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Image Segmentation using Snakes and Stochastic Watershed

Abstract

The purpose of computerized image analysis is to extract meaningful information
from digital images. To be able to find interesting regions or objects in the image,
first, the image needs to be segmented. This thesis concentrates on two concepts
that are used for image segmentation: the snake and the stochastic watershed.

First, we focus on snakes, which are described by contours moving around
on the image to find boundaries of objects. Snakes usually fail when concentric
contours with similar appearance are supposed to be found successively, because it
is impossible for the snake to push off one boundary and settle at the next. This
thesis proposes the two-stage snake to overcome this problem. The two-stage snake
introduces an intermediate snake that moves away from the influence region of the
first boundary, to be able to be attracted by the second boundary. The two-stage
snake approach is illustrated on fluorescence microscopy images of compression
wood cross-sections for which previously no automated method existed.

Further, we discuss and evolve the idea of stochastic watershed, originally
a Monte Carlo approach to determine the most salient contours in the image.
This approach has room for improvement concerning runtime and suppression
of falsely enhanced boundaries. In this thesis, we propose the exact evaluation of
the stochastic watershed (ESW) and the robust stochastic watershed (RSW), which
address these two issues separately. With the ESW, we can determine the result
without any Monte Carlo simulations, but instead using graph theory. Our al-
gorithm is two orders of magnitude faster than the original approach. The RSW
uses noise to disrupt weak boundaries that are consistently found in larger areas.
It therefore improves the results for problems where objects differ in size. To
benefit from the advantages of both new methods, we merged them in the fast
robust stochastic watershed (FRSW). This FRSW uses a few realizations of the
ESW, adding noise as in the RSW. Finally, we illustrate the RSW and the FRSW to
segment in vivo confocal microscopy images of corneal endothelium. Our meth-
ods outperform the automatic segmentation algorithm in the commercial software
NAVIS.
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imal spanning tree, corneal endothelium, compression wood
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1 Introduction

1.1 Image segmentation

The key task in image analysis is to extract meaningful information from
a digital image. The area of application is diverse. Image analysis can be
used for example to classify soil in remote sensing images [26], to recognize
faces [50] using security systems or to detect tumors in medical images [4]
to diagnose and plan possible treatment.

To extract information from an image, interesting regions or objects
need to be found. For this, the image needs to be partitioned in coherent
regions. This procedure is called segmentation, and the result is a segmented
image, in which each pixel is assigned a label representing an object or the
background. Finally, we can obtain information for the labeled regions in
form of measurements.

Often correct segmentation is the most difficult task for image analysis
applications. A prerequisite for an automatic segmentation algorithm is
that it is possible to distinguish between different objects. This is provided
when the objects differ, for example, in color, size or texture. Since the
input data for the different applications differs strongly from each other,
a universal segmentation method cannot be provided. Instead, we have to
tailor a suitable procedure to every new problem. For this, a multitude
of segmentation algorithms exist which all serve different purposes and are
useful for different problems.

If the objects hold different colors, that is intensities in grey value im-
ages, various methods, as thresholding [36] or k-means [23], can be ap-
plied. If the extent is known to which pixels belonging to the same region
differ from each other, region growing methods like statistical region mer-
ging [31] are useful.

Often it is beneficial to regard the gradient magnitude, which is the dif-
ference in grey value of neighboring pixels: where the gradient magnitude
is low, neighboring pixels have similar grey values and probably belong to
the same object, and where the gradient magnitude is high, the grey value of
neighboring pixels differs strongly. In the latter case, an edge in the image
is present, which potentially belongs to the contour of an object.

There are many different ways to use the gradient to find the desired
outline, for example Canny’s edge detector [9] or graph-based methods like
Markov Random Fields [43].

In this thesis, we focus on the two segmentation approaches snakes [24]
and stochastic watersheds [1].

Snakes are useful to delineate an object when the appearance and the ap-
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proximate location of its contour are known, for example organs in medical
images [20]. Snakes are active contour models, which attempt to minimize
an energy functional that is based on attributes of the image and the expec-
ted shape of the object’s contour. For this, the snake is defined as a spline, a
piecewise polynomial function described by a set of points. It is moved over
the image to settle at the position of an energy minimum, which is ideally
the object’s contour.

The stochastic watershed approach is suitable for the segmentation of
structures composed of similarly sized regions and where an approximate
number of objects is known, for example multispectral satellite images [33].
The algorithm determines the most salient boundaries in the image using
Monte Carlo simulations, which means repeated random sampling. Sali-
ent boundaries are expected to occur more frequently during the attempts,
which are used to determine a final segmentation.

1.2 Thesis outline

Section 2 describes the basic approach of active contour models and pro-
poses the two-stage snake, a variant to find similar boundaries successively.

Section 3 explains the stochastic watershed approach and proposes sev-
eral versions of the method to overcome two problems, such as high com-
putational costs and falsely enhanced boundaries. Finally, the new methods
are compared to each other and to the original approach.

Section 4 shows an application with fluorescence microscopy images of
compression wood cross-sections. The appearance of the fibers consists of
concentric regions. To segment these regions, we apply the two-stage snake.
Afterwards, we compare the segmentation to the delineation done by two
experts.

Section 5 concentrates on the segmentation and measurement of in vivo
confocal images of human corneal endothelium. We apply two of our pro-
posed stochastic watershed approaches and show that we achieve more ac-
curate results than the commercial software NAVIS.

Finally, Section 6 draws conclusions and discusses possible future work.
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2 Segmentation using snakes

2.1 Basic approach

Active contours are methods to delineate the boundaries of objects in an
image. These approaches are especially useful when parts of the desired
boundaries are missing or otherwise difficult to detect.

The two main active contour methods are level sets [35] and snakes [24].
The level set approach is based on the level set function, which is modified
by applied forces. The zero level set, the set of points where the function
crosses the xy-plane, is the outline of the desired object(s). This approach
has the feature that contours can split and merge during the process. It is
often used to track moving objects [37].

A snake is implemented as the spline v(s) = [x(s), y(s)], where x(s) and
y(s) are the xy-coordinates along the contour s ∈ [0,1]. Often the snake is
described as a closed contour, since it ought to find the outline of an object.
This means v(0) = v(1), the position of the start and the end point of the
snake are the same.

The snake approach is suitable if the appearance and the approximate
location of the desired contour are known. Snakes are less complex and
easier to implement than level sets. Since in the application presented in
Papers I and II it is not necessary to split or merge contours, we were able
to use the simpler snake approach.

After initializing the snake as close as possible to the expected location
of the targeted contour, the snake is moved around to gradually minimize
the energy functional Esnake, defined as

Esnake = Eint+ Eext, (1)

where Eint is an internal energy that defines the favored shape of the snake,
for example short and straight, and Eext is an external energy that is based
on the attributes of the image and enables the snake to find the outline of
the desired object.

The internal energy Eint is defined as

Eint = α|
dv

ds
|2+β|

d2v

ds2
|2, (2)

where the parameters α and β regulate elasticity and stiffness, respectively.
When increasing α, the first term gains relevance. This means that the snake
prefers to be short, acts more like a rubber band around an object and does
not necessary delineate concave areas well. When increasing β, the second
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Figure 1: Example for snakes when α = 1 and β= 0 (left), and when α = 0
and β= 1 (right).

term gains relevance, which makes the snake smooth and avoids the forma-
tion of sharp edges, see Fig. 1.

The external energy is traditionally based on the gradient magnitude of
the image I (x, y), as

Eext =−|∇I (x, y)|2. (3)

This makes the snake settle in regions with high gradient, that is boundaries.
The forces that are applied to the snake during the minimization process

are the derivatives of the present energies:

~Fint =−
∇Eint

||∇Eint||
(4)

and
~Fext =−

∇Eext

||∇Eext||
. (5)

The gradient vector flow (GVF) [49] produces an alternative external
force that is more suitable if the snake is initialized far away of the desired
contour or the contour has concave sections. A GVF field is created that
applies a constant (normalized) force on each point of the image. To de-
termine the GVF field, we need to find the force ~FGVF = (UGVF,VGVF)

T

that minimizes the energy functional

EGVF =
∫

µ(|∇UGVF|
2+ |∇VGVF|

2)+ |∇Eext|
2|~FGVF+∇Eext|dx, (6)

where µ is to balance the influence of the green and blue terms. The blue
term in the energy functional EGVF ensures that the direction of the force is
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equal to the direction of the earlier defined external force ~Fext in regions of
high gradient, which means close to edges. In regions of low gradient, ~Fext
contains too little information and is not able to push the snake towards
desired contours. The green term in the function for EGVF makes these
regions smooth, which means that the information of the boundaries of the
regions is spread over the whole region. The result is that boundaries have
a larger influence region and the snake will be attracted to them even when
it is initialized far away. Additionally, the snake improves delineating the
contour of an object, if it has a concave outline.

If only the internal force is applied to the snake and the snake is ini-
tialized inside the object, the contour of the model shrinks and finally col-
lapses. To make sure that the snake is pushed outwards to reach the desired
boundary, an additional force, called balloon force, is often used. A small
force is applied orthogonal to the outline of the snake. It is added to ~Fext,
alternatively to ~FGVF, as

~Fext+balloon = c~Fext+cp~n(s). (7)

The parameter c is the weighting of the external force and cp is the weight-
ing of the balloon force.

Since the snake approach builds on energy minimization using gradient
descent, there might not be an optimal final position for the snake and after
a while the snake might oscillate between two locations. One can define an
ε that determines a minimal energy left in the system or a maximal distance
moved within the last steps. But this parameter is not always easy to define
and when the snake overshoots the desired boundary and does not settle at
all, it is anyway necessary to have a maximal number of iterations. There-
fore, sometimes it is easier to have only a maximal number of iterations as
stopping criterion.

2.2 Two-stage snakes

When using snakes to successively find boundaries of concentric regions,
we face a problem. If the desired boundaries have similar conditions, for
example, are transitions from darker to lighter regions, it is impossible for
the snake to push off the first boundary and then settle at the second. This
is because the same forces that make the snake move away from the first
boundary, prohibits stopping the ongoing movement at the second bound-
ary and instead pushes the snake further away.

To overcome this problem, we introduced an intermediate step in Pa-
per I: after the snake traced the outline of the first boundary, we apply a
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Figure 2: Illustration of two-stage snake: Initialization (white line), inter-
mediate steps (light blue line) and final segmentation (dark blue line).

new external force to the snake (with an additional balloon force). We call
this new force complementary force. The corresponding energy describes a
minimum between the two desired boundaries, as for example −Fext.

The result of applying the complementary force is that the snake moves
outwards (due to the balloon force) to settle at a position between the two
desired boundaries. From this new position, the initial external force can be
applied again, so the snake is attracted by the second, the outer boundary,
see Fig. 2. This approach has the advantage that no additional parameters
are needed. Only the complementary force needs to be determined.

A prerequisite for this new force is that the complementary energy has
its minimum between the desired contours. Otherwise the snake passes the
contour during the intermediate step and then cannot retract in the final
step, due to the added balloon force.
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3 Segmentation using stochastic watershed

Figure 3: Endothelial cell image (left) and representation as geodesic land-
scape (right).

3.1 Basic watershed methods

In the watershed segmentation algorithms [6], we regard the image as a geo-
desic landscape. Low gray level values correspond to valleys and high val-
ues to hills, see Fig. 3. When the water level raises, each local minimum
functions as water source, since water emerges from it. The landscape is
subsequently flooded. Eventually, the water of two minima meet at the
ridgeline between their catchment basins, where now a watershed line is
placed. Hence, the watershed segmentation separates regions that yield pre-
cisely one minimum.

Digital images, as e.g. microscopy images, usually suffer from noise,
so that the desired region often contains more than one local minimum.
Therefore, the basic watershed approach often yields an over-segmented res-
ult, see Fig. 4.

To reduce the number of segmented regions, we can use the H-minima
transform, see Fig. 4. Here, all minima that have a depth less than h are sup-
pressed and therefore are not used as sources during the immersion process.
The idea to remove the most shallow minima is based on the assumption
that these minima are least important. But due to non-uniform lighting
conditions or different amounts of contrast in the image, this method alone
is sometimes not sufficient to give satisfactory segmentation results.

In case the rough positions of the desired regions are known, seeded wa-
tershed can be used, see Fig. 4. First, we set a seed point for each region
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Figure 4: Segmentation results of example image in Fig. 3 using different
watershed approaches: watershed segmentation (left), watershed segmenta-
tion using H-minima (middle), seeded watershed segmentation (right). Dots
show the locations of the seed points.

manually or automatically. These seed points then function as sources for
the flooding operation described above, whereas the local minima are ig-
nored. However, positioning the seed points is not a trivial task. Using a
manual approach is not feasible for many applications, because it is too time
consuming. And finding the regions automatically transforms the segment-
ation task into a problem of object detection.

Later, we concentrate on more elaborate watershed methods, but first,
we explain how a basic watershed segmentation can be obtained.

3.2 Concepts to determine a watershed segmentation

There are several algorithms to obtain a watershed segmentation of a given
image. In this section, we first regard two attempts that simulate the idea
of flooding a landscape, and later discuss the possibility of transferring the
problem to graph theory.

The concept of raising the water level of the image (immersion simula-
tion), is mimicked by an algorithm published by Vincent and Soille [46].
Here, we describe a variation of this method.

First, we sort all pixels in the image according to their gray level. Then,
we regard the pixel v with the smallest value and remove it from the sorted
list. To determine if v belongs to one region or to a watershed line, we
regard the following three cases: 1) If none of v’s neighbors is labeled, create
a new label for v. 2) If there exists only one label in the neighborhood, we
label v with that label. 3) If the neighborhood contains more labels, we
mark v as watershed pixel. We proceed with the algorithm by continuing
processing the pixels in the sorted list, until the list is empty and all pixels
are either labeled or marked as watershed pixels.

Another more common approach is the flooding simulation introduced
by Beucher and Meyer [7]. It is based on the idea that the water emits from
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water sources, which are either all local minima in the image (standard wa-
tershed) or a set of chosen seed points (seeded watershed). For simplifica-
tions, we call these water sources markers.

As a first step, we label all markers individually. Next, we add all neigh-
boring pixels of the initial markers in a priority queue, where the priority
is the gray level value of the pixel. Now we visit and extract the pixel v with
the highest priority (lowest gray value) from the queue. If all labeled neigh-
bors of v have the same label, v is also labeled with their label. If the labeled
neighbors have different labels, v is marked as a watershed pixel. Pixels of
the neighborhood that have not been visited yet are now inserted in the pri-
ority queue. We continue to process the pixels in the priority queue until
the queue is empty and all pixels in the image are visited.

A digital image can be transferred to a edge-weighted graph G, where
vertices V correspond to the pixels in the image and the weights of the
edges E to the similarity of the pixels, e.g. the difference in grey values. In
this representation, the watershed segmentation can be solved by watershed
cuts, introduced by Cousty et. al [13].

Where the watershed in an image is defined by pixels that form the
boundaries between the regions, a watershed cut is a set SG of edges that,
when removed, splits the graph G into two or more disjoint connected com-
ponents (representing the found regions).

To simplify the problem, we only regard the minimal spanning tree
(MST) T . The MST is a subgraph of G that connects all vertices V and
in addition, has a minimal total edge weight.

The result of the watershed cut algorithm is a minimal spanning forest
(MSF) GF of the original graph, where each connected component contains
exactly one marker. This MSF is not only a subgraph of G, but also a sub-
graph of T . Since the regions of the watershed segmentation are defined by
markers, the watershed cut SG of the complete graph corresponds to water-
shed cut ST of the MST. The MSF GF can be computed by any algorithm
creating an MST T with some additional conditions [28].

There are two basic algorithms that are often used to create the MST
of a graph. They were introduced by Kruskal [25] and Prim [39], respect-
ively. When inspecting the procedure of these two algorithms, one finds
correlations to the two concepts of computing a watershed segmentation,
described above. Kruskal’s approach functions similar to the immersion
principle and Prim’s algorithm to the flooding simulation method.

When producing the MSF instead of the MST, we need to alter the ori-
ginal algorithms slightly: to ensure that each connected component con-
tains exactly one marker, we do not include edges of the MST that establish
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a path between markers in the resulting graph.
When creating an MSF using an algorithm based on Kruskal’s idea, we

proceed as follows: first, we set all vertices as unlabeled and sort all edges
according to their weights. Next, we regard the edge evw with the smallest
weight (connecting v and w) and remove it from the sorted list. To determ-
ine if evw belongs to the MSF, we consider the following three cases: 1) If
both vertices v and w are not labeled, create one new label for both vertices
and include evw to the MSF. 2) If only one vertex is labeled, label the other
vertex with the same label and include evw to the MSF. 3) If both vertices
v and w are labeled, do not include evw in the MSF. Including this edge
would either form a cycle in the graph or connect components with dif-
ferent local minima. Afterwards, continue proceeding with the next edge
from the sorted list until all edges have been processed and the list is empty.

Contrary to Kruskal’s method, with Prim’s algorithm we can set mark-
ers from where the regions expand. To create an MSF with a Prim-like
approach, we first label all markers with an individual label. Next, we add
all edges adjacent to the markers in a priority queue, where the priority is
the weight of the edges. Then, we visit and extract the edge evw with the
highest priority (lowest weight) from the queue. If only one vertex, v or w,
is labeled, we label the other vertex with the same label and include evw to
the MSF. We also enqueue the edges connected to the newly labeled vertex
in the priority queue. But if both v and w are already labeled, we do not
include evw in the MSF. Including this edge would either form a cycle to the
graph or connect components that contain a marker each. Now, we proceed
with the next edge from the priority queue until all edges have been visited
and the queue is empty.

The labeled components in both methods now represent the segmented
regions. To create a watershed line between the regions in the image repres-
entation, we can, for example, mark pixels that are neighbors to pixels with
a different label as watershed pixels. As a result, the watershed lines are two
pixels thick.

3.3 Stochastic watershed

The ideal segmentation algorithm produces a perfect segmentation result
without the user providing any previous knowledge. Unfortunately, this is
not a realistic vision, since it has to be defined how the important object(s)
can be distinguished from the rest of the image.

More realistic is to develop an algorithm with a small number of para-
meters, which also are intuitive to select. The stochastic watershed, which
was proposed by Angulo and Jeulin [1], is moving in this direction.
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Figure 5: Gradient magnitude with seed points placed in different regions
(top) and segmentation results (bottom).

This algorithm has three parameters: the number of seed points N , the
number of realizations M and the number of most significant regions R.
The number of seed points N and the number of most significant regions
R are directly related to the number of objects that ought to be segmented.
The number of realizations M defines how precise the segmentation result
is in relation to the time spent on the calculations.

The stochastic watershed utilizes a property of the seeded watershed,
which is that the algorithm is very insensitive to the placement of seed
points within a region: Considering two neighboring regions, their seed
points can move large distances in each respective region and the result still
yields the same segmentation line. This is due to the order in which the
pixels are processed, see Fig. 5.

The stochastic watershed uses Monte Carlo simulations to find salient
boundaries. Here, seeded watershed with randomly placed seed points is ap-
plied repeatedly to the image. Whether the boundary between two neigh-
boring regions will be detected depends on the random placement of the
seed points in these regions. There are two cases: 1) Each of the regions
contain (at least) one seed point, or 2) only one or none of the regions con-
tain seed points.

In the first case, the boundary between the regions is found, due to the
property of the seeded watershed, described above. In the second case, the
boundary between the two regions will normally not be found at all or only
found as fragments, see Fig. 6. (Sometimes, when seed points in other parts

21



Figure 6: Gradient magnitude with seed points placed in the same region
(top) and segmentation results (bottom).

of the image are placed advantageously, the boundary can be found anyway,
but for now, we refrain from these cases.)

The probability is high that salient boundaries are found when applying
seeded watershed with randomly placed seed points. When this step is pro-
ceeded repeatedly, a probability density function (PDF) of the boundaries
can be determined.

In order to obtain a segmentation using stochastic watershed, Angulo
and Jeulin [1] create M realizations of seeded watershed with N randomly
placed seed points. They then construct the PDF combining the M seg-
mentations using the Parzen window method. In our versions of the al-
gorithm, we simply add the segmentation results to create the PDF.

Finally, Angulo and Jeulin segment the PDF with volumic watershed
for defining the R most significant regions. This last step of segmenting the
PDF into R regions, we changed in our versions to a standard watershed
segmentation with H-minima transform, where all minima are erased that
are smaller than a threshold h. This seems to be more fitting to many ap-
plications, because we do not persist in having exactly R regions in the final
segmentation. Especially when the image contains a multitude of objects,
the user is often only able to provide a rough estimate for the number of
desired objects. Even though the parameter h in the H-minima transform is
barely intuitive to choose, this approach often yields a better segmentation
result. As described before, the H-minima assumes that the most shallow
minima are the least important. Since we are operating on an image repres-
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enting the significance of boundaries in the image, this assumption is true
and therefore the H-minima transform is suitable to apply.

In the remainder of this thesis, when we refer to the stochastic water-
shed segmentation algorithm, we mean a version of the original method
where we determine the PDF by simply adding the M seeded watershed
segmentations and create the final result using the standard watershed with
H-minima transform.

3.4 Parameters

In Paper III, we focused on the first part of the stochastic watershed, where
the PDF is created, and studied the relation between the algorithm’s para-
meter N and the actual number of regions in the image. We discovered that
the value of N has a great influence of how many realizations of the seeded
watershed are needed to make a good segmentation of the PDF possible.

To show this, we created three synthetic images with different num-
bers of equally sized regions. With these images and different values for N ,
we determined the minimal number of realizations Mmin to create a PDF,
where the original boundaries can be distinguished from the background
through thresholding. From the results, we concluded that the algorithm
is not very sensitive to the value of N , but that when choosing N close to
the actual number of regions in the image, Mmin is lowest. This means that
the distinction between boundaries and background is possible with fewer
realizations.

The disparity of boundary and background values in the PDF grows
over time (according to our experiments). Hence, the smaller Mmin is, the
easier it is to achieve a good segmentation of the final PDF (after M realiza-
tions).

Even though we noted that the stochastic watershed is not very sensitive
to the value of N , it cannot be set arbitrarily, but needs to be chosen for the
application by visual inspection or training. If N is set too small, small de-
tails in the image can be lost, and by choosing it too large, weak boundaries
could be found repeatedly, which results in an over-segmentation.

The parameters M and h are dependent on how difficult it is to segment
the desired objects in the image. If it is simple to detect the boundaries,
a suitable segmentation can be determined after only a few realizations of
the seeded watershed. Additionally, the algorithm is not that sensitive to
the threshold h, due to the disparity of boundary and background values
in the PDF mentioned before. However, if the boundaries are unclear, we
need more realizations to determine a reliable result. Because of this, the
value for M is often set to 50 or 100 [16, 34]. Additionally, the algorithm
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Figure 7: Original image (left) and edge-weighted graph G (right). The value
of the edge weights is the absolute difference of the gray value of the neigh-
boring pixels connected by the edge.

Figure 8: MST T (left) and forest G′ (right). To construct G′ all edges with
weights greater or equal to the weight of eAB are removed from T . The trees
TA and TB are presented in red and blue, respectively.

gets more sensitive to h, because real boundaries and falsely enhanced lines
might not be separable in the PDF.

3.5 Exact evaluation of the stochastic watershed

Due to the multiple realizations of seeded watershed that are needed to ob-
tain a useful estimate of the PDF, the SW is not very fast. For this, Meyer
and Stawiaski [29]worked on a way to determine the PDF exactly, without
Monte Carlo simulations. Malmberg and Luengo Hendriks [27] extended
this approach and presented an efficient algorithm to calculate the exact
PDF.

Meyer and Stawiaski [29] developed a formula to calculate the probab-
ility that neighboring pixels are in different regions, when using randomly
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placed seed points. For this, we regard the MST T of the edge-weighted
graph G representation of the input image, see Fig. 7.

We explain the concept by determining the probability that the vertices
A and B in Fig. 8 are in different regions. That means that edge eAB connect-
ing A and B is included in a watershed cut ST . In our example, the edge eAB
has the value 40. Since all edges greater or equal to this value are not relev-
ant for this case, we remove all these edges from T . The result is a forest G′,
in which one of the trees contains vertex A and another one contains vertex
B . These trees we call TA and TB , respectively, see Fig. 8.

The probability that A and B lie in different regions corresponds to the
probability that seed points fall in both the area presented by TA and TB .
To compute this probability, we consider that ρ(v) is the probability that
the pixel represented by vertex v is a seed point. If all pixels have the same
probability to be chosen as a seed point, then ρ(v) = 1

|V | , where V is the set
of all vertices.

Hence, the probability that a seed point is placed within a subtree T ′ is

fT ′ =
∑

v∈V (T ′)

ρ(v). (8)

This means that the probability that A and B lie in different regions,
when using N randomly placed seed points, is

F (fTA,fTB ) = 1− (1−fTA)
N − (1−fTB )

N +(1−fTA−fTB )
N , (9)

where the blue and red terms specify the probability that there is no seed
point in TA or TB , respectively, and the green term describes the probability
that in neither of the trees TA or TB there is a seed point. The green term
needs to be added as an adjustment, since we considered the case that there
is no seed point in both trees, TA and TB , twice (in the blue and the red
term).

Malmberg and Luengo Hendriks [27] developed an efficient, quasi-linear
algorithm to enable this approach. The efficiency of this method lies in the
usage of disjoint-set data structures. These data structures keep track of
connected components formed when edges are added to a graph.

The proposed algorithm works as follows: after transforming the image
into a edge-weighted graph G and determining the MST T , all edges of T
are sorted and stored in a list C . First, the edge eAB with the minimal weight
(connecting the vertices A and B) is regarded. To set a probability value for
this edge to be included in a watershed cut ST , we consider the subgraph
G′, an MSF that is the MST excluding the edges in C . More precisely, we
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Figure 9: Tree TPDF (weights not shown).

regard the connected components (trees) TA and TB . Now, we can calculate
the probability F (fTA,fTB ) that eAB is in a watershed cut ST . Finally, we
extract eAB from C and continue with the next smallest edge in C until C
is empty and all edges are processed.

The result of this algorithm is a tree TPDF with probability values as
edge weights. This representation of the PDF is difficult to visualize. For
further processing, it can be useful to transform the tree to a PDF image.
In Paper IV, we propose a method to extend the tree representation of the
PDF to a graph GPDF that can be further processed to an image.

We illustrate our approach on the tree TPDF shown in Fig. 9. For this,
we consider the edge eX Y , which connects the vertices X and Y in GPDF,
but is not present in TPDF. Further, we regard the path πX Y (blue in Fig. 9)
connecting X and Y in TPDF.

If X and Y are in different regions, at least one edge along πX Y must
have been cut. Therefore, the probability that eX Y is included in a water-
shed cut SGPDF

, corresponds to the probability that at least one edge along
πX Y is included in the watershed cut STPDF

. Therefore, the probability is
defined as

P (eX Y ) = 1−
∏

e∈E(πX Y )

(1− P (e)). (10)

In Paper IV, we propose an efficient algorithm that calculates this prob-
ability for all edges in the graph G in linear time. For this, we first define a
function

φ(X ,Y ) = 1− P (eX Y ) =
∏

e∈E(πX Y )

(1− P (e)). (11)

Additionally, we choose an arbitrary vertex in TPDF to be the root R. We
define φR(v) =φ(v, R) for any vertex v in the tree.

26



We now can calculate the probability of eX Y being included in a water-
shed cut SG by

φ(X ,Y ) =
φR(X )φR(Y )

(φR(LCA(X ,Y )))2
, (12)

where LCA(X ,Y ) is the lowest common ancestor of the two vertices X and
Y . An ancestor of a vertex v is a vertex that lies on the direct path to R.
Further, a lowest common ancestor of vertices v and w is ancestor to v as
well as to w and lies farthest away from R.

In our algorithm, we first calculate φR(v) by traversing all vertices v
via breadth-first search. Afterwards, we calculate P (evw ) for all edges in
GPDF. For this, we need to determine LCA(v, w). Using the algorithm by
Bender and Farach-Colton [5], this step can be done in constant time, after
an O (|V |) preprocessing step. This concept is based on an idea by Harel
and Tarjan [21] and is mainly responsible for the efficiency of the ESW.

To finally transform GPDF to an image, we need to determine for each
pixel v how probable it is that a pixel w in the neighborhood δ(v) lies in a
different region. This corresponds to the probability that at least one of the
edges connected to v is included in a watershed cut SG , which is defined as

PG(v) = 1−
∏

w∈δ(v)
(1− P (evw )). (13)

3.6 Robust stochastic watershed

In Paper III, we first observed that the stochastic watershed works best
when the regions in the image are similarly sized. Since the probability
of placing a seed point is the same over the image, large areas often receive
several seed points and small regions possibly none. This means that the
algorithm tends to split large area and miss small ones.

To understand the origin of falsely enhanced lines, we regard the case
that one region contains two seed points. In Fig. 10(b), the seed points are
placed as far from each other as possible. To find the boundary between the
two regions specified by the seed points, neighboring pixels to the emerging
regions will be successively assigned to one of the seed points. The order in
which the pixels are assigned is defined by their gray values, as described be-
fore. This specific order does not change when we position the seed points
elsewhere in their respective regions, see other examples in Fig. 10(c-e). This
means that the algorithm will always find the same boundary as long as
there is one or several seed points present in each of the regions. This hap-
pens regardless of whether there was an actual boundary located in the ori-
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Figure 10: Examples to illustrate that a boundary does not change when
changing positions of seed points.

ginal image or if the algorithm falsely enhances a non-existing boundary
and thus fabricates a so called false boundary.

The insensitivity to the placement of the seed points usually enables the
stochastic watershed segmentation to find reliably relevant boundaries, but,
in the case of false boundaries, it works to our disadvantage.

To handle this issue, we introduced two improvements presented in Pa-
per V. Firstly, we add noise to the image before each realization of seeded
watershed, and secondly, we place the seed points in a grid with random
offset and rotation.

The reason for the occurrence of false boundaries is that each realization
uses the exact same order in which the pixels are assigned to regions. One
way to alter the order in which the pixels are processed, is to add a small
amount of noise to the original image before each realization. This does
not affect the image boundaries, but mixes up the local rank order. In our
experiments, we received best results with noise stronger than the noise in
the input image, but not strong enough to hide the signal.

In Paper V, we noted that the amount of noise can be determened with
the help of a noise estimation of the image, e.g. using the method by Im-
merkaer [22]. However, in later experiments (not reported), we did not
find any correlation between the optimal amount of noise and the estim-
ated noise strength in the input image.

The idea behind the second improvement, placing the seed points on
a grid, is the following: when seed points are placed directly next to each
other (as it happens using the Poisson process), a segmentation line is forced
to be set between them. The idea of placing them in a grid, is to increase
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their distance to each other as much as possible, so the influence of the
image values on the segmentation is maximized and the dependency of the
seed point positions is minimized.

However, our experiments showed that the grid (square or hexagonal)
only improved the segmentation in combination with the first modific-
ation. Without adding noise to each realization, the formation of false
boundaries dominated the PDF in such a way that the benefit was not ap-
parent.

Just as in the SW, the optimal number of seed points in the RSW lies
around the actual number of regions in the image. Using fewer seed points
has similar effects on both methods: the number of realizations needed in-
creases. When increasing the number of seed points, the SW breaks down,
since at some point false boundaries dominate the PDF. In contrast, the
RSW was less affected by the number of seed points and still produced use-
ful PDFs using four times the optimal number of seed points. We concluded
that the RSW is less sensitive to the choice of N compared to the SW. By the
way, the sensitivity of the RSW to the parameters M and h did not differ
from the SW.

3.7 Fast evaluation of the robust stochastic watershed

With the RSW, we overcome a major drawback, namely the tendency of the
SW to segment the image into similarly sized regions. But since the RSW
also uses the idea of Monte Carlo simulations, the runtime is similar to the
SW. With the ESW, we could speed up the SW algorithm, but this method
does not seem easily compatible with the RSW.

While the RSW requires several realizations of the seeded watershed,
the ESW works on a graph representation, more precisely the MST, of the
image. To imitate the idea of adding noise to the original image, like in the
RSW, we would need to combine several trees in one graph. This is not a
trivial task. In Paper VI, we developed a hybrid approach instead and called
it the fast evaluation of the robust stochastic watershed (FRSW).

Using the ESW approach, seed point placement is no longer an issue,
so we ignore the advantage of placing the seed points in a grid. Further, we
abandoned the idea of incorporating the addition of noise in the ESW, and
instead perform the ESW several times by using the original image with a
small amount of noise added.

The RSW typically uses about 50-100 realizations of seeded watershed.
This number of realizations M is chosen to match the conditions of the
SW. The ESW determines the result for M =∞ within one step. Since we
use the ESW repeatedly in our approach published in Paper VI, the num-
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Figure 11: Example image of data set (left) and its hand-drawn ground truth
(right).

ber of realizations M f can be much smaller and still produce good results.
The value of M f is only related to the required number of noise images to
suppress false boundaries.

To get the most information out of the M f intermediate PDFs as pos-
sible, we merge them in an advantageous way to obtain the final PDF. In
Paper VI, we found the geometric mean a suitable method, since lines (even
though they might be weak) present in most PDFs are preserved and lines
present in only a minority of the PDFs are suppressed. The geometric mean
of the pixel xi at position i in the final PDF is determined as

xi =

 M f
∏

m=1
xi ,m

!
1

M f

, (14)

where xi ,m is the pixel at position i in the m-th intermediate PDF.
In our experiments, we showed that the FRSW achieves segmentation

results on par with the RSW, when using M f = 3 (compared to RSW using
M = 50). Since the complexity of the calculation of one realization of ESW
is similar to one realization of seeded watershed, the reduction of M f leads
to a considerable speedup of the algorithm. In our calculations using single
core of an Intel Xeon CPU X5650, the segmentation of each of the images
in the data set with size 675×515 pixels took in average 6.4 s seconds for the
FRSW, where it took in average 42.8 s for the RSW.

3.8 Comparison of presented stochastic watershed methods

In this section, we apply the four presented stochastic watershed methods
SW, ESW, RSW and FRSW to a data set of fluorescence microscopy images
of nuclei and compare the results with the hand-drawn ground truth. The
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Table 1: Optimal parameters for different methods. Since we used the leave-
one-out method, the stated values are the optimal parameters for the great
majority of the images in the data set.

Method Realizations Seed points N Noise s Threshold h
SW 50 50 - 0.15
ESW - 2 - 0.005
RSW 50 250 0.1 0.2
FRSW 3 100 0.05 0.05

46 images and the ground truth are provided by Coelho [12], see example
image in Fig. 11. Note that the task of segmenting the objects in these
images is not difficult, one probably can solve it with some mathematical
morphology operations and thresholding. The reason to use this data set
is simply to illustrate abilities and challenges using the different stochastic
watershed approaches. Parts of the result were shown in Paper VI.

First, we needed to find the optimal parameters for the methods. In
Table 2, we summarized the parameters needed for each approach. We chose
M = 50 and M f = 3. The rest of the parameters we determined by training.
For this, we ran the algorithms with different sets of parameters, where the
parameter N could take eleven different values from 2 to 300, s seven dif-
ferent values from 0.005 to 0.5 and h eleven different values from 0.0005 to
0.4. We compared the segmentation results with the ground truth using the
F-measure, as in Arbelaez et al. [2]. The F-measure is the harmonic mean of
precision and recall and determines the quality of the segmentation results.
It can take values between 0 and 1, whereas a values close to 1 means that the
segmentation result resembles the ground truth. For this measure we con-
sider segmentation line pixels as a mismatch when they are located four or
more pixels away from the corresponding boundary. We define the optimal
parameters for each method and for each image as the set of parameters with
the highest mean F-measure using the leave-one-out method.

Afterwards, we obtained the segmentation results for each method for
the whole data set using the corresponding optimal parameters. In Fig. 12,
we show the final PDFs and the segmentations for the example image in
Fig. 11.

Finally, we determined the F-measures of the results, see Fig. 13. As
expected, the SW and the ESW introduce a lot of false boundaries, which
leads to low F-measures, whereas the RSW and the FRSW enhance only the
actual boundaries in the image and therefore achieve high F-measures.
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Figure 12: Final PDF (left) and segmentation (right) using SW (top row),
ESW (second row), RSW (third row) and FRSW (last row).
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Figure 13: F-measures for segmentation results.

We then examined how many realizations were needed for the different
methods to converge to their optimal result. For this, we chose a repres-
entative image (Fig. 11) from the data set that achieved average F-measures
for all methods. We performed the SW, RSW and FRSW with the optimal
values for the parameters N , s and h determined above, and M = 50 and
M f = 50, respectively. After every one of the 50 realizations, we obtained a
segmentation result. The F-measures of these segmentations show how fast
each method converges to its best result. The ESW is not built on Monte
Carlo simulations and therefore reaches its optimum within one step. In
Fig. 14, we show the average F-measures for ten runs of SW, RSW and
FRSW, and additionally the F-measure of ESW.

In this experiment, SW stabilizes after 15 realizations, RSW after 25 and
FRSW already after two. RSW and FRSW converge to the same value. Even
though we expected the same behavior for SW and ESW, the F-measure for
SW settles at a lower value. The reason for this lies in the chosen parameters.
The optimal number of seed points for ESW is N = 2. This means, if we
would run SW with N = 2 for an infinite number of realizations, it would
converge to the same F-measure as ESW. But with the constraint of M = 50,
SW reaches its maximal F-measure with N = 50, which was determined as
optimal number of seed points, see Table 1.

In Fig. 14, you can observe that the function for the RSW is serrated.
This is due to the value chosen for h and is explained in detail in Paper V.

During each realization, both the SW and the RSW perform a seeded
watershed segmentation, whereas the FRSW creates a complete PDF using
the ESW method. The ESW is more complicated and time consuming than
a simple watershed, so that is not completely obvious that FRSW has a
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Figure 14: Mean F-measures for ten segmentation attempts for each of the
presented methods. The F-measures were determined after each of the 50
realizations.

Table 2

Method Parameters F-measure Runtime in s Deterministic
SW N , M , h 0.67 40.1 No
ESW N , h 0.79 2.3 Yes
RSW N , M , s , h 0.91 43.5 No
FRSW N , M f , s , h 0.92 6.4 No

shorter runtime.
In Table 2, we listed the average runtime for the methods, performing

the segmentations of the 46 images of the data set. The SW and RSW need
around 40 seconds for a segmentation, whereas the RSW is a bit slower
than the SW due to the additional computations made for adding noise and
placing the seed points in a grid. The fastest method is the ESW with 2.3
seconds runtime. However, the FRSW is also comparatively fast with 6.4
seconds. This means that the small amount of realizations for FRSW over-
comes the fast computation of seeded watershed in RSW.

The ESW differs a lot from the other presented methods, since it is the
only one that is not based on Monte Carlo simulations. This makes the
runtime constantly fast and also the segmentation result deterministic.
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4 Application: Fluorescence microscopy images of com-

pression wood

Figure 15: Fluorescence microscope image of compression wood fiber cross-
sections.

4.1 Background

In the wood and fiber product industry, the property of the wood fibers
is essential for their further processing. The fibers’ condition determines
if the raw material is suitable, and what it is suitable for. To examine the
characteristics of wood (fibers) different imaging methods can be applied
and various image analysis approaches have been proposed [3, 30, 32, 48].
The advantage of automatic measurements over manual delineation is that
the results are deterministic and fast to obtain for a great amount of images.

In Papers I and II, we concentrated on compression wood, which is an
abnormal reaction wood of softwood (i.e. conifers) that is formed through
physical stress. It has limited value in the forest product industry, e.g. due
to its different mechanical properties [38].

Wood fibers are hollow, up to 2 mm long and have a diameter of ap-
proximately 30 µm. The fibers consist of cell wall and lumen (hollow cen-
ter). The area between the fibers is occupied by the middle lamellae. In
normal wood, the middle lamellae contains a high concentration of lignin
compared to the cell wall. Lignin is a substance that contributes to the sta-
bility of wood. In compression wood, a greater lignification of the cell walls
take place, starting from the corners of the cells towards their lumens [14].

Since lignin is autofluorescent, its distribution can be made visible with
fluorescence microscopy [15]. In Fig. 15, compression wood fiber cross-
sections are shown that were captured by a fluorescence microscope. You
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can distinguish between lumens, areas of normal and highly lignified cell
walls, and the middle lamellae. Important measures to describe the progress
of the lignification are lumen area, cell wall area, cell wall thickness and the
percentage of highly lignified area in the cell wall.

In Papers I and II, we proposed methods to segment compression wood
fiber cross-sections into lumen (L), normal lignified (NL) and highly ligni-
fied (HL) cell walls and middle lamellae (ML). The purpose is to determine
proper measurements of the fibers’ attributes to be able to achieve a greater
understanding of compression wood in general.

4.2 Segmentations

Our first approach, which we published in Paper I, works well for compres-
sion wood cells with distinct regions for L, NL and HL. But when these re-
quirements are not satisfied, for example, when HL is partly or completely
absent, this algorithm has problems. Therefore, we developed it further and
published a more general approach in Paper II.

Both methods have the same work flow: We start with detecting all cell
lumens. Next, we apply snakes to refine the boundary of the each lumen
and to find the outer contour of NL. Finally, the cell boundary is detected.
The implementations of this last step differ for the two proposed methods.

Lumen delineation

Since the lumen areas are much darker than the rest of the image, a suitable
threshold can be used to extract them. But the non-uniform illumination
and other imaging issues, such as non-perpendicular cut of the sample, make
the segmentation challenging. We developed a rather complicated approach
in Paper I, using the grey value of regions (lumens) that are enclosed by
other regions (cell walls). We applied a simpler bias correction in Paper II
followed by global thresholding. The delineation of the contour is then
refined in both methods by using a snake.

Boundary between NL and HL

To find the boundary between the regions NL and HL (or the outer cell
boundary, if HL does not exist), we use a two-stage snakes, as described
in Section 2.2. To move the snake away from the contour of the lumen,
we apply the inverted external force, which means high energy occur close
to edges and low energy in regions with low gradient. With the help of a
small balloon force, the snake settles approximately half way between the
boundaries. Next, the original external force and again a small balloon force
are applied and the snake moves on, attracted to the desired boundary.
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Figure 16: Deviation of automatic and manually determined boundaries to
first delineation by expert A.

Cell wall boundary

In the end, the outer contour of the cell wall is delineated. In Paper I, we ap-
plied another two-stage snake, which works well for cells that have a clearly
distinct HL. But for cells where HL is partly or completely missing, the
snake overshoots the cell wall boundary, as described in Section 2.2, and
the quality of the resulting segmentation in this area is diminished. Hence,
we improved this step in Paper II by dividing the area outside NL into HL
and ML. To separate HL and ML, we apply a line detector that finds a fine
dark line around the cell outline. Since we are not longer presuming that
HL exists, it is less probable that the improved segmentation fails.

4.3 Evaluation and discussion

We compared the proposed methods with manual segmentations using fluor-
escence microscopy images of compression wood cross-sections of Scots
pine. We had two experts, here referred to as A and B, to delineate a set
of cells. Expert A segmented a subset of the cells twice, to estimate intra-
subject variance. Fig. 16 shows the deviation of the boundaries found by
expert A in the first delineation. For the formula to determine the devi-
ation, see Paper II.

The segmentation boundaries of the lumens differed most for the method
published in Paper II. This is because of a systematic error, which is caused
by a disagreement where to locate the boundary of the lumen. The al-
gorithm sets the segmentation line where the gradient is highest, whereas
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the experts define it slightly outside this location. That the method from
Paper I came to a better matching result is due to a blurring operation that
coincidentally shifted the segmentation boundaries in the right direction.

In Fig. 16, you can see that the delineation of the outer cell boundary
improved for the method proposed in Paper II. This is because the two-stage
snake from Paper I is more likely to overshoot when applied on this bound-
ary. Hence, the improved method, using line detection, is more suitable for
this problem and results in a more accurate delineation of the cell contour.

We showed that the two-stage snake is useful to find successively two
boundaries that are both transitions from dark to bright. But by applying
this method to the outer cell contour, we also demonstrated that the method
has difficulties when the applied energies are not distinct enough. Here, the
transition between the cell wall and ML is in some places very fuzzy. Hence,
the gradient magnitude in these areas is not great enough to create a force
that can hold back the snake, which leads to an overestimation of the HL
regions.

We found that the parameters of snakes are not very intuitive to choose.
But once we had determined optimal parameters, we were able to apply the
method with the same parameters to images of different wood species and
obtain a suitable segmentation result. The only value we needed to change
was µ in connection with the GVF.
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5 Application: Confocal images of human corneal en-

dothelium

Figure 17: Illustration of eye (left) and example of an in vivo confocal mi-
croscopy image of corneal endothelium (right).

5.1 Background

The cornea is the transparent front layer of the eye covering the pupil and
the iris.The endothelium of the cornea is a single layer of cells on the in-
ner surface of the cornea. Its main purpose is to regulate fluid and solid
transport between cornea and anterior chamber.

The endothilium is built of hexagonal cells that are developed prenat-
ally. When endothelial cells die, the surrounding cells get thin and elongate
to fill the empty space. Hence, the endothelial cell density decreases dur-
ing life time. Different factors, such as inflammation or intraocular surgery,
can speed up the endothelial cell loss even more. The transparency of the
cornea gets affected when the endothelial cell density becomes too low.

In Paper VII, we present a parameter-free method to estimate the en-
dothelial cell density in in vivo confocal microscopy images using spatial
frequency analysis. With this method, we obtain estimates that are more
precise than those of any other published method.

To determine other morphometric quantities, like endothelial cell size
and shape, a complete segmentation of the image is necessary. In Paper VII,
we present a completely automatic segmentation method based on the ro-
bust stochastic watershed (RSW), described in Section 3.6.

In Section 5.4, we extend the proposed method by using the fast evalu-
ation of the robust stochastic watershed (FRSW), described in Section 3.7,
and compare the results.
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5.2 Cell density estimation

Due to the rather regular formation of the endothelial cells, we can use
frequency analysis to estimate an average cell size and an approximate cell
density. For this, we first compute the Fourier transform of the image.
Then we remove the central peak using dilation by reconstruction [40],
and finally, determine the radial meanF ( f ) of the result with

F ( f ) =
1

2π

2π
∫

0

|Frec( f ,θ)| dθ, (15)

where Frec( f ,θ) is the Fourier transform of the image in polar form after
the dilation with reconstruction operation, f is the radial frequency and θ
is the angle.

The maximum of the radial mean corresponds to the characteristic fre-
quency f ∗, which relates to the most common cell width. The cell density
δ can now be determined by

δ =
1

α
f ∗2, (16)

where α is a value that depends on the shape and regularity of the cells.
Fig. 18, we illustrate how f ∗ and consequently α change, when regard-

ing images with different shaped patterns. In both the images (a) and (c)
the side-to-side length of the cells is 25 pixels. In the frequency spectra (b)
and (d), we determine f ∗ = 14 pixel for the square pattern and f ∗ = 16 pixel
for the hexagonal pattern. Accordingly, α = 1 for the square pattern and
α≈ 1.13 for the hexagonal pattern.

Publications by other authors [8, 17, 41] did not consider the shape of
the cells when estimating the cell density, and therefore made the implicit
assumption α = 1. This implicit assumption did not influence the result
much, because the actual value for α concerning endothelial cell images of
this kind is close to 1. At first, this value seems unexpected, since it is the
same as the square pattern and not as the hexagonal pattern in Fig. 18. But
the imaged endothelial cells are not as perfectly regular as the cells in Fig. 18,
which is the reason for the different value for α.

In Paper VII, we show that our method achieves more precise results
than any of the previous published methods, irrespective of including α in
the calculations.
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Figure 18: Images with square and hexagonal cell patterns with 25 pixels
side-to-side length (left column), and magnitude of central region of the re-
spective frequency spectra (right column).

5.3 Cell segmentation

The endothelial cell segmentation algorithm, proposed in Paper VII, is based
on the RSW. We altered the method slightly from the version explained in
Section 3.6: before applying the final step, which is the watershed segment-
ation using H-minima, we smoothed the PDF with a Gaussian blur. This
operation complements the H-minima transform in simplifying the image.
We made the σ of the smoothing operation dependent on the estimated cell
density by defining a parameter kσ = σ f ∗.

Even though the smoothing has similar effects as the H-minima trans-
form, we chose to apply both methods successively, because this combina-
tion gave us the best results. However, the smoothing has the disadvantage
of slightly displacing the segmentation lines. To correct for this, we apply
a seeded watershed on the original image using a slightly shrunk version of
the found cells as seeds. This step adjusts the segmentation boundaries to
better fit the structure of the original image.
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Figure 19: F-measure of the segmentations using the method based on RSW
(proposed in Paper VII) and the new method based on FRSW.

For the evaluation in Paper VII, we had a data set available that included
52 confocal images of corneal endothelium. The images were acquired in
23 patients within the first year after endothelial keratoplasty (replacing
corneal endothelium with donor tissue). Additionally, we had the morpho-
metric measures of a semi-automatic and a fully automatic segmentation for
the region of interest in each image. These measures were obtained by using
the commercial software NAVIS (Nidtek Technologies SRL, Padova, Italy).
We consider the measures determined with the semi-automated segmenta-
tion as ground truth.

For evaluating our approach, we set M = 100 and N = AIδ, where AI
is the size of the image and δ the estimated cell density. We trained the rest
of the parameters using the leave-one-method.

The proposed method outperforms the automatic segmentation approach
by NAVIS concerning all three determined morphometric measures: cell
density, polymegatism (cell size variability) and pleomorphism (cell shape
variation).

5.4 Alternative segmentation algorithm

After preparing Paper VII, we developed the FRSW, a fast evaluation of the
RSW. In this section, we alter the proposed segmentation method by ex-
changing the RSW with the FRSW. We apply the new approach to the data
set and compare the performance to the method introduced in Paper VII.
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Figure 20: Error of cell density estimation using frequency analysis of the
original image and of the PDF, and by counting cells in segmented image.

First, we determine the parameter for the new method, based on FRSW.
For this, we set M f = 3, and N =AIδ, as in Paper VII, and trained the other
parameters with the leave-one-out method.

Finally, we calculate the F-measures for the final segmentation with the
new approach and compare it to the F-measures of the segmentations of
the method proposed in Paper VII, see Fig. 19. To calculate the F-measure,
we only used the manually set centroids of the cells and the outline of the
regions of interest. The exact procedure to determine this value is described
in Paper VII.

The overall quality of the resulting segmentations is the same, as they
produce very similar F-measures. The morphometric measures estimated
from the segmentations (not shown) are similar.

5.5 Discussion

We showed that the RSW and the FRSW are well suited to segment corneal
endothilium. The methods outperform the specialized commercial soft-
ware NAVIS.

Additionally, we proposed in Paper VII a parameter-free approach to
estimate the endothelial cell density.

We observed that the measure of the cell density becomes slightly more
accurate when using the PDF (during the segmentation process) for the fre-
quency analysis. But this requires the determination of the noise strength
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s . In Fig. 20, we show the error of the estimated cell density determined
with frequency analysis of the original image (proposed in Paper VII), of
the PDF, and by counting the cells in the automatic segmentation. We see
that the best cell density estimation is determined using the segmented im-
age.
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6 Conclusions and future perspective

6.1 Contributions

This thesis focuses on two different image segmentation approaches: snakes
and stochastic watershed. Improvements of these methods were proposed
to suit a specific problem or to make the approach more efficient.

In the next sections, we discuss the main contributions of this thesis.

The two-stage snakes (Paper I)

We developed an approach using snakes to delineate concentric regions,
when their contours have the same polarity. This means that with our
method it is possible to successively find two contours that are both trans-
itions from for example a darker to a lighter region.
The two-stage snake approach works well as long one can produce a com-
plementary energy that has its minimum between the two desired contours.
Otherwise the snake overshoots and does not delineate the targeted bound-
ary. Possible applications for this approach might be the segmentation of
nucleus and corresponding cell wall of cells, or iris detection.

Tailored image analysis solutions for compression wood cross-section
(Papers I and II)

We developed the first automatic segmentation method for fluorescence mi-
croscopy images of compression wood cross-section. For this, we success-
fully applied the two-stage snake to delineate the contours of the different
regions in the cells. From the resulting segmentation, we could determine
measurements that match the ground truth.
Another method to delineate these type of cells might be multi-layer level
sets [11]. Alternatively, one could change the representation of the cells
and regard their radial profiles. Then it is possible to use for example auto-
matic methods to segment retinal layers in spectral domain optical coher-
ence tomography images [10].

Analysis and improvements of the concept of stochastic watershed
(Papers III, IV, V and VI)

After studying the strengths and weaknesses of the original stochastic wa-
tershed approach, we developed several versions to make the method more
efficient. The ESW determines the exact PDF in a fraction of the compu-
tational time, and the RSW suppresses repeatedly found false boundaries
by slightly altering the input image for each realization. Finally, we de-
veloped the FRSW, a hybrid approach combining the ESW and the RSW.
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This method is both fast and improves the quality of the segmentation res-
ults compared to the original approach.
One weakness of the stochastic watershed methods is the problem to de-
tect small regions. In the PDFs of all stochastic watershed approaches, the
boundaries around small regions are weaker than around large regions. This
is because it is less probable that random seed points are located in smaller
regions. Using the RSW, it is even possible that structures that are smaller
than the distance between the grid points, that is the distance between the
seed points, is not detected at all by the algorithm.
Recently, a multi-scale approach of bagging stochastic watershed was pro-
posed by Franchi and Angulo [18]. During their experiments, their pro-
posed method and the RSW produced segmentation results with similar
F-measures, which means that they performed equally good.
Applications for the proposed stochastic watershed methods are all task
where the desired objects are distinguishable from other object or the back-
ground due to edges or lines in the gray value image. Examples for these
tasks are the segmentation of cells in microscopy images or the segmenta-
tion of forest, fields and houses in satellite images.

Tailored image analysis solution for corneal endothelium (Paper VII)

We implemented a fully automatic segmentation algorithm using our stochastic
watershed approaches. The measures determined with our algorithm agree
with the ground truth better than the measures obtained with the commer-
cial software.
There are several automatic approaches to segment in vitro corneal endothe-
lium images [42, 45]. But due to their better image quality, these meth-
ods are hardly applicable to in vivo images we concentrated on. Gavet and
Pinoli [19] and Vincent and Masters [47] proposed applicable automatic
segmentation methods for in vivo images. In Paper VII, we show that our
approach outperform these methods.

Correction of model for corneal endothelium cell density estimation (Paper VII)

During our work on microscopy images of corneal endothelium, we dis-
covered a systematic error in all previous published methods based on fre-
quency analysis. The model used to calculate the cell density was missing
the incorporation of the cell shape. For this, we introduced the factor α,
which adjusts for the appearance of the cell pattern.
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6.2 Outlook

6.2.1 Future work

We developed image segmentation algorithms for fluorescence microscopy
images of compression wood cross-sections and confocal microscopy images
of corneal endothelium. Additionally, we proposed procedures to determ-
ine specific parameters of the imaged cells.

It would be interesting to define additional measurements in the future.
For example, one could investigate if the area of the middle lamellae in com-
pression wood cross-section correlates to the progress of the lignification or
to any physical attributes.

We also noticed that some of the morphometric measurements used
to describe the condition of corneal endothelium are more sensitive to er-
rors in the segmentation. The pleomorphism is defined as the percentage
of cells that are adjacent to exactly six neighboring cells. If, for example,
one individual cell is over-segmented, not only the measure of this single
cell is affected, but the measures of the entire neighborhood of this cell.
Therefore, it can be more suitable to use measures that can be determined
independently for each cell, as for example cell compactness or elongation.

Further, we see a great potential in the concept of the stochastic wa-
tershed. With the FRSW, we developed an approach that produces better
segmentation results in less time, compared to the original method. The
FRSW needs to be investigated further. In the next two sections, we discuss
that the choice of parameter p in the power mean M p influences the out-
come of the segmentation, and possibilities to make the result of the FRSW
deterministic.

6.2.2 Influence of parameter p
The FRSW creates M f intermediate PDFs, which are merged to form the
final PDF. Since it is less probable to find the same false boundaries re-
peatedly, single occurrences of high values in the intermediate PDFs are
suppressed. Hence, it is beneficial to apply a measure that favors small val-
ues, such as the power mean M p for p < 1.

This measure is a non-linear transformation that places more weight on
small input values. The degree of the weighting is determined by parameter
p. The smaller p, the more emphasis on low values, see Fig. 21. The power
mean M−∞ corresponds to the minimum.

In our experiments, we found M0 to perform best. But we consider that
it is more likely that the optimal p depends on the application. The prob-
ability of the occurrence of false boundaries is different for every problem.
Therefore, the level of how much they need to be suppressed to find an op-
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Figure 21: Power mean M p (x, 1) for different values of p. The black line
shows M1, the light gray lines illustrate M p for p = 1.25,1.5, ...3 and the
dark gray lines show M p for p = 0.75,0.5, ...− 1.

timal segmentation can vary. Possibly, the optimal p also depends on the
number of realizations. So it needs to be verified how sensitive the FRSW
is to parameter p.

6.2.3 Deterministic version of FRSW

One advantage of most segmentation algorithms over a human expert is
that their results are deterministic. When a human is delineating an ob-
ject manually, he or she will be unlikely to draw exactly the same outline
again, when repeating the experiment. We say that most of segmentation
algorithms have a high precision (no occurrence of random errors).

However, methods based on Monte Carlo simulations, as SW, RSW and
FRSW, are not deterministic. They rely on repeated random sampling to
achieve an approximation of the exact result. This means that when ap-
plying an algorithm involving Monte Carlo simulations twice on the same
image, we obtain results that slightly differ from each other. That might be
undesirable for some applications.

With the ESW, we can determine the exact result by involving the prob-
ability of the sampling in the calculations. Thus, we could not only speed
up the process, but also make the results deterministic.

In the FRSW, we use the ESW together with the concept of adding noise
to the image to overcome false boundaries. This introduces randomness to
the calculations of the ESW, which leads to the results being not determin-
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Figure 22: Example for M f = 3. Offset can be added to the gray pixels
during the first, second and third realization of ESW.

istic.
As described before in Section 3.6, false boundaries occur because the

SW is not very sensitive to the placement of seed points. This means that
the order in which the pixels are added to the emerging regions is always
the same. To overcome the problem, this order needs to be slightly altered
to not repeatedly enhance the same false boundaries. In the RSW, we solve
this problem by adding a small amount of noise to the image before each
realization of seeded watershed. In FRSW, we determine the exact PDF of
three different images: the original image and two variations of the image
with a small amount of added noise.

Here, we discuss some ideas to make the results of the our segmentation
approach deterministic and at the same time prevent the algorithm from
finding false boundaries.

Offset instead of noise: By adding noise to the image, we slightly change
the gray level values of the pixels. Instead of choosing random values, we
could select a constant offset.

When choosing M f = 3, as suggested in Paper VI, we can realize our
idea as follows: The first realization would be performed with the original
image. For the second realization, an offset would be added to every second
pixel in the image and for the third realization, the offset would be added to
pixels of the original image that were not altered in the previous realization,
see Fig 22.

We assume that the optimal value for the offset lies around half of the
optimal noise strength.

Alternative MSTs: Another approach is to literally change the order of
the pixels. When applying the ESW, we transform the image into a graph
representation. To determine the MST, all edges must be stored according
to their weight in a sorted list. The order of this list corresponds to the
order in which the pixels are added to the evolving regions. Hence, when
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rearranging the edges in the list, a different MST is created. The task lies in
modifying the order in such a way that false boundaries are suppressed, but
at the same time salient boundaries repeatedly found. This corresponds to
finding the optimal noise level in the FRSW.

To alter the order of the sorted list can be realized in different ways.
Simple examples would be to switch the position of two successive edges or
to shift every second pixel by a fixed number of positions.

Additionally to making the results deterministic, we might be able to
gain even a slight speed-up in our implementation. Because transforming
the input image into graph representation and sorting the edges need to be
performed only once, instead of M f times.

Straehle et al. [44] proposed a method to create almost-MSTs that could
be also useful for this approach.
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Sammanfattning (Summary in Swedish)

Syftet med digital bildanalys är att utvinna meningsfull information från
digitala bilder. Det finns många applikationer. Bildanalys kan till exempel
användas för att mäta avstånd och ytor i satellitbilder, att känna igen an-
sikten i övervakningsbilder och att upptäcka tumörer i medicinska bilder.
Eftersom tillämpningarna är så olika är det omöjligt att skapa en universell
bildanalysmetod. Vi måste istället skapa en ny, lämplig algoritm för varje
nytt problem.

För att utvinna information ur en bild måste vi först definiera intres-
santa regioner eller objekt. För att kunna göra detta måste bilden segmente-
ras, vilket betyder att dela upp den i regioner med homogent innehåll. Seg-
menteringen kan göras manuellt, halvautomatiskt eller helt automatiskt, be-
roende på omständigheterna. Eftersom manuell segmentering är tröttsamt
och dessutom subjektivt och därför riskerar introducera felaktigheter före-
drar vi ofta automatiska metoder. Helautomatiska metoder är mest effek-
tiva, eftersom halvautomatisk segmentering kräver insatser en människa,
som dessutom kanske måste vara expert inom tillämpningsområdet. Men
detta innebär att helautomatiska metoder själva måste kunna skapa pålitliga
resultat av hög kvalité.

I denna avhandling föreslår vi förbättrade versioner av två olika existe-
rande segmenteringsmetoder: ormar (“snakes”) och stokastisk vattendelare
(“stochastic watershed”).

Ormar används när den ungefärliga formen av och läget för objektets
kontur är känd. Processen kan beskrivas som ett energiminimeringspro-
blem: när ormen initialiserats utsätts den för olika krafter som iterativt flyt-
tar den mot den önskade konturen. Slutligen stannar den över konturen,
eftersom de pålagda krafterna där når ett energiminimum.

Ormar misslyckas (till exempel) när ett antal koncentriska konturer
med liknande form ska upptäckas efter varandra, eftersom det är omöjligt
för ormen att förflytta sig från en kontur till nästa. Vi föreslår en tvåstegs-
process (“two-stage snake”) för att lösa problemet: när en orm hittat den
första konturen skapas en temporär, omvänd orm som repelleras av kontu-
rer och därmed trycks bort från den första konturen för att sedan kunna
attraheras av nästa kontur.

För att illustrera den föreslagna metoden använde vi tvåstegsormen för
att segmentera fluorescensmikroskopibilder av tjurvedsceller. För denna upp-
gift fanns tidigare inga fungerande segmenteringsmetoder. Vi visade att vår
metod kan användas i stället för manuell segmentering, eftersom våra au-
tomatiskt framtagna resultat är starkt korrelerade till segmenteringar som
gjorts manuellt av experter.
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I avhandlingen diskuterar vi även stokastisk vattendelare. Metoden ska-
par en täthetsfunktion som visar de mest betydelsefulla konturerna i bilden,
där sannolikheten för en kontur är stor. Stokastisk vattendelare är speciellt
lämpligt för strukturer som består av regioner av liknande storlek och där
det ungefärliga antalet regioner är känt.

Originalversionen av statistisk vattendelare behövde förbättras vad det
gäller beräkningstid och undertryckande av falska konturer. Vi föreslår en
metod för exakt beräkning av stokastisk vattendelare (“exact evaluation of
stochastic watershed”, ESW) och robust stokastisk vattendelare (“robust
stochastic watershed”, RSW), som löser respektive problem. Med ESW kan
vi beräkna den exakta täthetsfunktionen utan Monte Carlo-simulering. I
stället använder vi grafteori. Den algoritm vi utvecklat är betydligt snabbare
än originalversionen. RSW använder brus för att störa ut de svaga konturer
som konsekvent uppstår i större områden. Den förbättrar därför resultatet i
bilder där objekten är olika stora. För att ta vara på fördelarna med de båda
nya metoderna sammanslog vi dem till snabb robust stokastisk vattendela-
re (“fast stochastic watershed”, FRSW). Den nya hybridmetoden använder
några få ESW-beräkningar på en bild där brus adderats på liknande sätt som
i RSW. Detta förkortar beräkningstiden signifikant för den robusta meto-
den.

För att illustrera de nya metoderna använde vi RSW och FRSW för att
segmentera konfokalmikroskopibilder av hornhinnans endoltel som tagits
in vivo. Våra metoder ger bättre resultat än den automatiska segmenterings-
metod som finns i den kommersiella programvaran NAVIS. Vi noterade
också att alla de tidigare publicerade metoder som använder frekvensana-
lys för att uppskatta tätheten hos hornhinnas endotel bortser från cellernas
form. I avhandlingen introducerar vi en parameter som kompenserar för
cellformen och dessutom en ny metod som ger bättre resultat än tidigare
metoder.

Denna avhandling ger nya bidrag till området automatisk bildsegmen-
tering. Vi har utvecklat metoder som förbättrar och rättar existerande algo-
ritmer. Vi föreslår att dessa tillämpas vid automatisk analys av mikroskopi-
bilder inom trävetenskap och oftalmologi.
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Zusammenfassung (Summary in German)

Digitale Bildanalyse wird dazu genutzt, um aussagekräftige Informationen
aus digitalen Bildern zu gewinnen. Das Anwendungsgebiet ist vielfältig. Es
reicht von Landvermessung mittels Satellitenbildern, über Gesichterken-
nung in Überwachungsbildern, bis hin zur Krankheitsdiagnose durch die
Analyse von medizinischen Bildern. Da sich die Anforderungen der An-
wendungen stark von einander unterscheiden, muss das verwendete Verfah-
ren für jedes Probelm neu zugeschitten werden. Eine allgemein anwendbare
Bildanalysemethode gibt es daher nicht.

Um Information aus dem Bild zu extrahieren, müssen die dafür interes-
santen Bereiche oder Objekte im Bild gefunden werden. Dazu wird das Bild
segmentiert, d.h. in inhaltlich zusammenhängende Regionen unterteilt. Je
nach Möglichkeit wird die Segmentierung manuell, halbautomatisch oder
vollautomatisch durchgeführt. Da manuelle Segmentierung eine langwieri-
ge Prozedur ist, die dazu noch subjektiv und fehleranfällig ist, werden oft
automatische Verfahren bevorzugt. Während halbautomatische Verfahren
noch die Eingabe des Nutzers brauchen, der eventuell ein Experte im An-
wendungsgebiet sein muss, ist eine vollautomatische Segmetierung effekti-
ver. Sie wird ohne menschliches Einwirken erstellt und spart daher Arbeits-
zeit und Aufwand. Aber gerade deswegen ist es erforderlich, dass vollau-
tomatische Verfahren eigenständig zuverlässige und qualitativ hochwertige
Ergebnisse liefern.

Die vorliegende Arbeit leistet einen Beitrag zu der Verbesserung der
zwei bestehenden vollautomatischen Segmetierungsmethoden Snakes (z.Dt.
Schlangen) und Stochastic Watershed (z.Dt. stochastische Wasserscheiden-
transformation).

Snakes werden angewandt um den Umriss eines Objektes zu finden, des-
sen ungefähre Form und Position bekannt ist. Sie werden als (geschlossene)
Konturen dargestellt und zu Beginn möglichst nah der erwarteten Zielposi-
tion platziert. Nach der Initialisierung werden Kräfte ausgeübt, die die Sna-
ke über das Bild bewergen. Diese angewandten Kräfte legen die bevorzugte
Silhouette der Snake fest und führen sie in Richtung des Umrisses des Zie-
lobjekts. Dieses Verfahren ist ein Energieminimierungsverfahren, das sein
Optimum erreicht, wenn sich die angreifenden Kräfte ausgleichen und die
Snake somit zum Stillstand kommt.

Das Konzept der Snakes war bisher nicht anwendbar, wenn zwei kon-
zentrische Konturen mit ähnlichen Eigenschaften nacheinander gefunden
werden sollten. Der Grund dafür ist, dass es für die angreifenden Kräfte un-
möglich ist die Snake von der ersten Kontur wegzustoßen und gleichzeitig
ein Kräftegleichgewicht an der zweiten Kontur zu erreichen. In dieser Ar-
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beit wird die Two-Stage Snake (z.Dt Zwei-Stufen-Schlange) vorgestellt, die
dieses Problem mittels eines Zwischenschritts überwindet. Zunächst wer-
den Kräfte angelegt, so dass sich die Snake von der ersten Kontur wegbewegt
und auf ungefähr halbem Weg bis zur zweiten Kontur zum Stehen kommt.
Daraufhin werden neue Kräfte angelegt, die bewirken, dass die Snake von
der zweiten Kontur angezogen wird und dort ihre Endposition erreicht.
Das Konzept der Two-Stage Snake wird in dieser Arbeit an Fluoreszenzmi-
kroskopiebildern von Druckholz illustriert, für die es bisher keine vollau-
tomatische Segmentierungsmethode gab.

Weiterhin wird in dieser Arbeit das Stochastic-Watershed-Verfahren dis-
kutiert und weiterentwickelt. Dieses Verfahren ist ursprünglich eine Monte-
Carlo-Methode, die eine Wahrscheinlichkeitsdichtefunktion der prominen-
testen Konturen in einem Bild berechnet. Anhand dieser Funktion kann
daraufhin eine Segmentierung erstellt werden. Das Stochastic-Watershed-
Verfahren ist besonders für Bilder geeignet, die aus etwa gleichgroßen Berei-
chen bestehen, dessen ungefähre Anzahl bekannt ist.

Das Stochastic-Watershed-Verfahren hat Verbesserungspotential bezüg-
lich Laufzeit und Qualität der Segmentierung. In dieser Arbeit werden die
Methoden Exact Evaluation of Stochastic Watershed (ESW, z.Dt. exakte Aus-
wertung der stochastischen Wasserscheidentransformation) und Robust Sto-
chastic Watershed (RSW, z.Dt. robuste stochastische Wasserscheidentrans-
formation) vorgestellt, die jeweils eine der genannen Schwachstellen ange-
hen und das Verfahren daraufhin verbessern.

Mit ESW wird die exakte Wahrscheinlichkeitsdichtefunktion mittels
Graphtheorie berechnet ohne dabei Monte-Carlo-Simulation anzuwenden.
Die hier vorgestellte Methode ESW ist um ein Vielfaches schneller als die
Originalmethode.

Das Stochastic-Watershed-Verfahren neigt dazu große Regionen zu tei-
len, auch wenn es keine ersichtlichen Kanten gibt. Damit während der Monte-
Carlo-Simulation nicht wiederholt die gleichen falschen Segmentierungsli-
nien gefunden werden, wird bei RSW ein leichtes Rauschsignal zum Bild
hinzugefügt. Somit wird die Qualität der Segmentierung verbessert, da das
Finden von falschen Linien in der endgültigen Segmentierung verhindert
wird. Diese neue Version des Stochastic-Watershed-Verfahrens ist nun auch
für Bilder anwendbar, die verschieden große Objekte darstellen.

Um die Vorteile der beiden neuen Methoden zu nutzen, wird in dieser
Arbeit die Methode Fast Robust Stochastic Watershed (FRSW, z.Dt. schnel-
le robuste Stochastische Wasserscheidentransformation) vorgestellt. Sie ver-
wendet wenige Wiederholungen des ESW, bei denen das Bild wie beim RSW
jedesmal durch Rauschen verändert wird. Die Ergebnisse von RSW und
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FRSW sind qualitativ gleichwertig, allerdings ist FRSW um ein Vielfaches
schneller als RSW.

Schließlich werden die Methoden RSW und FRSW an in vivo Kon-
fokalmikroskopiebildern der Endothelzellschicht von menschlicher Horn-
haut illustriert. Diese Methoden erzeugen qualitativ bessere Ergebisse als
die kommerziell vertriebene Software NAVIS.

Weiterhin wird beschrieben, wie sämtliche bisher veröffentlichten Me-
thoden zur Bestimmung der Zelldichte in Endothelzellschichten die Zell-
form außer Acht lassen. In dieser Arbeit wird daher ein Parameter einge-
führt, der die Zellform kompensiert. Zusätzlich wird ein neues Verfahren
vorgestellt, das qualitativ bessere Ergebnisse liefert als die bisher veröffent-
lichten Methoden.

Die vorliegende Arbeit stellt einen Beitrag zum Themengebiet automa-
tische Bildsegmentierung dar. Im Rahmen dieser Arbeit wurden Metho-
den entwickelt, die bisherige Ansätze verbessern und korrigieren. Weiter-
hin wurden Verfahren zur automatische Analyse von Mikroskopiebildern
in den Fachgebieten Holzwissenschaft und Augenheitkunde vorgestellt.
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Paper I

Segmentation of highly lignified zones in wood fiber cross-sections

B. Selig, C. L. Luengo Hendriks, S. Bardage and G. Borgefors
in Image Analysis, ser. Lecture Notes in Computer Science, A.-B. Salberg,
J.Y. Hardeberg and R. Jenssen, Eds., vol. 5575, Springer Berlin Heidelberg,
pp. 369–378, 2009.

Abstract

Lignification of wood fibers has important consequences to the paper pro-
duction, but its exact effects are not well understood. To correlate exact
levels of lignin in wood fibers to their mechanical properties, lignin auto-
fluorescence is imaged in wood fiber cross-sections. Highly lignified areas
can be detected and related to the area of the whole cell wall. Presently
these measurements are performed manually, which is tedious and expens-
ive. In this paper a method is proposed to estimate the degree of lignific-
ation automatically. A multi-stage snake-based segmentation is applied on
each cell separately. To make a preliminary evaluation we used an image
which contained 17 complete cell cross-sections. This image was segmented
both automatically and manually by an expert. There was a highly signific-
ant correlation between the two methods, although a systematic difference
indicates a disagreement in the definition of the edges between the expert
and the algorithm.
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Paper II

Automatic measurement of compression wood cell attributes in

fluorescence microscopy images

B. Selig, C. L. Luengo Hendriks, S. Bardage, G. Daniel and G. Borgefors
Journal of Microscopy, vol. 246, no. 3, pp. 298–308, 2012.

Abstract

This paper presents a new automated method for analyzing compression
wood fibers in fluorescence microscopy. Abnormal wood known as com-
pression wood is present in almost every softwood tree harvested. Com-
pression wood fibers show a different cell wall morphology and chemistry
compared to normal wood fibers, and their mechanical and physical char-
acteristics are considered detrimental for both construction wood and pulp
and paper purposes. Currently there is the need for improved methodolo-
gies for characterization of lignin distribution in wood cell walls, such as
from compression wood fibers, that will allow for a better understanding
of fiber mechanical properties. Traditionally, analysis of fluorescence mi-
croscopy images of fiber cross-sections has been done manually, which is
time consuming and subjective. Here, we present an automatic method,
using digital image analysis, that detects and delineates softwood fibers in
fluorescence microscopy images, dividing them into cell lumen, normal
and highly lignified areas. It also quantifies the different areas, as well as
measures cell wall thickness. The method is evaluated by comparing the
automatic with a manual delineation. While the boundaries between the
various fiber wall regions are detected using the automatic method with
precision similar to inter and intra expert variability, the position of the
boundary between lumen and the cell wall has a systematic shift that can be
corrected. Our method allows for transverse structural characterization of
compression wood fibers, which may allow for improved understanding of
the micro-mechanical modeling of wood and pulp fibers.
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Paper III

Stochastic watershed—an analysis

B. Selig and C. L. Luengo Hendriks
in Proceedings of SSBA 2012, Swedish Society for Automated Image Ana-
lysis, pp. 82–85, 2012.

Abstract

Stochastic watershed is a novel segmentation method based on a probability
density function. This probability density function is created by repeated
realizations of seeded watershed with a fixed number of random seed points.
We study the relationship between the algorithm’s parameters and attrib-
utes of the image in order to find the strengths and the weaknesses of the
algorithm. The stochastic watershed works best when the regions are of
similar size. Additionally, the number of iterations can be minimized by
choosing a number of markers close to the number of expected regions in
the image. In the case where the regions have different sizes, the original
algorithm yields unsatisfactory results.
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Paper IV

Exact evaluation of stochastic watersheds: from trees to general

graphs

F. Malmberg, B. Selig and C. Luengo Hendriks
in Discrete Geometry for Computer Imagery, ser. Lecture Notes in Computer
Science, E. Barcucci, A. Frosini and S. Rinaldi, Eds., vol. 8668, Springer
International Publishing, pp. 309–319, 2014.

Abstract

The stochastic watershed is a method for identifying salient contours in an
image, with applications to image segmentation. The method computes a
probability density function (PDF), assigning to each piece of contour in
the image the probability to appear as a segmentation boundary in seeded
watershed segmentation with randomly selected seedpoints. Contours that
appear with high probability are assumed to be more important. This pa-
per concerns an efficient method for computing the stochastic watershed
PDF exactly, without performing any actual seeded watershed computa-
tions. A method for exact evaluation of stochastic watersheds was proposed
by Meyer and Stawiaski (2010). Their method does not operate directly on
the image, but on a compact tree representation where each edge in the tree
corresponds to a watershed partition of the image elements. The output of
the exact evaluation algorithm is thus a PDF defined over the edges of the
tree. While the compact tree representation is useful in its own right, it is in
many cases desirable to convert the results from this abstract representation
back to the image, e.g, for further processing. Here, we present an efficient
linear time algorithm for performing this conversion.
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Paper V

Improving the stochastic watershed

K. B. Bernander, K. Gustavsson, B. Selig, I.-M. Sintorn and C. L. Luengo
Hendriks
Pattern Recognition Letters, vol. 34, no. 9, pp. 993–1000, 2013.

Abstract

The stochastic watershed is an unsupervised segmentation tool recently pro-
posed by Angulo and Jeulin. By repeated application of the seeded water-
shed with randomly placed markers, a probability density function for ob-
ject boundaries is created. In a second step, the algorithm then generates a
meaningful segmentation of the image using this probability density func-
tion. The method performs best when the image contains regions of similar
size, since it tends to break up larger regions and merge smaller ones. We
propose two simple modifications that greatly improve the properties of the
stochastic watershed: (1) add noise to the input image at every iteration, and
(2) distribute the markers using a randomly placed grid. The noise strength
is a new parameter to be set, but the output of the algorithm is not very
sensitive to this value. In return, the output becomes less sensitive to the
two parameters of the standard algorithm. The improved algorithm does
not break up larger regions, effectively making the algorithm useful for a
larger class of segmentation problems.
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Paper VI

The fast evalution of the robust stochstic watershed

B. Selig, F. Malmberg and C. L. Luengo Hendriks
submitted for publication in a conference proceeding, 2015.

Abstract

The stochastic watershed is a segmentation algorithm that estimates the im-
portance of each boundary by repeatedly segmenting the image using a wa-
tershed with randomly placed seeds. Recently, this algorithm was further
developed in two directions: (1) The exact evaluation algorithm efficiently
produces the result of the stochastic watershed with an infinite number of
repetitions. This algorithm computes the probability for each boundary to
be found by a watershed with random seeds, making the result deterministic
and much faster. (2) The robust stochastic watershed improves the useful-
ness of the segmentation result by avoiding false edges in large regions of
uniform intensity. This algorithm simply adds noise to the input image for
each repetition of the watershed with random seeds. In this paper, we com-
bine these two algorithms into a method that produces a segmentation res-
ult comparable to the robust stochastic watershed, with a considerably re-
duced computation time. We propose to run the exact evaluation algorithm
three times, with noise added to the input image, to produce three different
estimates of probabilities for the edges. We combine these three estimates
with the geometric mean. In a relatively simple segmentation problem, F-
measures averaged over the results on 46 images were identical to those of
the robust stochastic watershed, but the computation times were an order
of magnitude shorter.
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Paper VII

Fully automatic evaluation of the corneal endothelium from in vivo

confocal microscopy

B. Selig, K. A. Vermeer, B. Rieger, T. Hillenaar and C. L. Luengo Hendriks
submitted for journal publication, 2015.

Abstract

Background: Manual and semi-automatic analyses of images, acquired in
vivo by confocal microscopy, are often used to determine the quality of
corneal endothelium in the human eye. These procedures are highly time
consuming. Here, we present two fully automatic methods to analyze and
quantify corneal endothelium imaged by in vivo white light slit-scanning
confocal microscopy.
Methods: In the first approach, endothelial cell density is estimated with
the help of spatial frequency analysis. We evaluate published methods, and
propose a new, parameter-free method. In the second approach, based on
the stochastic watershed, cells are automatically segmented and the result
is used to estimate cell density, polymegathism (cell size variability) and
pleomorphism (cell shape variation). We show how to determine optimal
values for the three parameters of this algorithm, and compare its results to
a semi-automatic delineation by a trained observer.
Results: The frequency analysis method proposed here is more precise than
any published method. The segmentation method outperforms the fully
automatic method in the NAVIS software (Nidek Technologies Srl, Padova,
Italy), which significantly overestimates the number of cells for cell densities
below approximately 1200 mm−2, as well as previously published methods.
Conclusions: The methods presented here provide a significant improve-
ment over the state of the art, and make in vivo, automated assessment of
corneal endothelium more accessible. The segmentation method proposed
paves the way to many possible new morphometric parameters, which can
quickly and precisely be determined from the segmented image.
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