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A Two-Step Regression Method with Connections to Partial
Least Squares and the Growth Curve Model

Abstract

Prediction of a continuous response variable from background data
is considered. The independent prediction variable data may have a
collinear structure and comprise group effects. A new two-step regres-
sion method inspired by PLS (partial least squares regression) is pro-
posed. The proposed new method is coupled to a novel application
of the Cayley-Hamilton theorem and a two-step estimation procedure.
In the two-step approach, the first step summarizes the information in
the predictors via a bilinear model. The bilinear model has a Krylov
structured within-individuals design matrix, which is closely linked to
PLS, and a between-individuals design matrix, which allows the model
to handle complex structures, e.g. group effects. The second step is
the prediction step, where conditional expectation is used. The close
relation between the two-step method and PLS gives new insight into
PLS; i.e. PLS can be considered as an algorithm for generating a Krylov
structured sequence to approximate the inverse of the covariance ma-
trix of the predictors. Compared with classical PLS, the new two-step
method is a non-algorithmic approach. The bilinear model used in the
first step gives a greater modelling flexibility than classical PLS. The
proposed new two-step method has been extended to handle grouped
data, especially data with different mean levels and with nested mean
structures. Correspondingly, the new two-step method uses bilinear
models with a structure similar to that of the classical growth curve
model and the extended growth curve model, but with design matrices
which are unknown. Given that the covariance between the predictors
and the response is known, the explicit maximum likelihood estimators
(MLEs) for the dispersion and mean of the predictors have all been de-
rived. Real silage spectra data have been used to justify and illustrate
the two-step method.
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1 Introduction

The prediction problem of a response variable based on some multivariate
variables is at the core of statistical applications. One common choice of pre-
diction method is to use the ordinary least squares (OLS) estimator. The
Gauss-Markov theory asserts that the least squares estimator is BLUE (the
best linear unbiased estimator). However, unbiasedness is not necessarily a
wise criterion for estimation, especially when it concerns prediction. The pre-
diction accuracy is related to the mean squares error (MSE) of the estimators
and it is the sum of the variance and the squared bias. The MSE of the
OLS estimator is the smallest compared with the MSEs of all the other linear
unbiased estimators. However, there exist estimators with a small bias but a
large variance reduction which have better overall prediction accuracy than
that of an OLS estimator. For example, when the variables are “collinear” or
“near-collinear”, the prediction accuracy may be poor.

Collinearity refers in a strict sense to the presence of exact linear rela-
tionships within a set of variables, typically a set of explanatory (predictor)
variables used in a regression-type model. In common statistical language
collinearity also allows near-collinearity, when the variables are close to being
linearly related, i.e. when their correlation matrix is near-singular, in other
words, when the data are ill-conditioned (Sundberg, 2002). Several methods
have been proposed for handling the problems connected with collinear data,
including ridge regression (RR), the least absolute shrinkage and selection op-
erator (lasso), principal component regression (PCR) and partial least squares
regression (PLSR); for a review see Brown (1993) and Sundberg (1999). In
particular, PLS, which is the dominant prediction method in chemometrics,
is considered in some detail in the thesis. In the literature, some people prefer
using the abbreviation PLSR instead of PLS, thereby emphasising that this
is a regression method. However, we will use PLS in this thesis.

Partial least squares regression originated from the non-linear iterative par-
tial least squares (NIPALS) algorithm under the concept of “soft modelling”
developed by H. Wold (Wold, 1966). “Soft modelling” means building models
without any assumptions about the underlying distribution, in contrast to
the traditional culture of (“hard”) model building, and is used especially for
complex situations where any prior information is scarce. “Soft modelling” is
proposed as a means of complementing the weak points of the ordinary statis-
tical modelling culture, where the statistical analysis is started by formulating
a parametric model for the data, including a number of essential assumptions.
Thereafter, model criticism takes place, addressing whether the data suggest
a minor or major modification of the model. One criticism against the “or-
dinary culture” maintains that data will often point with equal emphasis to
several possible models without any specific distribution preference. However,
in a defence of “hard modelling”, in practice, using one particular model will
not sacrifice much of the information in the data. Furthermore, several sta-
tistical methods usually possess certain robustness properties with respect to
the certain model assumptions. It is questionable whether “soft modelling”,
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with its loose modelling concept, will overcome some of the problems of “hard
modelling”. Moreover, by applying the “soft modelling” ideas, one gains little
theoretical understanding of the underlying problems. It is very difficult to
assess the methods in a general context without a precise modelling concept.
On the other hand, employing “soft modelling”, the practitioners apply the
comfortable notion that they can collect a batch of data without having to
worry too much about how the data have been collected or what past knowl-
edge there is. They can apply some algorithms, e.g. PLS, from soft sciences
with the assurance that after some fine tuning they will have a good predictor
for future unspecified purposes. The opposing view is that “hard modelling”
is of paramount importance (Brown, 1993).

Nevertheless, we cannot deny the fact that practical success has been
achieved by applying partial least squares regression in particular within “soft
modelling”. Therefore, for mathematical statisticians, instead of debating the
concept theoretically, it would be wise to keep one’s mind open, to try to
understand the techniques developed “outside” (in the surroundings of “hard
modelling”) and to find the harmony that exists between the new and the old,
thereby refreshing our theory and improving development. The first attempt
to take PLS into the ordinary statistical culture was made by Helland (1988,
1990) who defined the population algorithm by emphasising the distinction
between the parameters and observations. Recently, Cook et al. (2013) found
a close connection between PLS and the envelope model, which is a new gen-
eral methodology for dimension reduction. There are also a number of other
important works which try to clarify PLS theoretically, for example those
by Stone and Brooks (1990), Frank and Friedman (1993), and Butler and
Denham (2000).

The overall goal of the present thesis is to cast PLS in a probability model
framework. Then, under such a framework, we aim to develop new methods
for general cases. In particular, we show the connections between the popu-
lation version of PLS and a new proposed two-step regression method. The
two-step method is based on strict stochastic assumptions. In the first step,
information in the explanatory variable is extracted with the help of a mul-
tivariate linear model. In the second step, the prediction step, a conditional
approach is applied. In a special setting, the two-step method produces the
same predictor as PLS.

The aims of the thesis can be summarized as follows:

1. to develop a new PLS-inspired method which combines efficient predic-
tion in collinear cases with a well-defined statistical model;

2. to extend the new developed method to more complex data structures
which comprise group effects, which in turn may be nested.

We begin in Section 2 by presenting the background of the thesis, including
an introduction to a few basic models and a review of shrinkage methods,
PLS and growth curve models. The papers which this thesis is based on, are
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summarized in Section 3. The research contributions made by this thesis and
proposals for future research are discussed in the last section.
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2 Background

2.1 Basic model assumptions

Let (x′, y)′ be a (p+1)−dimensional random vector, with a joint multivariate
distribution with E[x] = µx and E[y] = µy, where E[·] denotes the mean,
D[x] = Σ (supposed to be positive definite), where D[·] denotes the dispersion
(variance), and C[x, y] = ω, where C[·] denotes the covariance, and under the
usual normality assumption we may write(

x
y

)
∼ N(p+1)

((
µx

µy

)
,

(
Σ ω

ω
′

σ2
y

))
. (2.1)

The purpose is to predict y from x on the basis of new observations. When
all the parameters are known, even without the assumption of normality, the
best linear predictor is the conditional expectation of y given x, i.e.

ŷ = E[y|x] = β′(x− µx) + µy, β = Σ−1ω, (2.2)

where E[y|x] is the conditional expectation.

2.2 PLS

Partial least squares was first presented as the non-linear iterative partial least
squares (NIPALS) algorithm under the concept of “soft modelling”, which was
developed by H. Wold (Wold, 1966) and applied to a block of variables in or-
der to find principal components. Since then, H. Wold has presented partial
least squares path modelling for the analysis of several sets of variables linked
in a path diagram. Today the development of partial least squares may be
considered as heading in two main directions. In one direction, the soft mod-
elling concept continues to be used as an alternative algorithm to structural
equation models and is finding applications in social sciences. In the other
direction partial least squares is used as a new regression method, i.e. partial
least squares regression (PLS), and is often applied in chemometrics. In this
thesis, we will focus on PLS as a regression method.

2.2.1 The sample version of PLS

Partial least squares regression was mainly developed by S. Wold and H.
Martens at the end of the 1970s as a prediction method within the chemo-
metric field. Since then it has been heavily promoted and there are many
application papers in the literature, despite the fact that it is only algorith-
mically defined. The original algorithm of PLS is formulated as follows (Wold
et al., 1983).

1. Start with data (X, y) of dimension (p+ 1)× n,

E0 = X− X̄ f0 = y − ȳ.

Perform the following steps for i = 1, 2, . . . .
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2. Introduce the scores ti and the weights ωi,

ti = E′i−1ωi, ωi = C[Ei−1, fi−1].

3. Determine the loadings pi, qi by least squares,

pi = C[Ei−1, ti]D[ti]
−1
, qi = C[fi−1, ti]D[ti]

−1
.

4. Find new residuals,

Ei = Ei−1 − pit
′

i fi = fi−1 − qiti.

Note that in Step 3, ω0 = C[X,y]. The crucial part of the algorithm of PLS
is Step 2, where the latent variable (score t) is formulated. The scores are
defined as a linear combination of the X−residuals from the previous step.
The choice of the weights can be justified by the property that the sample
covariance between y and ti is maximum in each step (Höskuldson, 1988;
Stone and Brooks, 1990). This original algorithm implies that the scores are
orthogonal.

Another commonly used PLS algorithm was formulated by Martens (1985)
and gives orthogonal loadings. In this algorithm, ωi = C[Ei−1,y] is used in
Step 2, and then Ei−1, fi−1 are replaced with X, y, respectively. As proved
by Helland (1988), these two algorithms are equivalent, i.e. lead to the same
predictor of y. However, it has turned out that the latter algorithm provides a
better basis for several mathematical results of PLS. There are other versions
of the PLS algorithm, for example, SIMPLS by de Jong (1993) and kernel
PLS by Rännar et al. (1994), which are theoretically equivalent. For a review
of the different versions of the PLS algorithm and their numerical properties,
e.g. speed, we refer to Andersson (2009).

A few exact mathematical and theoretical results of the sample versions
PLS are collected below.

(i) The weights ωa satisfy the recursive relation:

ωa+1 = s− SGa(G
′

aSGa)−G
′

as,

where s is the sample covariance between X and y and S is the sample
variance of X, and Ga is any matrix spanning the column space ζ(ω1 :
ω2 : · · · : ωa).

(ii) The weights ω1,ω2, · · · ,ωa span the same column space as the Krylov
sequence s,Ss, · · · ,Sa−1s.

(iii) The weights ωi are orthogonal, i.e. ω′iωj = 0, i 6= j.

(iv) At step a, PLS produces a predictor as

ŷ = ȳ + b′a(X− X̄), ba = Ga(G′aSGa)−1G′as.
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(v) PLS will always give a higher coefficient of determination, R2, than
principal component regression.

(vi) PLS shrinks in the sense that

|b1| 6 |b2| 6 · · · 6 |bp|.

Detailed proofs for Statement (i) - (iv) are given in Helland (1988). Statement
(ii) has also been proved by Manne (1987) in a different way. von Rosen
(1994) gave simple proofs of Statement (i) - (iii) applying a vector space
operation. Statement (v) is pointed out by de Jong (1993) and in de Jong
(1995), Statement (vi) is shown.

One main criticism of PLS from most statisticians is that there does not
seem to be any well-defined probability model behind PLS. In what situation
then will PLS perform well? Why is PLS useful? There are several important
clarifying works, especially that by Frank (1987), who used the maximum
of the covariance to describe PLS, and that by Stone and Brooks (1990),
mentioned earlier, who tied OLS, PCR and PLS together under a relatively
well-justified umbrella, i.e. continuum regression. Helland (1988, 1990) was
the first to formulate a population version of PLS, i.e. a parametric version of
PLS, and derived several theoretical results.

In practice, the algorithm of PLS presented above has to stop at some
point. However, it is not easy to decide when it is to stop. Usually, cross-
validation has been applied. Therefore, it can be difficult to evaluate PLS
because the contribution made by performing cross-validation is unclear.

2.2.2 The population version of PLS

In order to cast PLS in the parametric statistical modelling framework, it
is necessary to extend the algorithm of PLS in a population version, which
assumes infinity of data, i.e. n → ∞. Consequently, the sample mean X̄,
ȳ and the sample covariance S, s will be replaced with µx, µy, Σ, ω, the
parameters formulated in the model in (2.1). Then the algorithm for the
population version of PLS, which was given in Helland (1990), using variables
instead of data, runs as follows.

1. Define the starting values for the x residuals ei and the y residuals fi,

e0 = x− µx, f0 = y − µy.

Perform the following steps for i = 1, 2, . . . .

2. Introduce the scores ti and the weights ωi,

ti = e′i−1ωi, ωi = C[ei−1,y].

3. Determine the x loadings (pi) and the y loading (qi) by least squares,

pi =
C[ei−1, ti]

D[ti]
, qi =

C[fi−1, ti]

D[ti]
.
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4. Find new residuals

ei = ei−1 − piti, fi = fi−1 − qiti.

At each step a, two linear representations are obtained,

x = µx + p1t1 + p2t2 + · · ·+ pata + ea

y = µy + q1t1 + q2t2 + · · ·+ qata + fa.

The theoretical results listed in the previous section are still valid for in
the population version, and we will only mention a few which are the most
crucial ones for the rest of the thesis.

(i) ωa+1 = (I−ΣGa(G′aΣGa)−Ga)ω.

(ii) ŷa,PLS = β̂
′
a(x− µx) + µy,with β̂a = Ga(G′aΣGa)−G′aω.

(iii) ζ(Ga) = ζ(ω1 : ω2 : · · · : ωa) = ζ(ω : Σω : · · · : Σa−1ω).

In addition, there are some properties which only hold in the population
version of PLS. Let m be a maximal dimension of the sequences ω1, ω2,
· · · , ωi; i.e. m is the first integer such that ωm+1 = 0. Then the following
statement are true.

(i) The column space of Gm, i.e. ζ(Gm), is the smallest Σ-invariant space,
i.e. ζ(ΣGm) ⊆ ζ(Gm).

(ii) ζ(Gm) is the smallest space which includes Σ−1ω.

(iii) If PLS stops naturally, i.e. ωm+1 = 0, the theoretical PLS coefficient
βm,PLS will equal Σ−1ω.

Furthermore, Statement (i) is equivalent to

ζ(ω1 : ω2 : · · · : ωi) = ζ(ω : Σω : · · · : Σi−1ω) ⊆ ζ(ω : Σω : · · · : Σm−1ω),

which is valid for all i, such that m 6 i 6 p. Statement (i) and (ii) together
imply that PLS generates an invariant subspace with an orthogonal basis
which is included in ζ(Σ). Helland (1990) and von Rosen (1994) gave different
proofs of the above results.

2.2.3 PLS, relevant components and the envelope

The notation of relevant components was introduced by Næs and Martens
(1985) and then used by Helland (1990, 1992), and Næs and Helland (1993),
among others. If the spectral decomposition of Σ is Σ =

∑p
i=1 λiuiu

′
i, then

it is assumed that there exists an ordering of terms in the decomposition and
an integer r < p, such that u′iω = 0, r < i < p. These ui are called relevant
eigenvectors. The corresponding principal component scores u′i(x − µx) are
called the relevant components for the prediction of y.
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As mentioned earlier, the population version of PLS will generate an in-
variant space Gm which satisfies ζ(ΣGm) ⊆ ζ(Gm) and ζ(Σ−1ω) ⊆ ζ(Gm).
The dimension of the invariant space m is equal to r, the number of revelent
components in x for prediction. The space of Gm is also spanned by the
relevant eigenvectors ui. In particular, ω is supposed to belong to that space.

Envelopes (Cook et al., 2010, 2013; Schott, 2013) are a recently pro-
posed general methodology for model reduction in prediction problems. Let
y = α+ β′x + ε, where x is a random predictor with the dimension p, and ε
is the random error and is uncorrelated with x. An envelope arises by param-
eterizing the regression model in terms of the smallest subspace R under the
following constraints: let PR be the projection onto R and QR = I − PR,
then PR should be uncorrelated with QR, and y should be conditionally un-
correlated with QR given PR, according to Cook et al. (2010). Based on the
algebraic characterization of the envelopes, the linear combination of PRx is
of the form u′x, where u is some eigenvectors of the variance of x, i.e. Σ. The
minimal set of such eigenvectors of u is the relevant eigenvector, which is in
agreement with the nomenclature in Næs and Helland (1993).

It has been shown in Cook et al. (2013) that a proper version of the
envelope model is identical to the population version of the PLS model. This
leads to the finding of estimators in the regression by means of the maximum
likelihood approach using the envelope model. It is argued that a likelihood-
based envelope estimator is less sensitive to the number of PLS components
selected and that it outperforms PLS in both prediction and estimation. The
connection between PLS and the envelope has given a new insight into PLS.

2.2.4 Other PLS-related techniques

PLS techniques have been modified to fit various situations. Sparse PLS (Lê
Cao et al., 2008; Chun and Keles, 2010) is one version of PLS which combines
variable selection and prediction modelling. PLS has also been found useful
in classification problems, where it is called partial least-squares discriminant
analysis (PLS-DA), see Barker and Rayens (2003). PLS-DA also has a sparse
version, as presented in Lee et al. (2013). Multi-block PLS (Berglund et al.,
1999; Næs et al., 2011) is sequential PLS for studying the relations between
several blocks of data. There are some versions of PLS which have been
proposed for handling grouped data, such as least squares PLS (Jørgensen et
al., 2007) and sequential and orthogonalized PLS (Næs et al., 2011). Most of
these modified PLS approaches are defined algorithmically.

2.3 Regularization methods

There is a class of methods, often referred to as regularization methods or
shrinkage methods, which are designed to deal with collinearity problems.
Among others, ridge regression (RR), the least absolute shrinkage and selec-
tion operator (lasso), principal component regression (PCR) and partial least
squares regression (PLS) are the most popular ones and have usually worked
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well in prediction.
The idea behind RR is to stabilize the regression coefficient by adding a

constant, k, to the diagonal of the matrix XX′. RR has existed for quite a
while and was being implement even before the seminal work by Hoerl and
Kennard (1970) popularized the technique. Note that in this subsection, X
is considered to be centred, i.e. E[X] = 0. There are many ways of deter-
mining the ridge constant k, each of them corresponding to a specific type
of ridge regression; for a review see Brown (1994). Nowadays, the common
way to understand RR is by solving a least squares criterion together with a
constraint. The lasso, which was proposed by Tibshirani (1996), is defined in
a similar way as RR, i.e. solving a least squares criterion with a subtle dif-
ferent constraint. The nature of the constraint forces some of the coefficients
to be exactly zero. Consequently, the lasso combines variable selection and
shrinkage, which is considered as an appealing feature. The lasso method has
its own generalizations, which have been summarized in Tibshirani (2011).

PCR has figured in the statistical literature for a while, with little usage
before being promoted in the chemometric field. Its popularization in chemo-
metrics was caused by the development of PLS. PLS was first presented in
an algorithmic form as a modification of the NIPALS algorithm by H. Wold
(Wold, 1966), for the purpose of computing principal components. Later, as
noted before, S. Wold and H. Martens (Wold et al., 1983, Martens, 1985)
established it as a regression method, still only in an algorithmic way and
defined without any statistical model assumption. Since then, PLS has been
frequently used in the world of chemometrics.

The idea behind PCR and PLS is to find a few linear combinations of
the original predictors, usually defined as components (or factors), and then
directly regress the response on these components. In PCR and PLS the
components are formed differently. The components in PCR are formed via
the eigenvectors of the covariance matrix of the predictors; i.e. the components
in PCR only depend on the predictors. This has been regarded with some
scepticism, since even though the components are chosen in such a way that
they will explain the predictors in the best possible way, there is no guarantee
that these components will be pertinent to predicting the response as well.
The components in PLS are obtained by maximizing the covariance between
the response and all the possible linear functions of the predictors.

In the following subsections, we will review the popular regularization
methods with respect to numerical formulations, shrinkage properties, and
linkages and comparisons among the regularization methods.

2.3.1 Numerical approaches

The term regularized emanates from the method of regularization used in
approximation theory (Brown, 1993). Therefore, it is worth considering all
the methods from a numerical point of view. In my opinion, the justification
for using the methods is quite clear if the aim is to solve a linear system.

The basic solution for a linear system is found by minimizing the quadratic

18



form

min
β
‖y −X′β‖22, (2.3)

with respect to X over a proper subset, Rp. If X is collinearly structured
and ill-conditioned, the straightforward solution for (2.3) becomes sensitive
to data values. Therefore, one may put constraints on the solution, which is
one kind of regularization. Roughly speaking, regularization is a technique
for transforming a poorly conditioned problem into a stable one (Golub and
Van Loan, 1996).

Ridge regression is the solution obtained by minimizing

min
β
‖y −X′β‖22 + λ‖β‖22.

Since X is ill-conditioned, the solution ‖β̂‖22 may become quite large. The
large scale of the solution could be considered as the reason for the bad per-
formance. Therefore, ridge regression includes the Euclidean norm (also called
the L2−distance); i.e. λ‖β‖22 acts as a penalty term which leads to restrictions
on the scale of the solution.

Instead of using the Euclidean norm as the penalty, the lasso uses the Man-
hatten norm (the L1− distance) as the penalty; i.e. the lasso is the solution
obtained by minimizing:

min
β
‖y −X′β‖22 + λ‖β‖11.

Another possible way to constrain the parameters would be to solve

min
V′β=γ

‖y −X′β‖22 ≈ min
γ
‖y −X′Vγ‖, (2.4)

where V is a matrix with orthogonal columns. The matrix V′β can be con-
sidered as transforming the solution β into a lower dimensional space.

PCR can be obtained by (2.4) using truncated singular value decomposi-
tion (truncated SVD). SVD states that any matrix Ap×q can be factorized
as

A = UDV′,

where D = (Dr,0), Dr = diag(
√
λ1,
√
λ2,
√
λr),

√
λi are the singular values,

r = rank(A), and U and V are orthogonal matrices. Truncated SVD uses
the largest k singular values in Dk to approximate A, such as

A ≈ UkDkV′k,

with U = (Uk,U⊥), where U⊥ is a p×(p−k) matrix such that U is orthogonal
and V = (Vk,V⊥). Therefore, if there is a linear system,

min
β
‖Xy −XX′β‖22,
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which needs to be solved, we use truncated SVD first and thus XX′ =
UkDkU

′
k. The Uk is used as a transformation matrix such that U′kβ = γ.

Therefore, the linear system can be reformulated as

min
γ
‖Xy −UkDkU

′
kUkγ‖22

= min
γ
‖U′kXy −DkIkγ‖22 + U′Xy.

The solution to the linear system equals

γ̂ =


u′1Xy/λ1
u′2Xy/λ2

...
u′kXy/λk

 , β̂ = Uγ̂ =

k∑
i=1

u′iXy

λk
ui,

where β̂ mathematically equals the PCR solution.
PLS and Lanczos bidiagonalization (LBD) are equivalent mathematically

(Eldén, 2003). The LBD procedure generates a series of matrices, Rk =
(r1, · · · rk), Qk = (q1, · · · ,qk) and

Zk =


α1 γ1

α2 γ2
. . .

. . .

αk−1 γk−1
γk

 ,

which satisfy X′Rk = QkZk. Subsequently, Rk and Qk consist of orthogonal
columns and span the Krylov structured spaces.

ζ(Rk) = ζ(Xy, (XX′)(Xy), · · · , (XX′)k−1(Xy)),

ζ(Qk) = ζ(X′Xy, (X′X)(X′Xy), · · · , (X′X)k−1(X′Xy)).

Accordingly, if we want to compute the solution for (2.3), LBD provides a
natural transformation matrix, Rk, such that R′kβ = γ. Then the solution γ
can be obtained by solving

min
γ
‖y −X′Rkγ‖22 = min

γ
‖y −QkZkγ‖22 (2.5)

= min
γ
‖Q′ky − Zkγ‖22 + ‖Q′⊥y‖22.

Thus the solution is given by

γ̂ = Z−1k Qky, β̂ = RkZ
−1
k Qky.

It can be shown that the above β̂ is mathematically equivalent to the deriva-
tion of estimators via the sample version of PLS.
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2.3.2 Shrinkage property

Based on the estimators derived from the numerical approaches, it is conve-
nient to explore the shrinkage property of the regularized estimators. Frank
and Friedman (1993) defined the “shrinkage factor” concept to compare the
shrinkage behaviour of the methods. The general proposed form of the esti-
mators is

β̂ =

r∑
j=1

f(λj)α̂juj ,

with

α̂j =
1

λi
u′jXy,

r∑
j=1

(
1

λi
ujuj) = XX′,

where r is the rank of X and f(λj) are called shrinkage factors. For the
MLE, f(λj) = 1. If f(λj) < 1, this will lead to a reduction in the vari-

ance of β̂, although it may introduce a bias as well. It is hoped that any
increase in the bias will be small compared to the decrease in the variance, so
that the shrinkage will be beneficial. In ridge regression, the shrinkage factor
f(λj) = λj/(λj +λ), which is always smaller than 1. For principal component
regression, f(λj) = 1 if the jth component is included. Otherwise, f(λj) = 0.

The shrinkage property for PLS is peculiar (Butler and Denham, 2000).
The shrinkage factor f(λj) is not always smaller than 1. The component
corresponding to the smallest eigenvalue can always be shrunk. The shrinkage
factor f(λ1) > 1 if the number of components in PLS is odd, and the shrinkage
factor f(λj) < 1 if the number of components in PLS is even. Björkström
(2010) showed that the peculiar pattern of alternating shrinkage and inflation
is not unique for PLS. For a review of the shrinkage properties of PLS, we
refer to Krämer (2007).

In summary, RR shrinks all directions, but has a greater effect on the low-
variance direction. PCR only shrinks the first a high variance and discards the
rest. PLS shrinks the low-variance directions, but, peculiarly enough, inflates
some of the high-variance directions as well.

2.3.3 Linkage among the regularization methods

One main stream of the discussion on regularization methods concerns the
linkage among them. Among others, Stone and Brooks (1990) introduced
continuum regression (CR), where OLS, PCR and PLS all naturally appear as
special cases. CR is formulated as choosing latent components by maximizing

T (γ, c) = (c′X′y)(c′X′Xc)γ−1,

where c is a vector with |c| = 1. After finding this c, the regression coefficients
β in the prediction are constructed by performing simple linear regression, y
on Xc. Here, γ = 0 gives OLS in one step by maximizing the correlation,
γ = 2 gives PLS via maximizing the covariance, and γ = ∞ corresponds to
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PCR by maximizing the variance. Furthermore, the relationship between RR
and CR was pointed out by Sundberg (1993), who explained CR with one
component differs from RR only by a scalar factor, which is a function of
the ridge constant λ. Any CR regressor with γ between 0 and 1 is in fact
a ridge regressor. As implemented by de Jong and Farebrother (1994), this
correspondence can be extended to γ > 1 in CR by using a negative ridge
constant.

From a conceptual point of view, CR is very attractive in that it ties
OLS, PCR, PLS and RR together in a unified framework and enhances the
understanding of various methods and their intimate relationship. However,
the methodology suffers from both a heavy computation burden (for example,
due to its use of cross-validation to estimate γ and the number of latent
components) and some inferential opaqueness (Brown, 1993). It should be
mentioned that Brooks and Stone (1994) also proposed a multivariate version
of CR, joint continuum regression. Both the univariate and the multivariate
versions have so far not been used much in applications.

2.3.4 Comparisons

Which method (when comparing among RR, the lasso, PLS, and PCR) is the
best one? There is consensus that typically all these methods are approxi-
mately equivalent and possess a relatively better prediction ability than OLS
and variable subset selection (VSS) for collinear data.

Due to the fact that PLS is only algorithmically defined, it is not easy
to draw any firm conclusions by comparing all the methods under a general
model set-up. However, there are several empirical studies documented in the
literature. Hoerl et al. (1975), Gibbons (1981) and Muniz (2009) compared
different types of RR, Lawless (1976) focused on RR and PCR, Dempster et
al. (1977) compared many shrinkage-type estimators, and Garthwaite (1994)
conducted a comparison between PCR, PLS and VSS, etc. This list could
have been made much longer, but we will below only provide details of a few
research studies.

Among others, Frank and Friedman (1993) conducted an extensive simu-
lation study and concluded that RR is generally preferable to VSS, PLS and
PCR, but that the superiority of RR over PLS and PCR was so slight that
“one would not sacrifice much average accuracy over a lifetime by using one
of them to the exclusion of the other two”. Tibshirani (1993) compared the
performance of the lasso with that of RR and VSS, and concluded that, when
there are a ‘large number of small effects’, RR is best, followed by the lasso
and then VSS; when there are a ‘small to moderate number of moderate-sized
effects’, the lasso performs best, followed by RR and VSS; and VSS performs
much better than both RR and the lasso with a ‘small number of large effects’.

It is worth mentioning that Helland and Almøy (1994), who presented an
asymptotic result, compared PLS and PCR using a multinormal model when
only a few components were relevant, i.e. when only some of the population
version of principal components in the explanatory space were correlated with
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the dependent variable. Their conclusion is that the difference between PCR
and PLS in most cases is relatively small. PCR performs better when the
irrelevant eigenvalues are relatively small or relatively large. For intermediate
irrelevant eigenvalues, PLS performs better. In practice, PLS may be prefer-
able, since large irrelevant eigenvalues rarely exist and the difference is very
small for small irrelevant eigenvalues. Almøy (1996) carried out a simulation
study which confirmed the above conclusions.

In summary, RR, the lasso, PLS and PCR perform similarly. RR is prefer-
able in some cases only to a very limited extent. The lasso can be used when
both shrinkage and variable selection are needed.

2.3.5 Other shrinkage methods

In the literature, many other shrinkage methods are suggested, which are used
relatively less frequently than the above-mentioned ones: intermediate least
squares regression (Frank, 1987), James-Stein shrinkage (James and Stein,
1961), latent root regression (Webster, 1974), reduced rank regression (An-
dersson, 1958; Izenman, 1975; Reinsel and Velu, 1998), least angle regression
(Efron et al., 2004), various Bayes-Stein-type estimators (Zellner, 1972) and
other Bayes methods. For a review, see Dempster (1977).

2.4 The growth curve model and its extensions

It appears that, when developing our two-step approach, the classical growth
curve model and its extensions have played a key role. Therefore, in the
subsequent subsections, these models are presented in some detail.

2.4.1 The growth curve model

The growth curve model was proposed by Potthoff and Roy (1964) and has
many important applications within medicine, social sciences, etc.

Let X : p× n, A : p× q, q ≤ p, B : q × k, C : k × n, r(C) + p ≤ n, where
Σ : p× p is positive definite. Then,

X = ABC + E (2.6)

defines the growth curve model, where the columns of E are assumed to be
independently distributed as a multivariate normal distribution with mean
0 and a positive definite dispersion matrix, Σ, i.e. E ∼ Np,n(0,Σ, In). The
matrix C is often called a between-individuals design matrix and is precisely
the same design matrix as that used in the univariate linear model. The matrix
A is often called a within-individuals design matrix. Both the matrices A and
C are known, whereas the matrices B and Σ are unknown parameter matrices.

The dental data set of Potthoff and Roy (1964) will be used to illustrate the
growth curve model. The data were obtained through dental measurements
performed on 11 girls and 16 boys at four different ages (t1 = 8, t2 = 10,
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Figure 1: The distance from the centre of the pituitary to the pteryomaxillary
fissure in girls (◦) and boys (+) at the ages of 8, 10, 12 and 14. The growth
profiles for girls (−) and boys (−−) are assumed to be linear in time.

t3 = 12, t4 = 14). Each measurement is the distance from the centre of the
pituitary to the pteryomaxillary fissure. These data are plotted in Figure 1.

Let us consider a case where the mean of the distribution for each treat-
ment group is supposed to be linear. In that case the µi for group j at time
ti is given by

µj = β1j + β2jti j = 1, 2, i = 1, 2, 3, 4.

The size of the observation matrix X is 4 × 27, and the first 11 columns
correspond to measurements on girls, while the last 16 columns correspond
to measurements on boys. The between-individuals design matrix C : 2× 27
equals

C =

(
1′11

⊗(
1
0

)
: 1′16

⊗(
0
1

) )
,

where
⊗

means the Kronecker product. Due to the linear mean structure,
the within-individuals design matrix A : 4× 2 equals

A′ =

(
1 1 1 1
8 10 12 14

)
.

Then the expectation of the data matrix X can be presented as E[X] = ABC
and the variance D[X] = I

⊗
Σ, where B and Σ are unknown matrices. Thus,

we may use the growth curve model X ∼ N4,27(ABC,Σ, I).
The maximum likelihood method is one of the approaches used to find es-

timators of the parameters in the growth curve model. The explicit maximum
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likelihood estimators (MLEs) in the growth curve model have been derived
by different approaches by different authors, see Kollo and von Rosen (2005).

2.4.2 The extended growth curve model

In the growth curve model, each group follows a linear growth profile. In some
cases, this may not hold, as shown in Figure 2.
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Figure 2: The distance from the centre of the pituitary to the pteryomaxillary
fissure in girls (◦) and boys (+) at the age of 8, 10, 12 and 14. The growth
profiles for girls (−) and boys (−−) are assumed to be different, as defined in
the model in (2.7).

For example, it may be more reasonable to assume that the means of the
boys’ group follows a second degree polynomial, i.e.

µ2 = β21 + β22ti + β23ti
2, i = 1, 2, 3, 4.

Thus, a natural way to extend the classical growth curve model is given by:

X = A1B1C1 + A2B2C2 + E, (2.7)

where

A′1 =

(
1 1 1 1
8 10 12 14

)
, C1 =

(
1′11

⊗(
1
0

)
: 1′16

⊗(
0
1

) )
,

A′2 =
(

82 102 122 142
)
, C2 =

(
0′11 : 1′16

)
.

The matrices B1 and B2 are parameter matrices and E is the same normally
distributed error matrix as before, i.e. E ∼ N(0,Σ, I). The model in (2.7)
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assumes that for both girls and boys we have a linear structure, but addition-
ally that for the boys there exists a second-order degree polynomial structure.
The model in (2.7) satisfies the condition ζ(C′2) ⊆ ζ(C′1), which is a crucial
relation in order to obtain explicit estimators.

The model in (2.7) can be formulated in a more general form. Let X : p×n,
Ai : p × qi, Bi : qi × ki, Ci : ki × n, r(Ci) + p ≤ n, i = 1, 2, · · · ,m,
ζ(C′i) ⊆ ζ(C′i−1), i = 2, 3, · · · ,m and Σ : p× p be positive definite. Then,

X =
m∑
i=1

AiBiCi + E, (2.8)

where E ∼ Np,n(0,Σ, I). The model in (2.8) is called an extended growth
curve model. The model in (2.7) is a special case of that in (2.8) when m = 2.
An exhaustive description of the extended growth curve model can be found
in Kollo and von Rosen (2005).

A crucial condition for obtaining explicit maximum likelihood estima-
tions (MLEs) of the extended growth curve model is ζ(C′i) ⊆ ζ(C′i−1), i =
2, 3, · · · ,m, Co = I. It may be worth mentioning that the subspace condi-
tions ζ(C′i) ⊆ ζ(C′i−1) may be replaced with ζ(Ai) ⊆ ζ(Ai−1). How to obtain
the MLEs in the extended growth curve model is described in Kollo and von
Rosen (2005).
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3 Summary of papers

3.1 A real data set which has inspired Papers I-IV

3.1.1 Data description

Silage sample data were prepared for experimental purposes at the Swedish
University of Agricultural Sciences during 2002-2006, and these data covered
a total of 762 silage samples from 15 different experiments. The samples were
ensiled in mini-silos of varying size for a minimum of 60 days. After ensiling,
silage juice was obtained with a hydraulic press, and was later prepared for
chemical analysis, among other types of analysis.

Reference analyses were performed of ten soluble compounds in the silage,
i.e. ammonia nitrogen, lactic acid, acetic acid, propionic acid, butyric acid,
total volatile fatty acids, succinic acid, butanediol, ethanol and water-soluble
carbohydrates (WSC or sucrose). High-performance liquid chromatography
(HPLC) was used for the analysis of lactic acid, acetic acid, propionic acid, bu-
tyric acid, total volatile fatty acids, succinic acid, 2,3-butanediol and ethanol.
The HPLC system consisted of a Hewlett Packard Series 1050 pump, a Marathon
(Spark Holland BV, the Netherlands) auto-sampler with a 20µl loop and an
ERC-7510 (ERMA Inc., Japan) RI-detector. A 300×7.8 mm stainless-steel
column, packed with ReproGel H, and a pre-column packed with the same
material were used. The mobile phase consisted of 0.005 M sulphuric acid
and the flow rate was 0.8 ml/min. The water-soluble carbohydrates were
analyzed using an enzymatic method (Udén, 2006) applied to dried samples,
and the concentration in the silage juice was estimated from the water content
of the silage. The ammonia nitrogen concentrations were analyzed using the
phenol-hypochlorite and ninhydrin colorimetric assays adapted to continuous-
flow analysis (Broderick and Kang, 1980; Broderick, 1987). The unit used for
all the reference analyses was grams per litre.

All the samples were analyzed two to four years after the time of the ref-
erence analysis using Fourier transform infrared (FTIR) analysis. The FTIR
instrument used had originally been designed for routine milk analysis (Mil-
coscan FT120, Foss Electric A/S, Hillerød, Denmark), but was modified to
allow the liquids to be pumped directly into the measurement cell. The in-
strument measured mid-infrared spectra from 999 cm−1 to 4996 cm−1. The
spectra were recorded at 1,037 wave numbers at intervals of 3.858 cm−1 .
Thereafter, the spectra with the observation means subtracted were used in
calibration.

The aim of the analysis was to be able to utilize data on a small number of
samples where both reference values and FTIR data are available to develop
a predictive model for the chemical content in a silage sample based only on
the FTIR spectra.
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3.1.2 A short background to the interpretation of the spectra

According to Beer’s law (see Cross, 1969), spectral peak absorbance values
are linearly related to concentrations of soluble compounds in a solution. As
illustrated in Figure 3, the higher the concentration of sucrose is, the bigger are
the absorbance values in the spectra. There are two peaks in the spectra (Peak
1 at a wave number around 1158 cm−1 and Peak 2 at a wave number around
1019 cm−1) which can be considered as the two main underlying components
which are directly connected to the effect of sucrose. This means that, based
on the spectra of the pure solution, a model for the concentration of sucrose
can be built using only these two components (peaks).

The overall spectra of the silage reveal, however, mixtures of ten known
soluble compounds and a number of unknown ones. An examination of the
spectra of pure solutions of a few common compounds (Figure 4) shows con-
siderable overlap. Nevertheless, the complex spectrum of multiple compounds
can still be said to correspond to the sum of all the individual spectra. This
means that in mixtures, no compound will correspond to any single peak, as
each peak is influenced by all the compounds. Therefore, when building a
model for an individual compound, it is necessary to extract a number of im-
portant signals from the mixture. For example, if we intend to build a model
for sucrose, the original Peak 2 at a wave number around 1019 cm−1 may
still be useful, but it is also influenced by lactate and ethanol. Accordingly,
we need to consider other regions where, for example, lactate is dominant,
in order to correct Peak 2 for the effect of lactate. In reality, multiple peaks
are used, some of which are linked to peaks of the compound of interest and
others to spectral regions of interfering compounds.
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Figure 3: The spectra of two solutions of sucrose. The upper curve is the
spectrum of sucrose with a concentration of 200g/L, while the lower curve is
the spectrum of sucrose with a concentration of 100g/L.
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Figure 4: The spectra of the mixture and the pure solutions. The black solid
curve is the spectrum of the mixture solution, while the coloured dashed curves
are the spectra of pure compounds, i.e. sucrose, lactate, acetate and ethanol.

3.1.3 How the data inspired the papers

The multiple characteristics of the data, for example their collinearity and
group effects, inspired this thesis. First of all, the data consist of collinear
variables. The aim is to build a model for soluble compounds using the spec-
tra. Each wave number in the spectrum is an explanatory variable. Naturally,
adjacent wave numbers are correlated. Paper I is devoted to an investigation
of the performance of the most popular regression methods suitable for han-
dling collinear data.

The dominant method for such data in the chemometric field is PLS,
which is mainly algorithmically based and lacks a proper statistical model.
Therefore, the intention of Paper II is to give an explanation of PLS in a
statistical context where a new two-step method is introduced.

There are group effects in the silage data, since the data originates from
different experiments. In some experiments, the data shared the same struc-
ture, i.e. concerned the same kind of soluble compounds, but had different
mean levels. For example, it is natural that the mean level of ethanol should
be high in one experiment, but low in another due to the silage-type in ques-
tion. An illustration of the spectra from two experiments is provided in Figure
5, where each colour represents an experiment (group). The two groups of
spectra show peaks in the same region of wave numbers, but at two distinct
levels. Paper III is devoted to such grouped data, i.e. data with different mean
levels and the two-step method is extended in this paper to comprise group
effects.

The samples in some experiments had been exposed to special treatments,
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Figure 5: Spectra of the silage samples from two different experiments. Each
experiment is represented by one colour. The spectra have the same pattern,
but two different levels, which indicates that the means of the two groups
follow the same structure, but have different levels.
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Figure 6: Spectra of the silage samples from two different experiments. Each
experiment is represented by one colour. There is an extra peak in one exper-
iment, as indicated by the dashed line, which implies that the mean structure
of one group is more complicated than that of the other one.
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as a result of which the samples in these experiments comprised a special
soluble component (e.g. ammonia) which was absent or had very low values in
other experiments. The spectra for two such experiments are shown in Figure
6, where the two groups of spectra share several peaks in some regions of wave
numbers. However, in one experiment there is an extra peak which does not
exist in the other one. Thus, the structure of the data in some experiments is
more complicated than that in the rest. In fact, the mean structure from one
group is nested in another, which is called a nested group effect. Therefore,
Paper IV is devoted to prediction when this type of structure exists.

3.2 The linkage between the papers of the thesis

Figure 7 represents a flowchart showing how the silage data inspired the pa-
pers, as well as the connections between the papers. In comparison with the
other papers, Paper I is relatively independent of the others and served as
an overview of the commonly used methods for collinear data. A summary
of the results of Paper I is presented in Section 3.3. The contents of Paper
II-IV are closely connected. As shown in Figure 7, Paper II-IV are linked
in that the data structures dealt with therein become increasingly complex
with each successive paper. Some of the contents of Paper II-IV overlap. For
example, the idea of the two-step method is proposed in Paper II, but is fur-
ther exploited in Paper III through the addition of a new explanation. The
intention of the following subsections is to summarise the contents in a logical
way, which does not strictly follow the order of the papers. Sections 3.4-3.8
treat the development of the two-step method. The main idea of the two-step
method is presented in Section 3.4 based on Paper II and III. The discussion
of the connections between the two-step method and PLS in Section 3.5 is
based on Paper II and III. Section 3.6, 3.7 and 3.8 deal with results presented
in Paper II, III and IV.

Figure 7: A schematic flowchart for the relation between the silage data and
the papers of the thesis and the linkage between the papers.
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3.3 An empirical study of popular shrinkage methods

In Paper I, we investigated the robustness of the popular shrinkage methods,
i.e. ridge regression, the lasso, partial least squares regression and principal
component regression, together with OLS and variable subset selection (VSS),
through their applications on a real data set.

A part of the silage data set was selected which consisted of data on a total
of 630 grass-clover silage samples from 13 different experiments. Reference
analyses of ten soluble compounds in the silage had previously been made for
these samples. The spectra from 999 to 1585 cm−1 for the same samples were
used.

The structure of the silage data is rather complex. Besides collinearity,
there are several features which are rarely discussed. Firstly, the data originate
from several experiments. The differences between the experiments, for exam-
ple concerning the silage type and the experimental conditions, are unknown
or too complicated to be summarized. Furthermore, multi-responses are, nat-
urally, present in the data. The covariance structure of the multi-response
variables varied to a large extent among the experiments. The influence of
the covariance between the responses on the prediction is unknown.

There is a lack of appropriate shrinkage methods for such data, i.e. data
characterised by group (experiment) effects and multi-responses. Therefore,
deliberately neglecting those structural characteristics of the data, we ex-
amined the performance of the most popular shrinkage methods using uni-
response models without any group information. To a certain extent, the
models were misspecified. Our purpose was to investigate the robustness of
the popular shrinkage methods under these misspecified models.

To evaluate the methods, two procedures were used in Paper I. In Pro-
cedure 1, the samples were randomly divided into two subsets. One subset
contained 567 samples (around 90 percent of the total number of samples) and
was used to build the models, and throughout the paper it is called the train-
ing set. The other 63 samples made up a subset which was used for testing
the model performance and is called the test set. A 10-fold cross-validation
was employed within the training set to determine the tuning parameter for
each method. The whole routine described above was repeated 100 times.
In Procedure 2, in each repetition, one of the 13 experiments was saved to
serve as a test set. The other 12 experiments (the training set) were used
to build the model. This process was repeated 13 times with the data from
each experiment used only once for validation. The tuning parameters were
determined via 12-fold cross-validation within the training set, with each sub-
set corresponding to one of the 12 experiments. In each procedure, for one
response (analyte), each method was ranked by its root mean squared error
for prediction. Then we assigned each calibration method a score according
to its ranking. The final score for each method within each procedure was the
sum of all of its scores across all the analytes, which was used as a criterion
for the overall performance.

For the overall performance, as summarized in Paper I, the ranking for
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Procedure 1 was:

Lasso > RR > V SS > PLS > OLS > PCR.

The ranking for Procedure 2 was:

Lasso > RR > V SS > PLS > PCR > OLS.

In conclusion, we propose the use of the lasso and RR for complex data
due to the good robustness properties of these methods. Classical VSS may
also be a good choice because the outcome is relatively easy to interpret.
PCR showed an unexpectedly poor performance. Applying PCR with a uni-
response model to multi-response data should therefore be carried out with
caution.

3.4 PLS viewed using a two-step estimation approach

The population PLS predictor at step a equals, if µx and µy are known,

ŷa,PLS = ω′Ga(G′aΣGa)−G′a(x− µx) + µy. (3.1)

We have formulated the above classical PLS predictor as a two-step estimation
approach, which will give us new insight into PLS. This idea, initially discussed
in Paper II, is supplemented in Paper III. In the first step, with the assumption
that x is proportional to the covariance ω, it is supposed that the following
model holds, with ε ∼ Np(0,Σ),

x− µx = ωγ + ε

= ΣΣ−1ωγ + ε. (3.2)

The product ΣΣ−1 is used to enable the canceling-out of Σ−1 in the condi-
tional predictor, which causes the poor performance when estimating Σ with
near-collinear data. Based on the Cayley-Hamilton theorem, Σ−1 can be pre-
sented in a polynomial form, i.e. Σ−1 =

∑p
i=1 ciΣ

i−1 ≈
∑a
i=1 ciΣ

i−1, for
some ci, which is a function of Σ and a ≤ p. One important simplification
here is that, instead of considering ci as a function of Σ, we treat it as an
unknown constant which, together with γ, should be estimated later. If Σ
is unknown, then {ci} is also unknown. If a = p, there is no approximation.
How to determine a is an open question. Consequently,

x− µx = Σ

p∑
i=1

ciΣ
i−1ωγ + ε

≈
a∑
i=1

Σiωβi + ε

= ΣGaβ + ε, (3.3)

where β = (βi) and βi = ciγ is an unknown parameter vector. The matrix Ga

was defined in the presentation of the population version of PLS, i.e. ζ(Ga) =
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ζ(ω : Σω : · · · : Σa−1ω). It may be helpful to view µx as a baseline parameter
rather than a population mean as defined before. In PLS applications, data
which are pre-centered with the sample mean are usually used. The model
in (3.3) models the mean with adjustment for the baseline. As mentioned
earlier, the population version of PLS will generate an invariant space which
has the property ζ(ω) ⊆ ζ(ΣGa). Then ω = ΣGaρ will transform the model
in (3.2) into that in (3.3). The model in (3.3) satisfies the assumption that
it is a weakly singular Gauss-Markov model (see Nordström, 1985). Then a
least squares predictor is given by

x̂− µx = ΣGa(G′aΣΣ−1ΣGa)−G′aΣΣ−1(x− µx)

= ΣGa(G′aΣGa)−G′a(x− µx).

In the second step,

ŷ = ω′Σ−1 ̂(x− µx) + µy = ω′Ga(G′aΣGa)−G′a(x− µx) + µy

is used, is identical to ŷa,PLS in (3.1), and is completely free of Σ−1.

So far we have established the linkage between PLS and a two-step estima-
tion approach. Using a design matrix, A = ΣGa, in the first step will lead to
a predictor identical to the classical PLS predictor. The choice of the design
matrix was motivated by the Cayley-Hamilton theorem as an approximation
of Σ−1. This gives a new insight into PLS; i.e. PLS can be viewed as a method
of generating a Krylov structured space to approximate Σ−1. Moreover, it has
been shown in von Rosen (1994) that when selecting a design matrix which
gives the PLS predictor and also satisfies the weakly singular Gauss-Markov
model, one is limited to those matrices generating ζ(ΣGa).

Another way to view the model in (3.3) is to assume β to be random with
E[β] = 0, D[β] = I, C[β, ε] = 0 and to assume µx to be the population
mean. Then the model in (3.3) indicates that the dispersion of x, i.e. Σ, can
be decomposed into two parts. One part is structured and belongs to the
space of ζ(Ga), which is the same space as that generated by the relevant
components mentioned earlier. Consequently, the model in (3.3) follows the
set-up of a mixed linear model. Thus, the problem is to estimate µx and Σ
and to predict β. Inserting the estimators, the conditional predictor becomes

ŷ = ω′Σ−1(x− µ̂x − Σ̂Gaβ̂) + µy.

3.5 A new two-step regression method

Inspired by PLS, a new two-step method is proposed for collinear and high-
dimensional data. The two-step method is formulated as follows:

(i) x = ωγ + ε, ε ∼ N(0,Σ);

(ii) y = ω′Σ̂
−1

(x− µ̂x) + µy.
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The first step is the step for summarizing the information in x. For collinear
data, often with a relatively large number of x variables, it is fairly reason-
able to assume a smaller number of ‘latent components’ that influence the
explanatory variables and thus the response variable as well. As illustrated
in the silage data shown in Figure 4, each peak represents some underlying
components. Random effects are usually present in the explanatory variables
as well, for example some measurement errors. Thus, the information is sum-
marized in a model where the latent components are treated as fixed effects
and the error is considered to be a random effect. The second step is the
prediction step. A natural choice is to use a conditional predictor, since the
conditional predictor is the best choice in that it has the smallest variance
among unbiased predictors.

The two-step modelling idea, i.e. predicting y via some form of summarized
x, is not new. For example, Stone and Brooks (1990) in continuum regres-
sion used a ‘potential additional regressor’, which is based on x under some
maximum criteria. Helland (1992) proposed a maximum likelihood approach
using the relevant components which is based on the eigenvectors of Σ.

A critical problem is how to estimate Σ−1 in Step 2. The collinear data
will lead to the estimator of Σ being close to singular and then the inverse of
the estimator will have a large dispersion, which results in a poor predictor.
In the literature, the approaches to approximating Σ−1 are removal of the
eigenvectors with small eigenvalues, i.e. shrinkage, and the use of the regular-
ization approach (Σ+λI)−1, which is similar to ridge-type regression. We use
a new approach inspired by the Cayley-Hamilton theorem as applied in PLS,
i.e. Σ−1 =

∑p
i=1 ciΣ

i−1, where ci are called generalized traces and functions
of Σ. Thus, we have a model of the form

x = ΣGaβ + ε, (3.4)

in the first step. It is worth mentioning that PLS formulated in the two-step
approach starts with x − µx, which is proportional to ω, whereas the new
approach starts with x being proportional to ω. If one considers the model
x−µx = ωγ+ε to be modelling an adjusted mean by treating µx as a baseline
parameter, this model is essentially the same as x = ωγ+ε, since both model
the mean, with the former doing so for pre-treated data and the latter doing
so for raw data. Therefore, instead of using the sample mean to approximate
the baseline and estimate the adjusted mean from the model x−µx = ωγ+ε,
it is fairly reasonable to simplify the model as x = ωγ + ε and estimate the
population mean directly. If one considers the model x− µx = ωγ + ε to be
modelling the dispersion of x, as discussed earlier, this model is different from
the model x = ωγ + ε, which models the mean.
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3.6 The two-step method for linear prediction

3.6.1 Model

The connection between PLS and the two-step method provides a natural
choice for the design matrix A, i.e. ΣGa. Now, with n pairs (yi,xi), i =
1, 2, · · · , n, of independent observations, the model is formulated as:

X = Aβ1′n + E, (3.5)

with X: p × n, A: p × q, β: q × 1, and where 1′n: 1 × n is a vector of n 1s,
E ∼ Np,n(0,Σ, In), A = ΣGa, Ga is the Krylov matrix used previously, and
Σ: p× p is positive definite. The vector β and Σ are unknown.

3.6.2 Estimation

Based on the matrix normal distribution, the likelihood function for the model
in (3.5) is

L(β,Σ) ∝ |Σ|−
1
2ne−

1
2 tr{Σ

−1(X−Aβ1′n)(X−Aβ1′n)
′}, (3.6)

where L(β,Σ) denotes the likelihood function with the parameters β and
Σ. Note that A = ΣGa. To obtain the estimator of Σ and β through the
likelihood function is not a trivial task, since Σ appears both in the mean and
the variance. However, we manage to derive the explicit MLEs for given ω
via inequalities, as formulated in the next theorem.

Theorem 3.1. Let the model be given by (3.5) and suppose that ω in A
is known, with A = ΣGa = (Σω,Σ2ω, . . . ,Σaω), and that S = X(I −
1n1′nn

−1)X′. Then, if n > p, the maximum likelihood estimators of Σ and
Aβ are given by

Âβ = Â(Â′S−1Â)−1Â′S−1X1nn
−1,

Â = (
1

n
Sω,

1

n2
S2ω, · · · , 1

na
Saω),

Σ̂ =
1

n
{S+(I−Â(Â′S−1Â)−Â′S−1)X1n1′nn

−1X′(I−S−1Â(Â′S−1Â)−1Â′)}.

Proposition 3.1. Assume that ω and µy are known and the given observa-
tions X follow the model in (3.5). The prediction of y is given by

ŷ′ = ω′Σ̂
−1

(X− Âβ1′n) + µ′y, (3.7)

and Âβ is presented in Theorem 3.1.
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The details of the proof of Theorem 3.1 are given in Paper II. Explicit
MLEs of Σ and β will simplify computations. Observe that in the MLEs of A,
i.e. (Σ,Σ2ω, · · · ,Σaω), every Σ is replaced with the sample variance, i.e. S/n.
The MLE of Σ differs from the sample variance, which leads to the estimator
being biased. However, we have argued (for details see in Paper III) that
the bias will not cause any problem in prediction. The estimation obtained
through the two-step method will always be better than that obtained using
PLS in that there will be a smaller mean squares error, which was shown in
Paper III.

3.6.3 Data example

The data of one silage experiment consisting of 215 samples were used for
illustrating the performance of the two-step method. The ethanol content in
the silage was the response variable and the absorbance values of the spectra
from the Fourier transform infrared (FTIR) analysis at 53 wave numbers were
the predictors. The data set was randomly divided into two sets. One set
consisting of 115 samples was used to perform the regression analysis. The
other 100 samples were used for validation. The estimation and prediction
results are shown in Figure 8. The two-step method gave better estimation
and prediction than PLS when the number of components was small, i.e. less
than eight in this case. However, both methods performed similarly when
more components were included in the model. Fearn’s data (Fearn, 1983) and
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Figure 8: The square root of the mean squared error of estimation (MSE) and
the square root of the mean squared error of prediction (PSE) for PLS and
the two-step method for the data from one selected silage experiment. The left
figure shows the root of the MSE, while the right figure shows the root of the
PSE.

a simulation study were included in Paper III, where similar conclusions were
made.
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3.7 The two-step method for group effects

Formulating PLS as a two-step method gives a great modelling flexibility,
making it possible, for example, to combine the data from different studies.
Due to the experimental conditions, data from different treatment groups are
often collected, e.g. groups representing different genders, seasons, etc. In
silage data, chemical compounds such as sucrose can naturally be high in one
experiment, but relatively low in another experiment, due to the crop type
used. An illustration of data with group effects is provided in Figure 9. The
curves of the two groups in this figure show common peaks, which indicates
that the X are governed by the same underlying components. In addition,
the curves from the two groups have two distinct levels, which indicates that
the group effects on the mean of the two experiments are different.

x -variables

va
lu

es
o
f
x

A

Figure 9: Data with group effects. Each group is represented by one colour.
The peaks of the curves indicate underlying effects. The two curves share the
same peaks, but have different levels, which implies that the mean structure
is the same, but has two distinct levels.

3.7.1 Model

Following the idea of the classical growth curve model, the mean of X for each
group is supposed to be linear with the underlying components. Thus, the
first step model for the group effect turns into:

X = ABC + E, (3.8)

with X and A having the same definition as in the model in (3.5), and with
B: q × k, C: k × n, where k is the number of groups. A is still the within-
individuals design matrix, which indicates that each group shares the same
underlying structure. The matrix C is the between-individuals design matrix,
which keeps track of the observations in the groups. For example, if there are
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three groups with three, five and four observations in each group, we may use

C =

 1 1 1 0 0 0 0 0 0 0 0 0
0 0 0 1 1 1 1 1 0 0 0 0
0 0 0 0 0 0 0 0 1 1 1 1

 ,

and if k = 1 (i.e. one group), then C = 1′n. Moreover, E ∼ Np,n(0,Σ, In),
and Σ: p × p is supposed to be positive definite. The matrices B and Σ are
unknown and should be estimated. The model in (3.5) is a special case of
that in (3.8) when k = 1.

3.7.2 Estimation

The likelihood function for the model in (3.8) will be identical to the one for
the model in (3.5) by replacing 1′n with C. The technique for obtaining MLEs
in the model in (3.5) is also applicable to the estimation here. The estimation
results are summarized in the next theorem, which is one of the main results
of Paper III.

Theorem 3.2. Let the model be given by (3.8) and suppose that ω in A is
known, with A = ΣGa = (Σω,Σ2ω, . . . ,Σaω), and that S = X(I−PC′)X

′,
where PC′ = C′(CC′)−C. Then, if n > p, the maximum likelihood estimators
of Σ and AB are given by

ÂB = Â(Â′S−1Â)−Â′S−1XC′(CC′)−,

Â = (
1

n
Sω,

1

n2
S2ω, · · · , 1

na
Saω),

Σ̂ =
1

n
{S + (I− Â(Â′S−1Â)−Â′S−1)XPC′X

′

×(I− S−1Â(Â′S−1Â)−Â′)}.

Proposition 3.2. Assume that ω and µy are known and the given observa-
tions X follow the model in (3.8). The prediction of y is

ŷ′ = ω′Σ̂
−1

(X− µ̂xC) + µ′y, µ̂x = ÂB, (3.9)

and ÂB is given in Theorem 3.2.

Details of derivation of Theorem 3.2 are presented in Paper III. Σ̂ in
Theorem 3.2 is also a biased estimator, but this will not cause any serious
problem in prediction if the sample is large enough. A detailed discussion of
this is given in Paper III. Theoretical comparisons of the two-step method
and PLS become difficult in this case, since classical PLS does not take any
group effect into account. Therefore, we will rely on some numerical results
in the next subsection to obtain a general overview.
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3.7.3 Data example

In order to illustrate the performance of the two-step method for grouped
data, two experiments (referred to as Exp 1 and Exp 2) were selected. The
ethanol content was the response variable and 53 wave numbers were the
predictors. The samples were divided into two parts. One part consisted of
265 samples (67 from Exp 1 and 198 from Exp 2) which were used for building
the model. The other part, consisting of 40 samples, 16 of which came from
Exp 1, was used for testing the model performance.

The mean ethanol contents of the samples of Exp 1 and Exp 2 used for
building the model were 2.3g/L and 4.8g/L, respectively. Part of the spec-
tra has been displayed in Figure 5, which indicates that there was a group
effect. The estimation and prediction results are shown in Figure 10 and 11.
The two-step method gave both better estimation and prediction than PLS.
When including more components in the model, the superiority of the two-
step method over PLS diminished, but did not cease, as highlighted in Figure
10 and 11. A similar phenomenon was also observed in a comprehensive sim-
ulation study in Paper III.
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Figure 10: The square root of the mean squared error of estimation (MSE) for
PLS and the two-step method for data from two selected silage experiments.
The left figure shows the square root of the MSE for the models consisting of
one to ten components, respectively, while the right figure shows the square
root of the MSE for the models consisting of 11 to 20 components, respectively
(i.e. each successive model consists of one more component than the previous
one).

3.8 The two-step method for nested group effects

As noted before, grouped data can have a rather complicated structure besides
exhibiting different mean levels; for example such data can be linear in one
group and non-linear in another group, etc., as illustrated by Potthoff and
Roy’s data in Figure 2. In Paper IV, we focused our modelling on nested
group effects, i.e. the mean structure of one group being nested within another
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Figure 11: The square root of the mean squared error of prediction (PSE) for
PLS and the two-step method for data from two selected silage experiments.
The left figure shows the square root of the PSE for the models consisting of
one to ten components, respectively, while the right figure shows the square
root of the PSE for the models consisting of 11 to 20 components, respectively
(i.e. each successive model consists of one more component than the previous
one).

group. For example, part of the silage data concerns samples which have
been subjected to special treatments. Consequently, there are relatively high
levels of some compounds, e.g. ammonia, appearing in some experiments,
whereas the same compounds are absent or occur in very low amounts in
other experiments. The character of such data is illustrated in Figure 12. Each
curve represents a group. The two curves have one peak in common, which
indicates that there are the same underlying components. It is important to
notice that one curve has one peak which is not exhibited by the other one.
This peak corresponds to some underlying components which only play a role
in one group. The matrix A1 is used for modelling the common underlying
components and A2 is used for modelling the unique components which only
matter for one of the groups (Group 2). The mean for Group 1 equals µ1 =
β10 + A1β11 and that for Group 2 is given by µ2 = β20 + A1β21 + A2β22.
Therefore, we can use the knowledge about the extended growth curve model
to put the two groups together and create one general model, which will be
presented in next subsection. The advantage of the new general model is that
information from all the groups can be used to estimate Σ.

3.8.1 Model

We now present the set-up of the model for nested effects in three groups, i.e.
k = 3. With n observations, ni from group i and

∑3
i=1 ni = n, the model

becomes:

X = A1B1C1 + A2B2C2 + A3B3C3 + E, E ∼ Np,n(0,Σ, In), (3.10)
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Figure 12: Data with nested group effects. Each group is represented by one
colour. The peaks of the curves indicate underlying effects. There is an extra
peak in one curve, which indicates that the mean structure of one group is
more complex than that of the other one.

where,

A1 = (Σω : Σ2ω : · · · : Σa1ω),

A2 = (Σa1+1ω : Σa1+2ω : · · · : Σa1+a2ω),

A3 = (Σa1+a2+1ω : Σa1+a2+2ω : · · · : Σa1+a2+a3ω),

C1 =

 1 1 · · · 1 0 0 · · · 0 0 0 · · · 0
0 0 · · · 0 1 1 · · · 1 0 0 · · · 0
0 0 · · · 0 0 0 · · · 0 1 1 · · · 1


C2 =

(
0 0 · · · 0 1 1 · · · 1 0 0 · · · 0
0 0 · · · 0 0 0 · · · 0 1 1 · · · 1

)
C3 =

(
0 0 · · · 0 0 0 · · · 0 1 1 · · · 1

)
.

Moreover, Σ is supposed to be positive definite. The matrix Bi, i = 1, 2, 3,
and Σ are the parameters which are to be estimated. Note that Ai is a
function of Σ. It is worth noting that the design matrices for Group 1-3 are
A1, (A1 : A2) and (A1 : A2 : A3), respectively. For the form of a general
model for nested group effects, we refer to Paper IV.

3.8.2 Estimation

The likelihood function for the model in (3.10) satisfies

L(B1,B2,B3,Σ) ∝ |Σ|−
1
2netr{−1

2
Σ−1(X−

3∑
i=1

AiBiCi)()
′}, (3.11)
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where L(B1,B2,B3,Σ), as in (3.6), denotes the likelihood function. The
key difference compared to the two former models is that Ai has a different
structure and dimension, besides including the unknown variance matrix Σ,
which increases the complexity of derivation. The explicit MLEs were derived
in Paper IV, and this derivation is far from obvious. The result is formulated
in Theorem 3.3, which is the main result of Paper IV.

Theorem 3.3. Let the model be given by (3.10) and

T1 = I−PA1,Σ, T2 = I−PT1A2,Σ, T3 = I−PT2T1A3,Σ,

S1 = X(I−PC′1
)X′, S2 = S1 + T1XPC′1

(I−PC′2
)PC′1

X′T′1,

S3 = S2 + T2T1XPC′1
PC′2

(I−PC′3
)PC′2

PC′1
X′T′1T

′
2,

Q = A1(A′1Σ
−1A1)−A′1 + T1S2/n,

M = A1(A′1Σ
−1A1)−A′1 + T1A2(A′2T

′
1Σ
−1T1A2)−A′2T

′
1

−A1(A′1Σ
−1A1)−A′1Σ

−1T1A2(A′2T
′
1Σ
−1T1A2)−A′2T

′
1 + T1T2S3/n.

Suppose that ω in Ai, i = 1, 2, 3, is known. Then, if n > p, the maximum
likelihood estimators of B1, B2, B3 and Σ are given by

B̂3 = (Â3

′
T̂1

′
T̂2

′
Ŝ3

−1
T̂2T̂1Â3)−Â3

′
T̂1

′
T̂2

′
Ŝ3

−1
T̂2T̂1XC′3(C3C

′
3)−

+(Â3

′
T̂1

′
T̂2

′
)oZ31 + Â3

′
T̂1

′
T̂2

′
Z32C

o′

3

B̂2 = (Â2

′
T̂1

′
Ŝ2

−1
T̂1Â2)−Â2

′
T̂1

′
Ŝ2

−1
(T̂1XPC′2

− T̂1Â3B̂3C3)C′2(C2C
′
2)−

+(Â2

′
T̂1

′
)oZ21 + Â2

′
T̂1

′
Z22C

o′

2

B̂1 = (Â1

′
S−11 Â1)−Â1

′
S−11 (X− Â2B̂2C2 − Â3B̂3C3)C′1(C1C

′
1)−

+Â1

′o
Z11 + Â1

′o
Z12C

o′

1

nΣ̂ = Ŝ3 + T̂3T̂2T̂1XPC′3
X′T̂1

′
T̂2

′
T̂3

′
,

where Zij, i = 1, 2, 3, j = 1, 2, are arbitrary matrices, Co denotes any matrix
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satisfying ζ(Co) = ζ(C)⊥, and ⊥ denotes the orthogonal complement,

Â1 = (
1

n
S1ω :

1

n2
S2
1ω : · · · : 1

na1
Sa11 ω), T̂1 = I− Â1(Â1

′
S−11 Â1)−Â1

′
S−11 ,

Ŝ2 = S1 + T̂1XPC′1
(I−PC′2

)PC′1
XT̂1

′
,

Q̂ = Â1(Â1

′
S−11 Â1)−Â1

′
+ T̂1Ŝ2/n,

Â2 = (Q̂′Sa11 ω : Q̂′2Sa11 ω : · · · : Q̂′a2Sa11 ω)/na1 ,

T̂2 = I− T̂1Â2(Â2

′
T̂1

′
Ŝ2

−1
T̂1Â2)−Â2

′
T̂1

′
Ŝ2

−1
,

Ŝ3 = Ŝ2 + T̂2T̂1XPC′1
PC′2

(I−PC′3
)PC′2

PC′1
X′T̂1

′
T̂2

′
,

M̂ = Â1(Â1

′
S−11 Â1)−Â1

′
+ T̂1Â2(Â2

′
T̂1

′
Ŝ2

−1
T̂1Â2)−Â2

′
T̂1

′

−Â1(Â1

′
S−11 Â1)−Â1

′
S−11 T̂1Â2(Â2

′
T̂1

′
Ŝ2

−1
T̂1Â2)−Â2

′
T̂1

′
+ T̂1T̂2Ŝ3/n,

Â3 = (M̂′Q̂′a2Sa11 ω : M̂′2Q̂′a2Sa11 ω : · · · : M̂′a3Q̂′a2Sa11 ω)/na1 .

Proposition 3.3. Assume that ω and µy are known and the given observa-
tions X follow the model in (3.10) with k = 3. The prediction of y equals:

ŷ = ω′Σ̂
−1

(X− Â1B̂1C1 − Â2B̂2C2 − Â3B̂3C3) + µy,

and ÂiB̂i is given in Theorem 3.3.

We can observe that the MLEs of Bi are given in ambiguous forms which
depends on arbitrary matrices. However, it can be shown that Â1B̂1C1 +
Â2B̂2C2 + Â3B̂3C3 is unique, which indicates that the estimations of the
mean and future prediction are unique.

3.8.3 Data example

Two experiments, which will be referred to as Exp 3 and Exp 4, were selected
for illustrating the performance of the method. The corresponding spectra
for these two experiments have been shown in Figure 6. It is clear that there
is an underlying structure in one experiment (Exp 4) which does not occur
in the other one (Exp 3). The lactate content was the response variable and
53 wave numbers were the predictors. Exp 3 was divided into two parts, one
of which had 80 samples for training, i.e. building the model, while the other
part had 20 samples for testing, i.e. checking the model performance. Exp 4
was also divided into two parts, a training part consisting of 50 samples and
a testing part consisting of 21 samples.

First the data were analyzed “marginally”; i.e. one model was built by only
using the 80 training samples in Exp 3 and then tested using the remaining
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20 testing samples in Exp 3. The same procedure was applied to Exp 4.
The prediction results of the two-step method are shown in Figure 13. The
prediction error for Exp 3 becomes stable after including just one component
in the model, while the prediction error for Exp 4 become stable after including
at least three components. Thus the “marginal” analysis suggests that these
two experiments require different numbers of components.
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Figure 13: The square root of the mean squared error of prediction (PSE) for
the two-step method for data from two selected silage experiments. The left
figure is for Exp 3 and the right figure for Exp 4.

Furthermore, we examined the model with a group effect by putting the
two experiments together, i.e. building the regression model using the training
samples from Exp 3 and Exp 4. As shown in Figure 14, after including five
components in the model, i.e. A = ΣG5 in the model in (3.8), the prediction
error obtained when using the “combined” data is better than that obtained
when using the experiments separately.

Finally, the model in (3.10) with the nested mean structure was used
by specifying some additional components in Exp 4. Correspondingly, the
model in (3.10) became X = A1B1C1 + A2B2C2 + E, with A1 = ΣGa1 and
A2 = ΣGa2 . One additional component was assigned for Exp 4, i.e. a2 = 1.
Based on the prediction error (as shown in Figure 15), very little improvement
is gained by using the model in (3.10) compared to using the model in (3.8)
when only one additional component is included in Exp 4.
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Figure 14: The square root of the mean squared error of prediction (PSE)
for the two-step method for data from two selected silage experiments using
“marginal” or “combined” analysis.
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Figure 15: The square root of the mean squared error of prediction (PSE) for
the two-step method for data from two selected silage experiments using the
group effect model in (3.8) and the nested effect model in (3.10).
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4 Conclusions, discussion and future work

4.1 Contributions

The main contribution of the thesis is that PLS has been put into a clas-
sical multivariate regression model together with a two-step prediction ap-
proach. Consequently, in comparison with PLS, the two-step method is non-
algorithmic and possesses greater modelling flexibility. After the connections
were established, the two-step method was extended to model data with more
complex structures, i.e. with a group effect and with a nested mean structure.
Under the two-step method and its extensions, explicit maximum likelihood
estimators have been derived.

The contributions of each paper are summarized in detail as follows:
Paper I:

• The robustness of the popular shrinkage methods was investigated through
their applications on real silage data with a rather complex structure,
i.e. muli-responses and group effects.

• Two simulation procedures were included in the comparisons. One
checked the prediction for the randomly selected samples, while the
other one focused on the prediction for samples from a different experi-
ment.

Paper II:

• A two-step method for linear prediction, especially for collinear data, is
proposed.

• PLS is linked to the two-step method via a Krylov design matrix; i.e. in
the first step the explanatory variables are summarized via a multilinear
model with a Krylov structured matrix.

• Given the covariance ω, explicit maximum likelihood estimators for the
mean and dispersion were derived.

Paper III:

• The connections between PLS and the two-step method give a new way
of viewing PLS. PLS can be considered as a method of approximating
Σ−1 using the Cayley-Hamilton theorem.

• The two-step method was extended to combine data from different stud-
ies, by including a between-individuals design matrix.

• Explicit maximum likelihood estimators for the group mean and the
dispersion matrix of the explanatory variables were derived.

• The properties of the estimators, e.g. the bias, were discussed. It was
shown that for the within-sample prediction, the mean squared error of
the two-step method is always smaller than that of PLS.

47



• Numerical illustration using a real data set and simulated data were
included to assess the performance of the two-step method in various
cases, in comparison with that of PLS and other regularization methods.
The numerical results indicate that the two-step method outperforms
the other methods in the case of grouped data.

Paper IV:

• The two-step method was extended to model grouped data which, be-
sides having collinear explanatory variables, possesses a nested mean
structure. In the first step, the explanatory variables were modelled
in a multilinear model with a structure similar to the extended growth
curve structure, but with Krylov design matrices which depend on Σ.

• Surprisingly, under such a general multilinear model structure, explicit
maximum likelihood estimators for the mean and dispersion matrices
were derived.

4.2 Discussion

PLS inspired us to start the two-step method with x = ωγ+ε, which assumes
that the predictors are proportional to the covariance. Despite the fact that
such a model works according to the theoretical and numerical results, the
reason why such an assumption works is still mysterious. The connection
between PLS and the two-step method also led us to choose ΣGa as the
design matrix. However, why does this particular choice work so well? It
is unclear what information is included in the Krylov space. The iterative
algorithm of PLS indicates that the previously generated weights ωi play a
more important role than the subsequently generated ones. Therefore, the
corresponding elements Σi−1ω in the Krylov space should be more important
than the subsequent ones, which is not obvious. According to a numerical pilot
study, it seems that a subsequently generated component is not always smaller
than the previously generated ones. In our two-step method, the MLEs have
played the role of being a weight factor, i.e. weighting each element in the
Krylov space to fit the mean.

Compared with the envelopes of Cook et al. (2010, 2013), the two-step
method is more specific. The two-step method gives explicit MLEs using a
semi-population set-up where the covariance between the response and the
predictor and the mean of the response are known, while the MLEs for all the
parameters in envelopes are determined numerically. Using the conditional
distribution, it is possible to derive the covariance and the mean of the re-
sponse in the two-step method through the maximum likelihood approach.
We foresee that the estimators will depend on numerical optimizations, which
may affect the finding of explicit MLEs and create a burden of computation.
For example, the computation will become very slow in the optimization of
the likelihood using the envelope method when p is large, whereas the explicit
MLEs in the two-step method do not suffer from such a problem. Therefore,
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it is not obvious in the two-step method which estimator is better, i.e. the
explicit MLEs using semi-population model or MLEs for all the parameters.

4.3 Future work

Stopping rules, i.e. rules concerning how many terms should be included in
A = ΣGa, represent one of the most interesting questions to be investigated
in the future. The most commonly applied approach is to use cross-validation,
which is very computationally demanding. If PLS stops, the Krylov space,
which is included in the design matrix of A, turns out to be an invariant space,
and the space of a lower or an equal dimension compared to the original one.
Therefore, a future topic of research would be the definition of an optimum
stopping rule for the selection of an appropriate model based on the Krylov
space.

As mentioned earlier, the two-step method has a great modelling flexibility.
We have developed models for grouped data. Another extension would be to
include additional covariates. For example, we are still interested in building a
prediction model for the concentrations of some chemical compound, y, from
the spectra X. Then the model in the first step would be X = A1B1C1 + E,
where A1 = ΣGa and C1 contains group information, e.g. three groups,
each of which has three, five, four observations. In addition, the temperature
may also influence the spectra. Then, the model could be extended as X =
A1B1C1 + B2C2 + E, where C2 contains the temperature information. Note
that the temperature can vary in the group, i.e.

C2 =

 15 10 10 0 0 0 0 0 0 0 0 0
0 0 0 20 20 20 15 15 0 0 0 0
0 0 0 0 0 0 0 0 10 16 16 16

 .

The estimators in such a model could be obtained.
Partial least squares have been found useful in a wide range of statistical

fields, e.g. discriminant analysis, logistic regression, etc. A natural future area
of research would be an extension of the two-step method for implementation
in these fields, which would lead to new applications.
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H. Chun and S. Keleş. Sparse partial least squares regression for simultaneous
dimension reduction and variable selection. Journal of the Royal Statistical
Society: Series B (Statistical Methodology), 72(1):3–25, 2010.

R. D. Cook, B. Li, and F. Chiaromonte. Envelope models for parsimonious
and efficient multivariate linear regression. Statistica Sinica, 20:927–1010,
2010.

51



R. D. Cook, I. S. Helland, and Z. Su. Envelopes and partial least squares
regression. Journal of the Royal Statistical Society: Series B (Statistical
Methodology), 75(5):851–877, 2013.

J. B. Copas. Regression, prediction and shrinkage. Journal of the Royal
Statistical Society: Series B (Statistical Methodology), 45(3):311–354, 1983.

A. D. Cross. Introduction to practical infrared spectroscopy. Butterworths,
London, 1969.

A. P. Dempster, M. Schatzoff, and N. Wermuth. A simulation study of al-
ternatives to ordinary least squares. Journal of the American Statistical
Association, 72(357):77–91, 1977.

B. Efron, T. Hastie, I. Johnstone, and R. Tibshirani. Least angle regression.
Annals of Statistics, 32(2):407–499, 2004.

L. Eldén. Partial least-squares vs. Lanczos bidiagonalization-I: analysis of a
projection method for multiple regression. Computational Statistics & Data
Analysis, 46(1):11–31, 2004.

T. Fearn. A misuse of ridge regression in the calibration of a near-infrared
reflectance instrument. Journal of the Royal Statistical Society: Series C
(Applied Statistics), 32(1):73–79, 1983.

P. Filzmoser, M. Gschwandtner, and V. Todorov. Review of sparse methods
in regression and classification with application to chemometrics. Journal
of Chemometrics, 26(3-4):42–51, 2012.

I. E. Frank. Intermediate least squares regression method. Chemometrics and
Intelligent Laboratory Systems, 1(3):233–242, 1987.

I. E. Frank and J. H. Friedman. A statistical view of some chemometrics
regression tools. Technometrics, 35(2):109–135, 1993.

P. H. Garthwaite. An interpretation of partial least squares. Journal of the
American Statistical Association, 89(425):122–127, 1994.

D. G. Gibbons. A simulation study of some ridge estimators. Journal of the
American Statistical Association, 76(373):131–139, 1981.

G. H. Golub and C. F. Van Loan. Matrix computations. Johns Hopkins
University Press, Baltimore, MD, 1996.

I. S. Helland. On the structure of partial least squares regression. Communi-
cations in Statistics - Simulation and Computation, 17(2):581–607, 1988.

I. S. Helland. Partial least squares regression and statistical models. Scandi-
navian Journal of Statistics, 17(2):97–114, 1990.

52



I. S. Helland. Maximum likelihood regression on relevant components. Journal
of the Royal Statistical Society: Series B (Statistical Methodology), 54(2):
637–647, 1992.

I. S. Helland. Discussion of Cook, R. D., Li, B. and Chiaromonte, F., (2010).
Envelope models for parsimonious and efficient multivariate linear regres-
sion. Statistica Sinica, 20:978–981, 2010.

I. S. Helland and T. Almøy. Comparison of prediction methods when only a
few components are relevant. Journal of the American Statistical Associa-
tion, 89(426):583–591, 1994.

A. E. Hoerl and R. W. Kennard. Ridge regression: biased estimation for
nonorthogonal problems. Technometrics, 12(1):55–67, 1970.

A. E. Hoerl, R. W. Kennard, and K. F. Baldwin. Ridge regression: some
simulations. Communications in Statistics, 4(2):105–123, 1975.

A. E. Hoerl, R. W. Kennard, and R. W. Hoerl. Practical use of ridge regres-
sion: a challenge met. Journal of the Royal Statistical Society: Series C
(Applied Statistics), 34(2):114–120, 1985.
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