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 Timing of breeding is a trait with considerable individual variation, often closely linked to fi tness because of seasonal 
declines in reproduction. Th e drivers of this variation have received much attention, but how reproductive costs may infl u-
ence the timing of subsequent breeding has been largely unexplored. We examined a population of northern wheatears 
 Oenanthe oenanthe  to compare three groups of individuals that diff ered in their timing of breeding termination and repro-
ductive eff ort to investigate how these factors may carry over to infl uence reproductive timing and reproductive output in 
the following season. Compared to females that bred successfully, females that put in less eff ort and terminated breeding 
early due to nest failure tended to arrive and breed earlier in year 2 (mean advancement    �    2.2 and 3.3 d respectively). 
Females that spent potentially more eff ort and terminated breeding later due to production of a replacement clutch after 
nest failure, arrived later than other females in year 2. Reproductive output (number of fl edglings) in year 2 diff ered 
between the three groups as a result of group-level diff erences in the timing of breeding in combination with the general 
seasonal decline in reproductive output. Our study shows that the main cost of reproduction was apparent in the timing of 
arrival and breeding in this migratory species. Hence, reproductive costs can arise through altered timing of breeding since 
future reproductive success (including adult survival) is often dependent on the timing of breeding in seasonal systems.   

 Timing of breeding may have signifi cant impacts on 
reproductive success, with seasonally breeding species often 
showing reduced reproductive output as the season progresses 
(Perrins 1965, 1970, Hochachka 1990,  Ö berg et   al. 2014). 
Variation in the timing of breeding is expected to largely arise 
through individual diff erences in condition: either through 
constraints preventing individuals in poor condition from 
breeding early or through an adaptive strategy to optimize 
the timing of breeding in order to maximize fi tness (Drent 
and Daan 1980, Rowe et   al. 1994). Such optimal timing 
of breeding would be the outcome of a confl ict between 
advantages of early breeding and advantages of delay-
ing breeding (e.g. greater off spring value versus improved 
parental body condition). Diff erences in individual condi-
tion and thereby also timing of breeding may arise from a 
combination of factors such as persistent diff erences in indi-
vidual quality (Wilson and Nussey 2010), nutritional state 
as determined by food availability (Drent and Daan 1980) 
and previous reproductive eff ort (Williams 1966). Because 
of the general feature of seasonal declines in fi tness, many 
studies have investigated the eff ects of individual and envi-
ronmental quality driving this relationship (Parsons 1975, 
de Forest and Gaston 1996, Verhulst and Nilsson 2008) and 
the maintenance of breeding-time variation despite strong 

selection pressure towards earlier breeding (Price et   al. 1988). 
However, reproductive costs may also infl uence the timing 
of seasonal breeders (and vice versa; Nilsson and Svensson 
1996, Wiggins et   al. 1998, Brinkhof et   al. 2002) but these 
relationships have been less commonly explored. 

 Reproductive costs may infl uence subsequent reproduc-
tive decisions because reproductive eff ort can aff ect indi-
vidual condition (see also  ‘ carry-over eff ects ’ , Norris 2005, 
Harrison et   al. 2010), or because the organism is modify-
ing its current reproduction in relation to future reproduc-
tive output (Williams 1966, Lessells 1991, Stearns 1992). 
In seasonal breeders these reproductive costs may be partly 
driven by constraints operating on the timing of breeding: 
organisms breeding late in one season may not have enough 
time to recover their condition before the beginning of the 
next breeding period (Shaw and Levin 2013). Th is should 
be particularly evident in migratory species that face large 
energetic costs outside of breeding. In birds, for example, 
individuals face a series of energetically demanding stages in 
their yearly life cycle in addition to breeding (e.g. moult-
ing new plumage, migration) that may limit an individual ’ s 
ability to compensate for additional or late breeding energy 
expenditure (Wingfi eld 2008, Shaw and Levin 2013). Th us, 
an individual that breeds late and invests more eff ort may be 
constrained to breeding later in the following season. 

 Trade-off s between current and future reproduction 
(Williams 1966, Lessells 1991, Stearns 1992) have been 
widely studied over the last decades by manipulating 
parental eff ort through either increased brood size or altering 
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the timing of breeding to investigate reproductive costs on 
probability of second broods (Lind é n 1988, Brinkhof et   al. 
2002), adult survival (Askenmo 1979, Nilsson and Svensson 
1996, Brinkhof et   al. 2002, Koivula et   al. 2003, Golet et   al. 
2004, Santos and Nakagawa 2012) and/or future reproductive 
output (Roskaft 1985, Gustafsson and P ä rt 1990, Hanssen 
and Erikstad 2013). However, the possibility that variation 
in the timing of breeding can be partly explained by 
variation in the cost or timing of previous reproductive 
events has generally not been investigated (but see Nilsson 
and Svensson 1996, Wiggins et   al. 1998, Brinkhof et   al. 
2002). 

 In this study we specifi cally examine how the timing 
of breeding in one year infl uences the timing of breeding 
and fi tness in the following year for the northern wheatear 
 Oenanthe oenanthe : a species with direct links between 
breeding time and fi tness ( Ö berg et   al. 2014). For this we 
compared three categories of female wheatears that diff ered 
in their timing of breeding termination in year 1 (successful 
breeders [reference group], failed breeders that did not ren-
est [early], and females that renested [late]) and returned to 
breed in year 2. First, we considered that if reproductive costs 
are expressed through changes in the timing of breeding in 
year 2 because of changes in eff ort or the timing of breeding 
in year 1, we expect that in comparison to successful breed-
ers, renesters arrive and/or breed later and failed breeders 
arrive and/or breed earlier in year 2. Second, we examined 
diff erences in fl edgling production between the groups in 
year 2 and considered two possibilities about how between-
year reproductive costs could be expressed in the number of 
off spring fl edged: 1) independent of the timing of breed-
ing  –  i.e. once diff erences in the timing of breeding in year 
2 were controlled for, females still showed between-group 
diff erences in fl edgling production, and/or 2) dependent on 
the timing of breeding  –  i.e. between-group diff erences in 
fl edgling production resulted from diff erences in the timing 
of breeding in year 2 and the subsequent change in fi tness 
related to the seasonal fi tness decline. Th ird, we considered 
costs of timing and eff ort of breeding on adult survival 
(Williams 1966) by comparing return rates for successful 
breeders and renesters (although not failed breeders due to 
confounding factors, see Methods). Finally, we considered 
the possibility that females that renested in year 1 already 
exhibited costs of reproduction in this fi rst year during the 
replacement brood; thus we examined whether within-
season reproductive costs were expressed in the second brood 
in year 1 by comparing reproductive output for these sec-
ond attempts to what would be expected for a fi rst breeding 
attempt at the same time of season (i.e. accounting for the 
seasonal decline in fi tness;  Ö berg et   al. 2014). A relatively 
lower reproductive output of second broods, would suggest 
a cost of reproduction from the fi rst attempt.  

 Material and methods  

 Study system 

 Th e northern wheatear (hereafter  ‘ wheatear ’ ) is an insec-
tivorous, long-distance migratory passerine that breeds in 
Europe, Asia and North America and overwinters in sub-
Saharan Africa. In our Swedish study area, wheatears build 

their nests in stone piles (80%), or under roof tiles of farm 
buildings ( Ö berg et   al. 2014). Breeding pairs usually produce 
one brood per season, although second breeding attempts may 
occur after failed fi rst attempts ( ∼ 20% of all failed attempts) 
or after successful breeding ( ∼ 5% of all successful attempts). 
Nest predation is the major cause of breeding failure in this 
system ( �    85% of all failures, P ä rt 2001a). Wheatears are 
ground-foraging birds; thus, vegetation height (fi eld layer 
height; FLH) is an important determinant of habitat quality 
(Conder 1989), with short or sparse vegetation related to 
higher prey availability (Tye 1992), higher reproductive suc-
cess (P ä rt 2001b,  Ö berg et   al. 2014), higher adult survival 
(Low et   al. 2010) and lower nest predation risk (P ä rt 2001a, 
Schneider et   al. 2012) than habitats characterised by tall and 
dense ground vegetation. 

 Th e study area (60 km 2 ) is in a heterogeneous agricultural 
landscape, southeast of Uppsala in southern central Sweden 
(59 ° 50 ′ N, 17 ° 50 ′ E). Th e area consists of a mixture of 
forest, crop fi elds, pastures, farmyards and villages where 
250 territory sites have been occupied by wheatears at least 
once since 1993 when the yearly monitoring started, and 
100 – 180 pairs breed in the area each year. Each year we 
uniquely colour-ringed chicks from  ∼ 90% of all successful 
nests, as well as a proportion of unmarked adults, so that, on 
average,  ∼ 60% of breeding adults were marked by the end 
of each breeding season. Adults were aged as fi rst-year breed-
ers or older based on plumage characteristics (P ä rt 2001a). 
Territories were regularly visited (every 1 – 5 d) from arrival 
in early April throughout the breeding season (to the end of 
June). Detailed data on demographic parameters were 
collected from a smaller (40 km 2 , 165 territory sites, 80 – 90 
pairs yr  ‒ 1 ) central part of the study area that was visited every 
1 – 3 d. Th e surrounding 2 km-wide outer part of the study 
area was used as a buff er zone for adult dispersal from the 
central area and thus visited less frequently (every 3 – 5 d). 
We did, however, collect data on site occupancy, identity of 
breeding individuals and nesting success in this area. Return 
rates are likely to refl ect true survival rates because adult 
wheatears in our study area only disperse short distances 
between years (median    �    350 m, 90% quantile    �    1500 m; 
Arlt and P ä rt 2008, Arlt et   al. 2008). Furthermore, outside 
the 2 km buff er zone there was little suitable breeding habitat 
for wheatears for at least 2 km. Th us, from our dispersal data 
we estimate that the number of permanently emigrating adults 
was negligible (Low et   al. 2010). Also, because wheatears move 
even shorter distances for renesting attempts, we were unlikely 
to have misclassifi ed any renesting birds as  ‘ failed ’ .   

 Breeding time categories 

 We divided breeding birds for which we had breeding 
records in two consecutive years (hereafter year 1 and year 2) 
into three categories that varied in their reproductive eff ort 
and timing of breeding termination; 1)  ‘ successful ’  females 
successfully fl edged chicks with their fi rst and only breed-
ing attempt in year 1. Th ese birds were used as a reference 
group in terms of amount of reproductive eff ort and tim-
ing of breeding termination (mean  �  SE relative to 1 May: 
day 57.6    �    0.22) compared to the other two groups. Young 
were assumed to be independent at  ∼ 25 d old ( Ö berg et   al. 
2015). 2)  ‘ Failed ’  females lost their brood in the fi rst week 
after hatching and did not renest. Th us, these birds invested 
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less, and terminated their breeding at an earlier time than 
the successful group (day 48.8    �    0.84). 3) Th e  ‘ renest ’  group 
consisted of females that failed early with their fi rst attempt, 
often during incubation, and laid a replacement clutch, typi-
cally within 2 – 4 weeks and were subsequently successful; 
thus renesters invested more eff ort than failed females and 
terminated their breeding at a time later than other females 
(day 78.8    �    1.67).   

 Between season costs of reproduction 

 We measured costs of reproduction in terms of eff ects on 
arrival time, timing of breeding and the arrival-breeding 
interval in year 2. Arrival time to the breeding grounds 
was defi ned as the date (relative to 1 May) an individual 
was fi rst observed in the study area. We included observa-
tions of arrival during years (1993 – 1998 and 2002 – 2012) 
and areas when monitoring was every 1 – 3 d (mean    �    2.2) 
during the arrival period (mid April to 25 May). Observa-
tions were excluded if the fi rst observation of an individual 
was    �    7 d before its egg-laying date as this is the minimum 
time required to build the nest and start egg laying (Conder 
1989, Moreno 1989). Timing of breeding was defi ned as the 
date the fi rst egg was laid (egg-laying date  ‘ ELD ’ , relative to 
1 May), and was estimated for all breeding attempts based 
on chick hatching dates (88% of all breeding attempts) or 
observations of breeding behaviour (12% of all breeding 
attempts,  Ö berg et   al. 2014). We only used dates for fi rst 
breeding attempts in year 2 (ELD    �    31,  Ö berg et   al. 2014) 
because we were primarily interested in the eff ects on the 
timing of the initial breeding attempt. Th e arrival-breeding 
interval was the number of days between arrival and egg 
laying. We were interested in the arrival-breeding interval 
because individual condition infl uences the recovery time 
from migration to the start of breeding (shown for capital 
breeders, B ê ty et   al. 2003), which could be one way repro-
ductive costs are expressed. 

 We also considered costs of reproduction in terms of the 
number of chicks fl edged in year 2 relative to the timing 
of breeding by considering: 1) that the additional reproduc-
tive eff ort or late breeding in year 1 may deplete internal 
resources available for breeding in year 2, independent of 
the timing of breeding (i.e. breeding output is lower than 
expected in year 2), and/or 2) that any diff erences between 
groups in their reproductive output in year 2 was simply a 
result of diff erences in the timing of breeding and the related 
seasonal reproductive decline ( Ö berg et   al. 2014).   

 Adult return rates 

 We compared return rates for successful breeders and ren-
esters to look for potential trade-off s between reproductive 
timing/eff ort and survival. Return rates are unlikely to be 
systematically biased for the diff erent groups because: 1) 
between-year resighting rates in this population are very 
high and not infl uenced by factors that might diff er between 
the groups (FLH, egg-laying date or female age, Low et   al. 
2010,  Ö berg et   al. 2014), and 2) between-year adult disper-
sal has little eff ect on  ‘ true ’  adult survival estimates in this 
population (for details see Arlt and P ä rt 2008, Arlt et   al. 
2008, Low et   al. 2010). Because female wheatears are often 
killed on the nest during nest failure predation events (Low 

et   al. 2010), we could only meaningfully compare the return 
rates of females that were successful with their fi rst attempt 
(n    �    789) to those that renested and were successful with 
their second attempt (n    �    56). Including any birds whose 
nests failed and did not renest in the same year would 
confound over-winter survival by direct on-nest predation.   

 Within season costs of reproduction 

 Although it is clear that failed birds invest less in reproduc-
tion than successful females and renesters, it is not clear 
whether renesters invest more than successful birds. Th is is 
because renesters may express costs of reproduction in their 
renesting attempt in year 1, meaning they reduce their repro-
ductive output in the second brood to compensate for the 
eff ort expended in their fi rst. If so, renesters could invest 
similar (or even less) in reproduction than successful birds in 
year 1, with implications for the interpretation of between-
group diff erences in year 2. Th us, we compared reproduc-
tive output of the renesters ’  second brood to the expected 
reproductive output of a bird attempting its fi rst breeding at 
the same time of season while accounting for other factors 
known to aff ect reproductive output in this system: female 
age and territory quality (P ä rt 2001a, b, Arlt and P ä rt 2007, 
Low et   al. 2010,  Ö berg et   al. 2014).   

 Statistical analysis  

 Between-season effects 
 We examined group-level diff erences for the relative change 
in arrival (n successful     �    132, n renest     �    12, n failed    �     12), egg-laying 
date (n successful     �    275, n renest     �    13, n failed    �     20) and the arrival-
breeding interval (n successful     �    174, n renest     �    12, n failed    �     12). 
For this we included factors from the fi rst year ’ s breeding 
attempt known to infl uence reproductive eff ort and/or tim-
ing (FLH and female age (fi rst-year versus older); P ä rt 2001a, 
 Ö berg et   al. 2014). In addition, because we were investigat-
ing the relative change in the timing of arrival and breeding, 
we needed to account for the ability of a bird to advance or 
delay from one season to the next. A bird that breeds late 
in one year, by chance will tend to breed earlier in another 
year, and vice versa (regression to the mean, Galton 1886). 
Th us, in all reproductive timing models we included a stan-
dardised date expressing the deviation of each individual 
from the population mean in the fi rst year (see also Barnett 
et   al. 2005). For the arrival-breeding interval, we included 
the arrival date in year 2, to account for the possibility that 
later arriving individuals will be under greater time pressure 
to begin breeding and so the arrival-breeding interval will be 
a function of arrival date (Potti 1999, B ê ty et   al. 2003). 

 We examined the group-level diff erences in the 
number of fl edglings produced in year 2 (n successful     �    217, 
n renest     �    16, n failed    �     20). Th is was modelled as a zero-infl ated 
Poisson (logit link binomial and log link Poisson) with fac-
tors known to infl uence nesting success (egg-laying date and 
FLH) included in the binomial component and factors that 
infl uence fl edging success (egg-laying date, FLH and female 
age,  Ö berg et   al. 2014) in the Poisson. From these model 
estimates we produced two sets of predictions. First, we 
examined the group-level predictions for fl edgling produc-
tion if egg-laying dates for each group were the same in 
the second year (i.e. searching for evidence of a cost of 
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reproduction independent of the timing of breeding). 
Second, we compared fl edgling production for each group 
when the diff erent group-level egg-laying dates were included 
in the prediction of fl edgling production (i.e. we allowed 
diff erences in the seasonal timing of breeding to infl uence 
reproductive output).   

 Within-season effects 
 We compared reproductive fi tness components (clutch size, 
number of fl edglings, and number of recruits per nest) for 
birds that undertook a single breeding attempt (i.e. success-
ful or failed; n    �    362) to the second breeding attempt of ren-
esters (n    �    16). Because the birds in our system demonstrate 
a strong seasonal reproductive decline in fi tness ( Ö berg et   al. 
2014), and because second attempts were initiated later in 
the season, we directly compared model predictions from 
the time period where fi rst and second attempts overlapped 
(i.e. days 20 – 30; where 1    �    1 May). Models included fac-
tors known to infl uence reproductive output in this system 
( Ö berg et   al. 2014): egg laying date, FLH (short vs tall) and 
female age (fi rst year vs older); the fl edging and recruit mod-
els also included nest location (roof vs ground nests). Clutch 
size and recruit models used a log-link (Poisson distribution) 
and the number fl edged was modelled as a zero-infl ated Pois-
son (combined binomial [logit link] and Poisson [log link] 
distribution model) to account for excess zeros resulting 
from predation-induced nest failure ( Ö berg et   al. 2014). All 
models fi tted year as a random eff ect on the intercept. 

 We used a Bayesian framework for generating estimates 
from generalized linear mixed models (using the Gibb ’ s 
sampler  ‘ JAGS ’  [Plummer 2003] called from R [R Develop-
ment Core Team]). Th is approach allowed us to directly cal-
culate probabilities for between-group diff erences (reported 
as  Pr (group comparison)    �    %) from the posterior distribu-
tions for these group diff erences. For all models we used 
100 000 draws without thinning, a burn-in of 10 000 and 
ran 3 chains with diff erent initial values to ensure conver-
gence (convergence was checked by visual inspection of 
the chains and the Gelman and Rubin diagnostic). All priors 
were  ‘ non-informative ’  for analyses of the timing of breeding 
and reproductive output (model parameter beta estimates 
dnorm  ∼  (0, 0.0001), for precision (tau) estimates dgamma 
 ∼  (0.001, 0.001), for BUGS-code of all models see Supple-
mentary material Appendix 1). For analyses of female return 
rates we used  ‘ non-informative ’  priors for the between group 
comparison. 

 Data available from the Dryad Digital Repository:  � http://
dx.doi.org/10.5061/dryad.1f240 �  (Low et   al. 2015).     

 Results  

 Between-season effects 

 Birds that invested less in reproduction and terminated 
breeding earlier in year 1 (failed breeders) tended to arrive 
earlier, had a shorter arrival-breeding interval, began egg 
laying earlier in year 2 and thus produced more fl edglings 
when compared to birds in the  ‘ successful ’  or  ‘ renest ’  groups 
(Fig. 1; Table 1). Birds that invested more in breeding and 
terminated breeding later (renesters) in year 1 tended to 
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  Figure 1.     Relative diff erences in the timing of arrival to the breeding 
grounds, interval between arrival and egg laying, initiation of 
egg laying and number of chicks fl edged ( ‘ Fledglings  �  date ’  in 
Table 1) for fi rst breeding attempts in year 2 in the three groups: 
 ‘ successful ’   –  fi lled black circles;  ‘ failed ’   –  open circles;  ‘ renest ’   –  
open squares, with the  ‘ successful ’  group as the reference group. 
Ranges show the 95% credible intervals and the central tendency 
(median) from the posterior distribution of the models ’  predictions. 
Probabilities of between-group diff erences are given in Table 1.  

arrive later than other birds in year 2; however, there was 
no clear evidence that this resulted in a later date of egg-
laying in comparison to  ‘ successful ’  birds (Fig. 1; Table 1). 
Evidence for a between-group diff erence in the number of 
chicks fl edged in year 2 only had reasonable support if the 
between-group diff erences in breeding time were included 
in the predictions of fl edgling output (Table 1; Fig. 1). Th is 
indicates that between-group diff erences in fl edgling output 
were largely driven by diff erences in the timing of breed-
ing in year 2. Th ere was a tendency that renesters had lower 
adult female survival between years 1 and 2 compared to 
breeders of the successful group (Table 1).   

 Within-season effects 

 Renesters generally laid fewer eggs during their second breed-
ing attempt compared to their fi rst (fi rst: 6.5    �    0.19, second: 
5.6    �    0.29 eggs); however, the decline in clutch size, number 
of fl edglings and recruits per nest between breeding attempts 
followed the expected seasonal decline in reproduction. Th is 
can be clearly seen by comparing the overlap between late 
fi rst broods and early second broods (days 20 – 30; Fig. 2).    

 Discussion 

 Despite breeding time being generally acknowledged as 
an important factor infl uencing fi tness in seasonal breed-
ing organisms, studies investigating between-year eff ects of 
reproductive costs often neglect the role of changes in the 
timing of breeding in the following season and its impact 
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  Table 1. Estimated median and 95% credible interval (CI) range for female reproductive and survival parameters in year 2 for the three 
groups. Group differences are sampled directly from the posterior distribution of the difference between the two groups and show: 1) the 
probability that one group mean is smaller than another (where group1    �    group2    �    0.50 indicates identical group means), and 2) the mean, 
standard deviation (SD) and 95% CIs for this posterior distribution of the difference between the two groups (i.e. effect size).  ‘ Fledglings only ’  
assumes groups do not differ in their breeding time in year 2,  ‘ Fledglings  �  date ’  includes the different group-level breeding times in the 
estimated number of fl edglings per nest.  

Groups
Group median 

(95% CIs)
Group difference 

probability
Group difference 

mean  �  SD (95% CIs)

Arrival
successful  ‒ 4.82 ( ‒ 6.5,  ‒ 2.8) failed  �  success    �    0.87 2.2    �    1.9 ( ‒ 1.7, 6.1)
renest  ‒ 1.84 ( ‒ 5.7, 2.1) success  �  renest    �    0.94 2.9    �    1.8 ( ‒ 0.7, 6.6)
failed  ‒ 7.02 ( ‒ 11.1,  ‒ 2.9) failed  �  renest    �    0.97 5.2    �    2.6 (0.1, 10.3)

Arrival-breeding
successful 17.6 (16.2, 19.1) failed  �  success    �    0.98 3.1    �    1.5 (0.7, 6.1)
renest 18.7 (15.5, 21.8) success  �  renest    �    0.75 1.0    �    1.5 ( ‒ 4.0, 2.0)
failed 14.4 (11.3, 17.7) failed  �  renest    �    0.97 4.1    �    2.1 ( ‒ 0.05, 8.3)

Egg laying
successful 13.7 (11.9, 15.6) failed  �  success    �    0.99 3.3    �    1.2 (0.8, 5.8)
renest 14.8 (11.4, 18.2) success  �  renest    �    0.75 1.1    �    1.5 ( ‒ 4.0, 2.0)
failed 10.4 (7.5, 13.3) failed  �  renest    �    0.99 4.4    �    1.9 (0.5, 8.2)

Fledglings only
successful 4.0 (3.5, 4.5) success  �  failed    �    0.55 0.1    �    0.7 ( ‒ 1.5, 1.4)
renest 3.3 (1.9, 4.8) renest  �  success    �    0.80 0.7    �    0.8 ( ‒ 0.9, 2.1)
failed 4.1 (2.7, 5.6) renest  �  failed    �    0.77 0.8    �    1.0 ( ‒ 1.3, 2.7)

Fledglings  �  date
successful 4.0 (3.5, 4.5) success  �  failed    �    0.76 0.5    �    0.7 ( ‒ 2.0, 0.9)
renest 3.2 (1.8, 4.8) renest  �  success    �    0.83 0.8    �    0.7 ( ‒ 0.8, 2.2)
failed 4.5 (3.2, 6.0) renest  �  failed    �    0.90 1.3    �    1.0 ( ‒ 0.8, 3.3)

Return rates
successful 0.45 (0.41, 0.49)
renest 0.39 (0.27, 0.52) renest  �  success    �    0.83 0.06    �    0.06 ( ‒ 0.1, 0.2)
failed  – 
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  Figure 2.     Reproductive output relative to egg-laying date (ELD 
1    �    1 May) for birds undertaking their fi rst breeding attempt in a 
season (black: ELD range from 0 – 30) and those undertaking their 
second attempt (grey: ELD range 20 – 50). Th e overlap between 
groups occurs between days 20 and 30 and shows no clear evidence 
of the reproductive output of second breeding attempts being 
smaller than that predicted by a seasonal decline in reproduction 
( Pr (clutch size: second attempt  �  fi rst attempt)    �    39%;  Pr (number 
fl edglings: second attempt  �  fi rst attempt)    �    49%;  Pr (number 
recruits from successful nests: second attempt  �  fi rst attempt)    �    
80%). Shaded areas indicate the 95% credible intervals and the 
central tendency (median) from the posterior distribution of the 
models ’  predictions.  

on fi tness. In northern wheatears, females that exerted less 
breeding eff ort and terminated breeding earlier in the pre-
vious season (failed breeders), tended to arrive earlier and 
breed earlier in the following year when compared to other 
breeders. We assume that causes of failure (primarily pre-
dation) are not systematically biasing our sample; however, 
if birds that fail and do not renest are generally of lower 
quality than other birds (O ’ Brien and Dawson 2013) 
then our results are probably conservative and the cost of 
reproduction eff ects are even greater than we report here. 
Th is potential conservatism in our estimates of fi tness ben-
efi ts to failed breeders also relates to the possibility that their 
reduced breeding eff ort resulted in increased survival to the 
following year (Williams 1966), a measure we were unable 
to quantify because of on-nest predation rates confounding 
these estimates. Similarly, females spending more eff ort and 
terminating breeding later (renesters) tended to arrive later 
in the following season when compared to birds that only 
had one breeding attempt. Th us reproductive costs were 
expressed as reduced fl edgling production resulting from 
changes in the timing of breeding in year 2 and its relation-
ship to seasonal declines in reproductive output ( Ö berg 
et   al. 2014). However, as with most experimental studies of 
reproductive costs that simultaneously manipulate timing 
of breeding termination and reproductive eff ort in year 1 
(Verhulst and Nilsson 2008), we cannot separate the relative 
importance of these eff ects on the timing of reproduction 
in year 2. 

 Th ere are a number of mechanisms that could explain 
changes in the timing of breeding for birds returning in 
year 2. For migrating birds, breeding is often immediately 
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Verhulst and Nilsson 2008). Despite the lack of an experi-
mental approach to explicitly disentangle confounding 
eff ects, our interpretation is likely to be valid because of 
evidence that seasonal declines in reproductive output in this 
system mainly result from changes in environmental quality, 
rather than the quality of individuals or breeding territories 
( Ö berg et   al. 2014, P ä rt et   al. unpubl.). 

 Although the production and provisioning of depen-
dent young should be infl uenced by past reproductive eff ort 
( ‘ the cost of reproduction ’ , Williams 1966, Stearns 1992), 
the mechanism through which it operates is rarely linked to 
changing the timing of breeding. Here we show that indi-
vidual decisions on the timing of breeding are infl uenced 
by previous breeding history. Our results also imply that 
carry-over eff ects from one season to the next may infl u-
ence the decision on whether to renest after failure or not. 
Although renesting individuals have the fi tness benefi ts of 
producing a replacement clutch, it also comes at a cost of 
delayed breeding (and possibly reduced survival) in the 
following year, while failed individuals are able to arrive and 
breed earlier in the next season with the potentially higher 
fi tness it entails. Costs of producing a replacement clutch 
hence need to be weighed against benefi ts of earlier breeding 
in the next season. Our study is one of the few to highlight 
the importance of future impacts on the timing of breeding 
as a potential cost of reproduction since future reproductive 
success (including adult survival) may be highly dependent 
on the timing of breeding in seasonal systems. 
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