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Decentralised Energy Systems Based on Biomass - 
a Life Cycle Perspective on Climate Impact and Energy Balance 

Abstract 

Replacing fossil fuels with renewable energy sources is recognised as an important 

measure to mitigate climate change. Residual biomass from agriculture and forestry and 

short-rotation coppice grown on unused land can be converted to heat, power and fuel 

without directly compromising production of edible crops. As biomass is mainly 

produced in rural areas, increased use of biomass-based energy could contribute to job 

creation and rural economic development.  

This thesis investigated whether farmers can generate energy from their own on-farm 

agricultural and forestry residues for energy self-sufficiency on the farm or for 

commercial production of district heating or combined heat and power production, with 

reduced greenhouse gas emissions compared with fossil alternatives. Consequential life 

cycle assessment methodology was used, with the focus on greenhouse gas emissions 

and energy balance.  

The results showed that arable and dairy organic farms in Sweden can both become 

self-sufficient in energy by using on-farm biomass residues. Furthermore, decentralised 

bioenergy systems proved superior to central production based on fossil fuels or large-

scale biomass in terms of both greenhouse gas emissions and production costs. The 

results also revealed large variations (9-97%) in greenhouse gas emissions reduction 

potential compared with fossil fuels. This variation is partly due to the impact on soil 

carbon content in soil management systems, where crop residue removal has a negative 

effect and willow coppice production a positive effect. The input energy requirement 

for biomass systems is generally higher than for fossil systems, but is typically 

generated from renewable energy. 
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Dedication 

Till mormor Inga-Sara 

 

Nothing in life is to be feared, it is only to be understood. Now is the time to 

understand more, so that we may fear less. 
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1 Introduction 

1.1 General introduction 

According to IPCC, warming of the atmosphere and oceans is now 

unequivocal.  The concentration of greenhouse gases (GHG) in the atmosphere 

has increased by 40% since pre-industrial times, due to combustion of fossil 

fuels and emissions due to land use changes, and in the last 40 years, nearly 

80% of the increase has been due to fossil fuel combustion and industrial 

processes (IPCC, 2013).  

 

The European Union (EU) has adopted a target to reduce anthropogenic GHG 

emissions by 80-95% by 2050, in order to achieve a maximum 2 °C higher 

average temperature on the planet compared with the baseline of 1990 (EC, 

2011). Replacing fossil fuels with renewable energy sources (RES) is one of 

the most important actions to achieve this, a fact that has been widely 

recognised by policymakers and public and private investors. Investments in 

RES are occurring at a rate of about 15% of total global energy investments 

and have never been higher (IEA, 2014a). According to the European Network 

for Transmission System Operators (ENTSO-E, 2014), integration of new 

renewable energy is the main driver of system evolution on the European 

power market today.  

Assessments of biomass potential on a global scale range from about 15% 

to 50% of the projected global energy demand in 2050 (Popp et al., 2014; IEA, 

2013; IPCC, 2013). Bioenergy is thus likely to become an important part of the 

future energy regime.  

Compared with wind, solar and wave power, resources that are intermittent 

(i.e. produced and consumed simultaneously), biomass has the benefit of 

storability, which means that production of heat and/or power can be planned 
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according to consumption patterns. Moreover, biomass comes in many forms 

(feedstock types) and can be converted to a variety of energy carriers; heat, 

power or different types of vehicle fuels. These energy carriers can be 

produced in separate processes or via the biorefinery concept, i.e. in integrated 

processes with multiple outputs.  

However, biomass is a bulky material with low energy density (unless dried 

and comminuted), which limits the feasible transport distance. Therefore, 

biomass use for internal process energy in the main biomass-producing sectors 

(forestry and agriculture) can be a way to reduce emissions from those sectors. 

Forestry and agriculture currently contribute about 24% of global 

anthropogenic GHG emissions (IPCC, 2013). These mainly originate from 

enteric fermentation and manure management, nitrous oxide (N2O) emissions 

from soil, deforestation and land use changes, but also from the use of diesel 

and fuel oil.  

Organic farms are increasing in number in Sweden and the EU and could 

have a particular interest in replacing fossil fuels with renewables, as they 

already have an environmental profile. Taking this even further by achieving 

energy self-sufficiency would be in line with the organic production principles 

of utilising local and on-farm resources as far as possible. This could even 

increase the credibility and competitiveness of organic production as a 

sustainable alternative.  

The climate impact of using biomass for energy purposes has been debated. 

There is strong scientific evidence in the literature that biomass-based energy 

systems reduce GHG emissions significantly compared with fossil fuel systems 

(e.g. Ericsson et al., 2014; Fazio & Monti, 2011; Cherubini & Strømman, 

2010; Cherubini, 2010; Gnansounou, 2009). However, there are some 

emissions associated with the production and harvest of feedstock, as well as 

conversion processes and transportation. Moreover, land use changes due to 

changes in management, such as crop residue removal, can impair soil quality 

and hence future yields (Cherubini, 2010; Lal, 2008).  

There can also be serious environmental consequences if production of 

biomass for energy displaces food production on existing land, thereby driving 

demand for more productive land that can result in destruction of carbon sinks 

such as forests (deforestation) and peatland. This is referred to as indirect land 

use change (iLUC).  

Deforestation causes a high pulse of carbon dioxide (CO2) to the 

atmosphere from the release of carbon built into the trees and the soil organic 

matter (SOM) content is likely to be negatively affected as carbon becomes 

more exposed to air via the intensive tillage associated with cash crop 
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production. A consequence of this is a higher rate of mineralisation of carbon 

to CO2 and a potential SOM depletion effect, or even soil erosion. Moreover, 

removing old or pristine forests with high biodiversity poses a threat to rare 

species of plants and animals and can affect the global hydrological cycle 

(Ellison et al., 2012).  

On the other hand, growing short rotation coppice (SRC) such as willow 

(Salix) on fallow land can be a way to create a carbon sink on arable land (e.g. 

Hammar et al., 2014; Ericsson et al., 2014). The extensive root system, the 

addition of leaves and fine roots to the soil and the low-tillage management 

increase SOM and give a carbon sequestration effect. Carbon sequestration in 

agricultural soils has in fact been recognised by the IPCC as a climate change 

mitigation measure in itself (IPCC, 2013). 

In order to fully understand the impact of a biomass-based energy system, a 

thorough environmental assessment is required. Life cycle assessment (LCA) 

has become an established tool to calculate the life cycle emissions of fuels and 

energy systems and is described in ISO standards 14040 and 14044. LCA has 

been widely applied for corporate decisions and as basis for policymaking and 

policy implementation, such as for calculation of GHG emissions from biofuels 

under the EU Renewable Energy Directive (RED) (EC, 2009). In LCA, the 

emissions or resource use associated with a product, process or service in all of 

its life cycle stages are summarised and normalised by characterisation factors 

into impact categories, for example climate impact or eutrophication (Tillman, 

2000).  

In the conventional LCA methodology, attributional LCA (ALCA), the 

emissions associated directly with a product or service’s life cycle stages are 

calculated in a rather static approach, mostly by applying average emission 

values (such as the average emissions from the energy mix used in a country or 

region).  

Consequential LCA (CLCA) takes a different, more dynamic approach and 

has gained ground in recent years. In CLCA, the impact of a change to a 

reference system is assessed (Curran et al., 2005; Ekvall & Weidema, 2003; 

Tillman et al., 2000). The multi-market response to the introduction of e.g. new 

energy generation capacity is identified and emissions associated with the 

increased or decreased marginal production on those markets are assessed.  

In this thesis, CLCA was applied to assess the changes in GHG emissions and 

the energy balance from organic farm production and from heat, power and 

fuel production when farmers integrated into energy supply chains by using 

their own biomass residues for energy generation.  
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1.2 Aim, objectives and structure of the thesis 

The main aim of this work was to investigate whether farmers can reduce the 

climate impact of the agricultural and energy sectors by generating energy 

from on-farm biomass. The farm-based energy systems studied were aimed 

either at energy self-sufficiency on the farm, or at commercial local heat and 

power production systems. The objectives were to assess the global warming 

potential in a 100-year perspective (GWP100) and the energy balance by 

applying CLCA for a variety of technical systems based on various biological 

feedstock types and conversion pathways. 

The work comprised two parts, which were further subdivided into four 

individual studies. The focus of each part is described below. The basic 

concept of the cyclic material and energy flows in all biomass-based energy 

systems studied are shown in Figure 1. 

In Part 1, the impact of energy self-sufficiency systems for organic food 

production was investigated for an arable farm (Paper 1) and a dairy farm 

(Paper II). Technical systems in which the farmers could replace all fossil fuel 

use with the use of crop residues or manure were devised. The production on 

each farm was assumed to have two main outcomes; commodities in the form 

of cash crops or energy-corrected milk (ECM), and residues such as straw and 

green manure. The residues were converted to useful high value energy carriers 

via conversion processes, and to the extent that the residues contains nutrients 

(nitrogen and phosphorus), these were returned to the production system (the 

soil) in the form of digestion residues and ashes. Any by-products or co-

products were sold on the market, where they substituted for other products 

with the same function. The impact on soil carbon and soil emissions was 

included.  

In Part 2, the impact of the use of farm and forestry residues for local heat and 

power production was investigated. Paper III analysed a scenario where a farm 

supplied a rural village with heat and power in a self-sufficiency system based 

on agricultural residues (although with the electricity grid as a buffer). Paper 

IV explored a system where farmers with agricultural and forest production 

integrate vertically into the supply chain of a local district heating (DH) grid. 

The consequences on choice of feedstock, conversion pathways and ownership 

of the DH production and distribution on the GHG balance and heat price were 

assessed. GHG emissions and costs for fuel supply chains for Salix, straw, 

forest residues and pellets were calculated.  
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Figure 1. Energy and material flows in the biomass-based systems analysed in Papers I-IV. 

 

The impact categories GWP100 and energy balance were included in all studies, 

as was land requirement. In Paper III, acidification and eutrophication were 

also included, while a cost analysis was included in Paper IV.  
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2 Background  

2.1 Decentralised energy systems 

The concept of decentralised energy supply systems can be defined as “the 

local supply of electricity and heat which is generated on or near the site where 

it is used” (Woodman & Baker, 2008). It may of course also refer to on-farm 

supply of vehicle fuel, as in the systems in Papers I and II. Decentralisation of 

energy systems can work well for biomass-based heat and power production, 

as biomass, unless dried and comminuted, cannot be transported long distances 

(for example to a central power or combined heat and power (CHP) plant) in a 

cost- or energy-efficient way (Mangoyana & Smith, 2011).  

Decentralised energy systems based on biomass may be e.g. straw-fuelled 

heat boilers for residential/commercial/farm use, small-scale district heating or 

CHP supply systems based on wood chips, small-scale production of biodiesel 

from the farm’s own oilseed production, or farm-based biogas production to be 

used as vehicle fuel or for heat and power production in ordinary gas engines.  

In 2011, the European Commission (Agriculture and Rural Development 

group) completed a study on the potential for heat and power production from 

renewable sources on 800 EU farms (EC, 2011). It concluded that farm-based 

renewable energy production systems generally have a positive effect on farm 

income and can increase labour intensity on the farm, i.e. create jobs.  

Furthermore, although the farm-based renewable energy systems were most 

profitable in developed and dynamic areas, the highest satisfaction with return 

on investment was found in less developed areas, indicating that the energy 

systems were even more welcome there (EC, 2011). 
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2.2 Bioenergy  

2.2.1 Bioenergy use 

Sweden has a particularly advantageous situation for use of bioenergy, with 

extensive forest cover and a well-established forest industry. At present, 33% 

or 130 TWh of the total final energy use in Sweden is based on biomass 

(Swedish Energy Agency, 2014). In the DH sector, biomass constitutes more 

than 40% of the fuel, excluding the organic part of waste (Swedish District 

Heating Association, 2014).  

Most of the biomass used for energy production in CHP or stand-alone heat 

plants comprises by-products from harvest of roundwood for the timber 

industry and pulpwood for the pulp & paper industry (Börjesson et al., 2013). 

Production of biomass for energy is in fact an established industry in itself, and 

quality aspects and technical and logistical solutions are continuously evolving.  

The outtake of forestry residue (tops and branches, and thinning residues) in 

Sweden is between 7 and 14 TWh/year, still a relatively small proportion of the 

approximately 155 TWh roundwood harvested annually. The roundwood is 

mainly delivered to sawmills and the pulp & paper industry, but also for energy 

production, in the form of low-grade roundwood, and indirectly in the form of 

by-products, e.g. saw dust and bark.  The total energy content of the Swedish 

forest stock is 10 500 TWh and annual growth is 350 TWh. (Börjesson et al., 

2013) 

However, there is relatively little production of bioenergy from agricultural 

sources in Sweden. Large-scale, well-established production is limited to the 

production of ethanol from wheat in Norrköping, which requires wheat from 

about 100 000 ha per year (Agroetanol, 2014). The wheat is fermented into 

ethanol, mainly intended for low-blend of ethanol into gasoline.  

Biomass use is quite common for heat production in the agricultural sector. 

From a total of 3300 GWh heat consumed in the agricultural sector in 2012, 

600 GWh were produced from roundwood, 345 GWh from wood chips, bark 

and sawdust, 51 GWh from pellets and briquettes, 66 GWh from grain and 300 

GWh from straw. The remainder was produced from oil, gas and electricity, 

although use of oil has decreased significantly since the previous measurement 

in 2007 (Swedish Energy Agency, 2014a).  

Salix is currently grown on 12 600 hectares (ha) (Statistics Sweden, 2013), 

producing 180 000 m
3
 of fresh Salix wood in 2013. Salix wood chips are 

mainly used as fuel in heat plants (Swedish Energy Agency, 2014a).  
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Biogas is produced via anaerobic digestion (AD). In this process, the substrate 

is converted into a mixture of mainly methane (CH4) and carbon dioxide by 

microbes in a heated chamber (Jarvis & Schnürer, 2009). The residue from the 

AD process is slurry, which contains most of the nutrients from the original 

substrate and can be used as fertiliser on agricultural soils.  

The total Swedish biogas production corresponds to 1.7 TWh, mainly 

produced at wastewater treatment and co-digestion plants. However, there 

there is also a small but growing number of farms around the country 

producing biogas from manure, ley and straw. 

About 0.9 TWh biogas is upgraded to vehicle fuel per year in Sweden 

(Swedish Energy Agency, 2013), which according to current Swedish 

standards means a minimum methane concentration of 97% (Swedish 

Standards Institute, 1999). Available upgrading technologies, i.e. removing 

carbon dioxide, include scrubbing, pressure swing adsorption and cryogenic 

technology, in which methane, carbon dioxide, water vapour and impurities are 

separated at their different condensing temperatures. The biogas volume is 

reduced either by compression (CBG) or liquification (LBG) in order to 

facilitate distribution and use. (Bauer et al., 2013) 

 

Bioenergy contributes almost 70% of supplied renewable energy in the EU, 

mainly in the heat sector, and 8% of total final energy (EUROSTAT, 2012). In 

2012, the EU produced 11 million tonnes of wood pellets and consumed more 

than 15 million tonnes, balanced by imports from (mainly) North America 

(AEBIOM, 2014).  

The EU is also the world’s main producer of rapeseed methyl ester, RME 

(biodiesel) from rapeseed, with more than 40% of global production (Popp et 

al., 2014) and about 8.5% of farmyard manure produced in the EU countries is 

used for biogas production (Battini et al., 2014). 

2.2.2 District heating  

The DH industry is the largest user of bioenergy in Sweden. Use of fossil fuels 

dominated in the 1970s but has gradually been replaced by energy from 

biomass, municipal and industrial waste, waste wood, geothermal heat, heat 

pumps and industrial waste heat. More than 40% of the fuel used for DH 

production is currently bioenergy (Swedish District Heating Association, 

2014).  

A DH system consists of a central heat plant and a distribution grid. Heat 

can be produced in a stand-alone heat plant, or in a boiler connected to a 

turbine and generator for CHP production. The boiler consists of a combustion 

chamber surrounded by a pipe system in which heat is taken up by a medium, 
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often water. The hot water (steam) is led out into a heat distribution system, in 

low pressure culverts, and heat is exchanged to internal heat distribution 

systems within buildings (end-users).  

In Sweden, the common boiler types are solid biomass boilers adapted to 

forestry fuels with moisture content between 35-50%. The traditional grate 

boiler is still common, but among newly built plants the fluidised bed (FB) 

boilers dominate. These FB boilers use a medium, often sand, that either 

circulates in the boiler system or creates a bubbling bed in which the fuel is 

burnt, creating favourable conditions. The FB boilers achieve higher thermal 

efficiency, but they also require comminuted and homogeneous fuel particles 

(Strömberg & Svärd, 2012). 

 

The first DH grid was established in Sweden more than 100 years ago, in a 

hospital area in Vasastan in Stockholm. By the 1950s, the DH concept had 

been adopted by all major cities in Sweden (Stockholm, Gothenburg, Malmö 

and others) and the expansion has continued since then. Today, DH in Sweden 

has about 80% of the market share for apartment buildings, and in total more 

than 50% of the market share for heat (Swedish District Heating Association, 

2014).  

Before the market deregulation in 1996, all DH utilities in Sweden were 

owned by municipal authorities. Today there are over 220 energy utilities that 

produce and distribute heat, both private and public, although most are in fact 

still municipal. EON and Fortum are the largest private actors, and together 

with Vattenfall AB and Göteborgs Energi are the largest overall suppliers, with 

several grids across the country (Fortum has concentrated ownership to the 

Stockholm area). (Swedish Energy Market Inspectorate, 2014) 

At the other end of the scale, there are DH systems with 10-20 GWh heat 

delivered per year, such as Lekeberg Bioenergi AB near Örebro, which is 

owned by local farmers who supply most of the fuel from their own farms and 

forests. 

The DH sector is currently facing challenges such as saturated markets, energy 

efficiency measures (reducing demand), competition from individual heat 

solutions such as heat pumps and low consumer trust due to lack of 

competition on the market. Distribution grids for heat were long considered to 

be natural monopolies, as multiple grids in a region would be too expensive to 

benefit consumers. Hence, each owner of a DH grid had a monopoly. 

However, the monopoly situation in the DH sector has led to weak incentives 

to keep costs and prices low. (Löfblad et al., 2013) 
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Third party access (TPA) is a system that obliges the owners of distribution 

grids (for heat, gas, electricity etc.) to allow regulated access to third parties for 

energy distribution to end-users. A TPA system for the Swedish DH market 

has been discussed and investigated for several years, and came into force on 1 

August 2014, as an amendment to the Swedish Act on District Heating 

(Swedish Code of Statues, 2014).  

The DH concept can work in large cities and in small-scale, decentralised 

settings, and can provide an opportunity in rural areas for commercial 

production of biomass-based heat.  

 

In the EU as a whole, only 13% of heat is supplied by DH, mainly in Denmark, 

Norway, Sweden, Finland and Poland. Most heat for the 

residential/commercial sector, over 40%, is currently produced by natural gas 

in on-site boilers (Connolly et al., 2013). 

2.2.3 Bioenergy policy 

The EU’s energy policy is defined by the 20-20-20 goals adopted in 2009; 20% 

reduction in GHG emissions, 20% energy from renewable sources and 20% 

energy efficiency by 2020 (EC, 2009). In October 2014, EU member states 

agreed a new, more ambitious target of 40% GHG emissions reductions, 27% 

renewable energy and 27% energy efficiency (EC, 2014). 

The main instrument for reaching the target on GHG emissions reductions 

is the cap-and-trade system, the EU Emissions Trading Scheme (ETS), 

effective from 2008. The ETS aims at creating a market-based and cost-

efficient system for emissions reductions by requiring industries (with certain 

minimum production capacity) to obtain an emissions certificate for all their 

CO2 emissions. Some emission rights are allocated to the industries at the start 

of a trading period, the rest are traded on the market. High emitters are 

punished by having to buy the emission certificates, which in effect adds a 

price to release of carbon, and low emitters can sell emission certificates, 

which in effect can add to the profitability of renewable energy investments. 

However, the ETS system has suffered from an oversupply of emissions rights, 

with plummeting prices as a result, hardly achieving the intended steering 

effect (EC, 2012).  

The Renewable Energy Directive, RED (Directive 2009/30/EC) aims at 

promoting biofuels for transport. Certain sustainability criteria must be fulfilled 

in order for a fuel to be denominated “biofuel”; a minimum of 35% emissions 

reductions for liquid and gaseous biofuels must be reached compared with the 

fossil alternative, with this requirement increasing to 50% by 2017 and 60% by 



22 

2018. The RED also describes methodology for calculating the GHG 

emissions, based on LCA (EC, 2009a). 

There is currently a cap of maximum 7% first-generation biofuels (from 

primary crops such as wheat or rapeseed), due to concerns about iLUC issues 

arising from replacement of food crops. A non-binding goal of 0.5% advanced 

biofuels from lignocellulosic material and agricultural residues has been set. 

The EU Fuel Quality Directive, FQD (Directive 2009/30/EC) allows 10% 

blend of bioethanol into petrol and 7% biodiesel into conventional diesel. The 

FQD also stipulates that fuel suppliers must reduce their GHG emissions per 

energy unit by 6% by 2020. (EC, 2009b) 

The EU Common Agricultural Policy (CAP) does not support production of 

energy crops directly, since the energy crop premium and the set-aside scheme 

(in which energy crops could be grown on set-aside land) was abolished in 

2009. It was replaced by the single area payment, which means that crop 

production obtains support regardless of purpose (food, energy, fibre etc.).  

The investment programme NER300 is a funding programme for large-

scale investments in low-carbon technologies. There are also national support 

systems partly funded by the EU, such as biogas investment support in Sweden 

through the rural development programme 2007-2013 (Swedish Board of 

Agriculture, 2009).  

Besides EU policy, member states have their own ways of subsidising 

renewable fuels. The feed-in tariff (FIT) in Germany is a successful, but 

expensive, example of energy policy. Introduced in 2000, the system 

guaranteed a certain selling price over 20 years for electricity from renewable 

energy sources. It had a substantial impact on the market, with primary energy 

production from renewable sources more than tripling between 2002 and 2012. 

This made Germany the largest producer of renewable energy in the EU, 

comprising more than 18.6% of the total renewable energy produced (Sweden 

is third, with approximately 10.4% of total renewable energy production; 

Eurostat, 2014). Thousands of biogas installations were installed in Germany 

as a consequence of FIT schemes, but also in Italy, France and the UK (EBA, 

2013). In 2012, there were in total 13 800 biogas plants in the EU (EBA, 

2013). 

Sweden has chosen a different approach when it comes to energy policy. In 

1995, a CO2 tax was imposed on use of fossil fuels, from which renewable 

fuels are exempt. Renewable fuels are also exempt from energy tax. In 2003, 

the green certificate system was implemented. This quota system aims at 

increasing the share of renewable energy sources by 25 TWh by 2020. 
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Electricity producers are obliged to use a set quota of renewable fuels or 

otherwise purchase certificates from producers with a higher share of 

renewable production than required. Since 2012, Norway is also included in 

the green certificate system.  

After the introduction of the quota system, many stand-alone heat plants 

were converted to CHP (Swedish Energy Agency, 2014b). The tax system and 

quota systems have generally been considered successful in creating incentives 

for use of renewable fuels in Sweden (McCormick & Kåberger, 2007). 

2.3 Agriculture 

2.3.1 Production, structure and policy  

In 2012, the 28 EU member states produced cereals on 57 million ha, oilseeds 

on 11 million ha and, in addition, potatoes, sugar, rice, fruit and vegetables 

(EU DG-ARD, 2012). Sweden has in total 2.6 million ha of agricultural land, 

of which about 1 million ha are used for cereals, 1 million ha for ley, 160 000 

ha for fallow and the rest for production of oilseeds, potato, sugar beet etc. 

(Statistics Sweden, 2014).  

Swedish production is currently distributed over almost 64 000 agricultural 

holdings, with average area 39 ha. This number has decreased since 2007, 

when there were over 72 000 holdings (Swedish Energy Agency, 2014a). 

However, 39 ha farm area is still large compared with the EU as a whole, 

where the average farm size is 12 ha (EU DG-ARD, 2012). The average farm 

size varies widely between the EU member states.  

 

All agricultural policy in the EU is gathered under the CAP and little is left to 

the individual member state (EC, 2014). The CAP consists of three pillars: 

market support, income support and rural development. The purpose of the 

market support mechanism is to ensure that there is a market for European 

agricultural commodities. The income support comprises direct payments to 

farmers and, since the CAP reform in 2003, is decoupled from production. It is 

now given in the form of single farm payments, coupled to cross-compliance 

with certain requirements on animal welfare and environmental/health 

standards. 

Under the national rural development programmes, farmers can get support 

for different investments, for example farm-based biogas production. Each 

member state co-designs and co-funds these development programmes, 

whereas market and income support are funded by the EU.  
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The agricultural sector has undergone sweeping structural change in the past 

few decades. In Sweden, the area used for crop production decreased by about 

10% after the introduction of the EU single farm payment and the number of 

holdings with livestock has also steadily decreased (Statistics Sweden, 2014). 

Farms are also generally becoming larger, fewer in number, more specialised 

and with lower labour intensity. More than half of the agricultural holdings in 

Sweden require less than 800 hours of labour per year (Statistics Sweden, 

2014).  

Agriculture is also shrinking as a share of gross national product in many 

member states, and as a share of the EU budget. The CAP currently takes up 

40% of the EU budget, which represents a major decrease from 75% three 

decades ago (EC, 2014). 

2.3.2 Organic farming 

In the EU, the area cultivated according to organic principles has grown rapidly 

in the past decade, along with rising demand for organic food, but still only 

makes up 5.4% of total agricultural land (European Network for Rural 

Development, 2014). In Sweden, 15.7% of arable land is managed according to 

organic principles and about 8% of dairy cows are organically managed. 

Globally, about 1% of arable land is certified according to some organic label 

(Willer & Kilcher, 2012).  

Regulations for organic agriculture in the EU are set by Council Regulation 

No. 834/2007 (EC, 2007), in which the definition of organic farming is “an 

overall system of farm management and food production that combines best 

environmental practices, a high level of biodiversity, the preservation of 

natural resources, the application of high animal welfare standards and a 

production method in line with the preference of certain consumers for 

products using natural substances and processes” (EC, 2007).  

Important principles are elimination of the use of mineral fertilisers and 

chemical pesticides. Nutrients can be added e.g. by including a nitrogen-fixing 

ley in the crop rotation, or by using an organically approved fertiliser, for 

example manure. Research has also shown that human urine, mussels or other 

nitrogen-rich biological products can be added to agricultural fields as 

fertiliser, however the spreading of urine is not permitted (Spångberg, 2014). 

The organic principles also include minimised resource use and increased use 

of renewable resources, but so far there is no specific requirement on the use of 

renewable energy. (EC, 2007) 
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In Sweden, the established organic certification label is KRAV. Since 2014, 

KRAV has set special requirements related to energy use for organic farms that 

use more than 500 GWh per year or have more than 100 cattle; such farms 

must map their energy use, strive for energy efficiency and develop key 

performance indicators. Furthermore, 100% of electricity must be from 

renewable energy sources, either their own production or certified sources 

(KRAV, 2014).  

There are studies that indicate that organic farms require less energy than 

conventional farms (Tuomisto et al., 2012). This is partly due to the exclusion 

of mineral fertilisers, which are energy-intensive to produce. According to an 

assessment of conventional agricultural systems in 15 European countries, 

about 47% of the total energy input for crop production is used for production 

of fertilisers, of which almost 80% for nitrogen fertiliser production (Alluvione 

et al., 2011).  

Organic farms may require more mechanical weeding, on the other hand, 

and produce less output per hectare. Hence, if calculated per unit of output, 

organic production may be more energy-intensive that conventional 

production. However, when comparing an organic and a conventional farm of 

the same area, the conventional farm might be the largest energy user 

(Tuomisto et al., 2012).  

2.4 Assessing bioenergy systems 

2.4.1 Assessment methods 

Several methods for environmental assessment have been developed, such as 

Strategic Environmental Assessment (SEA), Environmental Impact 

Assessment (EIA), Material Flow Analysis (MFA), the Public Goods (PG) tool 

and the Carbon Footprint (CF) (Leach et al., 2012; Jensen, 2012; Finnveden et 

al., 2009). The scope of these tools differs, e.g. the PG tool is used to visualise 

the impact of milk production, based on real farm data, by 11 “spurs” in a radar 

diagram. These are soil management, biodiversity, landscape & heritage, water 

management, nutrient management, energy & carbon, food security, 

agricultural systems diversity, social capital, farm business resilience, and 

animal health & safety (Leach et al., 2012). In contrast, the CF focuses only on 

the carbon balance of a product or service (Jensen, 2012).  

However, the most established methodology today for both corporate 

purposes and policy making is LCA. LCA thoroughly assesses the impacts of 

products, processes or services in predefined impact categories such as climate 

impact, acidification, eutrophication and resource use, and is hence an 
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extremely comprehensive method when strictly applied. Among other uses 

LCA is prescribed in the RED for calculation of GHG emissions from biofuels.  

The LCA methodology has been standardised in ISO 14044 (CEN, 2006), 

and guidelines have been developed by e.g. the UNEP/SETAC Life Cycle 

Initiative.  

2.4.2 LCA overview 

An LCA process has four basic stages: 1) Goal and scope definition, 2) life 

cycle inventory (LCI), 3) life cycle impact assessment (LCIA) and 4) 

interpretation of results (Tillman, 2000). Stage (2) includes collection of 

emissions data and stage (3) includes categorisation into impact categories 

(such as GWP, acidification potential, land use etc.), and normalisation to a 

common unit (such as CO2-equivalents (CO2-eq.) or ha). This is done by 

characterisation factors that depend on the potency of the emissions to create 

damage – for example, GWP100 measures the potential to affect the energy 

balance of the planet via changes in radiative forcing from the existence of 

GHG (such as CO2, CH4, N2O and more) in the atmosphere over 100 years.  

There are two main orientations of LCA; ALCA and CLCA (e.g. Finnveden et 

al., 2009; Curran et al., 2005; Ekvall & Weidema, 2003). ALCA is the 

traditional approach and involves attributing emissions to each process step as 

they occur – from transportation, conversion processes and use. Average 

values for input factors apply, such as the energy mix used in the relevant 

geographical region. The environmental burden is allocated between main 

products and co-/by-products based on physical or economic (or other) 

properties. The ALCA approach is often used for example for labels and 

standards, and for calculation of GHG emissions under the RED.  

In CLCA, the change to a reference system when a new product or service 

is introduced is assessed. For CLCA, it is important to understand the multi-

market response to the introduction of the new system, e.g. the type of 

electricity production responsible for the long-term increase/decrease as a 

consequence of the newly built (perhaps more environmental/climate friendly) 

electricity production capacity. When output from existing production capacity 

is reduced due to new investments, the reduction is referred to as substituted 

production, and the potential reduction in emissions is ascribed to the new 

system. Allocation is not applied in CLCA.  

CLCA can be used both as a basis for policymaking and for monitoring the 

effectiveness of a policy. For example, Bento & Klotz (2014) showed by 

CLCA that different biofuel policies in the USA resulted in emissions ranging 
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from -16.1 to 24 g CO2-eq./MJ maize ethanol entering the market as a result of 

the policy. 

2.4.3 Impact categories and characterisation factors 

A certain set of emissions can lead to the same environmental impact – for 

example, greenhouse gases, GHG (e.g. CO2, CH4, N2O) contribute to warming 

of the planet by “trapping” heat from solar irradiation inside the atmosphere. 

The emission metric used for GHG is Global warming potential (GWP). The 

GWP metric measures radiative forcing; i.e., the difference between the 

sunlight absorbed by the planet and the sunlight radiated back to space, 

integrated over a defined time horizon. Positive radiative forcing leads to near-

surface warming of the planet, negative forcing leads to cooling. The emitted 

gases are assigned characterisation factors determined by how strongly they 

contribute to this greenhouse effect in a given time span, compared to CO2, and 

given in the unit CO2-equivalents.  

The time span is often set to 100 years, GWP100.  For example, 1 kg of CH4 

emissions that remains in the atmosphere for 100 years corresponds to 23 kg 

CO2 in the atmosphere for 100 years, and 1 kg of N2O emissions has the 

potency of 298 kg CO2 in the atmosphere (IPCC, 2006). The GWP100 metric 

was adopted by UNFCCC in the Kyoto Protocol, and became a default metric 

for LCA practicioners. (IPCC, 2014) 

2.4.4 Functional units 

Functional unit, FU, is the unit to which emissions or resource use are related, 

e.g. emissions per MJ or resource use per hectare. The choice of FU is 

important, as it affects the absolute results, the applicability of the results and 

the comparability to other studies. It is important to be consistent in the use of 

FU for a study in order to compare the same function of a service or product, 

but also to adapt it to the aim of the study.  

FU for bioenergy can be categorised into four different types; output-

related, area-related, input-related and on a yearly basis (Cherubini & 

Strømman, 2010). For example, when comparing biofuels to biodiesel in a 

CLCA, the FU per vehicle-km could be considered appropriate because it 

includes the actual function, i.e. driving. On the other hand, when comparing 

the use of biomass for energy with production of food and fibre, the final 

energy production per hectare may be most relevant because land is a 

constrained resource.  

In order to make the study independent of feedstock, the appropriate FU 

could be output-related, such as emissions per MJ or vehicle-km An FU per 
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unit, such as kg or MJ, could be used in order to make the result independent of 

conversion processes (Cherubini, 2009). 

2.4.5  System boundaries 

A careful definition of system boundaries is critical in LCA studies (e.g. 

Finnveden et al, 2009; Schlamadinger et al, 1997). All processes involved or 

affected in the production of the biofuel should be accounted for, and multiple 

processes need to be handled by allocation or substitution. Allocation is used in 

ALCA but not in CLCA, where instead the market response to placing by-

products and co-products on the market and the consequence on the 

environmental impact are quantified. This impact is often beneficial, since 

other emissions can be avoided by substituting production. The impact of 

substitution is accounted for by a negative value if emissions are avoided or a 

positive value if emissions are added. The negative value could be e.g. avoided 

fossil fuel use.  

2.5 Bioenergy LCA studies 

There is an extensive body of LCA studies of bioenergy in the literature, not 

least on the topic of climate impact. The results of these studies show very 

large variations, even for similar bioenergy chains. These differences can be 

attributed to methodological choices, input data used, reference systems or 

simply the quality of the work (Muench & Guenther, 2013; Cherubini, 2009).  

A review conducted in 2010 showed that the majority of bioenergy LCAs 

published at that time focused on climate impact and energy balance, whereas 

only 9% considered the land use category, i.e. iLUC (Cherubini & Strømman, 

2010). About 25% take direct land use change (dLUC) into account. 

Consequential LCA is the most common approach for LCA of bioenergy, used 

in 75% studies.  

There are in fact more studies conducted on transportation fuels based on 

biomass rather than on heat and power from biomass, even though the former 

only makes up about 5% of total bioenergy use and 3-4% of total transport fuel 

consumption (Popp et al., 2014). There is a particularly high frequency of 

studies on bioethanol and biodiesel production, and on fuels from 

lignocellulosic substrates (Popp et al., 2014). 

2.5.1 GHG emissions 

The volume of GHG emissions produced in biomass-based energy generation 

systems depends on choice of feedstock, conversion technology and plant 

efficiency, distribution chains, by-product generation, how much the main or 
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co-products can substitute other production, and how emission-intense the 

substituted production is.  

Power production based on coal or natural gas is often used as a reference 

in LCA studies (mainly in CLCA as they more often constitute marginal 

production than the average production mix). Coal condensing plants emit 

about 230 g CO2-eq./MJ (assuming 48% electric efficiency) and natural gas-

based production 120 g CO2-eq./MJ (assuming 58% electric efficiency) 

(Giuntoli et al., 2014).   

In comparison, a review paper by Varun et al. (2009) found that emissions 

from electricity generated by biomass in large-scale condensing power plants 

can range between 10 and 49 g CO2-eq./MJ electricity produced (includes also 

the biomass part of low-blend into coal). In a more recent review paper, 

Muench and Guenther (2013) found a variation of 0.3 to 193 g CO2-eq./MJ 

electricity produced, with a median of 38.19 for electricity production from 

biomass. The high end of the scale is due to the impact of iLUC such as 

deforestation. 

Emissions from stand-alone heat production vary less, according to Muench 

and Guenther (2013), from 1.65 to 21.39 g CO2-eq./MJ heat (median  8.2 g 

CO2-eq./MJ). The median for CHP production is -25.18 g CO2-eq./MJ heat and 

the range is -47.5 to 8.6 g CO2-eq./MJ heat. The emissions value can become 

negative when power production from biomass CHP substitutes power 

produced from fossil fuels. 

 

According to a review in 2009, biofuels in the transportation sector produce 

GHG emissions within the range 15-195 g CO2-eq./km. The lowest emitters are 

biodiesel based on Fischer-Tropsch technology, bioethanol from 

lignocellulosic crops (sometimes referred as second generation biofuels), and 

biogas (Cherubini, 2009). The highest emitters are when severe iLUC effects 

can be expected, for example deforestation. For comparison, diesel cars emit 

82 g CO2-eq./MJ (Gode et al, 2011), which corresponds to 145 g CO2-eq./km 

assuming diesel consumption of 0.5 l/km and diesel energy content of 35 MJ/l.  

Biogas production can have multiple benefits for the climate; it can 

substitute fossil fuel use, reduce methane emissions from manure management 

systems at farms, and substitute production of artificial fertilisers. Lantz & 

Börjesson (2014) calculated the GHG emissions from biogas produced from 

agricultural residues and upgraded to vehicle fuel quality, i.e. 97% methane 

and compressed (CBG) or liquefied (LBG), to 8.2 g CO2-eq./MJ when 

including the substitution effects. Direct emissions from the biogas system 

(excluding the fertiliser substitution effect, but including reduced emissions 

from manure management) were 17.1 g CO2-eq./MJ. Börjesson & Berglund 
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(2006) pointed at the fact that life cycle emissions from biogas for vehicle fuel 

use depends on the substrate type (manure, straw, ley, sewage sludge etc.), the 

conversion efficiency of the system, the methane slip in the upgrading process 

etc., and hence results from one analysis of an energy system may not apply to 

another. Similarly, Huttunen et al. (2014) concluded in a review of biogas LCA 

studies that substrate type, transport distance, end use of the gas, utilisation of 

digestion residues and system boundaries strongly influence LCA results on 

climate impact.  

Forestry residue supply chains for combustion in heat/CHP plants are 

attributed with emissions in the production phase, i.e. the difference in 

emissions compared with a system where residues are left on the forest floor. 

Emissions comprise forwarding, transport, storage, conversion and soil carbon 

changes in the forest soil. Lindholm et al. (2010) estimated the GHG emissions 

from harvest of logging residues (loose or in bundles) in southern Sweden to be 

7.6-8.5 g CO2-eq./MJ, including soil carbon effects, which had a large impact 

on the results (similar calculations, without including soil organic carbon 

effects, gave emissions of 2.3 g CO2-eq./MJ for central Sweden; Berg & 

Lindholm, 2005). Berg et al. (2014) found a range emissions between 7-19 kg 

CO2-eq./m
3
u.b. (ca 1–2.8 g CO2-eq./MJ) for forest supply chains in Germany 

and Sweden, depending on the topography of the harvested area and 

mechanisation of the harvest operations. Energy use varied between 83-206 

MJ/m
3
u.b, of which 35-60% was from transportation. The highest values were 

for Sweden. This corresponds to about 1-3% of the energy contained in the 

wood. 

 

Use of agricultural residues, in particular straw, for energy generation may 

cause less or no emissions in the production phase compared with use of 

primary agricultural products, but crop residue removal from fields has an 

impact on soil organic carbon (SOC) content and nutrient concentrations. This 

can affect the future productivity of the soil (Cherubini, 2009). Many LCA 

studies unfortunately omit this aspect, but Fazio and Monti (2011) found that 

removal of crop residues for biofuel production increases emissions from land 

use by 20%, mainly due to the increased use of fertilisers. According to 

Gabrielle et al. (2014), the nutrient requirements of lignocellulosic crops are 

still poorly known, which adds to the uncertainty.  

Cherubini and Ugliati (2010) expressed the effect of crop residue removal 

as the sum of changes to SOC, the emissions from additional production 

required elsewhere due to lower productivity, the use of fertiliser to replace the 

nutrients removed with the crop residues, and the reduction in nitrous oxide 
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emissions from crop residues that would have been ploughed back into the soil 

if they had not been used for biofuel production.  The actual impact of crop 

residue removal depends strongly on factors such as soil type, soil climate, 

time scale and management practices (Cherubini, 2009). 

2.5.2 Energy balance 

Similarly to GHG emissions, the cumulative energy requirement from biofuel 

use depends on feedstock choice, conversion technology and efficiency, fuel 

quality and engine efficiency. The latter only becomes visible in studies that 

take into account the use phase (well to wheel) with a functional unit such as 

energy use per 1 km of driving (as opposed to e.g. per litre or MJ of fuel 

produced). In general, bioenergy systems require higher energy input than 

fossil fuel systems on a life cycle basis, due to the field operations and 

transportation required during the production phase.  

Cherubini (2009) reported a range of cumulative energy requirement of 3.5-

13 MJ/km in LCA studies on various types of biofuels, which can be compared 

with the range of 1.3-2.4 MJ/km reported for petrol and diesel. However, while 

the input for petrol and diesel is almost exclusively of fossil origin, the 

opposite is true for biofuels, which often rely more on renewable energy input, 

e.g. use of biomass for grain drying or biogas chambers heated with a stream of 

the produced gas.  

There are LCA studies of biofuels that indicate that in some biofuel supply 

chains, the fossil input exceeds the energy output in the final energy carrier, for 

example ethanol made from maize, switchgrass or wood biomass in the US and 

soy bean/sunflower biodiesel (Cherubini & Stromman, 2010). Other studies 

contradict this, e.g. Blottniz and Curran (2007) found that ethanol from maize 

stovers in the USA indeed requires less energy to produce and distribute than is 

delivered by the fuel. Production technologies, assumed conversion efficiency, 

and site-specific conditions for each supply chain studied can play a large role 

in such contradictory results, but also methodological choices, e.g. assumptions 

on substituted production, allocation and system boundaries.  

2.5.3 Land use and iLUC 

The land use category indicates how much land area is occupied by production 

of the biofuel product under study, and is closely linked to energy yield per 

hectare. There is typically higher energy output per unit area in tropical regions 

than in temperate regions, since the crop productivity is higher (Blottnitz & 

Curran, 2007). This may mean that biofuel from such regions can appear 

favourable if the functional unit is area-related, e.g. km driven on biofuels 

produced on 1 ha. For example, a Salix plantation yields 198 GJ/ha assuming 
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10 tonnes of dry matter (DM) per ha and year (Gonzáles-Garcia et al., 2012), 

but the yield ranges between 5-11 tonnes DM/ha and year depending on 

growing conditions (Gabrielle et al., 2014). Since doubling yield does not 

mean doubling the necessary field operations, the energy output per ha can 

range between approximately 100-200 GJ/ha and year. From sugarcane, about 

120 GJ of ethanol can be produced per ha and year, while wheat and oilseeds 

produce about 42 GJ/ha and year, corresponding to yield of 12.3, 4.2 and 2.7 

tonnes DM/ha and year, respectively (Gabrielle et al., 2014).  

Land use mostly refers to use of arable land that could have been used for 

food production. Displacement of food production can start a complex chain of 

displacement mechanisms across the world, since the market for agricultural 

goods is largely global and food demand can be considered inelastic 

(Kløverpris, 2008). The chain of displacement can end in e.g. deforestation, 

because more arable land eventually is needed (the iLUC effect). 

Reinhard and Zah (2011) showed that biodiesel from rapeseed in 

Switzerland can cause emissions within the range -175 to 329 g CO2-eq./MJ 

fuel. Substitution of high-emitting products can result in a negative emissions 

balance, whereas deforestation or other iLUC effects cause the higher 

emissions. By solely taking into account the emissions associated with the 

production phase, Reinhard and Zah (2011) also estimated that biodiesel 

caused 62 g CO2-eq./MJ, which can be compared to ca 85 g CO2-eq./MJ for 

petrol and diesel (Gode et al, 2011).  

The land requirement, as opposed to land use, measures the area from 

which residues from food crop production are harvested, resulting mainly in 

dLUC, such as an impact on soil carbon dynamics, but not in displacement of 

cash crops. However, dLUC can potentially lead to iLUC if the biomass 

removal results in lower productivity rates, driving a demand for new crop 

producing land.  

Globally, about 2.5% of arable land, or 40 Mha, is used for primary bioenergy 

production, with implications both for direct and indirect land use change. In 

Europe, the corresponding figure is about 3 Mha, mainly for biodiesel and 

bioethanol, i.e. rapeseed and wheat (Popp et al., 2014). About 0.1 Mha is 

dedicated to SRC production.  

 

 

 

 

 



33 

3 Methodological approach 

This chapter describes more specifically how CLCA was applied and used in 

Papers I-IV. In particular, the emissions calculation methodologies, soil carbon 

model and some of the most important assumptions used in the papers are 

described. 

3.1 LCA approach 

CLCA is generally considered to be more suitable for assessment of new 

systems or for policy-making, as it measures the impact of a change, whereas 

ALCA is considered more suitable for environmental labels and certification, 

as it may be easier to communicate and seem more transparent (e.g. 

Soimakallio et al., 2011; Finnveden et al., 2009). Since Papers I-IV assessed 

the change from an existing energy system to a biomass-based energy supply 

system, CLCA was consistently applied.  

3.2 Functional unit 

In Papers I and III, the FU was total emissions on a yearly basis from the entire 

farm system. The main reason for this was to capture the entire agricultural 

system without having to apply too many substitution effects or cut-offs. In the 

cash crop systems, there are several farm outputs and it is not a straightforward 

matter to determine which one that is the main product.  

In Paper II, on the other hand, the FU was on an output basis, 1 kg energy-

corrected milk (ECM), because milk is clearly the main output from the farm, 

and the purpose was in fact to investigate the climate impact from its 

production. Similarly, in Paper IV the FU was emissions on an output basis (1 

GJ heat), because it was desired to investigate emissions and costs of the heat 
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delivered to an end-user. The output basis also facilitates comparison with 

other studies in the literature.  

The impact categories considered were GWP100, and energy balance. Land 

requirement has been calculated in all studies, and in Paper III also 

acidification and eutrophication. The characterisation factors applied are based 

on the IPCC Fourth Assessment Report (IPCC 2006) (Table 1).  

Table 1. Global warming potential in a 100-year perspective (GWP100) of the major greenhouse 

gases carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) 

 CO2 CH4 N2O 

GWP100 (CO2-equivalents) 1 23 298 

3.3 Emissions from arable land 

3.3.1 Methane and nitrous oxide 

Calculating emissions of nitrous oxide and methane from the soil and any 

fertilisers applied to the soil is not a straight-forward task due to lack of 

verified models and data with high geographical resolution. The most common 

methodology today for calculation of emissions from managed soils is that 

developed by the IPCC, in which it is assumed that a certain fraction of applied 

fertiliser will volatilise directly, or leach and volatilise at a later stage.  

Methane emissions during storage and spreading of manure and digestion 

residues were also calculated using the IPCC methodology. Nitrous oxide and 

methane emissions from manure and digestion residues were calculated by the 

following equations: 

𝑁2𝑂𝑒𝑚𝑖𝑡𝑡𝑒𝑑 = 𝐷𝑡𝑠 𝑥 𝐹𝑟𝑎𝑐𝑁−𝑡𝑜𝑡 𝑥 (
44

28
) 𝑥 𝐸𝐹 

CH4 𝑒𝑚𝑖𝑡𝑡𝑒𝑑 =  𝐷𝑡𝑠𝑥 𝐵0𝑥 0.71𝑥𝑀𝐹 

 

where D is the volume of digestion residue or fresh manure, Frac(N-tot) is the 

fraction of nitrogen available, 44/28 is the conversion factor for nitrogen to 

nitrous oxide, EF is the emissions factor, B0 is maximum methane production 

capacity, 0.71 is the density of biogas and MCF is the methane conversion 

factor. (IPCC, 2006) 

3.3.2 Soil carbon dynamics 

An adapted model for calculating soil emissions from crop rotations was 

developed for this work. The methodology is based on the ICBM model 
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(Andrén & Kätterer, 2001). Using the ICBM model, the carbon dynamics were 

simulated during three crop rotations (21 years), given an assumed initial 

carbon content in year 1 and assumptions on soil type, soil climate and tillage. 

In each year and for each field, the carbon content will increase or decrease 

based on the parameters mentioned above, in combination with the amount of 

carbon input to the soil in the form of crop residues and fertilisers. The 

resulting carbon content after each year’s cultivation represents the input for 

the next year. The simulation was also applied to the Salix plantation in Paper 

I, which was assumed to have a lifetime of 21 years. The parameters were used 

in a set of equations validated in long-term field trials in Sweden.  

The most important parameters in the model are carbon input (from crop 

residues such as straw, rhizodeposition and manure), humification coefficient 

and soil climate. The humification coefficient, or the fraction of material 

converted to resistant soil organic matter, depends on the ratio of the carbon 

sources, and is lower for crop residues than for manure (Andrén & Kätterer, 

2004). The mineralisation rate of carbon increases with increasing frequency of 

soil tillage, and is consequently higher for annual crops in the crop rotation 

than for perennial crops. This is accounted for in the model through the soil 

climate parameter, which is based on climate data for the region (air 

temperature, precipitation and potential evapotranspiration). 

3.4 Land requirement 

Arable land is a constrained resource, and extensive production of agricultural 

biomass for energy purposes could displace food production. Given a relatively 

inelastic food demand and a growing population on the planet, this means that 

new arable land will eventually have to be taken into production. This can be 

done by e.g. deforestation, which has serious environmental impacts. However, 

iLUC may not be an issue in regions where there is a ‘land buffer’.  

In 2008, the Swedish Board of Agriculture quantified the amount of 

Swedish arable land or pasture land currently not in use and found it to be 

500 000 ha, while overproduction of ley crops occupied 200 000-300 000 ha 

(Johnsson, 2008). The area of fallow land in 2013 was at least 160 000 ha, 

according to Statistics Sweden (2014).  

Land for production of SRC can hence be available without directly 

compromising food production in Sweden. In this thesis, a basic assumption 

was that land is available for SRC production without the implications of 

iLUC. Land requirement was however calculated, for two main reasons: to 

determine the area required for a system (and thereby assess the practical 
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feasibility of the system) and to determine the area affected by residue removal 

and susceptible to soil quality changes. 

3.5 Machinery 

Emissions from tractor use, crop drying and transport in the reference scenarios 

were calculated by applying emission factors for the fossil fuels (found in the 

literature) used in the different types of machinery, multiplied by the actual 

consumption for each activity. Use of the biomass-based energy carriers in the 

respective machines or technical systems was assumed to be a carbon-neutral 

process (as is common practice in LCA). However, in Paper I formation of 

methane and nitrous oxide in engines was included.  

3.6 Process energy and marginal electricity production 

In Part 1 of the thesis, the energy for conversion of biomass to energy in each 

scenario was generated by the system itself, creating a circular (self-

sufficiency) system. A self-sufficiency system for the farm only was thus 

created (although with an electricity exchange to the national grid). In Part 2, a 

local energy supply system with system boundaries drawn around the farm and 

the village (also with the power grid) was created. 

In the fossil fuel-based reference systems, the emissions factors per unit of 

energy included upstream activities, such as extraction, refinement and 

distribution. 

Energy use is a critical parameter in LCA, since most processes require the 

input of energy. Processes may also entail an output of energy, as in this case.  

In CLCA the question is which type of electricity production is either 

substituted/decommissioned or increased/commissioned by the new system. 

This is referred to as the marginal electricity production. Marginal production 

can simply be categorised into two types, the built or long-term margin, which 

refers to new production capacity, and the short-term margin, which is based 

on daily fluctuations in demand.  

The latter is quite straight-forward to determine based on merit order in the 

European energy system. However, it is the built margin that is of interest in 

LCA when analysing systems with a lifetime of several years/decades. 

In 2006, an assessment of the European energy system showed that power 

production capacity based on natural gas dominated in planned investments. 

Coal-based production dominated amongst plans that were to be 

decommissioned within coming decades (Kjaerstad & Johnsson, 2007). 
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Natural gas, with emissions of 120 g CO2-eq./MJ, was therefore used as 

marginal production capacity in Papers I-IV.  

3.7 Scenario building 

The scenarios developed for each study were based on energy technologies that 

were either commercially available at the time of the study, or deemed to have 

potential to become commercially available within the next five years. The 

focus was on building realistic scenarios from a technical and logistical 

perspective, but these were not constrained by their economic viability in 

today’s market and policy situation.  

 

The setting, data and assumptions used apply to south-western Sweden, but in 

most cases the general conclusions could also be valid for other areas and 

regions. Heat and power production systems with natural gas as fuel were 

chosen as reference systems, in order to make the systems relevant to the EU as 

a whole; natural gas is the most common fuel for heat production in the 

residential/commercial sector in EU, currently making up 44% (Connolly et 

al., 2013).  

 

The farms in Part 1 were dimensioned based on a specific typical size (arable) 

and typical number of cattle (dairy) in order to be representative. The crop 

rotation was developed in cooperation with the Swedish Institute for 

Agricultural and Environmental Engineering (JTI). The number of houses in 

Part 2 was chosen on a somewhat more arbitrary basis, as the size of rural 

villages can differ from few houses to several hundred houses.  
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4 Part 1: Energy self-sufficiency 

4.1 Basic system description 

The organic farms studied in Part 1 were assumed to be located in the County 

of Västra Götaland with respect to weather data, soil quality, crop yield, typical 

farm size and production. The farms were assumed to apply organic production 

methods according to the criteria stipulated in Council Regulation (EC) No. 

834/2007. Paper I studied an arable farm, and the FU was the entire farm 

output for one year. Paper II studied a dairy farm, and the FU was 1 kg ECM at 

the farm gate. 

 

The crop rotation applied on the arable farm is shown in Table 2. The 

cultivated area on the farm was 200 ha. As a substitute for artificial fertilisers 

(not permitted in organic farming), the crop rotation included a nitrogen-fixing 

ley crop twice in the seven-year rotation, a practice also referred to as green 

manuring. In the reference scenarios, the green manure crop was ploughed 

back into the soil, while in two of the alternative energy scenarios it was 

harvested and used as substrate for biogas production.  

Table 2. Crop rotation and average yield on the arable farm studied in Paper I (Hansson et al., 

2007)
 

a
Crops dried to 86% dry matter, except ley which is in kg dry matter  

b
Green manure 

 

Yield  

(kg dry matter/ha yr)
a
 

Field beans Oats Ley
 b

 Rapeseed Winter 

wheat 

Ley
 b

 Rye 

Crop yield 2400 3200 6000 2000 3500 6000 3200 

Straw yield  - 2756 - 1818 2846 - 4571 

Total ploughed down 

biomass
 

3600 4800 1500 6000 7000 1500 4800 
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The dairy farm was assumed to have a herd of 100 cows, with 25% recruitment 

rate. In accordance with organic principles, it was assumed to be self-sufficient 

in organically produced forage, of which 50% must consist of silage and 

grazing according to KRAV requirements. The two crop rotations tested are 

shown in Table 3. Outputs from the farm in addition to milk include by-

products in the form of meat, rapeseed oil, straw and manure. 

Table 3. Crop rotations and average yield on the dairy farm studied in Paper II. Crop rotation 1 

occupied 40 ha per crop, i.e. in total 7 x 40 ha, and crop rotation 2 14 ha per crop, i.e. 7 x 14 ha. 

The crop rotation was developed in cooperation with JTI, based on need for forage according to 

Olrog (2002) and crop yield in the County of Västra Götaland (Statistics Sweden, 2007) 

Yr Crop rotation 1 Yield 

(kg/ ha 

&yr) 

DM 

content 

Crop rotation 2 Yield 

(kg/ ha 

&yr) 

DM content 

1 Spring barley 2440 86% Spring barley 2350 86% 

2 Ley 1 6000 29% Grazing 6000  

3 Ley 2 6000 29% Grazing 6000  

4 Ley 3 6000 29% Grazing 6000  

5 Rapeseed 1693 91% Grazing 6000  

6 Wheat 3228 87% Grazing 6000  

7 Broad beans 2026 85% Broad beans 2026 85% 

 

The energy demand on the arable farm was dominated by tractor fuel for field 

operations and heat for grain drying, while the dairy farm had high electricity 

consumption due to automated milking and to manure management 

(pumping/stirring). The energy demand of both farms in the respective 

reference scenarios, based on diesel for field operations, oil for grain drying 

and electricity, is shown in Table 4.  

Table 4. Summary of energy consumption (MJ/yr) in the reference scenario on the arable farm 

(Paper I) and the dairy farm (Paper II). Heat and electricity for residential buildings was 

included only for the arable farm   

 Electricity Heat Hot water Tractor fuel 

Arable farm 50900 278400 12100 414000 

Dairy farm 306500 115000 - 530300 
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4.2 Alternative energy systems on the arable farm – Paper I 

Two energy self-sufficiency scenarios (ESS) were assessed for the arable farm 

in Paper I (Figure 2). The first scenario (ESS I) was based on biogas 

production from ley used as green manure in the reference scenario. The biogas 

was assumed to be used in an internal combustion engine for production of 

heat and electricity, and in an external upgrading plant for producing vehicle 

fuel. The upgrading facility used cryogenic technology to convert raw biogas 

to LBG quality, which was transported to pumping stations. The LBG was 

stored and transported in vacuum-insulated trucks, with short-term storage in 

vacuum-insulated tubes assumed to take place on the farm. The LBG had to be 

consumed relatively quickly in order to avoid leakage from these tubes.  

Heat from the engine system was distributed between the farm buildings 

and the biogas plant. The electricity produced covered the requirement of the 

buildings, the biogas plant and the upgrading facility on an annual basis, 

although exchange with the national grid took place in order to buffer 

fluctuations in demand. Slurry from the biogas production was assumed to be 

returned to the fields to maintain the nutrient content.  

The second scenario (ESS II) was based on energy extracted from wheat 

straw produced on the farm. The straw was assumed to be transported to a 

lignocellulosic ethanol production plant, where ethanol and electricity can be 

produced simultaneously. In the process, lignin bonds in the straw are 

destroyed and the cellulose and hemicellulose are converted to sugars via 

addition of enzymes and these sugars can be fermented to ethanol.  

Electricity and process steam were assumed to be produced from the lignin 

separated in the process, and this electricity would in fact cover the farm and 

process requirements on an annual basis. There were assumed to be two straw 

boilers on the farm, one for heating of farm buildings and one, with higher 

capacity, for grain drying.  
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Figure 2. Energy and material flows in the self-sufficiency scenarios on the arable farm in energy 

self-sufficiency scenario (ESS) I (left) and ESS II (right). Cash crop production is referred to as 

CCP and the farm as F. CHP is combined heat and power production. Dotted boxes represent 

processes avoided in the self-sufficiency scenarios.  

4.3 Alternative energy systems on the dairy farm – Paper II 

Two energy self-sufficiency scenarios were considered in Paper II, referred to 

as the biogas system and an RME system.  

In the biogas system, biogas was assumed to be produced from a mixture of 

manure and straw in an anaerobic digester, dimensioned to process all manure 

produced on the farm and with addition of straw in order to cover the entire 

energy demand. The raw biogas was divided into two streams. The first stream 

was conducted unprocessed to a gas engine stationed on the farm, dimensioned 

to produce electricity meeting the farm’s needs. The second stream was led via 

a pipeline system to an upgrading unit, using the same cryogenic technology as 

in Paper I. Heat for grain drying was supplied by a straw boiler.  

In the RME system, both biogas and RME were produced. The substrate 

available at the farm (manure with mixed-in bedding material, i.e. straw) was 

used for biogas production in an anaerobic digestion chamber and for 

electricity production in a gas engine. Rapeseed oil, a by-product from 

rapeseed cake (protein feed) production, was assumed to be utilised in a small-

scale system on the farm to produce the RME used as tractor fuel. Hence, the 

production system was completely farm-based and storage also took place on 

the farm. Heat for grain drying was assumed to be supplied by a batch-fired 

straw boiler.  
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4.4 Results 

The results showed that both the arable farm and the dairy farm studied can 

become self-sufficient in energy. On the arable farm (Paper I), ESS I required 

ley to be harvested from 25 ha, which was 13% of the total farm area. ESS II 

required 49 ha of straw, which was 25% of the total farm area. This biomass 

was available, since ley was grown on 29% of the farm area and cereals on 

44% in the given crop rotation.  

 

On the dairy farm (Paper II), the RME scenario required all available rapeseed 

to be used. In the biogas scenario, straw from an additional 49 ha compared 

with the RME scenario was required to cover the entire farm demand.  

4.4.1 Energy balance 

In the bioenergy-based scenarios, the energy demand was typically higher due 

to process energy. The ethanol-based scenario, ESS II, on the arable farm 

required more energy than ESS I, but also utilised a larger fraction of the 

energy content of the biomass in the form of electricity production from lignin 

(Paper I). A considerably larger fraction of the energy used was process energy 

for the conversion to energy carriers in this scenario compared with ESS I 

(Table 5).  

Table 5. Energy requirement as total energy consumption (TEC, GJ), energy carrier production 

(ECP) as a fraction of TEC, ECP as a fraction of energy consumption for cash crop production 

(CCP) and farm buildings (F) and the fraction of energy in the biomass that was utilised (Paper 

I). 

 TEC ECP/TEC ECP/(CCP+F) Fraction of energy in biomass converted to 

energy carrier 

    El. Heat Fuel Tot 

ESS I 1020 24% 31% 4% 16% 20% 40% 

ESS II 1416 45% 83% 7% 23% 27% 57% 

Reference 755 24% 24% n/a n/a n/a n/a 

 

There was a considerable increase in heat demand on the dairy farm (Paper II), 

due to the biogas production and somewhat higher electricity use in the 

alternative scenarios, for biogas and RME production, compared with the 

reference scenario (Table 6). Biogas production required process heat in the 

order of 15-20% of the energy contained in the gas. 
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Table 6. Change in energy use due to energy self-sufficiency on the dairy farm. Additional energy 

use is based on renewable resources on the farm (Paper II) 

Reference scenario GJ/yr Biogas scenario GJ/yr RME scenario GJ/yr 

Heat 115 Heat 350 Heat 342 

Electricity 307 Electricity 403 Electricity 362 

Fuel 701 Fuel 699 Fuel 699 

Total energy 1123 Total energy 1452 Total energy 1403 

4.4.2 GHG emissions 

The reference scenario for the arable farm is shown as the baseline in Figure 3 

and Table 7, whereas it is presented separately for the dairy farm. On the arable 

farm, the GHG emissions reduction was 35% in the biogas-based scenario 

(ESS I) and 9% in the ethanol-based scenario (ESS II) (Paper I). Figure 3 

shows the GHG emissions relative to the reference scenario, which constituted 

the baseline.  

 

Figure 3. Disaggregated GHG emissions per FU from the systems on the arable farm relative to 

the baseline, i.e. the reference scenario based on fossil fuels (Paper I).  

Nitrous oxide emissions from the soil were lower in both self-sufficiency 

scenarios compared with the reference scenario, but the impacts on soil carbon 

content differed significantly. Methane released from digestion residues 

produced in ESS I had only a minor impact on the results, while production of 

all energy carriers, in particular fuel production that conveyed useful co-

products, gave considerably lower GHG emissions than energy use in the 

reference scenario. 
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On the dairy farm, the GHG emissions reductions were 43% in the biogas 

system and 32% in the RME system (Table 7).  

Table 7. GHG emissions per FU, by source, on the dairy farm (Paper II) 

  Reference Biogas RME 

Fossil fuel use 155   

RME production   1 

Production of biogas plant  3 3 

Production of CHP plant  14 14 

Production of straw boiler  1 1 

Digging trenches for pipelines  7  

Field operations 88 0 0 

Biogas upgrading losses  3  

RME production   1 

Soil-C, Crop rotation 1 90 13 83 

Soil-C, Crop rotation 2 -19 -21 -21 

N₂O from fertilisation and crop 

residues 

180 176 173 

N₂O from carbon losses 31 20 32 

Manure management    

                - methane 114 6 3 

                - N2O 6 6 6 

Enteric fermentation 493 493 493 

Substitution     

           Electricity substitution   -5 

           Diesel substitution    

Substituted meat production -125 -125 -125 

Substituted oilseed production -50 -50  

Total (g CO2-eq./kg FU) 962 545 687 

 

Enteric fermentation was the largest emissions item and was unchanged in the 

scenarios. Passing manure through AD resulted in a significant reduction in 

methane emissions to the atmosphere from manure management, as methane 

was collected and combusted.  

Digestion of manure and straw also had a positive effect on soil carbon 

content, as the processed substrates had a faster humification rate, i.e. were 

sequestered in the soil to a larger extent instead of being mineralised to carbon 

dioxide. 
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5 Part 2: Local energy supply  

5.1 Basic system descriptions 

In Part 2, the area of the farms supplying the energy systems was not defined, 

but was calculated as a function of the energy demand of the villages and 

energy efficiency of the conversion processes. The supplier could be a farm 

cluster rather than one single farm.  

The farm(s) in Paper III utilised the same crop rotation as the arable farm in 

Paper I, including an N-fixing ley crop twice in the seven-year rotation (Table 

1). The green manure was assumed to be ploughed back into the soil in the 

scenarios in which it was not used as substrate for biogas production. It was 

also assumed that the farm had set-aside land available, which in the reference 

system was unmanaged (not fertilised or harvested) grassland that could be 

used for Salix production.  

The systems in Paper III produced heat and supplied electricity for a newly 

built village of 150 modern households. The electricity grid was used as a 

buffer, but on an annual basis the same amount was produced and consumed. 

In the reference system, heat was supplied by heat pumps and all electricity 

required was produced in a large-scale natural gas power plant. 

In Paper IV, the farms had both agriculture and forestry, but were no longer 

assumed to be organic. The systems produced district heating for a village with 

425 households (1000 inhabitants), with the same energy standards as in Paper 

III. The reference scenario was based on heat produced in large-scale biomass 

plants located 20 km away in a larger city.  

In Paper III, the FU was CO2-equivalents associated with the entire heat and 

power supply to the village for one year. In Paper IV, the FU was CO2-eq./MJ 

of heat supplied to the end-user. 
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5.2 Alternative heat and power systems – Paper III 

Three energy supply scenarios were assessed in Paper III and are referred to in 

that paper as Bio 1-3. However, the exact same denomination was used in 

Paper IV, so in the following text the scenarios in Paper III are referred to as A, 

B and C (Figure 4).  

In scenario A, ley (green manure) was harvested and used as substrate for 

biogas production. The biogas fuelled a microturbine for production of heat 

and electricity. Straw was used for additional heat production. 

In scenario B, Salix produced on the set-aside land was chipped and fed 

through a gasification chamber. The gas produced was used for combustion in 

an internal combustion engine for heat and electricity, with 40% electric 

efficiency and 90% total efficiency. 

In scenario C, Salix was chipped and combusted in a boiler, fuelling a 

Stirling engine via a heat exchange system. The engine was assumed to have 

25% electric efficiency and 90% total efficiency.  

Straw boilers (using wheat straw) were used in scenario A and B to make 

up for insufficient heat output in the winter time from the CHP systems. The 

thermal efficiency of the straw boiler was assumed to be 90%.  

 
Figure 4. Schematic diagram of the biomass supply chain in Paper III. Ley was used in scenario 

A, straw in scenario B and willow chips in scenarios B and C. The full lines separate physical 

production areas. Crop production was the reference position from which changes induced by 

biomass production for energy generation were calculated. 
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5.3 Alternative heat systems, ownership and heat price – Paper 
IV 

There were four bioenergy scenarios in Paper IV, in which the farm cluster was 

integrated vertically into the production chain to different levels (Table 8).  

Table 8. Summary of the reference scenario and Bio 1-4 in Paper IV, showing the production 

system (left) and whether the energy utility or farm cluster was responsible (right)  

  Production system Fuel 

supply 

Production  Distribution Sales 

Reference 

scenario 1 

 Natural gas boiler working on 

flexible loads, both summer 

and winter  

Utility Utility Utility Utility 

Bio1  Culvert drawn from a town 10 

km away. Heat produced by 

biomass CHP. Regionally 

sourced forest residues
a
  

Utility Utility Utility Utility 

Bio2 Regionally sourced forest 

residues
a
. Pellet for peak/low 

loads
b
  

Utility Utility Utility Utility 

Bio3 Local forest residues. Pellet 

for peak/low loads
b
 

Cluster Cluster Utility Utility 

Bio4 50% local forest residues
c
 and 

50% Salix. Straw for 

peak/low loads. Storage on 

the field
 c
 

Cluster Cluster  Cluster Cluster 

a
Average transport distance

 
50 km 

b
Average transport distance

 
150 km 

c
Average transport distance 10 km 

 

Forest residues were assumed to be harvested at a rate of 14.7 tonnes DM/ha 

and year (Petersson, 2013), from thinnings and full harvests. Straw yield, a by-

product of grain production, was assumed to be 3.2 tonnes DM/ha and year on 

agricultural land. 

The average yield of a Salix rotation (22 years including recovery) was 3.9 

tonnes DM/ha and year, with harvesting taking place every 3-5 years. Diesel 

consumption for each feedstock type was calculated (Table 9).  
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Table 9. Diesel consumption for biofuel production (Source: Petersson, 2013; Gonzalez-Garcia 

et al., 2012; Ahlgren et al., 2009) 

  Forest residues 

– local (L/dry 

tonne) 

Forest residues – 

regional (L/dry 

tonne) 

Salix 

(L/dry 

tonne) 

Pellets 

(L/tonne) 

Straw 

(L/tonne) 

Raw material 

production 

n/a n/a 6.9 n/a 0 

Forwarding to 

roadside 

2.2 2.2 n/a n/a 3.1
a
 

Chipping 2.8 2.8 2.8 n/a 0 

Transport to heat 

plant 

0.2 1.1 0.2 3.0 1.3 

Handling at the 

plant
b
 

0.5 0.5 0.5 n/a n/a 

Transport and 

spreading of ash 

0.1 0.1 0.0 0.0 0.1 

Total 5.7 6.6 10.4 3.0 4.5 

a
Includes rowing and baling 

b
Mainly use of frontloader at the plant 

 

Production costs (Table 10) were broken down into six cost components, in 

accordance with the system used for reporting of financial data to the Swedish 

Market Energy Inspectorate (EI). The average profit margin for medium-scale 

and small-scale utilities was used for the energy utility and farm cluster, 

respectively, to estimate a cost-driven heat price in each fuel supply system. 

The cost component raw material (fuel) was replaced with a detailed 

calculation of fuel costs in each scenario (the reference scenario and Bio 1-4).  

Table 10. Average heat production (GJ/yr), specific production costs (SEK/GJ) and profit margin 

(%) for segments of different sizes in the district heat industry in Paper IV 

 

 

Average 

heat sales 

in each 

category
 
 

C1: Raw 

materials
a
 

C2: 

Personnel
b
 

C3: Other 

external 

costs
c
 

C4: Other 

variable 

costs
d
 

C5: 

Capital 

costs
e
 

C6: Profit 

margin
f
 

 GJ/yr SEK/GJ 

Small 

suppliers 

113 437 104 12 42 2 36 12% 

Medium-sized 

suppliers 

535 807 91 15 34 1 27 13% 

a
Fuels and other external purchases (excl. input energy), here replaced with detailed fuel cost calculations 

b
Costs for own staff 

c
Manning and other external costs for operation and maintenance 

d
Other unidentified or uncategorised costs 

e
Write-offs and write-downs 

f
Profit margin; earnings before interest and taxes (EBIT) divided by total heat sales 
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5.4 Results 

In Paper III, scenario A appeared to require rather a large area (Table 11), but 

since the ley crop was integrated into the crop rotation for fertiliser purposes, it 

does not compete with food production. However, the area required meant that 

the farm was rather large (1061 ha) in Swedish terms, since the ley crop only 

occurs in the third and sixth year of the rotation.  

The straw requirement was comparatively large due to the low heat output 

of the CHP plant, and therefore a straw boiler of higher capacity than that in 

scenario B was required.  

The requirement for set-aside land was significantly higher in scenario C 

than in scenario B, due to the low electric efficiency of the CHP plant in the 

former scenario. This resulted in large amounts of energy not being utilised and 

therefore lost as excess heat in order to reach the required electric output.  

However, only 40 ha of straw were required in scenario B and 0 ha in 

scenario C, which meant that the food production area required was 

significantly reduced compared with scenario A. 

Table 11.  Land requirement (ha) in scenarios A-C (Paper III)  

 Scenario A Scenario B Scenario C 

Farmland    

Ley 303 0 0 

Straw 99 40 0 

Set-aside land    

Salix 0 81 169 

Total 402 121 169 

 

In Paper IV, the yearly land requirement (Table 12) was calculated for each 

fuel and bioenergy scenario except wood pellets, which are made from sawmill 

residues and have no land requirements of their own. The forested land area 

was not considered occupation of land, however, as the biomass used as fuel is 

a by-product from timber and pulp & paper production. These data are shown 

simply an indication of the forest and agricultural resources required (Table 

11).  

Salix is somewhat different because it occupies agricultural land that could 

have been used for other purposes. The value given in Table 12 refers to the 

total area of Salix plantation required, not the area harvested each year. 
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Table 12. Land requirement (ha/yr) in the bioenergy scenarios in Paper IV. The Salix plantation 

requires additional land compared with the reference scenario, whereas forest residues (FR) and 

straw were harvested from existing forest and agricultural fields  

 Bio 1 Bio 2 Bio 3 Bio 4 

 FR 

(regional) 

FR 

(regional) 

Pellets FR 

(local) 

Pellets FR 

(local) 

Salix Straw 

Forest land 101 80  80  20   

Cropland       105 76 

5.4.1 Energy balance 

The energy use in Paper III was calculated in two ways; fossil energy 

requirement (FER) per FU and primary energy requirement (PER) per FU. 

Annual biomass consumption of each system and the amount of excess heat 

produced were also calculated (Table 13). 

Table 13. Fossil energy requirement (FER), primary energy requirement (PER) and biomass 

requirement in each scenario in Paper III. Excess heat produced in each of the scenarios is also 

shown 

Scenario FER (GJ/ FU) PER (GJ/ FU) Biomass (Mg/ FU) Excess heat 

 A 600 35 920 2 100 < 1 % 

 B 270 14 000 760 13 % 

 C 490 25 000 1 360 140 % 

Nat. gas 11 640 12 800 0 0 

 

In Paper IV, the primary energy (PE) factor for heat produced by each 

respective fuel type was calculated as the sum of the energy contained in the 

fuel (lower heating value, LHV) and the energy required in the production 

phase. The input energy demand was also broken down into energy carriers 

and calculated as percentage of the energy (LHV) contained in the fuel (Table 

14).  

Heat for pellet production was supplied by biomass residues (bark), 

whereas according to CLCA practices electricity was assumed to be marginal 

and based on natural gas. The PE factor for natural gas is 1.09 (Gode et al., 

2011), including all energy required for extraction and transmission.  
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Table 14. Primary energy (PE) factor and input energy per fuel and energy carrier (Paper IV) 

 Natu

ral 

gas 

Forest residues 

(regional) 

Forest residues 

(local) 

Pellets Salix Straw 

PE factor 1.09 1.016 1.014 1.235 1.026 1.011 

Diesel
a
  1.6% 1.4% 0.7% 2.6% 1.1% 

Electricity    1.8%   

Bioenergy
 

   20%   

aIncludes production stages, transport to heat plant and ash handling 

 

5.4.2 GHG emissions 

In Paper III, GHG emissions in scenario B and scenario C were 60 and 42 Mg 

CO2-eq./FU, respectively. However, the most notable finding was for scenario 

A, where the net GWP was negative (-19 Mg CO2-eq./FU). This was due to a 

cultivation system where ley was digested instead of being ploughed in fresh, 

which increased the soil carbon content and reduced emissions of nitrous oxide 

from the soil. In the natural gas scenario, net emissions were 351 Mg CO2-

eq./FU (Figure 5). Soil emissions dominated the GWP category for scenarios 

A-C. The emissions were broken down into emissions of carbon dioxide and 

nitrous oxide, both expressed in CO2-equivalents.  

 
Figure 5. GHG emissions (Mg CO2-eq.) for one year supply of heat in each scenario in Paper III. 

From left to right: Natural gas and scenarios A, B and C.  



54 

The carbon uptake of the soil also increased in scenarios B and C, where a 

carbon sink was created due to the establishment of SRC on set-aside land. The 

effect was larger in scenario C because the area planted was about twice as 

large as in scenario B (Paper III).  

On the other hand, emissions of nitrous oxide increased compared with the 

reference case, due to fertilisation of the set-aside land (unfertilised in the 

reference scenario) and the higher quantities of crop residues on the fields 

(Paper III).  

 

In Paper IV, the reference scenario with natural gas-based heat production 

emitted 107.3 kg CO2-eq./GJ delivered heat, while that for the biomass 

scenarios ranged between 3.3 and 14.3 kg CO2-eq./GJ (Table 15). Negative 

emissions were obtained when Salix was mixed with forestry residues for base 

production in Bio 4, because the carbon sequestration effect in the soil 

exceeded the impact from the fossil input to Salix production. 

Table 15. GHG emissions per unit of fuel (kg CO2-eq./GJ fuel) and per scenario (kg CO2-eq./GJ 

delivered heat) in the reference scenario (Ref) and in scenarios Bio 1-4 (Paper IV) 

  Ref Bio 1 Bio 2 Bio 3 Bio 4 

 Natural 

gas 

FR 

regional 

FR, 

regional 

Pellets FR, 

local 

Pellets FR, 

local 

Salix Straw 

Diesel use  1.1 1.1 0.5 1.0 0.5 1.0 1.8 0.7 

Electricity 

use
a
 

   5.6  5.6    

SOC  6.7 6.7  6.7  6.7 -11.6 2.5 

Combustion 82.8         

Added N         0.9 

Total kg 

CO2-eq./GJ 

fuel 

82.8 7.8 7.8 6.1 7.7 6.1 7.7 -9.8 4.2 

Total kg 

CO2-eq./GJ 

heat 

delivered 

107.3 14.3 13.3 13.1 3.3 

aIncludes production and transmission of electricity 

5.4.3 Cost analysis 

The cost-based heat price calculated in Paper IV indicated that the more 

integrated the farm cluster was in the value chain, the lower the estimated heat 

price (Table 16). Straw as peak fuel was able to reduce the cost of fuel 

considerably, in particular compared with natural gas, but also regionally 

sourced forest fuels. 
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With a fully integrated farm cluster the price was halved compared with a 

fossil reference, a difference which was mainly due to the energy and CO2 tax 

in Sweden, from which biomass is exempt.  

Table 16. Cost-driven heat price (SEK/GJ produced heat) in the reference scenario (Ref) and in 

scenarios Bio 1-4 (Paper IV) 

 Ref Bio 1 Bio 2 Bio 3 Bio 4 

C1: Raw material 234 93 94 95 80 

C2: Personnel 18 18 18 12 12 

C3: Other external costs 36 36 36 42 42 

C4: Other variable costs 5 5 5 2 2 

C5: Capital costs 26 26 26 36 36 

C5: Profit margin 14% 14% 12% 12% 12% 

Raw heat price (SEK/GJ) 363 202 200 209 193 

Fuel cost as % of total cost 64% 46% 47% 45% 42% 
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6 Discussion 

6.1 Energy self-sufficiency at organic farms 

The energy self-sufficiency potential of agricultural farms was investigated in 

Part 1 of this thesis. The results showed that from a technical and resource 

perspective, both arable and dairy organic farms can become self-sufficient in 

energy by using their own on-farm agricultural residues.  

Fredriksson et al. (2006), Hansson et al. (2007), Halberg et al. (2008) and 

Ahlgren et al. (2009) have all previously shown that self-sufficiency in tractor 

fuel or for heat and power on organic farms is possible. They also show that 

this can be achieved with a reduced climate impact compared with using fossil 

fuels. GHG emissions reduction potential in those studies was roughly between 

50-95%, depending on the raw material and technology used.  

Somewhat different GHG emissions reduction potential values were 

obtained in the present thesis. For the arable farm in Paper I, the GHG 

reduction obtained in the straw-based scenario was only 9% compared with a 

fossil system, but was 35% in the biogas-based scenario. The discrepancy 

between results can be explained by the fact the previous studies cited above, 

like most early LCA studies of bioenergy, did not account for soil carbon 

changes (see section 6.3).  

Guan et al. (2014), modelled energy use on a dairy farm and its potential to 

become energy self-sufficient by heat and electricity production from biogas 

and found that the farm could become self-sufficient as the energy contained in 

the manure produced exceeded (by some margin) the net energy demand.  

 

Paper II showed that the GHG emissions from production of 1 litre of milk can 

be reduced by up to 43% by replacing fossil fuels with biogas produced from 

manure and straw. For comparison, a recent study by Battini et al. (2014) on 

milk production in Italy comparing a fossil-based energy system to a system 
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where manure was used to produce biogas for heat and power on the farm 

found that GHG emissions from 1 litre of milk were reduced by 24% in the 

biogas scenarios compared with the reference, or 37% assuming that slurry was 

stored in an airtight tank (as was also assumed in Paper II).  

 

There is in fact a rather large number of LCA studies on the climate impact of 

milk production. Most of them report a figure of between 0.3 and 2 kg CO2-

eq./kg ECM and particularly in the range 1-1.5 kg CO2-eq./kg ECM (e.g. Roer 

et al., 2013; Flysjö et al., 2011; Thomassen et al., 2008; Cederberg et al., 

2007). This is similar to the results of the base scenario in Paper II in this 

thesis, with results of just under 1 kg CO2-eq./kg ECM in the reference (fossil) 

scenario.  

It is clear from these studies that methane from enteric fermentation and 

manure management remains the largest contributor of GHG emissions from 

dairy production, around 50% of total GHG (see Table 7). To lower emissions 

from enteric fermentation, for example by a change in diet or breeding, may 

hence be as important, or more important, as replacing fossil fuels in the 

agricultural sector.  

6.2 Local heat and CHP systems 

Part 2 of this thesis showed that decentralised heat systems for rural villages 

are favourable to heat or CHP produced based on natural gas. LCA studies 

with similar conclusions have been produced before, eg Muench and Guenther 

(2013) and Eriksson et al. (2007).  

However, Paper III and Paper IV also show that the heat or CHP systems 

are feasible based on locally produced agricultural fuels, i.e. crop residues and 

SRC, with lower GHG emissions and (shown in Paper IV) lower price than 

regionally sourced forest residues or pellets. While shorter transport distance 

plays a relatively small role for these results, the impact on soil carbon 

dynamics is a critical parameter (see Figure 5 and Table 15). Short rotation 

coppice as well as digestion of ley (used as green manure) will have a soil 

carbon build-up effect whereas straw removal will have a carbon depletion 

effect (see section 6.3). Since removal of harvest residues from the forest floors 

have a corresponding impact to that of crop residue removal, i.e. decrease soil 

carbon content, there is in fact a double carbon sequestration effect when 

replacing forestry fuels with Salix chips.   

 

At the same time, from an economic perspective straw constitutes a highly 

competitive alternative to forestry residues as long as the transport distance is 
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low. According to Glithero et al. (2012), if the purpose is to maximize the 

gross profit margin at the farm, straw should be baled and sold to the market 

(this conclusions is however clearly dependent on the availability of a market 

and the market price).  

On the other hand, SRC, i.e. Salix in these scenarios, is more expensive 

than forestry residues to produce, and in fact less suitable for Swedish heat and 

CHP plants, that are typically adapted to forestry fuels. According to 

Rosenqvist et al. (2012) the price of Salix wood chips can be reduced by up to 

35% if the cultivation were to be expanded to generate economies of scale, and 

taking into account learning effects. Further, the production costs depend to a 

rather large part on uncertain and fluctuating establishment costs as well as 

opportunity costs, which in turn depend on the global market price of wheat 

(Rosenqvist et al., 2012). 

The competitiveness could also potentially increase if the carbon 

sequestration effect of Salix plantations were recognised as an environmental 

service and internalised into the market price, or encouraged via financial 

incentives through the CAP mechanisms.  

6.3 Soil carbon dynamics and crop residue removal 

At the time when this thesis was initiated in 2008, the impact of different 

cropping systems on soil carbon dynamics was not often included in LCA 

studies. It was generally considered to be very difficult to account for as there 

are many soil parameters involved that can be rather site-specific, for example 

soil type, water content, C/N ratio and exposure to oxygen (Kätterer et al., 

2011).  

Over the last few years, the models and methodologies for analysing soil 

carbon dynamics have been refined and increasingly included in bioenergy 

LCA. An adapted version of the ICBM model was introduced early for the 

work in this thesis, and was consistently used to model soil carbon dynamics 

for the crop rotation on the farm, with a varying degree of straw removal and 

spreading rate of manure/digestion residues.  

 

A major increase in bioenergy use is projected world-wide and also in the EU 

(Gabrielle et al., 2014; IEA, 2013; IPCC, 2013; Cherubini & Ugliati, 2010), 

and a large proportion of this is assumed to originate from crop residues. 

Residue use is incentivised by the EU RED, which gives residues zero 

emissions in assessments of GHG. This thesis showed that the impact of 

biomass-based energy systems on SOC can have a major impact on the net 

GHG emissions reduction potential of biomass systems, as illustrated by e.g. 
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Figure 3 and Table 7. Similar results have been reported by e.g. Holma et al. 

(2013), who found that Fischer-Tropsch diesel only fulfils the upcoming 

sustainability criteria of a 60% GHG emissions reduction (due in 2018) under 

the RED if the changes to soil carbon stocks caused by feedstock production 

are excluded.  

Crop residue retention in fields can be considered a global warming 

mitigation method in itself, often referred to as soil carbon sequestration, and 

has the additional benefits of retained nutrient content, improved soil structure, 

better water infiltration into the soil and reduced risk of erosion (Lal, 2008). A 

long-term trial in Uppsala, Sweden, found that topsoil carbon concentration 

had decreased most, by more than 33%, in a soil lying fallow for 53 years 

compared with other treatments, and had decreased least when covered with a 

perennial low-tillage crop such as a SRC or ley (Kätterer et al., 2011). 

Whittaker et al. (2014) found that soil carbon losses stemming from straw 

removal range between 0.39-2.35 t CO2-eq./ha and year. According to Lal 

(2008), an increase in soil carbon of 1 tonne/ha and year by crop residue 

retention can potentially increase global grain yield by 20-40 million tonnes 

per year. The implications of crop residue removal are clearly important.   

 

Salix can contribute to SOC via fine roots, leaves and litter, and there is in fact 

quite strong scientific support for a soil sequestration effect of Salix plantations 

(Ericsson et al., 2014; Rytter et al., 2012). Hammar et al. (2014) used the 

ICBM model to simulate various cropping systems with different yields and 

over different time periods, and found that a Salix plantation standing for 100 

years would give -16 Mg CO2-eq./ha assuming a yield of 20 t DM/ha from the 

first harvest and 30 from subsequent harvests (the field is harvested every 3 

years). However, the results are dependent on yield; low yields of 10 and 17 

tonnes DM/ha for the first and subsequent harvests, respectively, resulted in net 

release of carbon to the atmosphere. In Paper II of this thesis, this soil 

sequestration potential of Salix plantations gave the somewhat counterintuitive 

effect that a system with low electric efficiency had a lower climate impact 

than technically more efficient systems because it required more extensive 

SRC plantations.  

There is also evidence that crop residue removal in fact can increase 

nutrient availability to the following crop, as e.g. cereal straw can immobilise 

mineralised nitrogen when decomposing. However, straw contributes to a 

higher nitrogen content and fertility in the long-term perspective (Powlson et 

al., 2011).  

In the arable farms studied in Papers I and III, the organic farms used green 

manure systems that rely on ploughed-in ley to supply nitrogen. Such systems 
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can benefit from harvesting and processing the ley via anaerobic digestion 

rather than ploughing in ley fresh. The digestion residues can be more precisely 

matched to the requirements of the crop growth cycle, resulting in lower 

emissions of N2O from the soil (Möller & Stinner, 2009; Stinner et al., 2008). 

Indirectly, this could potentially also contribute to higher carbon content in the 

soil through higher yields, due to the better nitrogen availability.  

Furthermore, on dairy farms such as that described in Paper II, spreading 

digestion residues on the fields instead of fresh manure as a nitrogen fertiliser 

can have a positive effect on soil carbon content as the digested material is 

more stable, meaning that a lower fraction of organic carbon is mineralised to 

CO2 (Marcato et al., 2009). This effect is also reflected in the humification 

coefficients included in the ICBM model used in this thesis. The exact values 

for these coefficients in soil carbon dynamic models have however been 

subject to discussions and modifications over time, and there are different 

methodologies for scientifically establishing the coefficients. These include 

long-term field experiments, incubation studies (i.e. laboratory-scale 

experiments) or estimates based on biochemical properties, such as the 

Biological Stability Index (Kätterer et al., 2011). The assumption of two or 

more carbon pools is also a simplification and the decomposition rate in the 

pools depends on local conditions such as soil moisture, temperature 

conditions, topsoil cover, ratio of above-ground and below-ground biomass 

input, C:N ratio etc. (Kätterer et al., 2011; Grogan  Matthews, 2002).  

6.4 Biogenic carbon 

A concern for LCA practitioners in the bioenergy field is whether biomass 

combustion systems really can claim to be climate neutral. Carbon neutrality 

means that the same amount of C as is released during combustion of biomass 

is bound by the next generation of the crop, and can be true as long as forests 

are managed in a sustainable manner and following crops grow with equal (or 

higher) yield.  

However, this does not necessarily mean climate neutrality, as the carbon 

molecules released during biomass combustion still linger for a while in the 

atmosphere before they are bound by a new generation of crops, i.e. there is a 

time dependency of the climate impact (Pawelzik et al., 2013; Ericsson et al., 

2012). In LCA studies, it is often simply assumed that biomass-based energy 

systems create a sustainable carbon cycle that makes the system both carbon 

and climate neutral.  

Zetterberg & Chen (2011) compared the energy balance in a radiative 

forcing model when tops and branches from forestry were harvested and 
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instantly combusted, compared with when they were left to mulch (hence 

slowly releasing carbon to the atmosphere). They found that bioenergy systems 

based on forestry residues are not climate-neutral due to the time dependency. 

The model also accounted for the contribution to SOM that would result from 

leaving the residues to mulch. Ericsson et al. (2013) developed a model 

simulating how released GHG emissions slightly alter the energy balance (i.e. 

temperature) of the Earth due to radiative forcing, by including an impulse 

response function (IRF). With the development and refinement of such models, 

the biogenic carbon parameter can now be included in bioenergy LCA to 

obtain more accurate results.  

For this thesis, including the effects of time dependency would probably 

have shifted the results slightly less in favour of some of the scenarios, such as 

the straw-based systems, but more in favour of the scenarios based on SRC, 

due to the temporary sequestration of carbon in standing biomass during the 3-

4 years between harvests, and in roots during the whole 20-year rotation. 

6.5 Consequential LCA as an assessment method 

CLCA was chosen over ACLA for the studies in this thesis, as it was deemed 

to more accurately reflect the impact of a change – here the introduction of 

new heat, power and/or fuel production capacity.  

There is however a potential weakness of CLCA, in the inherent uncertainty 

when the market response (i.e., which production capacity that is affected by 

an increase or decrease in demand of a product or service) must be predicted, 

either by dynamic economic models or assumptions based on detailed market 

knowledge. System boundaries and assumed substitution depend on how 

markets react, which means taking into account market behavioural factors. 

Furthermore, production and demand are not always elastic, and that there may 

be constrained suppliers or markets, which means that markets are in fact not 

affected by the change in demand. There is also a scale and time dependency of 

the market response and if the product system analysed is very small compared 

with the market as a whole, it might only affect marginal upstream production 

processes. (Rebitzer et al., 2014) 

Despite continuous work towards making LCA a more robust and 

transparent methodology, there is still little standardisation regarding how to 

handle such uncertainties (e.g. Plevin et al., 2014), especially in CLCA 

(Curran, 2013; Pawelzik et al., 2013). Some kinds of uncertainties apply 

specifically to CLCA, but there are also uncertainties due to choice of 

reference system, time frame, site specificity, time specificity, or simply lack 

of validated data or field experiments in both ALCA and CLCA (Holma et al., 
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2013). Uncertainties become an issue when LCA results are being applied by 

decision- and policymakers, creating a need for close monitoring of the 

impacts arising from environmental improvements through corporate or 

political decisions.  

The difference between ALCA and CLCA, and why they apply for different 

purposes has been debated by LCA practicioners. Plevin et al. (2014) argue 

that ALCA can be misleading to policy makers as it does not estimate the 

effect of a change and leaves out critical elements such as market response. 

The authors recommend use of CLCA and point out that its accuracy can be 

improved by comparing various plausible scenarios to each other, hence 

“cancelling out” uncertainties that apply to all scenarios. Dale & Kim (2014) 

responded that there is no proof that CLCA would provide a more accurate 

prediction of the real world than ACLA. Furthermore, the authors argue that 

most LCA studies are in fact hybrids, with a very small element of market 

analysis or CLCA to them. Brandão et al. (2014) argues that ALCA may be 

more precise, but CLCA more accurate – meaning that even if there may be 

more uncertainties in CLCA than ALCA, the latter may be more inaccurate if 

uncertain, but critical, parameters are omitted in the ALCA.  

Anex and Lifset (2014) made a comparison to cost accounting methods in 

business management, which over time have shifted from cost management to 

cost inventory accounting, i.e. more towards an attributional rather than 

consequential approach, basically in order to facilitate auditing. However, they 

recognised that the inventory-based cost accounting method does little to help 

firms understand the opportunity costs of decisions and actions (Anex & Lifset, 

2014). 

Plevin et al. (2014) raised the issue of indirect or scale effects of 

introducing a new production system on a market, e.g. if a biofuel were to gain 

a considerable market share in a certain region and replace use of petrol or 

diesel. This could lead to a drop in the price of petroleum products and hence 

encourage use of petroleum elsewhere (since the oil market is global), or in 

other sectors such as power production. The important point here is that there 

is no perfect substitution between one product and another; in fact, 

implementing a low-carbon regime by forceful renewable energy policies (such 

as emissions caps, CO2 taxes or quota system for renewable energy use) in one 

part of the world may increase use or production of emission-intense 

products/processes in another region. This mechanism is often referred to as 

carbon leakage. As Hertwich (2014) concludes, it is not biofuels and other 

renewable energy systems that mitigate climate change per se, but the fact that 
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fossil fuels can be left in the ground as a consequence of the dispersion of new 

technologies that does so.  

 

Many LCA studies (both CLCA and ALCA) today apply the simplified 

GWP100 metric. The physical principles behind the warming effect on the 

planet are however complex and involve parameters such as radiative forcing, 

temperature gradients and discount rates. There is clearly no absolute truth to 

GWP100 (Plevin et al., 2013); in fact the GWP100 metric has been discussed 

both with respect to GWP values (the potency of different greenhouse gases 

relative to CO2) and the time perspective, 100 years retention time in the 

atmosphere.  It has been recognized by IPCC that the emission metrics are 

associated with uncertainties and value judgement, such as how the climate 

effect is judged, weighting of climate effects, incorporation of physical and 

economic considerations etc. The IPCC now recommends that the policy 

context is taken into account to determine the time horizon (IPCC, 2014). 

 

The comprehensive approach and the inclusion of an entire life cycle is the 

strength of CLCA; it helps pinpoint emissions hotspots and reduce the risk of 

these being transferred to other parts of the supply chain by partial, sub-

optimising assessments. Even if CLCA does not provide perfectly accurate 

answers to all the questions associated with mitigation of climate change and 

the climate impact of bioenergy, it has contributed to identifying and 

quantifying key issues related to climate change and its mitigation, such as 

iLUC and the importance of soil carbon dynamics (for biomass systems in 

particular), carbon leakage and how to take into account the actual multi-

market responses to corporate and policy decisions. 

6.6 Marginal electricity production in CLCA 

In this thesis, natural gas in condensing power plants was assumed throughout 

to be the long-term marginal power production technology. This assumption 

was based on an assessment of planned investments in electricity capacity 

made in 2007 (Kjaerstad & Jonsson, 2007).  

However, in 2013 investment in wind and solar power production was in 

fact growing at a faster rate than investment in any other power technology, 

including gas-fuelled condensing plants (REN21, 2014). This development 

could change the prerequisites for determining long-term marginal electricity 

production, which perhaps should be a renewable energy source.  

Moreover, the EU has set a cap on GHG emissions in Europe via its 

emission rights trading system (EU ETS), which in an ideal world would mean 
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that new power capacity should not add to total net GHG emissions. Assuming 

that this policy works perfectly in practice, long-term marginal power 

production should be nearly CO2-free (Finnveden, 2008). The EU ETS system 

has not worked as intended, however - there has been an over-supply of 

emission certificates on the market, resulting in plummeting prices and not the 

intended steering effect (EC, 2012).  

It is a rather common belief that future renewable power systems will built 

on a variety of fuels and technologies, including wind, solar hydro, biomass 

and perhaps emerging technologies such as wave power, hydrogen-based 

technologies etc. There is in any case no single technology or resource that will 

meet the entire global power demand. Mathiesen et al. (2009) argue that a as a 

realistic market response to an increase/decrease in energy demand is a change 

in production capacity for a set of technologies rather than one single 

technology, and there are various dynamic models based on technical, 

economic and policy data that have been developed to predict this marginal 

energy mix.  

There is however obviously an inherent major uncertainty in such models, 

as they attempt to project future scenarios. Several authors have discussed this 

uncertainty and propose a solution, e.g. Soimakallio et al. (2011) recommend 

that sufficient scenarios be included in CLCA to cover the range of typical 

emissions from electricity production. In this thesis, sensitivity analyses were 

conducted in all papers to analyse the impact on the results if power production 

had been based on wind power or coal condensing production instead of 

natural gas. 

The future energy system is also projected to include more decentralised 

production and less central, large-scale production units (IEA, 2014b). This is 

facilitated by the development of smart grids, which can handle a larger 

amount of power sources than the conventional transmission and distribution 

networks. If this represents the future, including a mix of technologies in the 

assumption on marginal power production seems to be an appropriate 

approach.  

The market response to a change in power demand is also affected by the 

separation of power markets in the EU, which is a consequence of transmission 

constraints, i.e. not enough capacity in the power lines to trade electricity freely 

between countries and regions. The European electricity market is hence 

fragmented, with few national and regional couplings. The Nordic countries 

trade electricity on a common market exchange, Nordpool, where the so-called 

system price is set based on production output and demand. However, the area 

price differs depending on where more electricity is produced, and even within 

Sweden there are now four price regions since 2011. Northern Sweden, where 
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most of the large-scale hydro power plants are located, has a lower price than 

central and southern Sweden, which is more densely populated but has less 

available power production capacity.  

The EU now has the goal of creating a single market, i.e. eliminating 

bottlenecks via interconnectors and obtaining a single areal price for power. 

There is a specific goal of 15% interconnection by 2030 (EC, 2014). Such 

coupling of markets also means that the energy mix would be the same for all 

of Europe, something that could influence the future environmental valuation 

of electricity.  

6.7 Barriers to implementation of decentralised bioenergy 
systems 

Bioenergy and biofuel production are, and have for a long time been dependent 

on financial policy instruments, such as investment support, feed-in tariffs, 

green certificates etc., to become economically viable (Popp et al., 2014; 

Jenssen et al., 2013; Hiremath et al., 2009; Berndes & Hansson, 2007). The 

systems in this thesis were for the most part not analysed from a cost 

perspective, but undoubtedly most of the investments required for the scenarios 

would be difficult or impossible for a single farmer to bear without financial 

support of some kind. This is true not least for biogas systems. Today there is 

however an investment support programme in Sweden for biogas systems, as 

part of the Swedish rural development programme, and the number of farm-

based biogas systems is slowly increasing. 

Straw boilers are, on the other hand, already quite common today for farm 

use and typically have a short pay-off time as they often replace use of 

expensive oil (Swedish Energy Agency, 2014a).   

In some of the scenarios studied here, infrastructural investments were also 

required, e.g. for upgrading of biogas to LBG in a cryogenic plant. This 

requires both an upgrading facility and culverts to lead raw gas to the plant, an 

investment that requires public investment or financially very strong private 

investors. 

The self-sufficiency systems studied in Papers II and II of this thesis 

produced large amounts of waste heat. If a market for this heat were available, 

the potential for economic viability would improve considerably. The 

availability of a heat market depends on the location of the farm, as heat cannot 

be transmitted over large distances. If the farm is located close to a village, 

providing district heating could be a potential second business activity for a 

farmer or farm cluster, or supplying heat to a greenhouse or industry. In the 

current market situation, with low electricity prices and over-capacity on the 
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market, revenues from commercial production and sale of electricity from CHP 

production could become financially difficult. It is therefore crucial to have an 

off-set market for heat.  

6.8 Final remarks 

Biomass can be used to produce heat, cooling, electricity and transportation 

fuel. A key question is how available biomass resources best is used – in self-

sufficiency systems (multiple outputs), large-scale power plants, decentralised 

CHP, district heating, advanced vehicle fuel production (such as lignocellulosic 

ethanol production) or other applications.  

According to Popp et al. (2014), a high share of electricity from biomass is 

the easiest to achieve, a high share of heating/cooling is the most difficult (at 

least without DH systems), and a high share of biofuels in the transportation 

sector the most uncertain. This analysis may not apply everywhere (for 

example, fuel for DH production in Sweden is more than 40% biomass), but 

there is a point to it. Existing large-scale coal power plants can relatively easily 

be refitted to using wood pellets or forestry residues, without overly extensive 

technical or economic investments. Heat production systems for the residential 

sector in EU are on the other hand more disperse, often based on individual 

gas-based systems. This makes them considerably more complex to replace. 

Regarding the transport sector, biofuel producers in Sweden and the EU have 

for long been complaining about volatile policies that create uncertain market 

conditions - hampering innovation and willingness to invest.   

Building extensive DH systems in EU based on biomass or other 

renewables, similar to the existing DH systems in Sweden or the decentralised 

systems proposed in Papers III and IV, have been proposed by the EU 

Roadmap for Heat 2050 (Connolly et al., 2013). Such systems take time, effort, 

political will and financial resources to build, but can be an effective measure 

to reduce the European dependence on natural gas.  

Today, 270 000 m
3
 diesel and 9 000 m

3
 petrol are used in the agricultural 

sector in Sweden; biofuel use is limited to 4 000 m
3
 RME and 100 m

3
 ethanol 

(Swedish Energy Agency, 2013). Farm-based production of vehicle fuel would 

reduce dependence on a volatile petroleum market.  

Producing heat, power and vehicle fuel from farm residues is possible, and 

can create an important carbon sink in agricultural soils if managed right - in 

particular in energy systems based on biogas and SRC. Building such systems 

would be an important step towards sustainable food production, and towards 

reaching the goal of limiting the mean global temperature increase to 2 ºC by 

2050.  
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7 Main conclusions 

 Both arable and dairy farms can become self-sufficient in energy 

by utilising on-farm residues or SRC grown on set-aside land in 

different technical systems 

 GHG emissions from production of 1 kg ECM can be reduced by 

up to 46% by replacing fossil fuels with energy from on-farm 

biomass residues on organic dairy farms. The emissions reductions 

are partly due to elimination of fossil fuel use, and partly to 

changes in manure management and soil carbon content  

 Annual GHG emissions from organic arable farms can be reduced 

by up to 35% by replacing fossil fuels with ley and straw. 

However, energy systems mainly based on straw suffer from the 

negative impact of crop residue removal on soil carbon and, for the 

organic arable farm studied here, gave only a 9% emissions 

reduction compared with the fossil system.  

 Energy systems based on biogas from mainly ley and/or manure or 

systems based on SRC cultivation achieve higher GHG emissions 

reductions than systems involving crop residue removal. 

 Local, small-scale district heating system based on agricultural and 

forestry residues can provide heat to a village with lower GHG 

emissions and production costs than a central plant with regional 

forestry fuel sourcing or based on fossil fuels. 

 Production of heat in a local district heat system based on Salix and 

straw reduced GHG emissions by 97% compared with heat 

produced from natural gas, 78% compared with heat produced by 

forest residues in a central plant, and 10% compared with heat 

produced from locally sourced forest residues and pellets. The 

carbon sequestration effect of Salix contributes strongly to these 

results. 
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