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Summary 8 

1. To understand how the future climate will affect the boreal forest, we studied 9 

growth responses to climate variability in black spruce (Picea mariana [Mill.] 10 

B.S.P.) and trembling aspen (Populus tremuloides Michx.) two major co-11 

occurring boreal tree species of the eastern Canadian boreal forest.  12 

2. We analysed climate growth interaction during (i) periods of non-anomalous 13 

growth and (ii) in years with strong growth anomalies. We utilized paired tree 14 

level data for both growth and soil variables, which helped ensure that the 15 

studied growth variability was a function of species specific biology, and not 16 

of within stand variation in soil conditions. 17 

3. Redundancy analysis conducted on spruce and aspen tree ring chronologies 18 

showed that their growth was affected differently by climate. During non-19 

anomalous years, growth of spruce was favoured by cooler temperatures and 20 

wetter conditions, while aspen growth was favoured by higher temperatures 21 

and drier conditions.  22 

4. Black spruce and trembling aspen also showed an inverse pattern in respect to 23 

expression of growth anomalies (pointer years). A negative growth anomaly in 24 

spruce tended to be associated with positive ones in aspen and vice versa. This 25 

suggested that spruce and aspen had largely contrasting species specific 26 

responses to both “average” weather conditions and extreme weather events.  27 

5. Synthesis. Species specific responses to environmental variability imply that 28 

tree responses to future climate will likely be not synchronized among species, 29 
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which may translate into changes in structure and composition of future forest 30 

communities. In particular, we speculate that outcome of climate change in 31 

respect to relative abundance of black spruce and trembling aspen at the 32 

regional levels will be highly dependent on the balance between increasing 33 

temperatures and precipitation. Further, species specific responses of trees to 34 

annual climate variability may enhance the resilience of mixed forests by 35 

constraining variability in their annual biomass accumulation, as compared to 36 

pure stands, under periods with high frequency of climatically extreme 37 

conditions. 38 

Key-words: biotic interactions, boreal ecosystems, dendrochronology, extreme 39 

weather,   limiting factors, mixed stands, mixedwood, plant–climate interactions, 40 

radial growth, succession, 41 

 42 
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Introduction 45 

Instrumental data suggests that over the last century boreal forests have been subject 46 

to rapid changes in environmental conditions. Between 1906 and 2005, worldwide 47 

surface temperatures have increased by 0.74°C and in the future temperatures are 48 

expected to increase further, especially at mid to high northern latitudes (IPCC 2007). 49 

For western Quebec temperatures are projected to rise by 1.5 to 5.2°C by the middle 50 

of the 21st century, accompanied by 10─25% increase in precipitation (De Elia & 51 

Cote 2010) and increases in extreme weather events (Bonsal et al. 2001, IPCC 2007, 52 

Mailhot et al. 2010). These climate changes will likely affect trees’ regeneration, 53 

growth, competitive and migration abilities, and consequently, the forest composition 54 

(Hansen et al. 2001, Mohan et al. 2009). 55 

In the Clay Belt of northern Ontario and western Quebec, these changes will likely 56 

have an effect on climate─growth relationships in aspen (Populus tremuloides 57 

Michx.) and black spruce (Picea mariana [Mill.] B.S.P.), which are two dominant and 58 

co-occurring species of the eastern Canadian boreal forest. Recent dendroclimatic 59 

studies suggest that spruce growth is driven primarily by temperatures at the start of 60 

and during the growing season (Hofgaard et al. 1999, Tardif et al. 2001, Drobyshev et 61 

al. 2010, Girard et al. 2011, Fillon & Payette 2011), while aspen growth is mostly 62 

influenced by climatic conditions of the year prior to growth (Huang et al. 2010). The 63 

studies have also pointed out the importance of extreme weather events for tree radial 64 

growth (Graumlich 1993, Hogg et al. 2002, Leonelli & Pelfini 2008), which can cause 65 

significant and multi-year growth reductions.  66 

Differences in climate─growth relationships between spruce and aspen during non-67 

anomalous weather, (i.e. periods dominated by weather conditions only moderately 68 
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deviating from respective long-term means), suggest that growth responses may also 69 

differ between species during climatically extreme growing seasons. Considered at the 70 

stand scale, such variability in response would constrain annual variability in growth, 71 

biomass production, and possibly, viability of mixed stands, as compared to 72 

monodominant communities. Forestry research indicates that, generally, mixed stands 73 

can be more productive than pure stands, given that they are composed of species with 74 

different ecological niches or functional traits, such as different degrees of shade 75 

tolerance and rooting pattern (Man & Lieffers 1997, Chen et al. 2003, Green 2004, 76 

Bauhus et al. 2004, Pretzsch et al. 2010, Brassard et al. 2011). Black spruce and aspen 77 

are examples of such species, also possessing two contrasting life strategies – aspen 78 

being a fast growing and early successional tree, whereas spruce is representative of a 79 

slower growing and late successional dominant  (Burns & Honkala 1990b, Legare et 80 

al. 2004, Legare et al. 2005, Brassard et al. 2011). Both species are ecologically and 81 

economically important components of the Clay Belt vegetation cover (Gagnon et al. 82 

1998, Lecomte & Bergeron 2005). 83 

In this study we compared the growth of black spruce and trembling aspen under two 84 

types of growing conditions: during periods of non-anomalous growth (NAG) and in 85 

years with strong growth anomalies (YGA). In contrast to previous comparative 86 

studies (e.g. Hofgaard et al. 1999, Huang et al. 2010), we used different statistical 87 

methods to analyse NAG and YGA, and utilized paired tree level data for both growth 88 

and soil variables, which helped ensure that the studied growth variability was a 89 

function of species specific biology, and not of within stand variation in soil 90 

conditions. We first tested for the presence of differences in growth response to 91 

climate between spruce and aspen during NAG, and then – during YGA. We then 92 

examined whether climatic controls over tree growth are species specific or dependent 93 
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on a particular type of environmental situation (NAG and YGA). Finally, we discuss 94 

potential advantages of mixed stands in affecting stand productivity and overall stand 95 

resilience under a changing climate.  96 

 97 

Materials and methods 98 

Study area 99 

The study area (49°03’ – 49°29’N; 78°46’ – 79°09’W) lies within the black spruce-100 

feathermoss (Pleurozium schreberi (Brid.) Mitt.) bioclimatic domain of western 101 

Quebec and the Northern Clay Belt of Quebec and Ontario (Fig.1 Simard et al. 2008), 102 

composed of thick clay deposits covering the Precambrian Shield. The Shield left by 103 

proglacial Lake Barlow-Ojibway is covered by a vast clay plain (Veillette et al. 2004). 104 

The study area has a flat topography, with a mean altitude of 250 m to 300 m a.s.l. 105 

Glaciolacustrine deposits are often covered by thick layers of soil organic layer 106 

(SOL), typically greater than 60 cm in depth. Forest paludification is the primary 107 

result of SOL accumulation (Fenton et al. 2005; Lecomte et al. 2006). Non-paludified 108 

soils of the Clay Belt are typically luvisols and gleysols (Groupe de travail sur la 109 

classification des sols, 2003). 110 

The continental climate of the study area is characterized by large variability in 111 

temperatures between warm and cold seasons. During the winter cold continental 112 

arctic air masses dominate, whereas the summer climate is influenced by moist 113 

Atlantic maritime tropical air and by dry maritime arctic air (Pigott & Hume 2009). 114 

The mean annual temperature of the area varies between 0.1°C and 0.7°C. Total 115 
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annual precipitation is around 890 mm, with 35% received during growing season and 116 

30% falling as snow (Environment Canada 2010).  117 

The area is dominated by black spruce stands (Simard et al. 2008). Trembling aspen is 118 

common in the region, growing in pure stands or mixed stands with black spruce. Fire 119 

is the principal natural disturbance factor in the black spruce-feathermoss domain 120 

(Simard et al. 2008). The modern (since 1850) fire cycle in the region is 360 years, 121 

and it was only about 100 years prior to 1850 (Bergeron et al. 2004).  In the western 122 

Québec, the spruce budworm (Chorisoneura fumiferana Clem.) and forest tent 123 

caterpillar (Malacosoma disstria Hubner.) are two primary insect defoliators of spruce 124 

and aspen, respectively (Gray et al. 2000; Lussier et al. 2002; Gray, 2008). However, 125 

within the study area both insects are of lesser importance for trees population 126 

dynamics, compared to other parts of the distribution range of these insects (Gray et 127 

al. 2000; Lussier et al. 2002; Gray 2008). 128 

Data collection 129 

Ten mixed black spruce and trembling aspen stands were sampled on soils with 130 

various SOL depths and covering a gradient from xeric to paludified stands during 131 

2008 and 2009 (Tables 1 and 2, Fig. 1). Sites were chosen within the area of the 132 

Northern Clay Belt of Quebec and Ontario. We used forestry maps of the Québec 133 

Ministry of Natural Resources (Ministère des Ressources naturelles et de la Faune de 134 

Québec) to locate mixed stands with both spruce and aspen dominating in the upper 135 

canopy. We then visited candidate sites to assess thickness of soil organic layer in the 136 

field. Finally we selected some of them so as to maximize the range of soil organic 137 

layer thickness within each subarea: Villebois (VIL), Selbaie (SEL), and Wawagosic 138 

(WAW). Trees grew on SOL depths ranging from 1 to 23 cm. The soils in sites SEL3 139 

and VIL3 were clay loam and the soil in VIL4, located on a rocky outcrop, was sandy 140 



Drobyshev et al  /  8 

loam. Stands on thick SOL (deeper than 10 cm) were dominated by black spruce. The 141 

proportion of aspen was generally larger on mesic and xeric sites. Height of the forest 142 

canopy varied between 15 and 20 m across the sites, aspen always dominating the 143 

canopy and spruce being in co-dominant position. In each of the 10 sites, we 144 

established between 10 and 19 circular 0.063 ha plots. The number of plots in each 145 

stand depended on the availability of aspen and black spruce trees on the site (total 146 

nplots = 145; Table 1). A plot was positioned around a randomly chosen, healthy aspen 147 

tree so as to encompass at least one of the canopy spruces. The focal aspen tree and 148 

the most dominant spruce tree were sampled. For each of the selected trees, two cores 149 

were extracted on the opposite sides of the trunk, at a height of 30 cm above the 150 

ground. On site SEL1, cross-sections had to be taken from five of the ten sampled 151 

aspens since no datable core could be extracted from their rotten trunks. 152 

To characterize soil properties, 3 pits were dug at approximately 20 cm away from 153 

each of the sampled trees. In the field, we measured SOL depth and mineral soil 154 

texture was determined by the feel method (Thien 1979; Béland et al. 1990). Samples 155 

of mineral soil and organic layer were taken for laboratory analyses. Volumetric 156 

content of SOL was measured (August 16-17 2009) at 10 plots within each site (100 157 

plots in total) with a soil moisture sensor (ThetaProbe Soil Moisture Sensor Type 158 

ML2x, Delta-T Devices, Cambridge, England). On every plot five measurements 159 

were taken. During calculations of the mean value of the SOL moisture for the plot, 160 

the two most extreme values were excluded.  161 

Soil analyses 162 

Particle size analysis on the total of 290 samples was conducted to determine the 163 

texture of the mineral soil. Portions of three soil samples taken around each tree were 164 

mixed together, air dried, and sieved through a 2 mm grid. To quantify the soil texture 165 
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we used the hydrometer method, and the gravimetric method to assess the soil water 166 

content (Audesse 1982; Sheldrick & Wang 1993; Topp 1993). Other portions of soil 167 

samples were mixed together and sieved with 4 mm aperture sieve, and oven-dried at 168 

40°C during 60 hours. We determined total carbon (C, %), total nitrogen (N, %), total 169 

sulphur (S, %), total phosphorus (P, %) and pH in CaCl2 following the established 170 

protocols (Laganière et al. 2010) at a laboratory of  the Laurentian Forestry Centre, 171 

Québec, Québec (Natural Resources Canada, Canadian Forest Service). 172 

Tree ring data 173 

The tree cores and cross-sections were prepared, crossdated, measured, and quality 174 

checked following standard dendrochronological methods (Stokes & Smiley 1968; 175 

Speer 2010). To obtain growth chronologies with amplified high frequency 176 

variability, the series were detrended in the ARSTAN program, using a 32 year cubic 177 

smoothing spline with a 50% frequency response (Cook 1987; Fritts 1991; Speer 178 

2010). By dividing the original chronology values by the predicted values, ring width 179 

measures were transformed into index values. To remove temporal autocorrelation, 180 

the series were prewhitened by autoregressive modelling (Cook 1987). Residual 181 

single tree chronologies were computed to analyse climate growth relationships in 182 

single trees of both species (black spruce n = 145 and aspen n = 143).  183 

In this study we faced the problem of removing non-climatic variability from tree ring 184 

record. In eastern Canada black spruce is subject to outbreaks of spruce budworm and 185 

outbreaks of forest tent caterpillar can cause defoliation of trembling aspen (Timoney 186 

2003). In both species the insect outbreaks and defoliation may cause strong decline 187 

in growth increment. The impact of defoliation on growth could be potentially 188 

removed by using a chronology of a non-host species (Swetnam et al. 1985; Speer 189 

2010). However, this procedure requires that both host and non-host species have a 190 
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similar response to climate. This was not the case for aspen and spruce (Huang et al. 191 

2010) the only tree species in the studied stands. We did not modify aspen residual 192 

chronologies prior to Redundancy Analysis (RDA) analyses, as this method 193 

capitalizes on the growth variability observed over the whole studied period, which 194 

was heavily dominated by non-extreme values. However, for the analyses of growth 195 

anomalies (pointer years) we excluded from consideration all years of known and 196 

reconstructed outbreaks in the study area. To identify years of spruce budworm 197 

outbreaks we used outbreak maps (MRNFQ 2011) and chronologies of white spruce 198 

available for the study region (H. Morin, unpubl. data), which has a stronger affinity 199 

to defoliator than black spruce and presents therefore a more sensitive proxy of 200 

outbreak occurrence than black spruce. In case of aspen, identification of outbreak 201 

years relied on forestry data (MRNFQ 2011), the presence of strong growth declines 202 

and often whitish appearance of rings formed during outbreak years (Sutton & Tardif 203 

2007). 204 

 205 

Dendroclimatic analysis of non-anomalous growth 206 

Climate data used for dendroclimatic analyses were generated using BioSIM, a set of 207 

spatially explicit bioclimatic models using a network of available meteorological 208 

stations and generating climate data for a set of user selected geographical locations 209 

(Régnière & Bolstad 1994; Régnière 1996).  We used the spatial regression method, 210 

which fits a multiple regression between a climatic variable in question, latitude, 211 

longitude, elevation, and slope aspect to generate climate data for a user-defined 212 

location (Régnière 1996). 213 
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The climate variables included monthly mean temperature (°C), monthly total 214 

precipitation (mm), monthly total snowfall (mm), and total degree days (> 5°C), the 215 

sum of all individual degree days, which are the number of degrees by which the 216 

mean daily temperature is above 5°C (Allaby 2007). We also calculated Monthly 217 

Drought Code (MDC) from May to October. MDC is a monthly version of the 218 

Drought Code, a metric used in the Canadian Forest Fire Weather Index System to 219 

predict water content of the deep compact organic layers (Girardin & Wotton 2009).   220 

The species specific influence of climate on tree growth was investigated using a 221 

redundancy analysis (RDA) in the CANOCO package (version 4.56; (Ter Braak & 222 

Šmilauer 2002). The RDA was performed on residual chronologies from the two 223 

species and for the common interval 1958─2007 (spruce n = 114; aspen n = 126). In 224 

the correlation matrix, the 240 residual chronologies were considered as response 225 

variables and the years were considered as samples (or observations). Climate 226 

variables (n = 48) were considered as explanatory variables (or environmental 227 

variables in the CANOCO terminology) and were transformed into ordination axes. 228 

Only the climate variables which had a |r| ≥ 0.20 were retained for further analyses. 229 

Growth anomalies 230 

In dendrochronology pointer years are understood as years with particularly narrow or 231 

large rings observed in multiple tree ring chronologies (Schweingruber 1996). In this 232 

study, we identified pointer years for each of the sampled trees and then aggregated 233 

data to obtain a list of regional pointers, separately for spruce and aspen. A pointer 234 

year was defined as year with ring width below 5% or above 95% of the ring width 235 

distribution of a respective tree. Technically, the pointer years were selected by 236 

feeding the single tree chronologies of the two species (n = 145 for black spruce; n = 237 

143 for aspen) to the program XTRSLT of the Dendrochronological Program Library 238 
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(Holmes 1999). For each species, the number of trees expressing a pointer year was 239 

divided by the sample depth for that year to assess the expression of pointer year. 240 

Only years with growth anomalies observed in at least 10% of the trees of one of the 241 

species were used for analyses. Identification of the pointer years was limited to the 242 

period 1940─2008 due to low sampling depth before 1940. For spruce, the replication 243 

varied between 80 trees (year 1940) and 123 trees (year 2008), and for aspen – 244 

between 88 (1940) and 142 trees (2008). The years of known severe defoliation of 245 

spruce (1944 and 1974) and aspen (1980 and 1999-2001) due to insect outbreaks were 246 

not considered as pointer years. The identified pointer years were analysed for 247 

presence of climatic anomalies among all variables used in the RDA analysis. A 248 

climatic anomaly was a value outside the central 90% of long-term (1940─2009) 249 

distribution of respective variable. 250 

Analysis of pointer year occurrence was designed to answer four questions: (i) did 251 

pointer years show stronger association with climate anomalies than could be 252 

expected by chance; (ii) did the climate variables accounting for significant growth 253 

variability in RDA analysis show higher than expected frequency in the list of 254 

anomalies associated with pointer years?; and (iii) did climate anomalies of the 255 

similar sign tend to occur simultaneously (i.e. in the same years) in spruce and aspen?; 256 

and (iv) which climatic anomalies were consistently associated with growth anomalies 257 

in two species?  258 

To answer the first question we calculated expected frequencies of years with zero, 259 

one, and multiple anomalies, assuming the binominal distribution of the events: 260 

-!
( )  =      

!(  - )

x N XN
p X p q

X N X
, 261 
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where N was the total number of climatic variables analysed (48); X = number of 262 

climatic anomalies in a single year; p = the probability of single climatic anomaly 263 

(0.1) and the inverse of this probability (0.9). The differences between expected and 264 

observed frequencies were estimated by Chi-Square test (Sokal & Rolf 1995). This 265 

approach assumed independent occurrence of events (anomalies) which could be 266 

questioned in our case since climatic variables tend to be strongly autocorrelated. To 267 

address this issue we counted the number of anomalies in two ways. The first 268 

(opportunistic) version of the list of anomalies contained all variables exhibiting 269 

anomalies during or prior to pointer years. In the second (conservative) version we 270 

considered several variables representing subsequent months as one (e.g. precipitation 271 

anomalies for May and June observed during the same year were considered as one 272 

anomaly). We also removed composite variables (MDC and DD) which pointed to the 273 

same climate conditions as the monthly temperature and precipitation. To answer the 274 

second question we compared a proportion of retained climatic variables in the total 275 

amount of variables analysed (48) with the proportion of retained variables in the list 276 

of anomalies associated with pointer years, by calculating z statistics, Fisher test and 277 

corresponding two-tailed  p value.  To answer the third question, we calculated Yates 278 

corrected Chi-Square test on 2x2 tables (Greenwood & Nikulin 1996) representing 279 

frequencies of pointer years of the same sign (only positive or only negative) were 280 

observed in both, one or none of the species. For this analysis we assumed that a 281 

pointer year was recorded for a species if it was present in more than 10% of trees.  282 

To answer the fourth question, we used superimposed epoch analysis (SEA) to 283 

identify meaningful associations between climate anomalies and growth. We assumed 284 

an association to be meaningful if years with a climate anomaly resulted in 285 

statistically significant growth departures (positive or negative) from “average 286 
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growth” over the whole studied period. Years with climate anomalies were chosen as 287 

years in the highest or lowest 10% percentile of respective distribution (i.e. below 288 

10% and above 90% of the distribution), depending on the sign of respective climatic 289 

anomaly. To avoid spurious significant correlations, we considered only those 290 

analyses where significant departures were observed within three year timeframe 291 

centered on the year of climatic anomaly. Results were considered significant if 292 

average growth deviation for a year exceeded the lower 2.5 or higher 97.5% percentile 293 

of respective distribution. SEA was performed in the program EVENT (Holmes 294 

1999). 295 

 296 

Results 297 

Soil characteristics of studied trees 298 

Site-wise comparison of soil physical and chemical characteristics showed the 299 

similarity of soil conditions under aspen and spruce trees (Table 2). Out of 90 300 

analyses done (9 variables X 10 sites), only 8 analyses showed a statistically 301 

significant difference. Since level of statistical significance was set to 0.05, we could 302 

expect approximately 5 significant results in the whole set of analyses, resulting from 303 

random variability in the data. Moreover, out of eight significant comparisons, four 304 

were associated with just one site (VIL3). 305 

Growth variability in RDA  306 

The first two ordination axes in RDA accounted for 30.5% of the variation in annual 307 

growth (axis I accounted for 23.6 and axis II – for 6.9 %, Fig. 2). Mean temperature of 308 

previous August and current June, as well as MDC of previous August and September 309 

were negatively associated with the first axis, whereas previous June and current 310 
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March precipitation showed a positive association. The second axis was positively 311 

associated with previous May MDC, and negatively with July precipitation and total 312 

amount of snowfall during the period April through May. Total number of degree 313 

days, temperature of previous November, and April MDC were associated with both 314 

axes: negatively with the first axis and positively with the second.  315 

Black spruce and aspen growth were differently affected by annual weather, as 316 

revealed by the redundancy analysis (Fig. 2). The first RDA axis discriminated trees 317 

according to their species identity: projections of all aspen chronologies on the first 318 

axis were found on its left part, whereas the most of the black spruce trees were 319 

located on its right part.  320 

Pointer years and associated climate anomalies 321 

We identified 20 pointer years (Table 3). The three major negative pointer in spruce 322 

were 1989 (36.6% of all trees), 2003 (16.78%), and 1962 (15.0%) and in aspen – 1972 323 

(16.3%), 1956 (14.8%), and 1969 (14.4%). Three of the most pronounced positive 324 

years in spruce were 1968 (20.6%), 1979 (14.5%), and 2004 (11.2%). Such years in 325 

aspen were 2003 (18.2%), 1976 (15.4%), and 1991 (11.2%).  326 

There was a strong negative relationship between expressions of negative pointer 327 

years in aspen and spruce, well approximated by negative linear regressions (Fig. 3). 328 

In case of negative pointer years, regression explained 35.1% of variability and in 329 

case of positive pointers 72.2%. All pointer years detected in more than 10% of trees 330 

in one species were not identified as pointer years or were pointer years of the 331 

opposite sign in the other species. Years 2003 and 1998 were extreme examples of 332 

this pattern: in 2003 16.8% of spruces showed a negative pointer year whereas 18.2% 333 
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of aspens a positive year. In the year 1998 the pattern was the opposite in that 3.5 % 334 

of spruces had a positive pointer year and 17.5% of aspens – a negative year.  335 

Each of the indentified pointer years was associated with several climatic anomalies. 336 

In 1969, for example, high mean temperatures in previous September and January, 337 

precipitation anomalies in previous May, July, February and August, as well as a low 338 

MDC in August could cause the negative growth anomaly in aspen.  339 

Expected number of climatic anomalies per pointer year was significantly lower than 340 

the empirically observed values in both conservative and opportunistic selection 341 

schemes (Fig. 4). Chi-Square test on enlarged groups revealed significant differences 342 

in both versions of analyses (Chi-Square = 22.5 and 10.2, P < 0.01 in both cases). 343 

Both observed distributions were left- biased as compared to distribution of the 344 

expected values. It indicated that pointer years were associated with less climate 345 

anomalies than it could be expected assuming a random co-occurrence of anomalies 346 

and pointer years. 347 

Since a total of 48 climate variables were used in RDA analysis and only 12 were 348 

retained as important ones afterwards (referred to as iRDA variables), we therefore 349 

would expect 25% of all climatic anomalies associated with selected pointer years to 350 

be the “retained variables”. Over the whole list of selected pointer years we identified 351 

41 unique climate anomalies, out of which eight (19.5%) were iRDA variables. Slight 352 

underrepresentation of iRDA variables in the pool of variables associated with pointer 353 

years was not significant: P value of two-tailed Fisher test for proportions was 0.499. 354 

Chi-Square test on 2 x 2 tables representing presence-absence data for each type of 355 

pointer year (separately for positive and negative pointers) revealed that spruce and 356 

aspen species did not record the same pointer years: pointer years in one species were 357 
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unlikely to exhibit the same sign growth anomaly in the other species. The effect was 358 

significant for both negative (Chi-Square = 7.34, p = 0.007) and positive anomalies 359 

(Chi-Square = 5.41, p = 0.020). 360 

Using SEA analysis to identify such important climate anomalies we found only three 361 

variables which were consistently associated with growth declines: current year June 362 

precipitation, degree days, and July temperature. This number was just a fraction of 363 

all climate anomalies identified earlier, which was in good agreement with results of 364 

Chi-Square tests (see above). Positive anomalies of June precipitation were associated 365 

with significant negative departures of spruce growth in the following growing 366 

season, as revealed by superimposed epoch analysis (Fig. 5). For aspen, negative 367 

anomalies in the degree days and July temperature were associated with significant 368 

growth anomalies.  369 

Strong negative anomalies were observed during the years of known insect outbreaks 370 

(Table 4). Using the same threshold for identification of the pointer years, we found 371 

that at least third of all spruce or aspen trees were exhibiting a negative pointer year 372 

during spruce budworm and forest tent caterpillar (FTC) outbreaks, respectively. 373 

Interestingly, FTC outbreaks were associated with occurrence of positive growth 374 

anomalies in spruce. 375 

 376 

Discussion 377 

Variability in growth responses to climate among different boreal species is well 378 

acknowledged in the literature (Tardif et al. 2001, Tatarinov et al. 2005, Huang et al. 379 

2010), although few studies attempted to quantify this variability along the gradient of 380 

potential environmental conditions, including the periods of both extreme and non-381 
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extreme weather. Responses to both types of conditions define species biomass 382 

accumulation rates, and ultimately – species’ role in communities. This study 383 

demonstrated clear differences in tree responses to climate in two main dominants of 384 

the North American boreal zone, which may have important implications for annual 385 

biomass dynamics of mixed spruce-aspen stands and response of these forests to 386 

future climate variability.  387 

 Growth responses to annual weather  388 

Radial growth of trembling aspen and black spruce was influenced by different 389 

climatic variables, confirming the first hypothesis. RDA results suggested that aspen 390 

growth was favored by warmer and drier conditions, while spruce growth benefitted 391 

from cooler temperatures and wetter conditions during the growing season, as well as 392 

warmer springs. Specifically, warmer Junes favored growth of aspen, whereas higher 393 

precipitation for the same month promoted the growth of spruce. Similarly, warmer 394 

previous year growth seasons favored growth of aspen, while spruce showed the 395 

positive response to the temperature only in the spring (MDC for April). These results 396 

suggested that spruce growth was constrained by the moisture stress during the 397 

growing season, whereas aspen growth might be limited by excess moisture. We 398 

explain the results by the shallow root system of black spruce, which is confined to 399 

the unsaturated surface layers of soil organic layer (upper 20 cm). Such layer tends to 400 

dry out faster than underlying mineral soil during summer (Lieffers & Rothwell 1987; 401 

Rothwell et al. 1996), making spruce sensitive to soil water content during the 402 

growing season. In turn, aspen possesses a deep root system, whose development is 403 

strongly influenced by both physical and chemical properties of soil (Burns & 404 

Honkala 1990a). In addition to possible effects of soil water deficit, spruce exhibits 405 
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lower optimum root growth temperatures, as compared to aspen (16 vs. 19°C, (Peng 406 

& Dang 2003), and may also show lower sensitivity of shoot and leaf growth to sub-407 

optimal temperatures, as suggested in study of another spruce species (Picea glauca 408 

(Moench) Voss, (Landhausser et al. 2001).  409 

Differences in nitrogen acquisition strategies between spruce and aspen might add to 410 

the differences in growth responses between species. Studies in Alaska demonstrated 411 

that black spruce can absorb and utilize organic nitrogen, a capacity probably lacking 412 

in aspen (Kielland et al. 2006, Kielland et al. 2007; however see Doty et al. 2005). 413 

Therefore, summer precipitation causing reduced N mineralisation rates might be of 414 

little importance as regards the nutrient balance of spruce. Instead, aspen nutrient 415 

balance and growth rates were likely to be affected during such seasons. Increased 416 

mineralization rates during warmer and dryer years would result in increased 417 

availability of non-organic N, favoring the aspen growth. In Eurasia, similarly 418 

opposite responses to water stress have been observed in a pair of similar species, 419 

Picea abies (L.) Karst. and Populus tremula L. (Tatarinov et al. 2005). It is however 420 

important to note here that the properties of microsites did not change significantly 421 

between spruce and aspen trees in the current study, excluding the effect of micro-422 

scale soil conditions on the observed differences (Table 2).  423 

We explain the importance of early summer temperature regime for aspen by the fact 424 

that many important physiological processes in this species take place in June. They 425 

include budburst, root, leaf and shoot growth (Fahey & Hughes 1994; Wan et al. 426 

1999; Burton et al. 2000; Landhäusser et al. 2003; Fréchette et al. 2011).  Instead, 427 

positive effect of MDC in spring was probably related to the recovery rate of the 428 

spruce photosynthetic capacity (PC). An experimental study of Norway spruce (Picea 429 
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abies) demonstrated that PC recovery was controlled mostly by mean air temperature 430 

and by the frequency of severe night frosts, and to a lesser extend - by soil 431 

temperatures (Bergh & Linder 1999).  432 

Pattern of growth anomalies 433 

Pointer year analysis showed contrasting and species specific patterns of growth 434 

anomalies. Years with positive growth anomalies in one species tend to be associated 435 

with none or negative anomalies in another species (Fig. 3). The pattern was visible 436 

for both positive and negative growth anomalies, indicating the climatic nature of the 437 

phenomenon and suggesting that physiological requirements for growth differentiated 438 

species also differ during environmentally stressful periods. 439 

The same climatic variables were important in affecting growth variability in 440 

climatically “average” and extreme periods. In spruce, a positive effect of the excess 441 

of June precipitation was in line with the RDA results indicating drought limitation of 442 

growth during the summer months. In aspen, extremely cold summers apparently 443 

limited trees’ physiologically activity and resulted in consistently negative growth 444 

anomalies. The importance of such negative growth anomalies is due to a link 445 

between growth rate and tree vitality. Years with severe environmental stress, 446 

manifested itself in the tree ring record as pointer years, have been shown to cause 447 

long-term declines in tree growth and delayed mortality (Drobyshev et al. 2007; 448 

Breda & Badeau 2008; Andersson et al. 2011). 449 

Climate anomalies were of unequal importance for the growth of species since a 450 

number of such anomalies during a given year were a poor predictor of a pointer year 451 

occurrence (Fig. 4). However, a large number of climatic anomalies associated with 452 

pointer years did not reveal any consistent relationship with tree growth. We explain 453 
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this result by general complexity of growth controls in boreal trees and rather coarse 454 

resolution of the available climate data: monthly variables might well obscure crucial 455 

weekly and even daily scale variability (see example in Drobyshev et al. 2008). 456 

Available data indicate that the observed pattern is a climatically-driven phenomenon 457 

and not a result of insect defoliator dynamics, specific to particular tree species. In our 458 

study area the potential defoliators were spruce budworm (SB, Choristoneura 459 

fumiferana) and forest tent caterpillar (Malacosoma disstria, FTC) attacking aspen. In 460 

case of SB, the intensity of spruce damage due to outbreaks in the study area has been 461 

low due to location of the area at the northern distribution limit of C. fumiferana and 462 

the fact that the feeding preference of the insect is strongly shifted towards balsam fir, 463 

its primary resource (Gray et al. 2000; Lussier et al. 2002). Nevertheless, by using 464 

morphological features, defoliation records (MRNFQ 2011), and supporting white 465 

spruce chronologies in the study area we identified years 1944 and 1974 as SB 466 

outbreak years and excluded them from pointer year analyses. Similarly, we identified 467 

years 1980 and 1999─2001 as years with FTC outbreaks. Although in this study the 468 

identification of outbreaks was done primarily to filter out non-climatic growth 469 

variability prior to pointer year analysis, it supported the observation that insects 470 

outbreaks in the western Quebec do not impact coniferous and deciduous species in 471 

the same years (Gray et al. 2000, Cooke & Lorenzetti 2006; MRNFQ 2011).  It 472 

implies that together with purely climatic influences on growth, dynamics of insect 473 

defoliators might further differentiate growth patterns in the two species.   474 

In another study conducted in the same region  (Huang et al. 2008), a number of 475 

additional defoliation years have been suggested, of which  some were also some 476 

indentified in our study as negative pointer years (years 1956, 1972, 1992, 1998, and 477 

2004). We, however, question the method used in the study of Huang et al., where 478 
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growth of aspen (host species) was compared to spruce as a non-host species for FTC. 479 

Several studies have shown that these two species do not react to climate in the same 480 

way (Tardif et al. 2001; Huang et al. 2010), see also the previous sub-section), and 481 

therefore shouldn’t be used as a pair of host and non-host species. Disregarding this 482 

fact during identification of outbreak years may easily result in “false positives”, i.e. 483 

years where climatically-induced growth difference could be misjudged as a sign of 484 

an insect outbreak. In line with our doubts concerning the reconstructed occurrence of 485 

FTC outbreaks in study region, only year 1972 was confirmed as an FTC outbreak 486 

year in the study which used the actual defoliation data (Cooke & Lorenzetti 2006). 487 

Finally, none of these years in our samples exhibited a characteristic whitish 488 

appearance, indicative for a year with FTC defoliation.  489 

Climate change and mixedwoods 490 

According to the Canadian Regional Climate Models (CRCMs, De Elia & Cote 491 

2010), the mean temperature and total precipitation in western Quebec will increase 492 

by 2046─2065, as compared to 1961─1999. Winters are predicted to become much 493 

warmer and wetter, while the summers may become drier. Increasing summer 494 

temperatures and drier conditions will likely benefit aspen growth and disfavour the 495 

growth of spruce. Whether the future climate will benefit growth of these two species 496 

or not, will highly depend on the balance between increasing temperatures and 497 

precipitation. The species specific effects of climate change will likely differentiate 498 

species in respect to their growth rates. Our results imply that differences in climate-499 

growth relationships between spruce and aspen may reduce variability in annual 500 

biomass production in mixed stands, as compared to mono-dominant forests. This 501 

reduction will likely be the most pronounced during years with favourable conditions 502 

for one of the species (Fig. 3).   503 
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The future climate is expected to exhibit higher frequency of climatic extremes 504 

(Bonsal et al. 2001, IPCC 2007, Mailhot et al. 2010) and the mixed stands, may, 505 

therefore, show a higher resilience under the future climates than mono-dominant 506 

communities. We conclude this from the evidence of the spatial and temporal niche 507 

separation between two species. Differences in the onset of leaf development in spring 508 

(Man & Lieffers 1997; Green 2004), in the organization of the root systems (Burns & 509 

Honkala 1990b; Brassard et al. 2011), and mineral nutrition (Kielland et al. 2006) 510 

between spruce and aspen imply that these species have sufficiently different resource 511 

acquisition strategies.  512 

Species specific responses to environmental variability imply that responses to future 513 

climate will likely be not synchronized among species, which may translate into 514 

changes in structure and composition of future forest communities. On another hand, 515 

our results suggest that mixed stands may better buffer direct effects of climate on 516 

biomass accumulation dynamics. This conclusion should also hold for indirect effects 517 

of climate such as changes in the pattern of insect outbreaks, which have a large 518 

impact on the vegetation in this part of North American forest (Hogg et al. 2002; 519 

Cooke & Roland 2007). Majority of insect defoliators in this region are species 520 

specific and their outbreaks do not result in simultaneous growth reductions in 521 

deciduous and coniferous species, adding to the niche separation of the two species. In 522 

addition to maintaining biodiversity, increasing forest resistance to wind damage, 523 

disease, and insect outbreaks (Frivold & Mielikainen 1990; Kelty 1992), mixed stands 524 

may enhance resilience of the boreal forest also through more even annual 525 

productivity and, possibly, lower stand-wide annual mortality rates.  526 

 527 

Acknowledgements 528 



Drobyshev et al  /  24 

We thank Valérie Plante and Christine Vigeant for field assistance, Marc Mazerolle 529 

(UQAT, Canada) for help with the statistical analyses, and Jacques Tardif (University 530 

of Winnipeg, Canada) for useful comments on an earlier version of the manuscript. 531 

I.D. thanks Franco Biondi (University of Nevada, U.S.), for providing original code of 532 

DendroClim 2002 and Narek Pahlevanyan (Gyumri State Pedagogic Institute, 533 

Armenia) for programming help. We are grateful to Martin Girardin (Natural 534 

Resources Canada), for the providing the climate data and to the lab of David Paré 535 

(Natural Resources Canada), for the help with soil analyses. We thank Lauren 536 

Sandhu, Assistant Editor of the Journal of Ecology, and an anonymous referee for 537 

constructive comments on earlier version of the manuscript. This work was 538 

financially supported by the Natural Sciences and Engineering Research Council of 539 

Canada (NSERC) as a strategic project grant (STPSC 350413-07) to Yves Bergeron 540 

and collaborators and by a Fonds Québécois de la Recherche sur la Nature et les 541 

Technologies (FQRNT) as a grant to Y. Bergeron and F. Berninger (2008-PR-542 

122675).  543 

 544 

References 545 

 546 

Allaby, M. (2007) Encyclopedia of weather and climate, revised edition. Facts On 547 

File, New York, USA. 548 

Andersson, M., Milberg, P. & Bergman, K.O. (2011) Low pre-death growth rates of 549 

oak (Quercus robur L.)-Is oak death a long-term process induced by dry years? 550 

Annals of Forest Science, 68, 159-168. 551 

Bauhus, J., van Winden,A.P. & Nicotra, A.B. (2004) Aboveground interactions and 552 

productivity in mixed-species plantations of Acacia mearnsii and Eucalyptus 553 

globulus. Can. J. For. Res., 34, 686-694. 554 



Drobyshev et al  /  25 

Béland, M., Brais, S., & Harvey, B. (1990) Guide de terrain pour la prise de données 555 

écologiques et interprétations pour la foresterie. Territoire Abitibi-556 

Témiscamingue. 1
ère

 approximation. Rouyn-Noranda, Québec, Canada, Unité de 557 

Recherche et de Développement Forestier de l'Abitibi-Témiscamingue. Université 558 

du Québec en Abitibi-Témiscamingue. 559 

Bergh, J. & Linder, S. (1999) Effects of soil warming during spring on photosynthetic 560 

recovery in boreal Norway spruce stands. Global Change Biology, 5, 245-253. 561 

Bonsal, B.R., Zhang, X., Vincent, L.A. & Hogg, W.D. (2001) Characteristics of daily 562 

and extreme temperatures over Canada. Journal of Climate, 14, 1959-1976. 563 

Brassard, B.W., Chen, H.Y.H., Bergeron, Y. & Pare, D. (2011) Differences in fine 564 

root productivity between mixed- and single-species stands. Functional Ecology, 565 

25, 238-246. 566 

Breda, N. & Badeau, V. (2008) Forest tree responses to extreme drought and some 567 

biotic events: Towards a selection according to hazard tolerance? Comptes Rendus 568 

Geoscience, 340, 651-662. 569 

Burns, R.M. & Honkala, B.H. (1990a) Silvics of North America. Volume 2. 570 

Hardwoods. USDA Forest Service, Washington, DC. 571 

Burns,R.M. & Honkala,B.H. (1990b) Silvics of North America. Volume 1. Conifers. 572 

USDA Forest Service, Washington, DC. 573 

Chen, H.Y.H., Klinka, K., Mathey, A.H., Wang, X., Varga, P. & Chourmouzis, C. 574 

(2003) Are mixed-species stands more productive than single-species stands: an 575 

empirical test of three forest types in British Columbia and Alberta. Can. J. For. 576 

Res., 33, 1227-1237. 577 

Cooke, B.J. & Lorenzetti, F. (2006) The dynamics of forest tent caterpillar outbreaks 578 

in Quebec, Canada. For. Ecol. Manage., 226, 110-121. 579 



Drobyshev et al  /  26 

Cooke, B.J. & Roland, J. (2007) Trembling aspen responses to drought and 580 

defoliation by forest tent caterpillar and reconstruction of recent outbreaks in 581 

Ontario. Can. J. For. Res., 37, 1586-1598. 582 

De Elia, R. & Cote, H. (2010) Climate and climate change sensitivity to model 583 

configuration in the Canadian RCM over North America. Meteorologische 584 

Zeitschrift, 19, 325-339. 585 

Doty, S.L., Dosher, M.R., Singleton, G.L., Moore, A.L., Van Aken, B., Stettler, R.F., 586 

Strand, S.E., & Gordon, M.P. (2005) Identification of an endophytic Rhizobium in 587 

stems of Populus. Symbiosis, 39, 27-36. 588 

Drobyshev, I., Linderson, H. & Sonesson, K. (2007) Temporal mortality pattern of 589 

pedunculate oaks in southern Sweden. Dendrochronologia, 24, 97-108. 590 

Drobyshev, I., Niklasson, M., Linderson, H. & Sonesson, K. (2008) Influence of 591 

annual weather on growth of pedunculate oak in southern Sweden. Annals of 592 

Forest Science, 65, 1-14, DOI: 10.1051/forest:2008033. 593 

Drobyshev, I., Simard, M., Bergeron, Y. & Hofgaard, A. (2010) Does soil organic 594 

layer thickness affect climate-growth relationships in the black spruce boreal 595 

ecosystem? Ecosystems, 13, 556-574. 596 

Fillon, L. & Payette, S. (2011) La Dendroécologie: Principes, Méthodes et 597 

Applications. Les Presses de l'Universite Laval, Québec. 598 

Frivold, L.H. & Mielikainen, K. (1990) The Effects of Hardwoods on Softwood 599 

Growth in Mixed Stands in Fennoscandia. Silvics and Ecology of Boreal Spruces, 600 

271, 75-82. 601 

Gagnon, R., Morin, H., Lord, D, Krause, C., Cloutier, C., Savard, G., & Potvin, J. 602 

(1998) Les forêts d'épinette noire au Québec: recherche, nouvelles connaissances 603 



Drobyshev et al  /  27 

et applications en aménagement. Laboratoire d'écologie et de physiologie végétale, 604 

Université du Québec à Chicoutimi, Chicoutimi, QC. 605 

Girard,F., Payette,S. & Gagnon,R. (2011) Dendroecological analysis of black spruce 606 

in lichen-spruce woodlands of the closed-crown forest zone in eastern Canada. 607 

Ecoscience, 18, 279-294. 608 

Girardin, M.P. & Wotton, B.M. (2009) Summer moisture and wildfire risks across 609 

Canada. Journal of Applied Meteorology and Climatology, 48, 517-533. 610 

Graumlich, L.J. (1993) Response of tree growth to climatic variation in the mixed 611 

conifer and deciduous forests of the Upper Great-Lakes region. Can. J. For. Res., 612 

23, 133-143. 613 

Gray, D.R., Regniere, J. & Boulet, B. (2000) Analysis and use of historical patterns of 614 

spruce budworm defoliation to forecast outbreak patterns in Quebec. For. Ecol. 615 

Manage., 127, 217-231. 616 

Green, D.S. (2004) Describing condition-specific determinants of competition in 617 

boreal and sub-boreal mixedwood stands. Forestry Chronicle, 80, 736-742. 618 

Greenwood, P.E. & Nikulin, M.S. (1996) A guide to chi-squared testing. Wiley, New 619 

York. 620 

Hansen, A.J., Neilson, R.R., Dale, V.H., Flather, C.H., Iverson, L.R., Currie, D.J., 621 

Shafer, S., Cook, R. & Bartlein, P.J. (2001) Global change in forests: responses of 622 

species, communities, and biomes. Bioscience, 51, 765-779. 623 

Hofgaard, A., Tardif, J. & Bergeron, Y. (1999) Dendroclimatic response of Picea 624 

mariana and Pinus banksiana along a latitudinal gradient in the eastern Canadian 625 

boreal forest. Can. J. For. Res., 29, 1333-1346. 626 



Drobyshev et al  /  28 

Hogg, E.H., Brandt, J.P. & Kochtubajda, B. (2002) Growth and dieback of aspen 627 

forests in northwestern Alberta, Canada, in relation to climate and insects. Can. J. 628 

For. Res., 32, 823-832. 629 

Holmes, R. L. (1999) Dendrochronological Program Library (DPL). Users Manual. 630 

http://www.ltrr.arizona.edu/pub/dpl/, Laboratory of Tree ring Research, University 631 

of Arizona, Tucson, Arizona, USA.  632 

Huang, J.G., Tardif, J., Denneler, B., Bergeron, Y. & Berninger, F. (2008) Tree ring 633 

evidence extends the historic northern range limit of severe defoliation by insects 634 

in the aspen stands of western Quebec, Canada. Can. J. For. Res., 38, 2535-2544. 635 

Huang, J.G., Tardif, J.C., Bergeron, Y., Denneler, B., Berninger, F. & Girardin, M.P. 636 

(2010) Radial growth response of four dominant boreal tree species to climate 637 

along a latitudinal gradient in the eastern Canadian boreal forest. Global Change 638 

Biology, 16, 711-731. 639 

IPCC. Climate Change 2007: The Physical Science Basis. Contribution of Working 640 

Group I to the Fourth Assessment Report of the Intergovernmental Panel on 641 

Climate Change. Eds Solomon, S., Qin, D., & Manning, D.  642 

Kelty, M.J. (1992) Comparative productivity of monocultures and mixed-species 643 

stands. The Ecology and silviculture of mixed-species forests (eds M. J. Kelty, B. 644 

C. Larson & D. O. Chadwick), pp. 125-141. Kluwer Academic Publishers, 645 

Dordrecht, The Netherlands. 646 

Kielland, K., McFarland, J. & Olson, K. (2006) Amino acid uptake in deciduous and 647 

coniferous taiga ecosystems. Plant and Soil, 288, 297-307. 648 

Kielland, K., McFarland, J., Ruess, R. & Olson, K. (2007) Rapid cycling of organic 649 

nitrogen in taiga forest ecosystems. Ecosystems, 10, 360-368. 650 



Drobyshev et al  /  29 

Landhausser, S.M., Desrochers, A. & Lieffers, V.J. (2001) A comparison of growth 651 

and physiology in Picea glauca and Populus tremuloides at different soil 652 

temperatures. Can. J. For. Res., 31, 1922-1929. 653 

Lecomte, N. & Bergeron, Y. (2005) Successional pathways on different surficial 654 

deposits in the coniferous boreal forest of the Quebec Clay Belt. Can. J. For. Res., 655 

35, 1984-1995. 656 

Legare, S., Pare, D. & Bergeron, Y. (2004) The responses of black spruce growth to 657 

an increased proportion of aspen in mixed stands. Can. J. For. Res., 34, 405-416. 658 

Legare, S., Pare, D. & Bergeron, Y. (2005) Influence of aspen on forest floor 659 

properties in black spruce-dominated stands. Plant and Soil, 275, 207-220. 660 

Leonelli, G. & Pelfini, M. (2008) Influence of climate and climate anomalies on 661 

Norway spruce tree ring growth at different altitudes and on glacier responses: 662 

Examples from the Central Italian Alps. Geografiska Annaler Series A-Physical 663 

Geography, 90A, 75-86. 664 

Lieffers, V.J. & Rothwell, R.L. (1987) Rooting of peatland black spruce and tamarack 665 

in relation to depth of water-table. Can. J. For. Res., 65, 817-821. 666 

Lussier, J.M., Morin, H. & Gagnon, R. (2002) Mortality in black spruce stands of fire 667 

or clear-cut origin. Can. J. For. Res., 32, 539-547. 668 

Mailhot, A., Kingumbi, A., Talbot, G. & Poulin, A. (2010) Future changes in intensity 669 

and seasonal pattern of occurrence of daily and multi-day annual maximum 670 

precipitation over Canada. Journal of Hydrology, 388, 173-185. 671 

Man, R. & Lieffers, V.J. (1997) Seasonal photosynthetic responses to light and 672 

temperature in white spruce (Picea glauca) seedlings planted under an aspen 673 

(Populus tremuloides) canopy and in the open. Tree Physiol., 17, 437-444. 674 



Drobyshev et al  /  30 

Mohan, J.E., Cox, R.M. & Iverson, L.R. (2009) Composition and carbon dynamics of 675 

forests in northeastern North America in a future, warmer world. Can. J. For. Res., 676 

39, 213-230. 677 

MRNFQ. Insect defoliation data over the province of Québec.  2011.  Ministère des 678 

Ressources Naturelles et de la Faune du Québec (MRNFQ). 679 

Peng, Y.Y. & Dang, Q.L. (2003) Effects of soil temperature on biomass production 680 

and allocation in seedlings of four boreal tree species. For. Ecol. Manage., 180, 1-681 

9. 682 

Pretzsch, H., Block, J., Dieler, J., Dong, P.H., Kohnle, U., Nagel, J., Spellmann, H. & 683 

Zingg, A. (2010) Comparison between the productivity of pure and mixed stands 684 

of Norway spruce and European beech along an ecological gradient. Annals of 685 

Forest Science, 67. 686 

Rothwell, R.L., Silins, U. & Hillman, G.R. (1996) The effects of drainage on substrate 687 

water content at several forested Alberta peatlands. Can. J. For. Res., 26, 53-62. 688 

Schweingruber, F. H. Tree rings and environment. Dendroecology (1996)  Paul Haupt 689 

Publishers, 609 pp.  690 

Sokal, R.R. & Rolf, F.J. (1995) Biometry: the principles and practice of statistics in 691 

biological research. W. H. Freeman, New York. 692 

Speer, J.H. (2010) Fundamentals of tree ring research. University of Arizona Press, 693 

Tucson. 694 

Sutton, A. & Tardif, J.C. (2007) Dendrochronological reconstruction of forest tent 695 

caterpillar outbreaks in time and space, western Manitoba, Canada. Can. J. For. 696 

Res., 37, 1643-1657. 697 



Drobyshev et al  /  31 

Swetnam, T.W., Thompson, M.A, & Sutherland, E K. (1985) Using 698 

dendrochronology to measure radial growth of defoliated trees. USDA Forest 699 

Service Agricultural Handbook No. 639, p. 39 pp. 700 

Tardif, J., Brisson, J. & Bergeron, Y. (2001) Dendroclimatic analysis of Acer 701 

saccharum, Fagus grandifolia, and Tsuga canadensis from an old-growth forest, 702 

southwestern Quebec. Can. J. For. Res., 31, 1491-1501. 703 

Tatarinov, F., Bochkarev, Y., Oltchev, A., Nadezhdina, N. & Cermak, J. (2005) Effect 704 

of contrasting water supply on the diameter growth of Norway spruce and aspen in 705 

mixed stands: a case study from the southern Russian taiga. Annals of Forest 706 

Science, 62, 807-816. 707 

Ter Braak, C.J. & Šmilauer, P. (2002) CANOCO Reference manual and CanoDraw 708 

for Windows User's guide: software for canonical community ordination (version 709 

4.5). Microcomputer Power, Ithaca, NY, USA. 710 

Thien, S.J. (1979) A flow diagram for teaching texture-by-feel analysis. Journal of 711 

Agronomic Education, 8, 54-55. 712 

Timoney, K.P. (2003) The changing disturbance regime of the boreal forest of the 713 

Canadian Prairie Provinces. Forestry Chronicle, 79, 502-516. 714 

 715 

716 



Drobyshev et al  /  32 

Table 1. 717 

Characteristics of sampled sites distributed within three sub-areas: Selbaie (SEL), Villebois (VIL), and 718 

Wawagosic (WAW). DBH data refer to the trees sampled for dendrochronological analyses. 719 

 720 

721 
Site Spruce DBH 

(mean ± SD, 

cm) 

Aspen DBH 

(mean ± 

SD, cm) 

Spruce density 

(mean ± SD, 

stems/ha) 

Aspen density 

( mean ± SD, 

stems/ha) 

Total tree density 

( mean ± SD, 

stems/ha) 

# of 

plots 

SEL1 17.7 ± 3.3 28.2 ± 6.1 120.6 ± 87.9 12.7 ± 162.5 150.8 ± 109.6 10 

SEL2 16.3 ± 2.8 30.2 ± 6.5 240.1 ± 60.6 26.8 ± 85.7 354.2 ± 93.8 16 

SEL3 13.0 ± 2.3 22.9 ± 2.5 49.2 ± 47.6 149.2 ± 85.1 371.4 ± 77.9 10 

VIL1 15.2 ± 3.7 18.1 ± 6.6 616.5 ± 58.9 14.2 ± 87.8 634.1 ± 62 19 

VIL2 15.0 ± 4.3 28.4 ± 7.3 169.6 ± 53.4 73.5 ± 98.2 244.8 ± 95 19 

VIL3 16.7 ± 3.5 23.7 ± 6.4 34.4 ± 64.9 104.9 ± 84.8 181.7 ± 95.6 18 

VIL4 13.2 ± 1.6 15.3 ± 5.9 27 ± 33.5 85.7 ± 61 222.2 ± 76.3 10 

WAW

1 
16.5 ± 2.7 16.4 ± 2.2 473.4 ± 55.5 33.6 ± 57 507 ± 55.8 17 

WAW

2 
20.7 ± 3.7 41.2 ± 7.6 62.4 ± 60.8 40.2 ± 147.9 114.3 ± 153.2 15 

WAW

3 
21.0 ± 4.3 36.9 ± 8.5 28.9 ± 79.6 85.1 ± 183.6 187.6 ± 145.8 11 
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Table 2.  722 

Differences in characteristics of the soil under trembling aspen and black spruce trees at ten study sites. First value on the line – significance value (p) of the Mann-Whitney 723 

U Test, second and third values – means of respective soil characteristic for aspen and spruce, respectively. Bold font indicates significant differences. C/N refers to carbon to 724 

nitrogen ratio, S – sulfur, P – phosphorus, SOL soil organic layer, and CEC - for cation exchange capacity. Soil water content was calculated by the gravimetric method. 725 

 726 

SiteID 
SOL 

thickness 
C/N Stotal PbrayII(mg g

-1)
 pHCaCL2 CEC 

Soil water content 

* 10
-2

 

Proportion of  

clay * 10
-2

 

Proportion of  

sand * 10
-2

 

VIL1 0.283/8.52-9.58 0.172/38.41-42.29 0.234/0.19-0.18 0.234/0.10-0.15 0.023/3.01-2.92 0.284/46.10-43.51 0.862/11.73-11.62 0.953/51.75-50.72 0.931/29.84-30.72 

VIL2 0.364/4.97-5.16 0.096/28.00-29.18 0.729/0.21-0.21 0.644/0.15-0.15 0.623/4.24-4.12 0.707/66.45-64.92 0.977/7.00-7.10 0.708/52.10-51.73 0.418/20.95-23.01 

VIL3 0.003/2.34-3.35 0.013/23.03-25.04 0.118/0.18-0.21 0.022/0.14-0.17 0.043/4.15-3.96 0.937/55.00-55.22 0.278/6.08-7.61 0.606/38.01-36.32 0.743/37.93-36.22 

VIL4 0.684/2.47-2.62 0.795/25.03-24.73 0.760/0.25-0.27 0.190/0.19-0.15 0.190/3.56-3.68 N/A 0.514/4.78-4.10 0.173/13.41-16.90 0.145/68.12-60.34 

WAW1 0.009/10.75-13.74 0.057/42.03-45.42 0.394/0.19-0.18 0.106/0.17-0.14 0.078/3.02-2.93 0.453/26.45-23.83 0.062/6.32-8.04 0.433/43.91-41.93 0.001/30.63-39.45 

WAW2 0.089/4.09-4.48 0.512/24.59-25.09 0.539/0.26-0.27 0.061/0.17-0.14 0.074/4.33-4.17 0.173/61.39-56.14 0.838/7.51-7.43 0.567/47.04-46.04 0.713/35.14-36.61 

WAW3 0.171/2.21-2.62 0.116/20.05-21.19 0.948/0.24-0.24 0.800/0.12-0.12 0.101/4.40-4.26 0.606/48.92-48.81 N/A 0.561/43.08-42.19 0.606/28.04-30.00 

SEL1 0.279/14.50-16.60 0.739/35.02-36.88 0.578/0.19-0.18 0.352/0.07-0.06 0.578/3.65-3.53 0.123/58.56-55.37 0.393/3.56-5.28 0.393/48.98-41.36 0.393/14.70-25.84 

SEL2 0.724/4.54-4.43 0.564/30.70-31.51 0.616/0.19-0.20 0.491/0.09-0.09 0.238/4.22-4.03 0.061/63.65-58.37 0.867/4.61-4.84 0.838/44.56-44.02 0.515/28.24-30.21 

SEL3 0.089/2.11-2.78 0.739/24.77-25.24 0.435/0.22-0.21 0.684/0.13-0.12 0.165/4.10-4.29 0.436/56.87-59.93 0.631/4.43-4.11 0.035/38.59-32.72 0.280/37.91-44.75 

All sites 0.119/5.73-6.62 0.127/29.79-31.47 0.892/0.21-0.21 0.202/0.13-0.13 0.086/3.85-3.75 0.324/54.79-52.80 0.203/6.57-7.05 0.336/43.51-42.32 0.086/32.16-34.23 

 727 
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Table 3.  728 

Pointer years observed in at least 10% of sampled trees in one of the two species and 729 

associated climate anomalies. Plus and minus signs refer to positive and negative growth 730 

anomalies, respectively. Both signs on the same row indicate that both types of pointer years 731 

were observed, the first sign indicating the dominant type. Climate variables abbreviations: 732 

monthly mean temperature (T), total monthly precipitation (P), monthly drought code (MDC) 733 

and total degree-days (DD). Climate variables in the previous year are indicated with a “p”. In 734 

bold are climate variables revealing the same sign of association with growth in RDA. In 735 

parentheses are the actual absolute values of respective climate parameters 736 

 737 

Please see the next page 738 
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Table 3 (continued) 739 

Year Total number 

of anomalies 

Black spruce Trebling aspen Climatic anomalies 

 
Type of 

anomaly 

% of 

trees 

Type of 

anomaly 
% of trees  

1951 
(3 – 2) 

3 
+ 11.01 + 1.87 

T Apr > 95% (3.2°C) / P May < 2% (20.8 mm) / 
MDC May > 95% (107.1) 

1956 

(9 - 5) 

9 
- 8.93 - 14.75 

T pJun, pJul > 98% (17.2°C and 19.0°C) / T Mar, May, Jul, Aug < 5% (-15.1°C, 2.5°C, 13.8°C and 12.9°C) / P pOct > 99% (153.7 mm) / 

DD < 1% (965.4°C) / MDC May < 5% (43.6) 

1960 
(6 – 5) 

6 
-  3.42 + 13.18 T pNov, Mar, Jul < 5% (-9.3°C, -16.3°C and 14.5°C) / P pJul < 2% (42.2 mm) / P Jun > 95% (158.6 mm) / MDC Jul < 5% (121.9) 

1962 

(3 – 3) 

3 
- 15.00 + 0.77 T Feb < 1% (-22.5°C) / P pAug, May > 95% (148.2 mm and 124.6 mm) 

1968 

(6 - 3) 

6 
+ 20.59 - 2.88 

T pMay < 5% (4.4°C) / P Jan, May < 1% (25.4 mm and 13.6 mm) / P Jul > 99% (177.9 mm) / MDC pMay < 5% (44.8) / MDC May > 98% 

(107.4) 

1969 

(9 – 7) 

9 
+ 2.19 - 14.39 

T pSep, Jan > 95% (13.7°C and -12.9°C) / P pMay, Feb < 5% (13.6 mm and 16.0 mm) / P pJul, Aug > 98% (177.9 mm and 153.5 mm) / 

MDC Jun, Aug < 5% (86.6 and 152.2) / MDC pMay > 98% (107.4) 

1970 

(4 - 4) 

4 
- 11.51 + 5.71 P pAug, pNov > 98% (153.5 mm and 127.4 mm) / MDC pJun, pAug < 5% (86.6 and 152.2) 

1972 

(3 – 2) 

3 
 0.00 - 15.60 T pOct > 95% (7.9°C)  / P Apr < 1% (6.5 mm) / MDC Apr > 98% (36.5) 

1976 

(2 – 2) 

2 
- 8.97 + 15.38 T pMay, Jun > 95% (12.0°C and 16.5°C) 

1979 

(3 - 3) 

3 
+ 14.48 + 6.29 P Mar, Jun > 98% (87.1 mm and 173.0 mm) / MDC pJul < 5% (122.0) 

1985 

(2 – 1) 

2 
+ 11.03  0.00 T Jul < 5% (14.4°C) / P Jul > 95% (158.7 mm) 

1989 

(3 – 3) 

3 
- 36.55  0.00 P Feb < 1% (8.7 mm) / P pAug > 99% (213.8 mm) / MDC pSep < 1% (84.6) 

1991 

(2 – 2) 

2 
+ 5.56 + 11.19 P pSep > 99% (165.0 mm) / MDC pJul < 1% (113.9) 

1992 

(3 – 1) 

3 
- 1.39 - 10.49 T Jun, Jul < 5% (11.0°C and 13.6°C) / DD < 2% (1051.2) 

1994 

(5 – 4) 

5 
- 13.89 + 2.80 T pSep, Jan < 5% (7.7°C and -27.3°C) / P Jan < 5% (27.0 mm) / P pMay, pJul > 95% 137.6 mm and 159.7 mm) 

1998 

(4 – 3) 

4 
+ 3.50 - 17.48 T Feb > 99% (-9.0°C) / P Mar > 95% (86.8 mm) / MDC Apr, May > 99% (37.3 and 112.5) 

2003 

(2 - 2) 

2 
- 16.78 + 18.18 T pSep > 95% (12.9°C) / P pAug < 1% (36.8 mm) 

2004 
(2 - 1) 

2 
+ 11.19 - 6.29 MDC Jul, Aug < 2% (121.8 and 140.9) 

2006 5 - 4.90 + 21.83 T pJun, Jan  > 98% (17.6°C and -11.9°C) / P pNov > 95% (116.7 mm) / DD previous year > 99% (1624.7) / MDC Jun > 95% (196.3) 
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(5 – 3) 

2008 
(2 – 1) 

2 
- 14.17 + 5.93 P Jul > 98% (173.5 mm) / MDC Jul < 1% (121.4) 
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Table 4. 740 

Occurrence of growth anomalies during the years with defoliator outbreaks of black spruce (spruce 741 

budworm) and trembling aspen (forest tent caterpillar). 742 

Year Black spruce Trebling aspen 

 
Type of 

anomaly 

% of 

trees 

Type of 

anomaly 

% of 

trees 

Spruce budworm    

1944 - 46.46%  0 

1974 - 29.86% - 2.82% 

Forest tent caterpillar    

1980-1981 + 25.52% - 74.83% 

1999-2001 + 13.29% - 34.27% 

 743 

744 
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Figures 745 

Fig. 1 746 

The study area with the the Québec Clay Belt indicated by the dotted pattern. Study sites are shown as 747 

black squares. 748 

 

 749 
750 
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Fig. 2. 751 

Results of redundancy analysis (RDA) with the first 2 axes representing growth variability and 11 axes 752 

representing climate variables. Shown are score positions for black spruce (white circles) and trembling 753 

aspen (dark squares) residual chronologies from 1958 to 2007. Climate variables are explanatory 754 

variables and represented by black arrows: monthly mean temperature (T), monthly total precipitation 755 

(P), monthly drought code (MDC), total number of degree days (DD), and amount of snowfall (S). 756 

Climate variables in the previous year are indicated with a “p”.  The position of climate variables is 757 

based on their correlation with the canonical axes, and only climate variables with a |r| ≥ 0.20 are 758 

shown. 759 

 760 

 761 

762 



Drobyshev et al  /  40 

Fig. 3. 763 

Relationship between expression of positive (white circles) and negative (black circles) pointer years in 764 

black spruce and trembling aspen. Percentages of explained variance in linear regression are shown in 765 

brackets. Year 2003 contributed to both regressions. 766 

 767 

 768 

 769 

 770 

771 
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Fig. 4. 772 

Expected and observed frequencies of climate anomalies associated with black spruce and trembling 773 

aspen pointer years during 1940-2008. Smaller graph shows the same data as the larger graph, but 774 

grouped in three categories to comply with requirements of Chi-Square test. “Cons.” and “opp.” refer 775 

to the conservative and opportunistic classification protocol in identifying climatic anomalies (see 776 

Methods). Both observed distributions were significantly different from the expected distribution and 777 

were also left- biased as compared to it, indicating that average number of climate anomalies per 778 

pointer year was generally lower than it could be expected from by a chance alone.  779 

 780 

 781 

 782 

783 
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Fig. 5. 784 

Effects of climatic anomalies associated with pointer years of black spruce and 785 

trembling aspen on the growth; results of superimposed epoch analysis. 786 

 787 

 788 


