biomass as a 
response, fencing status (i.e. exclosure or not) as a fixed factor, 
and field-ID as a random factor to account for the spatially 
aggregated sampling design (package lme4; < www.r-project.
org >). We fitted separate models for the three crop types and 
for target and non-target plants.

To assess patterns in browsing pressure in forest at various 
distances from the food plots, we fitted logistic models with 
browsing pressure (i.e. number of browsed and unbrowsed 
trees) as a response variable and distance from the food plot 
as a predictor. We combined data by using the sum from the  
four samples (corresponding to the four transects) at each  
distance for each food plot. To test the hypothesis that brows-
ing pressure would be stronger at shorter distances from the 
field and fade out at longer distances, we fitted segmented 
models (package Segmented;  www.r-project.org ) with a 
single breakpoint. The segmented function requires that the 
user specifies a starting value for the breakpoint iterations. 
We chose 250 m (i.e. one-half of the total sampled distance) 
as a starting value for all models. Then, to verify the robust-
ness of the results to the selection of starting values, we re-
ran the analyses with the following starting values: 25, 75, 
150, 350 and 450 m. The final breakpoint values obtained 
with these starting values were all within  1 m from the 
breakpoint obtained for a starting value of 250 m, which 
confirmed that the estimated breakpoints were not contin-
gent on the selection of specific starting values.
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amounted to 11% (September) and 10% (November) of 
the biomass in exclosures (Fig. 1A). The proportion of non-
targeted plants decreased from 42% of the total biomass in 
September to 4% in November in the exclosures (compare 
Fig. 1A and 2A). The dry matter quota was on average 14% 
and 17% for marrow-stem kale and 19% and 18% for non-
target plants in September and November, respectively.

Second-year clover-mix food plots produced 296 ( 35) g 
m² (dry weight) of forage (all plant species included) in the 
exclosures during the growing season (calculated as the sum 
of the biomass values upon crop harvest in June, September 
and November; Fig. 1B). The biomass produced in first-year 
clover-mix food plots was only estimated in November and 
amounted to 17 ( 1) g m² in the exclosures. The total 
forage biomass available in unfenced quadrats in the clover-
mix food plots constituted 43% (second-year fields) and 6% 
(first-year fields) of the biomass in the exclosures (Fig. 1B). 
The dry matter quota was on average 27%, 32% and 26% 
for second year clover fields in June, August and November, 
respectively, and 16% for first year fields in November.

The mean dry biomass of rapeseed in exclosures was 
581 ( 102) g m² and 172 ( 55) g m² in September 
for food plots sown early (May) and late (June), respec-
tively. The proportion of non-target plants constituted 15% 
(early) and 36% (late) of the dry biomass in the exclosures  
(Fig. 2B). The available biomass of rapeseed in unfenced 
quadrats constituted 18% (early) and 2% (late) of the bio-
mass in the exclosures (Fig. 1C). The dry matter quota was 
on average 20% for rapeseed (early and late combined) and 
24% for non-target plants.

Results

Biomass estimations

The dry biomass of targeted crops produced in the food plots 
during the growing season and available upon the onset of 
the dormant season in the fall varied between 6 and 581 g 
m² within exclosures (i.e. ungrazed quadrats) and between 
1 and 102 g m2 in unfenced quadrats, depending on crop 
type and cutting date (Fig. 1). The corresponding figures 
for non-target plants were 13–89 g m² and 18–115 g m² 
within exclosures and unfenced quadrats, respectively.

The mean dry biomass of marrow-stem kale within exclo-
sures was 222 ( 80 SE) g m² in September and increased 
with 74% from September to November (300  67 g m²; 
Fig. 1A). Marrow-stem kale biomass in unfenced quadrats 

Figure 1. Available biomass (mean  SE, dry weight) of target  
crops in food plots in ungrazed (exclosures) and grazed plots  
(control) for (A) marrow-stem kale, (B) clover mix (first* and  
second year fields) and (C) rapeseed established in May (early) and 
June (late).

Figure 2. Available biomass (mean and SE, dry weight) of non- 
target plants in food plots in ungrazed (exclosures) and grazed 
quadrats (control) on (A) marrow-stem kale food plots and (B) 
rapeseed food plots established in May (early) and June (late).
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Table 2. Summaries of linear mixed models comparing the biomass of the target crops and other plant species inside the exclosures and in 
unfenced quadrats. The identity of the study field was included as a random factor in all models. Significant differences between exclosures 
and unfenced quadrats are highlighted in bold.

Intercept Effect of exclosure

Crop Plant
Cutting 
month na nb DF

Coefficient 
(SE) t p-value

Coefficient 
(SE) t p-value

Marrow-stem kale
Kale September 30 9 56 2.28 (0.27) 8.49  0.001 2.19 (0.38) 5.76  0.001

November 28 9 52 1.40 (0.26) 5.40  0.001 3.85 (0.37) 10.48  0.001
Others September 30 9 56 4.73 (0.29) 16.13  0.001 –0.19 (0.20) –0.96 0.34

November 28 9 52 2.39 (0.33) 7.25  0.001 0.32 (0.26) 1.23 0.22
Second-year clover mix

All June 20 5 36 6.14 (0.08) 77.73  0.001 0.21 (0.11) 1.87 0.067
August–Sept. 20 5 36 6.36 (0.08) 83.78  0.001 –0.01 (0.06) –0.10 0.92
November 20 5 36 4.16 (0.35) 12.02  0.001 0.25 (0.11) 2.15 0.038

First-year clover mix
All November 14 3 24 2.86 (0.16) 17.90  0.001 2.22 (0.19) 11.51  0.001

Rapeseed, sown early
Rapeseed September 23 5 42 4.19 (0.48) 8.73  0.001 1.64 (0.22) 7.64  0.001
Others September 23 5 42 4.54 (0.28) 16.06  0.001 –0.27 (0.18) –1.47 0.15

Rapeseed, sown late
Rapeseed September 12 4 20 1.40 (0.53) 2.62 0.029 2.22 (0.61) 3.61 0.002
Others September 12 4 20 2.72 (0.39) 6.92 0.001 1.07 (0.29) 3.64 0.001

 anumber of pairs (exclosure and grazed quadrat)
bnumber of food plots

Grazing effects and utilizing species

The available biomass of target crops was significantly higher 
within the exclosures compared to unfenced quadrats for all 
crops (independent of date for biomass estimation; p  0.002 
for all cases) except for second-year clover mix in June and 
August (p  0.067 and p  0.92, respectively; Table 2). How-
ever, for non-target plants a significant difference between 
the exclosures and unfenced quadrats was only observed for 
late-sown rapeseed food plots (p  0.001), while there was 
no significant difference for non-target plants on other types 
of food plots (p  0.15 in all cases), independent of the date 
for biomass estimation.

Roe deer was the most frequently observed ungulate on 
the food plots (n  128 animal observations) followed by 
wild boar (n  73), moose (n  50), fallow deer (n  23) 
and red deer (n  14).

Browsing in adjacent forests

The general relationship between browsing pressure and  
distance to the food plot was characterized by a steep decrease 
in browsing over a short distance, followed by a non- 
significant relationship at greater distances from the food 
plots. For marrow-stem kale, there was a strong decrease in 
browsing pressure from the food plot edge up to a break-
point located approximately 135 m into the forest, followed 
by a lack of significant relationship at greater distances  
(Table 3, Fig. 3A). For the clover mix, the pattern was simi-
lar to marrow-stem kale, with a strong decrease in brows-
ing pressure up to a breakpoint located at approximately  
112 m, followed by a lack of significant relationship at greater 
distances (Table 3, Fig. 3B). For rapeseed, there was a strong 
decrease in browsing pressure up to approximately 68 m,  
followed by a weaker but still highly significant decrease over 

Table 3. Segmented logistic models for the relationship between  
distance to the food plots and browsing pressure on deciduous  
trees. Slope 1 and slope 2 depict the model coefficients for the  
sections to the left and right of the breakpoint, respectively.

Crop

Breakpoint location 
(m) [95% confidence 

interval] Slope 1 Slope 2

Marrow-stem 
kale

135 [89–181] –0.00763*** 0.00025 ns

Clover mix 112 [93–132] –0.01934*** 0.00959 ns

Rapeseed 68 [39–98] –0.01374*** –0.00201***

 ***p  0.001, nsp  0.05

greater distances (Table 3, Fig. 3C). For all three crop types 
combined, the mean values of browsing pressure (i.e. percent 
browsed trees) were 83% ( 3% SE) at the food plot’s edges 
(i.e. distance of 0 m), 73% ( 4%) at 50 m, 62% ( 5%) 
at 100 m, 60% ( 5%) at 200 m, 61% ( 4%) at 300 m, 
53% ( 5%) at 400 m and 56% ( 5%) at 500 m from the 
food plots.

Discussion

This study shows that food plots contributed with substan-
tial amounts of forage for ungulates during summer and at 
the onset of the dormant season. The non-grazed crops pro-
duced on average 2230 to 5810 kg ha1 biomass during the 
growing season (marrow stem kale, second-year clover mix 
and early-sown rape seed within exclosures). This is in the 
upper range of what has been shown in earlier studies where 
biomass produced in food plots varied between 545 and 
5860 kg ha1 over a season (Keegan et al. 1989, Hehman 
and Fulbright 1997, Edwards et al. 2004; all in southeastern 
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Figure 3. Relationship between browsing pressure in forest and  
distance from the food plots. The lines depict the segmented  
models with a single breakpoint for (A) marrow-stem kale, (B)  
clover mix and (C) rapeseed. For visual clarity, the y-axis is drawn 
on the logit scale. See Table 3 for model details.

USA). Furthermore, the biomass produced per unit area in 
our study also seems to be larger than what has been reported 
through other measures used for forage improvement in for-
est-dominated landscapes, such as burning and fertilization 
(leaf biomass 435 kg ha1; Edwards et al. 2004 in southeast-
ern USA), ungulate-adapted slash treatment at final felling 
of forest stands (271 kg ha1 winter forage, Edenius et al. 
2014 in Sweden), felling of seed trees (1200 kg ha1 winter 
forage, Månsson et al. 2010 in south–central Sweden) and 
establishment of willow plantations for bioenergy purposes 
(128–1222 kg ha1 summer forage, Bergström and Guillet 
2002 in south–central Sweden). The biomass is also larger 
than the amounts of forage generally available in young 

Scots pine dominated forests in Scandinavia (200–2000 
kg ha1 moose winter forage, Kalén and Bergquist 2004). 
However, compared to measures conducted in forests, the 
areas used as food plots used in our study were almost solely 
dedicated to forage production, i.e. they did not result in the 
production of additional goods such as timber or conven-
tional crop yield.

Our results show that fencing of the fields during the 
growing season may be a measure to substantially increase 
the biomass available at the end of the growing season, as 
also has been suggested elsewhere (Edwards et al. 2004). 
For all target crops except second-year clover mix, there was 
a significant difference in plant biomass between unfenced 
quadrats and exclosures. However, from these observa-
tions we cannot conclude how much biomass actually 
was consumed by ungulates, as grazing may have affected 
the establishment and growth of crops and that also other 
herbivores such as hares may have consumed parts of the 
biomass. Still, our observations of ungulates (288 animal 
observations over 140 h i.e. ∼ 2 animal observations per 
hour) clearly indicate a utilization by ungulates of the food 
plots. Although we did not make systematic notes of the 
behavior of the animals observed on the food plots, the 
vast majority were seen feeding actively on the plots. How-
ever, the difference between grazed and ungrazed plots is 
of course dependent of grazing intensity and may there-
fore vary among areas. The effects of grazing on non-target 
plants were less clear (only significant effect on fields with 
late-sown rapeseed). We suggest three possible underlying 
mechanisms for this difference in patterns between target 
and non-target plants: 1) ungulates did not forage on non-
target plants to the same extent as target plants (i.e. they 
were less preferred), 2) the non-target plants were grazed 
but their subsequent re-growth was not affected to the 
same extent as target crops, 3) non-target grazed plants 
were replaced by other non-target plants that were not uti-
lized by the ungulates (i.e. an effect hidden by the fact that 
we did not distinguish the different species when estimat-
ing biomass of non-target plants).

As hypothesised, we found that summer browsing inten-
sity on deciduous trees in forests was higher in the proxim-
ity of the food plots (i.e. within approximately 70–135 m 
depending on crop type) than further away. This suggests 
a potential negative side-effect of food plots. Similar pat-
terns have been observed for supplemental feeding, where 
winter browsing intensity has been found to increase close 
to feeding stations. Gundersen et al. (2004) and van Beest 
et al. (2010) showed that moose concentrated their activ-
ity pattern close to supplemental feeding stations. Further, 
the spatial redistribution of moose in the landscape led 
to lower browsing pressure on sensitive young Scots pine 
stands on the landscape scale (Gundersen et al. 2004) but 
not on local scale. An increased winter browsing on the 
vegetation close to the feeding stations ( 200 m) was 
evident (van Beest et al. 2010). During winter the ungu-
lates browse on twigs and shoots to a higher extent than 
during summer when herbs and leaves constitute a larger 
part of the diet, which implies a higher risk for damage 
to trees during winter. However, our study show that over 
80% of the trees were affected by summer browsing in 
the forest area directly adjacent to the food plots’ edges, 
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which indicates that also summer browsing can poten-
tially have a significant impact on trees and forestry, as 
also supported by earlier studies (coniferous: Bergqvist 
et al. 2013; deciduous: Moore et al. 2000).

We conclude that ungulates use the food plots for foraging 
and that browsing intensity on trees in forest is higher in the 
vicinity of the food plots than further away. We can envisage 
two potential mechanisms for this with support from earlier 
studies: 1) concentration of animals near the food plots due 
to locally increased forage availability on these plots possibly 
as a consequence of animals using the food plots as a central 
place affecting the browsing pattern according to the central 
place foraging theory (cf. Gundersen et al. 2004, Cooper 
et al. 2006, Mathisen et al. 2014), and 2) general attrac-
tion of ungulates to productive and/or protective edge zones 
between open land and forest (cf. Welch et al. 1990, Ruzicka 
et al 2010, Torres et al. 2011). We suggest that the observed 
patterns are the result of a combination of both factors. We 
conclude that more research is needed to unravel the relative 
importance on food plots per se and edge effects in general.

Our results highlight the need for careful spatial planning 
when deciding on the placement of food plots in forested 
landscapes: one should avoid establishing food plots close 
to economically valuable and damage-prone young forest 
stands. The large biomass production in the food plots, the 
high level of utilization of the crops and the increased brows-
ing intensity in nearby forest areas suggest that food plots 
may have the potential to redistribute ungulates by con-
centrating ungulates to specific areas, and thereby decrease 
browsing intensity in other parts of the landscapes. How-
ever, our study setup does not allow us to draw conclusions 
about browsing effects across whole landscapes (Gundersen 
et al. 2004) or about possible long-term effects of food plots 
(Mathisen et al. 2014). We therefore call for further stud-
ies addressing the effects of food plots on the movements 
of ungulates and on browsing effects over larger spatial and 
temporal (years and different seasons) scales. There is also a 
need for future studies designed to assess the effect of food 
plot size on utilization by ungulates and browsing in adja-
cent forest.

This study shows that establishment of food plots has the 
potential to provide ungulates with substantial amounts of 
forage both during the dormant and growing season even at 
relatively high latitudes such as in Scandinavia. Food plots 
therefore have the potential for increasing the yield of ungu-
lates but may also decrease the total browsing pressure on 
forest in the landscape, provided that ungulate density is con-
trolled. Finally, we recommend fencing food plots through-
out the growing season if the aim is to provide large amounts 
of forage during the often-limiting dormant season.      
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